

Time-bounded Distributed QoS-Aware
Service Configuration in Heterogeneous
Cooperative Environments

Luis Nogueira
Miguel Pinho

www.hurray.isep.ipp.pt

Technical Report

TR-060105

Version: 1.0

Date: January 2006

Time-bounded Distributed QoS-Aware Service Configuration in
Heterogeneous Cooperative Environments
Luis Nogueira, Miguel PINHO

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: {luis, lpinho}@dei.isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
The scarcity and diversity of resources among the devices of heterogeneous computing environments may
affect their ability to perform services with specific Quality of Service constraints, particularly in dynamic
distributed environments where the characteristics of the computational load cannot always be predicted in
advance. Our work addresses this problem by allowing resource constrained devices to cooperate with more
powerful neighbour nodes, opportunistically taking advantage of global distributed resources and processing
power. Rather than assuming that the dynamic configuration of this cooperative service executes until it
computes its optimal output, the paper proposes an anytime approach that has the ability to tradeoff
deliberation time for the quality of the solution. Extensive simulations demonstrate that the proposed anytime
algorithms are able to quickly find a good initial solution and effectively optimise the rate at which the
quality of the current solution improves at each iteration, with an overhead that can be considered negligible.

Time-bounded Distributed QoS-Aware

Service Configuration in Heterogeneous

Cooperative Environments

Lúıs Nogueira ∗ , Lúıs Miguel Pinho

School of Engineering of the Polytechnic Institute of Porto (ISEP/IPP)
Rua Dr. António Bernardino de Almeida 431

4200-072 Porto, Portugal
Phone: +351 22 8340529 Fax: +351 228340525

Abstract

The scarcity and diversity of resources among the devices of heterogeneous comput-
ing environments may affect their ability to perform services with specific Quality
of Service constraints, particularly in dynamic distributed environments where the
characteristics of the computational load cannot always be predicted in advance.
Our work addresses this problem by allowing resource constrained devices to co-
operate with more powerful neighbour nodes, opportunistically taking advantage
of global distributed resources and processing power. Rather than assuming that
the dynamic configuration of this cooperative service executes until it computes
its optimal output, the paper proposes an anytime approach that has the ability
to tradeoff deliberation time for the quality of the solution. Extensive simulations
demonstrate that the proposed anytime algorithms are able to quickly find a good
initial solution and effectively optimise the rate at which the quality of the cur-
rent solution improves at each iteration, with an overhead that can be considered
negligible.

Key words: Distributed systems, Dynamic real-time systems, Quality of service,
Anytime algorithms

∗ Corresponding author.
Email addresses: luis@dei.isep.ipp.pt (Lúıs Nogueira),

lpinho@dei.isep.ipp.pt (Lúıs Miguel Pinho).

1 Introduction

Several real-time applications have the ability to provide higher or lower levels
of quality based on the amount of available resources. However, an increas-
ing number of those applications need a considerable amount of computation
power and are pushing the limits of traditional data processing infrastructures
as they introduce heavy resource requirements on the client side [1].

This calls for an architecture that supports the distribution of the processing
task to different nodes in order to meet acceptable non-functional requirements
such as timeliness, robustness, dependability, performance, etc. This is where
Quality of Service (QoS) applies and the reason for the increment on work on
QoS management during the last years.

The possibility to partition resource intensive services into tasks and dis-
tribute them across the subset of neighbours that provide service closer to
each user’s QoS preferences can benefit a wide range of application domains
as an increasing number of real-time applications need a considerable amount
of computation power. Consider, for example, the real-time stream processing
systems described in [2; 3; 4]. The quantity of data produced by a variety of
data sources and sent to end systems to further processing is growing signifi-
cantly, increasingly demanding more processing power. The challenges become
even more critical when coordinated content analysis of data sent from mul-
tiple sources is necessary [3]. Thus, with a potentially unbounded amount of
stream data and limited resources, some of the processing tasks may not be
satisfyingly answered [4].

Our work addresses these increasingly complex demands on resources and
performance requirements, reflected in multiple attributes over multiple qual-
ity dimensions in dynamic distributed systems where the characteristics of
the computational load cannot always be predicted in advance, by allowing
resource constrained devices to cooperate with more powerful (or less con-
gestioned) neighbour nodes, opportunistically taking advantage of global dis-
tributed resources and processing power. This will be achieved via the for-
mation of temporary groups of individual nodes, which, due to their higher
flexibility and agility, are capable of effectively respond to new, challenging,
requirements. We call these groups coalitions.

Furthermore, since different users of the same application may have different
service preferences or device-related constraints, supporting the maximisation
of those preferences while offloading service execution is a key issue. This
paper proposes a method for finding and selecting the best subset of service
providers among the set of neighbour nodes according to each user’s particular
QoS preferences, taking advantage of global resources and processing power

2

through a cooperative service execution.

It is clear that such distribution presents very significant challenges, particu-
larly at the architectural level. Distribution in a heterogeneous environment
demands a global approach to achieve efficient resource usage that constantly
adapts to devices’ specific constraints, nature of executing tasks (hard real-
time, soft real-time, non real-time) and dynamically changing system condi-
tions. Major developments are required in the fields of communications pro-
tocols, data processing and application support. Our goal is to develop an
architecture which enables the creation of a new generation of nodes that can
effectively network together, providing a flexible platform for the support of
distinct network applications.

We are primarily interested in dynamic scenarios where new tasks can appear
while others are being executed, the processing of those tasks has associated
real-time execution constraints, and service execution can be performed by
a coalition of heterogeneous neighbour nodes. Such scenarios may prevent
the possibility of computing optimal resource allocations before execution.
Instead, nodes should negotiate partial, acceptable service proposals that can
be latter refined if time permits. Moreover, taking the cost of decision-making
into account is not an easy task, since the optimal level of deliberation varies
from situation to situation. It is therefore beneficial to build systems that can
tradeoff computational resources for quality of results.

