
This project and the research leading to these results

has received funding from the European

Communityôs Seventh Framework Programme [FP7 /

2007-2013] under grant agreement 611085

www.proxima-project.eu

Experimental evaluation of optimal schedulers

based on partitioned proportionate fairness

Davide Compagnin

University of Padua - Italy

CISTER Periodic Seminar Series
Porto, May 24th, 2016

Outline

Ç Motivation of our work

Ç Brief recall of RUN and QPS algorithms

Ç Implementation and evaluation

Ç Conclusions and future work

2 CISTER, Porto, 24 May 2016 D Compagnin et al.

Introduction

RUN
Reduction to UNiprocessor

(RTSS-11)

QPS
Quasi-Partitioning Scheduling

(ECRTS-14)

On periodic task-sets

Optimal multiprocessor scheduling

Not based on proportionate-fairness

Designed to reduce # of preemptions and migrations

Also on sporadic task-sets

3 CISTER, Porto, 24 May 2016 D Compagnin et al.

Motivation

RUN QPS

Implemented1

on top of LITMUS^RT

Confirming

moderate run-time overhead
in between that of P-EDF and G-EDF

1 Compagnin, D.; Mezzetti, E.; VardanegaΣ ¢ΦΣ ϦtǳǘǘƛƴƎ w¦b ƛƴǘƻ tǊŀŎǘƛŎŜΥ LƳǇƭŜƳŜƴǘŀǘƛƻƴ ŀƴŘ 9ǾŀƭǳŀǘƛƻƴΣά ό9/w¢{-14)

4 CISTER, Porto, 24 May 2016 D Compagnin et al.

Recall of the algorithms /1

RUN QPS
Off-line phase

On-line phase
The multiprocessor schedule is ñderivedò from

the corresponding uniprocessor schedule

Multiprocessor

scheduling

problem

decomposition

Uniprocessor

scheduling

problems

5 CISTER, Porto, 24 May 2016 D Compagnin et al.

Recall of the algorithms /1

RUN QPS
Reduction tree

Off-line phase
Processor hierarchy

Unitary processor capacity

can be exceeded

External servers

reserve capacity for exceeding

parts on a different processor

6 CISTER, Porto, 24 May 2016 D Compagnin et al.

Recall of the algorithms /2

RUN QPS
Reduction tree

Off-line phase
Processor hierarchy

Unitary processor capacity

can be exceeded

External servers

reserve capacity for exceeding

parts on a different processor

7 CISTER, Porto, 24 May 2016 D Compagnin et al.

Recall of the algorithms /3

RUN QPS
Reduction tree

Off-line phase
Processor hierarchy

Unitary processor capacity

can be exceeded

External servers

reserve capacity for exceeding

parts on a different processor

8 CISTER, Porto, 24 May 2016 D Compagnin et al.

Recall of the algorithms /4

RUN QPS
Reduction tree

Off-line phase
Processor hierarchy

Unitary processor capacity

can be exceeded

External servers

reserve capacity for exceeding

parts on a different processor

9 CISTER, Porto, 24 May 2016 D Compagnin et al.

Recall of the algorithms /5

On-line phase
RUN QPS

10 CISTER, Porto, 24 May 2016 D Compagnin et al.

Recall of the algorithms /5

On-line phase
RUN QPS

11 CISTER, Porto, 24 May 2016 D Compagnin et al.

Implementation /1

Data Structures
RUN QPS

12 CISTER, Porto, 24 May 2016 D Compagnin et al.

Implementation /2

RUN QPS

Global scheduling

ÅVirtual scheduling

ÅCompact tree representation

ÅCPUs are assigned to level-0
servers

ÅTimers trigger budget
consumption events

ÅNode selection is performed

ÅRelease queue and lock

Local scheduling

ÅWith EDF

Local scheduling +
Processor synchronization

ÅUniform representation of tasks
and servers

ÅBudgets consistently updated

ÅTimer triggers budget
consumption events

ÅPer-hierarchy release queue and
lock

Notable differences

13 CISTER, Porto, 24 May 2016 D Compagnin et al.

Implementation /3

Global scheduling

ÅVirtual scheduling

ÅCompact tree representation

ÅCPUs are assigned to level-0
servers

ÅTimers trigger budget
consumption events

ÅNode selection is performed

ÅRelease queue and lock

Local scheduling