This paper reformulates the distributed resource allocation problem as an
optimisation problem in which there are a range of acceptable solutions with
varying qualities, extending the work reported in [5]. The proposed distributed
service allocation adapts itself to the available time that is dynamically im-
posed as a result of emerging environmental conditions and exploits the fact
that the nodes within the system are cooperative. The QoS optimisation can
be interrupted at any time, providing a solution and a measure of its quality
which is expected to improve as the run time of the algorithms increase. This
ability to create temporary solutions and incrementally improve them both
locally and globally allows the integration of unbounded computations into
real-time systems.

Meeting non-functional requirements while providing support for an efficient
execution of complex applications in dynamic real-time systems is very chal-
lenging. The system must guarantee predictable performance under specified
load and failure conditions and ensure graceful degradation when those con-
ditions are violated. This is strictly related to the capacity of controlling the
incoming workload, preventing abrupt and unpredictable degradations and
achieving isolation among services. The interaction between the proposed any-
time algorithms and an efficient overload control is discussed in detail in [6].

3

The rest of this paper is organised as follows. The next section analyses related
work. Section 3 describes our model and used notation, followed by a detailed
description of the structure of the proposed framework for a QoS-aware coop-
erative execution of resource intensive services in Section 4. Section 5 presents
a generic QoS description scheme that guarantees information consistency and
compatibility in a community of distributed heterogeneous nodes. In Sections
6 and 7, the proposed anytime approach for a cooperative service execution’s
configuration that maximises the user’s satisfaction with provided service is
described and validated in detail. Section 8 presents the results of extensive
simulations conducted with the main objectives of analysing the performance
of the proposed anytime approach and comparing it against the traditional
versions of the algorithms. Finally, Section 9 concludes the paper.

2 Related work

Since in a large number of applications the quality of provided service directly
depends on the available amount of resources, providing support for an efficient
execution of complex applications on resource constrained devices is one of the
most interesting challenges in real-time systems.

Recent work in computation offloading proposes task partition/allocation schemes
that allow the computation to be offloaded, either entirely or partially, from
resource constrained devices to a more powerful neighbour [7; 8; 9; 10; 11; 12;
13; 14]. The authors conclude that the efficiency of an application execution
can be improved by careful partitioning the workload between a device and
a fixed neighbour. Often, the objective is to reduce computation time and
energy consumption by monitoring different resources, predicting the cost of
local execution and that of a remote one and deciding between local and re-
mote execution.

The computation offloading approach makes it feasible to have a set of het-
erogeneous computing devices working in a cooperative manner to tackle the
resource limitation problem. However, most of the work in this direction is
limited to the case where there is only on resource-limited device and one rel-
atively more capable to offload computation. Furthermore, a general coopera-
tive approach has only recently been addressed considering both performance
and users’ QoS preferences maximisation [15; 16]. Our preliminary work pro-
poses a system where heterogeneous nodes organise themselves into a coalition
for cooperative service execution, dictated by computational capabilities. The
proposed algorithms for coalition formation and service proposal formulation
return the best possible solution and are sound and complete. Both algorithms
iterate over a set of candidates C to produce the best possible solution S, ap-
plying an evaluation measure eval(ci) to each individual candidate ci.

4

However, most of today’s real-time systems are required to work in dynamic
environments, where the characteristics of the computational load cannot al-
ways be predicted in advance. Nevertheless, response to events still have to
be provided within precise timing constraints in order to guarantee a desired
level of performance. This paper relaxes the assumption that the algorithms
can have all the time required to compute their outputs and improves our
distributed service allocation model with the ability to adapt itself to dy-
namically changing system conditions, introducing flexibility in the execution
times of the proposed algorithms.

For large and complex problems, finding the best possible solution may take a
long time and a sub-optimal solution that can be found quickly may be more
useful. For example, it is better for a collision avoidance system to issue a
timely warning together with an estimated location of the obstacle than a late
description of the exact evasive action. This idea has been formalised using
the concepts of imprecise computation and anytime algorithms.

Liu et al.[17] have recognised imprecise computation (for monotone tasks),
sieve functions (for non-monotone tasks) and multiple versions as the three
ways by which unbounded components can be integrated into real-time sys-
tems. Imprecise computation uses monotone functions to produce intermediate
results as a task executes. The value of these results is expected to improve as
the execution of the task continues. The computation required to produce a re-
sult with minimum quality forms the mandatory part of the task. Clearly, this
mandatory part must have a worst case execution time that is guaranteed by
the schedulability analysis. The rest of the task’s execution is called optional.
The optional part is (usually) an iterative refinement algorithm that progres-
sively improves the quality of the result generated by the mandatory part.
These concepts were integrated with replication and checkpoint techniques to
reduce the cost of providing fault tolerance and enhanced availability [18].

Anytime algorithms [19; 20; 21] are based on the idea that the computation
time needed to compute optimal solutions will typically reduce the overall
utility of the system. An anytime algorithm is an iterative refinement algo-
rithm that can be interrupted and asked to provide an answer at any time. It
is expected that the quality of the answer will increase (up to some maximum
quality) as the anytime algorithm is given increasing time to run, offering a
tradeoff between the quality of the results and computational requirements.
Associated with an anytime algorithm is a performance profile, a function
that maps the time given to an anytime algorithm (and in some cases input
quality) to the quality of the solution produced by that algorithm.

Changes in the availability of resources introduce a problem for a distributed
service allocation, since the optimal (or even a good) mapping of the appli-
cation depends on the system and its status. As such, the needed time to

5

find the best possible solution for a cooperative service execution can only be
determined at run time. We propose anytime algorithms for a time-bounded
distributed QoS-aware service configuration in heterogeneous cooperative en-
vironments that takes into consideration users’ expressed preferences on the
provided level of service.

Traditional QoS optimisation algorithms often assumed that for a given in-
vocation of a task, the quality of provided service for a particular amount of
resources is constant. While this may be sufficient for some applications, there
are others (e.g. radar tracking, multimedia, etc.) where some environmental
factors outside the direct control of the system affect a fixed relationship be-
tween the provided level of service and resource requirements. A QoS manager
must react to these dynamic changes in the environment, adjusting the level
of provided service and reallocating resources efficiently.

The concept of online admission control has been applied to resource reser-
vation for dynamically arriving tasks. Several efforts appear in the context of
real-time operating systems research. Relevant work can be found in [22; 23;
24; 25].

Rather than changing the operative system or investigating any particular
application-dependant QoS policy we consider the design of adaptive QoS
middleware services on top of best-effort operating systems. The proposed
generic framework allows the definition of desired QoS parameters and how
these parameters may be degraded in case of overload.

In [26] the authors propose a mechanism for QoS negotiation as a way to
ensure graceful degradation in cases of overload, failures, or violation of pre-
runtime assumptions. They suggest that a user should be able to express in his
service request the spectrum of acceptable QoS levels, as well as a quantitative
perceived utility of receiving service at each of those levels, which are statically
mapped to certain quality choice combinations. We share the need of allowing
each user to specify his own QoS preferences but propose a more natural and
realistic way to base a service request on a qualitative measure. Our service
negotiation protocol dynamically determines the best possible compromise on
QoS and its relative utility based on user’s specified preferences.

An architecture for supporting the adaptive management of multiple resources
on a general purpose operative system is introduced in [27]. The work extends
a prior architecture for adaptation of the CPU bandwidth for QoS control
[28].

The QoS-based Resource Allocation Model (Q-RAM) [29; 30; 31] is an analyt-
ical approach for satisfying multiple QoS dimensions in a resource-constrained
environment. System resources are apportioned across multiple applications
such that the net utility that accrues to the end-users of those applications

6

is maximised. The static resource allocation algorithms of Q-RAM have been
extended to support a dynamic task traffic model [32] and to handle non-
monotonic dimensions [33]. Further improvement techniques to reduce the
computation complexity of the initial proposal and their application to radar
tracking are described in [34].

Our approach to deal with a large number of dynamic tasks, multiple resources,
and real-time operation constraints is different. We consider a collaborative
environment populated with nodes with a significant degree of autonomy, ca-
pable of performing tasks and sharing resources with other nodes. When the
specific resource demand imposed by the user’s QoS preferences cannot be
satisfied by a single node, the proposed framework promotes the cooperation
between neighbours to fulfil that resource demand. Furthermore, the forma-
tion of such a coalition is influenced by each user’s specific QoS preferences
trying to maximise the utility for each particular user rather than the sum
of the utilities of all users. Most important, due to the high complexity of
an optimal distributed service allocation both global and local QoS optimisa-
tions are performed by anytime algorithms, imposing time constraints to these
computations.

3 Problem description and system model

Consider a distributed system formed by several nodes with a set of shared
resources R, where real-time and non real-time applications co-exist. Such an
environment is expected to be heterogeneous, consisting of nodes with several
resource capabilities. For some of those there may be a constraint on the type
and size of applications they can execute with users’ required quality of service.

Therefore, this work addresses a distributed cooperative execution of resource
intensive services in order to maximise each user’s satisfaction with achieved
QoS, addressing the increasing demands on resources and performance. Nodes
may cooperate either because they can not deal alone with resource allocation
demands or because they can reduce the associated cost of service execution
by working together.

Each service is assumed to have a set of parameters that can be changed
to configure its QoS and resource demands. Each subset of parameters that
relates to a single aspect of service quality is named as a QoS dimension. Let
Q be the set of user’s QoS constraints associated with service S. Each Qkj is
a finite set of quality choices for the jth attribute of dimension k. This can be
either a discrete or continuous set.

7

There will be a set of independent 1 tasks T to be cooperatively executed,
resulting from partitioning a resource intensive service S. Correct decisions
on service partitioning must be made at run time when sufficient information
about workload and communication requirements become available [7], since
computation workload and communication cost may change with different ex-
ecution instances and different users. The underlying QoS-aware framework
negotiates with neighbour devices a cooperative execution of the resource in-
tensive application and selects a subset of those neighbours to form a coalition.
The basic coalition formation problem can be described as:

Given a set of nodes N and a resource allocation demand enforced by Q they
have to satisfy, if the resource demand cannot be satisfied by a single node
or when a single node handles the request inefficiently, the nodes should
cooperate to fulfil the resource demand. The selection of a subset of N to
perform a cooperative service execution of S should be influenced by Q,
maximising user’s satisfaction with provided service.

Various groups of nodes may have different degrees of efficiency in tasks’ ex-
ecution performance due to different capabilities of their members and their
current state. Coalition’s members selection is determined by the proximity
of service proposals with respect to expressed user’s multi-dimensional QoS
constraints. As such, nodes must be enhanced with the ability to propose and
evaluate multi-dimensional service proposals taking user’s constraints into ac-
count.

Rather than assuming that the coalition formation process can have all the
time it needs to compute its optimal output, we propose to achieve a time-
bounded distributed QoS-aware service configuration among available hetero-
geneous neighbours. For large and complex problems, finding the best possible
solution may take a long time and a sub-optimal solution that can be found
quickly may be more useful.

The participants in this anytime coalition formation process are the user’s
device and the subset of neighbour nodes that are capable to offer service at
least with the minimum quality level requested by the user. The user’s node,
playing the role of Organiser, starts and guides all the negotiation process,
broadcasting service requirements and evaluating received service proposals
sent by Respondent neighbours willing to belong to the coalition.

The Organiser node models each negotiation process through the tuple NegOrg =
{S, Q, L, H}, where S identifies the service under negotiation, Q the user’s
quality constraints associated to service S, L the list of neighbours that can
provide service S according to Q, and H is the negotiation’s history.