ÅWith EDF P3 notifies P1 of the S1ôs execution

Local scheduling +
Processor synchronization

RUN QPS
Notable differences

14 CISTER, Porto, 24 May 2016 D Compagnin et al.

Implementation /4

RUN QPS
Main issues

15 CISTER, Porto, 24 May 2016 D Compagnin et al.

Overlapping events

Global events may occur

simultaneously

Unnecessary tree updates

Short scheduling intervals

The scheduling primitives might take more time than the

budget available for a server

Unnecessary processor

synchronizations

Evaluation

Ç Empirical evaluation instead of simulation

Ç Focus on scheduling interference

ü Cost of scheduling primitives

ü Incurred preemptions and migrations

Ç Evaluation limited to periodic task

ü External servers are always ñactiveò

ü Sporadic activations would normally have lower utilization

ü Thus reducing the number of preemptions/migrations

16 CISTER, Porto, 24 May 2016 D Compagnin et al.

Experimental setup

Ç LITMUSRT on a 16-cores AMD Opteron 6370P

Ç Exhaustive measurements over the two algorithms

ü Thousand of automatically generated task sets

ü Harmonic and non-harmonic, with global utilization in 50%-100%

ü Stressing both the off-line and the on-line phases

Ç Two-step experimental process

ü Preliminary empirical determination of system overheads

collect
measurements
on overheads

determine
per-job

upper bound

perform
actual

evaluation

17 CISTER, Porto, 24 May 2016 D Compagnin et al.

Primitive overheads and empirical bound

Ç Expectation was confirmed

ü QPS has lighter-weight scheduling primitives

ü And does not need Tree Update Operations (TUP)

Ç Empirical upper bound on the scheduling overhead

Ç Based on theoretical bounds on the scheduling structures

(RUN tree and QPS hierarchy)

maximum observed overheads

18 CISTER, Porto, 24 May 2016 D Compagnin et al.

Per-job scheduling interference

Ç Determined by preemptions and

migrations

Ç In relation to reduction-tree and

processor hierarchy depth

19 CISTER, Porto, 24 May 2016 D Compagnin et al.

Scheduling primitives

max schedulemax release

Ç Maximum observed cost of core scheduling primitives

ü Release and Schedule

ü Variation under increasing system utilization

20 CISTER, Porto, 24 May 2016 D Compagnin et al.

Overall per-job overhead

medium tasks (utilization [0.1;0.5])heavy tasks (utilization [0.5;0.9])

Ç QPS is more susceptible to packing

than RUN

Ç Lighter-weight tasks ease the

partitioning problem

ü And lead to less complex scheduling

structures

21 CISTER, Porto, 24 May 2016 D Compagnin et al.

Conclusions and future work

Ç QPS benefits from partitioned scheduling

ü Hence improves over RUN for cost of scheduling primitives

Ç é but is more susceptible to the off-line phase

ü QPSôs need for processor synchronization hits performance badly

with higher processor hierarchies

Ç RUN exhibits an almost constant overhead

ü Induced by its global scheduling nature

ü Which in turn may penalize it at lower system utilization

Ç Future work

ü Mainly interested in evaluating how this class of algorithms may

behave when the number of processing units increases

ü Considering also how different implementation may affect the

algorithm scalability

22 CISTER, Porto, 24 May 2016 D Compagnin et al.

This project and the research leading to these results

has received funding from the European

Communityôs Seventh Framework Programme [FP7 /

2007-2013] under grant agreement 611085

www.proxima-project.eu

Experimental evaluation of optimal schedulers

based on partitioned proportionate fairness

Davide Compagnin

University of Padua - Italy

CISTER Periodic Seminar Series
Porto, May 24th, 2016