1 Dependence relations will be addressed in future work

8

Each element of H groups information related to a single task Ti of service S
as Hi = {Propki, Evalki}, where Propki is the service proposal sent by node
Nk for task Ti, and Evalki is the evaluation value achieved by that proposal
according to the user’s QoS preferences.

Each Respondent node Nk models the negotiation process through the tuple
NegRsp = {Ti, Q, O, C}, where Ti is the description of a task of service S, Q are
the user’s quality constraints associated to service S, O identifies the Organiser
agent that started the negotiation process, and C is the comment sent by the
Organiser node to proposal Propki. This comment indicates if the proposal was
or was not selected for the cooperative service execution under negotiation.
Until the reception of this comment, the resource quantities reserved for the
formulation of service proposal Propki must be considered as unavailable and
cannot be used for the formulation of other service proposals in concurrent
negotiations.

This paper is focused in the dynamic formation of cooperative coalitions, tak-
ing the maximisation of each user’s specific QoS constraints into account. The
reader should refer to [2; 10; 3; 8; 7] as an example of work on applications’
partitioning schemes and to [29; 35; 36; 37] for representative works on inter-
pretation of QoS constraints and consequent mapping on resource quantities.
Both subjects are outside the scope of this paper.

4 Cooperative service execution framework

The objective of the proposed framework is to enable resource-constrained
devices to solve computationally expensive services by redistributing parts of
the service onto other devices, maximising user’s satisfaction with provided
service. Each node has a significant degree of autonomy and it is capable of
performing tasks and sharing resources with other nodes. A service can be
executed by a single node or by a group of nodes, depending on user’s node
capabilities and user’s imposed quality constraints. In either case, the service
is processed in a transparent way for the user, as users are not aware of the
exact distribution used to solve the computationally expensive services. The
framework facilitates the distribution of the resource intensive service’s tasks
across a community of nodes, forming temporary coalitions for a cooperative
service execution that maximise users’ QoS constraints. Figure 1 presents the
structure of the proposed framework, running on every node of the network.

In the proposed model, QoS-aware applications must explicitly request the
service execution to the underlying QoS framework, thus providing explicit
admission for controlling the system, abstracting from existing underlying dis-
tributed middleware and from the operating system. The model itself abstracts

9

Fig. 1. Framework structure

from the communication and execution environments.

Central to the behaviour of the framework is the QoS Provider of each node,
which is responsible for processing both local and distributed resource re-
quests. Rather than reserving local resources directly, it contacts the Resource
Managers to grant specific resource amounts to the requesting task.

Within the QoS Provider, the Coalition Organiser is responsible for the coali-
tion formation process, atomically distributing service requests, receiving in-
dividual nodes’ proposals and deciding which node(s) will provide the service.
We consider the existence of an atomic broadcast mechanism in the system,
guaranteeing that all nodes receive the same service requests and proposals in
the same order.

The Local Provider is responsible for replying to service requests with ser-
vice configuration proposals, and for maintaining the state of node’s resource
allocations and services provided.

The System Manager maintains the overall system configuration, detecting
nodes entering and leaving the system, manages coalition operation and its
dissolution.

Each Resource Manager is a module that manage a particular resource. This
module interfaces with the actual implementation in a particular system of the
resource controller, such as the device driver for the network, the scheduler
for the CPU, or by software that manages other resources (such as memory).

One important characteristic of the framework is the ability of resource man-
agers to use each other, in order to allow systems to be built supporting QoS
requirements either from the point of view of the user (e.g. user-perceived
high quality), of applications (e.g. video frame rate) or of the system (e.g.
CPU cost). With the layering represented in Figure 2, an interactive applica-
tion can be more user friendly and easier to use by providing only high-level
user perceptive quality, whilst other applications can be programmed to use

10

application-related QoS constraints.

Fig. 2. Resource managers’ layering

Although we consider a collaborative environment, proper resource usage must
be monitored in run time [38], in order to decide based on actual resource usage
of the system and not only on the resource usage assumptions of requesting
services. Then, the QoS adaptation mechanism should apply users’ preferences
to system’s resource usage information.

5 Expressing quality of service

There may be in the system several instances of an application used by many
different users. There is an increasing need for customisable services that can
be tailored to each user’s specific QoS requirements [4]. Furthermore, user’s
QoS requirements may even change throughout a session and the user should
be given the opportunity to make informed decisions about application’s adap-
tation [39].

Unfortunately, in most systems users do not have any real influence over the
QoS they can obtain or how their applications will adapt to environmental
changes, since service characteristics are fixed when the systems are initiated.
Since QoS is often multi-dimensional an user (or application) might want to
make some quality tradeoff, especially when available resources are scarce.
Therefore, it is to the user’s advantage to be able to specify his own QoS re-
quirements using an interface that allows implicit or explicit quality tradeoffs.

Adopting a common QoS description scheme guarantees information consis-
tency and compatibility for a community of heterogeneous nodes. Information
consistency is satisfied when each specific expression has the same meaning
for every node. Information compatibility is achieved when any concept is de-
scribed by the same expression, for all the nodes. Knowledge representation

11

becomes an important issue in the context of QoS-aware cooperative service
execution as well.

The definition of a generic QoS scheme must include dimensions, attributes
and values, as well as relations that map dimensions to attributes and at-
tributes to values. It also must be extensible to support the later addition of
news terms and relations.

Such a scheme can be represented by the following structure

QoS = {Dim,Attr, V al, DAr,AV r,Deps}

where Dim is the set of QoS dimensions, Attr is the set of attributes identifiers
and V al is the set of attribute’s values identifiers.

Each value is represented by a tuple V ali = {Type, Domain}, where Type =
{integer, f loat, string}, and Domain = {continuous, discrete}.

The set of relationships DAr assigns to each dimension in Dim a set of at-
tributes in Attr and is defined as DAr : Dimi → Atr, ∀Dimi

∈ Dim.

The set of relationships AVr assigns to each attribute in Attr a specific value
in V al and is represented as AVr : Atri → V alk,∀Atri

∈ Atr, ∃1
V alk ∈ V al.

Deps defines the set of dependencies between attributes’ values. A dependence
between attribute i and attribute j is represented as Depij = f(V alki, V alkj),∀Attri, Attrj ∈
Attr.

Each application domain has its own QoS requirements. Using the generic QoS
scheme it is possible define the set of quality dimensions that are associated
with any particular application. As an example of this QoS description, a
video streaming application may define the following set of QoS dimensions
(the following list is not intended to be exhaustive):

Dim = {Video Quality, Audio Quality}

Attr = {color depth, frame rate, sampling rate, sample bits}

Val = {{1,integer,discrete},{3,integer,discrete},...,

{[1,30],integer,continuous},...}

DA Video Quality = {color depth, frame rate}

DA Audio Quality = {sampling rate, sample bits}

AV color depth = {1,3,8,16,24}

AV frame rate = {[1,30]}

AV sampling rate = {8,16,24,44}

AV sample bits = {8,16,24}

12

Having a QoS characterisation of a particular application domain, users and
service providers are now able to define service requirements and proposals
in order to reach an agreement about service provisioning. Such a service
configuration implies taking into account multiple quality attributes.

Attaching utility values to different issues helps to solve the problem of multi-
issue evaluation. However, it may be clearly infeasible to make the user specify
an absolute value for every quality choice. While we want a semantically rich
request to try to achieve a service closely related to user’s preferences, we also
want that a user be actually able to express his preferences in a service re-
quest. A more natural and realistic way is to simply impose a service request
based on a qualitative, not quantitative, measure. As such, a preference order
is imposed over the dimensions, its attributes and their values in every user’s
service request. The relative decreasing order of importance imposed in di-
mensions, attributes and values expresses user’s preferences, that is, elements
identified by lower indexes are more important than elements identified by
higher indexes.

Suppose that, in a remote surveillance system, video is much more important
to a particular user than audio. Assuming that for that user a grey scale, low
frame rate is fine for video, and he does not demand any dependence between
the values of the presented attributes, his request could be as follows:

1. Video Quality

(a) frame rate : {[10,7], [6,4]}

(b) color depth : {3, 1}

2. Audio Quality

(a) sampling rate : {16, 8}

(b) sample bits : {16, 8}

In the example above, video is more important than audio, and frame rate
is more important than colour depth in the Video Quality dimension. In a
similar way, the audio sampling rate is more important than the sampling
size. For each of these attributes, a preference order for the QoS values is as
well expressed. This way, preferences are clearly expressed without the need
to quantify with absolute terms every quality tradeoff.

Note that it is possible to define multiple intervals in decreasing preference
order for the user’s acceptable values of a particular attribute. The same is
possible for the QoS characterisation of a particular application domain. The
evaluation of user’s acceptability of each service proposal presented in the next
section can deal with this type of attributes’ definition.

13

6 Coalition formation

A coalition formation process should enable the selection of individual nodes
that, based on their own resources and availability, will constitute the best
group to satisfy user’s QoS requirements associated with a resource intensive
service. By best group, we mean the group formed by those nodes who offer
service closer to user’s QoS preferences expressed in his request.

A service request is considered to be formulated through the relative decreasing
importance (K = 1 . . . n) of a set of n QoS dimensions. Furthermore, for each
dimension a relative decreasing importance order of attributes is also specified
(i = 1 . . . attrk), where k is the number of attributes of dimension K. Please
note that k and i are not the identifiers of dimensions and attributes in a
domain’s QoS description, but their relative position in user’s service request.

Given a user’s service request on node Ni for the execution of a resource
intensive service S with specific user’s QoS constraints Qi that cannot be
locally satisfied, the QoS Provider broadcasts the description of each task
Ti that can be remotely executed, user’s QoS constraints Qi as well as a
timeout ∆t for proposals reception. Each Ti can be determined by a task
partition/allocation scheme that dynamically considers the tradeoff between
local execution requirements and communication costs.

Every node Nj which is able to satisfy the request, formulates a proposal
according to a local QoS optimisation algorithm (see Section 7), and replies to
node Ni with proposal Pji and its local reward Wj, resulting from its proposal
acceptance. For now, it is suffice to say that local reward Rk is an indicator
of node’s local QoS optimisation, according to the set of services being locally
executed and their QoS constraints. How each node measures its local reward
will be detailed in Section 7.

Each admissible proposal 2 Pi is evaluated according to user’s QoS preferences
specified in relative decreasing order in his service request. For each QoS di-
mension, Eq. 1 determines an weighted sum of the differences between user’s
preferred values and the values proposed by a specific node to that dimension’s
attributes evaluates proposal’s distance to user’s request.

distance(Pi) =
n∑

k=1

wk ∗ dif(Qk) (1)

where n is the number of QoS dimensions and 0 ≤ wk ≤ 1 is the relative

2 A proposal is admissible if it can satisfy all QoS dimensions at least with the
minimum level requested by the user

14

importance of QoS dimension k, Qk, to the user, and can defined as

wk =
n− k + 1

n
(2)

In Eq. 1, QoS dimensions are presented in relative decreasing order of impor-
tance to the user. This order is specified in user’s service request, encoding
user’s preferences in a qualitative way.

The degree of acceptability of each proposed attribute’s value, when compared
to the request one, is determined, considering continuous and discrete domains.

dif(Qk) =
attrk∑

i=1

wi ∗ |da(Propki, P refki)| (3)

where attrk is the number of attributes in dimension k.

In Eq. 3, the function da(Propki, P refki) quantifies, for an attribute i, the
degree of acceptability of the proposed value Propki, when compared to user’s
preferred value Prefki and is defined as

da =

Propki − Prefki

max(Qk)−min(Qk)
if continuous Qki

pos(Propki)− pos(Prefki)

length(Qk)− 1
if discrete Qki

(4)

If attribute i has a continuous domain, this quantification is a normalised
difference between the proposed value and the preferred one.

For discrete domains Eq. 4 considers the preferences attached to Propki and
Prefki by using their relative position in the application’s QoS requirements
specification. In [30] the authors use the notion of Quality Index, defining a
bijective function that maps the elements of a discrete domain into integer
values. We use a similar approach, by mapping the position (index) of that
attribute in the domain specification into Propki’s and Prefki’s scoring values.

When the definition of the possible values for some attribute of QoS dimension
Qk considers a set of intervals, Qk in Eq. 4 must relate to the particular interval
where Propki is found. In the same way, if the user’s acceptable values of an
attribute of dimension Qk considers a set of intervals, Prefki should be the first
value on the Propki’s interval and the relative importance of that interval on
user’s expressed preferences in decreasing order must be considered, similarly
to what is done to all the attributes and dimensions of user’s request.

15

The best proposal is thus the one that presents the lowest distance to user’s
preferences, in all QoS dimensions, since it is the one that contains the at-
tributes’ values more closely related to user’s request.

6.1 Anytime global QoS optimisation

An anytime approach to the coalition formation problem implies trying to
quickly find a good initial solution and gradually improve that solution if time
permits. Furthermore, the increase in solution’s quality should be maximised
at each iteration. Relying in the order of proposals’ reception and perform a
sequential evaluation does not seems to be an effective approach. The selection
from the set of received service proposals of the next candidate proposal for
evaluation should be optimised to achieve the desired goal of maximising the
expected improvement in solution quality.

We propose to use the local reward achieved by a node as an heuristic to guide
the coalition formation process. Nodes with higher local reward have a higher
probability to be offering service closer to this particular user’s request under
negotiation. For each task Ti ∈ S, the next candidate proposal Pki selected
from the set of received proposals Pi is the one sent by the node Nk with the
greatest local reward Rk.

Pki|Pki ∈ Pi, max(Rk) (5)

The anytime coalition formation algorithm, seeking distributed QoS optimi-
sation by selecting those nodes that offer service closer to user’s preferred QoS
values, is described in Algorithm 1. Since the formation of a coalition is aimed
at maximising the benefits associated to a cooperative service execution, the
quality of each generated coalition can be measured by using the evaluation
values of the best proposals for each service’s task. At each iteration, Eq. 6
returns the quality of the achieved solution

Qcoalition =

⌊ |coalition|
|S|

⌋
∗
|coalition|∑

i=1

1−BestPi

|coalition| (6)

For an empty set of proposals the quality of the coalition is zero. Note that
the quality of the coalition is also zero, if there are not any proposals for one
or more tasks Ti of service S.

After building an initial coalition, the algorithm continues, if time permits, to
evaluate received proposals trying to improve the quality of the current solu-
tion. Some other node, while achieving a lower local reward, can still propose
a better proposal for the specific user’s service request under negotiation.

16

Algorithm 1 Iterative coalition formation

while t < Maximum execution time do
for each Ti ∈ S do

Select next candidate proposal PKi, maximising local reward
EPki

= distance(Pki)
if BestPi

− EPki
> α then

BestPi
= EPki

Update coalition with Nk for task Ti

else if 0 < BestPi
− EPki

< α and RPki
> RBestPi

then
BestPi

= EPki

Update coalition with Nk for task Ti

end if
end for

end while
return coalition

Node’s local reward is also used to improve load balancing between cooperative
neighbours. Consider two proposals whose evaluation differ by an amount less
than α (this value can be defined by the user or by the framework). For a
particular user, the perceived utility will be equally acceptable if any one of
those nodes is selected for participating in the coalition. However, if one of
them has a lower local reward, it means that the previous set of tasks being
locally executed had to suffer an higher local QoS degradation in order to
accommodate this new task. Selecting the node with a higher local reward
from two similar service proposals, not only maximises service for a particular
user, but also maximises global system’s utility.

The algorithm terminates when all the received proposals are evaluated or if
it finds that the quality of a coalition cannot be further improved because the
local reward of each node that belongs to the current coalition is maximum.

6.2 Formal description of the coalition formation’s anytime behaviour

Coalition formation’s anytime behaviour can be formally described using the
set of axioms proposed in [40]. The authors propose to describe the anytime
functionality of an algorithm using four axioms, each of which describes a
different aspect of the anytime behaviour as follows:

Axiom 1 (Initial behaviour) There is an initial period during which the
algorithm does not produce a coalition for service execution

The algorithm does not immediately produces an intermediate solution, since
it must first analyse a proposal for each task Ti of service S. If t′ indicates
the duration of this initial step then, if interrupted at any time t < t′, the

17

algorithm will return a coalition with zero quality.

∀t<t′ Qcoalition(t) = 0

Axiom 2 (Growth direction) The quality of a coalition only improves with
increasing run time

A coalition is only updated if a better proposal for any task Ti of service S is
found.

∀t′>t Qcoalition(t) ≤ Qcoalition(t′)

Axiom 3 (Growth rate) The amount of increase in coalition’s quality varies
during computation

The solution quality rapidly increases in the first steps of the algorithm and
its growth rate diminishes over time, as a result of the heuristic selection of
the next candidate proposal submitted to evaluation.

∀t′>t Qcoalition(t + 1)−Qcoalition(t) > Qcoalition(t′ + 1)−Qcolaition(t′)

Axiom 4 (End condition) After evaluating all candidate proposals the al-
gorithm achieves its full functionality

After evaluating all candidate proposals the anytime version of the algorithm
will produce exactly the same solution quality as its traditional version [15]
that only produces a solution with quality Q′

coalition at the end of computation.
If the time required to evaluate a candidate proposal is te, the total required
runtime of the anytime algorithm is the sum of all n evaluations.

Qcoalition(n ∗ te) = Q′
coalition

6.3 Conformity of the coalition formation algorithm with the desirable prop-
erties of anytime algorithms

Not every algorithm that can produce a sequence of approximate results is
a well-behaved anytime algorithm. According to Zilberstein [21] the desired
properties of anytime algorithms include the following features: measurable
quality that can be determined precisely, recognisable quality that can be easily
determined at run time, monotonicity of the quality of the result, consistency
of the quality with respect to computation time and input quality, diminishing
returns of the quality over time, interruptibility of the algorithm at any time
and preemptibility of the algorithm with minimal overhead.

The conformity of the proposed anytime coalition formation algorithm is
checked in the next paragraphs.

18

Property 6.3.1 (Measurable quality) The quality of a coalition can be de-
termined precisely

Proof: According to Eq. 6 the quality of the proposed coalition can be calcu-
lated directly from the evaluation values of the best proposals found for each
service’s task, after each iteration of the algorithm.

¤

Property 6.3.2 (Recognisable quality) The quality of a coalition can be
easily determined at run time

Proof: Let S = T1, . . . , Tn be the service under negotiation for cooperative
execution, with a set of n tasks.

A coalition c is only updated to c′ when a better proposal for task Ti ∈ S
is found. The previous accepted proposal Pki, from node Nk to task Ti, is
replaced with Pk′i from node Nk′ , in the previously generated coalition c.

Let |c| be the size of the generated coalition to execute service S, EPk′i be the
evaluation value of the new proposal Pk′i, and EPki

be the evaluation value of
the old proposal Pki.

The quality of the updated coalition Qc′ can calculated by adding the quality
Qc achieved by coalition c to the weighted difference between EPk′i and EPki

.

Qc′ = Qc +
EPk′i − EPki

|c|

This makes the determination of the new coalition’s quality straightforward
and within a constant time.

¤

Property 6.3.3 (Monotonicity) The quality of the generated coalitions is
a nondecreasing function of time

Proof: Node Nk is only added to a coalition if and only if it proposes a better
service for task Ti, that is, if it is closer to user’s preferences than the best
proposal determined so far for task Ti.

The coalition formation algorithm always returns the coalition formed by the
best proposals evaluated until time t rather than the last evaluated service
proposals. According to Zilberstein [21], this characteristic in addition to a
recognisable quality is sufficient to prove the monotonicity of an anytime al-
gorithm.

19

¤

Property 6.3.4 (Consistency) For a given amount of computation time on
a given input, the quality of the generated coalition is always the same

For a given amount of computation time ∆t on a given input of a set of service
proposals P and user’s QoS preferences Q, the quality of the selected coalition
for cooperative service execution is always the same, since the selection of
candidate proposals for evaluation is deterministic.

According to Eq. 5 the next candidate proposal Pki for evaluation for each
task Ti of service S is the one sent by the node that has achieved the greatest
local reward. As such, the algorithm guarantees a deterministic output quality
for a given amount of time and input.

¤

Property 6.3.5 (Diminishing returns) The improvement in the quality of
the generated coalitions is larger at the early stages of the computation and it
diminishes over time

The quality of each generated coalition, given by Eq. 6, is measured using
the evaluation values of the best proposals for each task Ti of service S being
negotiated for cooperative service execution. The best proposal is the one
that contains the attributes’ values more closely related to user’s specific QoS
preferences, in all QoS dimensions.

Each node’s local reward, determined with Eq. 8, expresses a degree of satisfac-
tion for all the users that have tasks being locally executed with specific QoS
levels, including the cooperative service execution being currently negotiated.

Selecting for evaluation, for each task Ti of service S, the candidate proposal
sent by the node that presents the higher local reward, indicating that it is of-
fering service closer to the majority of requested QoS values, rapidly improves
the quality of the generated coalition at an early stage of execution.

Solution’s quality can further improve, but at a lower rate, in the next steps of
the algorithm. Since the objective is to find the best coalition for this particular
user’s request under negotiation, the algorithm continues to evaluate received
proposals as some other node may propose a better service for this user at the
expenses of previously guaranteed services, and, as such, achieving a lower
local reward.

The actual concavity of the coalition formation is empirically evaluated in the
next section.

20

¤

Property 6.3.6 (Interruptibility) The algorithm can be stopped at any time
and provide a coalition for cooperative service execution

Proof: When stopped at time t the algorithm returns the coalition formed by
the best evaluated proposals for each task Ti of service S under negotiation.

Let t′ be the time needed to generate the initial coalition. In interrupted at
any time t < t′ the algorithm will return an empty coalition, resulting in zero
quality.

Each iteration of the algorithm forms a contract algorithm. As such, a new
coalition can only be generated at the end of a new iteration.

¤

Property 6.3.7 (Preemptibility) The algorithm can be suspended and re-
sumed with minimal overhead

Proof: Since the algorithm keeps the received proposals not yet evaluated and
the generated coalition it can be easily resumed after an interrupt.

¤

7 Service proposal formulation

All entities that participate in a cooperative QoS-aware service execution ne-
gotiation must provide sufficient resources to propose a service configuration
that respects the QoS requirements expressed in user’s request. It is therefore
the responsibility of each individual QoS Provider (Figure 1) to map user’s
QoS constraints to local resource requirements, and then reserve resources ac-
cordingly (resource reservations are made through Resource Managers). This
paper is focused in an automatic time-bounded coalition formation and do
not deals with this mapping. The reader can assume that applications make
a reasonable accurate analysis of their resource requirements, made a priori
through resource monitoring tools, followed by run-time adaptation.

Requests for task execution arrive dynamically at any node, and are formu-
lated as a set of acceptable multi-dimensional QoS levels in decreasing prefer-
ence order. To guarantee the request locally, QoS Provider executes the local
QoS optimisation algorithm described in Algorithm 2. In order to make a
proposal, each QoS Provider contacts the required Resource Managers for re-
source availability. Conventional admission control schemes either guarantee

21

or reject each request, implying that future requests may be rejected because
resources have already been committed to previous requests. We use a QoS
negotiation mechanism that, in cases of overload, or violation of pre-run-time
assumptions guarantees graceful degradation.

A specific service configuration proposed for a task Ti will obtain a reward
rTi

determined by the proximity of the proposal with respect to the QoS
preferences specified in the user’s service request.

rTi
=

1 if task is being best

served in all QoS dimensions

1−
n∑

j=0

wj ∗ penaltyj if Qjk < Qbestj

(7)

In Eq. 7 penalty is a parameter that decreases the reward value. This parameter
can be fine tuned by the framework according to several criteria and its value
should increase with the distance to user’s preferred value.

An utility model for QoS control is also used in [26]. The authors also suggest
that users should be able to express in their service requests the spectrum of
QoS levels they can accept from a service provider. However, the user must
specify in his request a set of pre-defined QoS levels as well as the achieved
reward of providing service in one of those levels. Here, the proposed QoS
level is dynamically built according to user’s accepted values for each QoS
dimension and local resources’ availability. As such, the reward of executing a
task at a specific QoS level depends on the number, and relative importance,
of the QoS dimensions being served closer to user’s requirements.

Along with the service proposal each node sends a measure of global satis-
faction resulting from its proposal acceptance. The local reward Rj expresses
the degree of global satisfaction for all the users that have tasks being exe-
cuted by a particular node Nj, with specific QoS levels. The reward of each
task being locally executed is combined to determine the global satisfaction of
the proposed solution. For a node Nj, the local reward Rj of a set of service
proposals is given by

Rj =

n∑

i=1

rTi

n
(8)

Unless all tasks are executed at their highest QoS level, there is a difference
between the actual total local reward achieved by the current QoS levels se-
lected and the maximum possible local reward that would be achieved if all
local tasks were executed at their highest QoS level. This difference can be

22

caused by either resource limitations, which is unavoidable, or poor load bal-
ancing, which can be improved by sending actual local rewards in service
proposals, and selecting, for proposals with similar evaluation values, those
nodes that achieve higher local rewards. Selecting the node with higher local
reward for similar service proposals, not only maximises service satisfaction
for a particular user, but also maximises global system’s utility, since a higher
local reward clearly indicates that the previous set of tasks being locally ex-
ecuted had to suffer less QoS degradation in order to accommodate the new
task.

In [30], it was demonstrated that the QoS optimisation problem involving mul-
tiple resources and multiple QoS dimensions is NP-hard. An optimal solution
based on dynamic programming and an approximation scheme based on a
local search technique was presented. However, the computation time needed
to find an optimal solution can reduce the overall utility of the system. In ad-
dition, the deliberation cost is dependent on local resources’ availability and
user’s QoS constraints. Therefore, it is beneficial to build systems that can
trade the quality of results against the cost of computation [21].

7.1 Anytime local QoS optimisation

The proposed anytime algorithm, detailed in Algorithm 2, clear splits the for-
mulation of a new proposal for service execution in two different scenarios.
The first one involves guaranteeing the new task without changing the level
of service of previously guaranteed tasks. The second one, due to node’s over-
load, demands service degradation in existing tasks in order to accommodate
the new requesting task. The local QoS optimisation (re)computes the set of
QoS levels for all local tasks, including the new requested one. Offering QoS
degradation as an alternative to task rejection has been proved to achieve
higher perceived utility [26].

The algorithm iteratively work on the problem of finding a feasible set of ser-
vice configurations while maximising users’ satisfaction and produces results
that improve in quality over time. Instead of a binary notion of correctness of
the solution the algorithm returns a proposal and a measure of its quality.

The quality of each generated configuration Qconf , given by Eq. 9, considers
the reward achieved by the service proposal configuration for the new arriving
task rTa , the impact on the provided QoS of previous existing tasks and the
value of the previous generated feasible configuration Q′

conf . Initially, Q′
conf is

23

set to zero.

Qconf =

rTa ∗

n∑

i=0

rTi

n

(1−Q′conf)

if feasible

Q′
conf if not feasible

(9)

When a new service request arrives, the algorithm starts by maintaining the
QoS levels of previously guaranteed tasks and by selecting the worst requested
QoS level, for all dimensions, for the new arrived task. As such, the reward
of the initial service configuration for the new task is low (the exact value is
determined by the penalty factors used in a particular system), affecting node’s
local reward. On the other hand, the impact of this new task on the provided
level of previously existing tasks is inexistent. Also, this initial solution is the
service configuration that has a higher probability of being feasible, considering
the new task. The algorithm continues to improve the quality of that initial
solution, conducting the search for a better feasible solution in a way that
maximises the expected improvement in solution’s quality.

At each iteration, the algorithm produces a new service configuration that may
not be feasible due to local resources availability and user’s QoS constraints for
the new task. Since a service proposal can only be considered useful within a
feasible set of configurations, the algorithm, if interrupted, always returns the
last found feasible solution. However, each intermediate configuration, even if
not feasible, is used to calculate the next solution, since it is one step closer
of the next solution.

When it is not necessary to degrade the QoS of previously existing tasks to
provide service to the new request, the algorithm incrementally selects the
configuration that maximises the increase in obtained reward, for the new
task. When QoS degradation is needed to accommodate the new task, the
algorithm incrementally selects the configuration that minimises the decrease
in obtained reward for the new set of tasks (including the new arrived one).

The algorithm always improves or maintains the quality of the solution as it
has more time to run. This is done by keeping the best feasible solution so far,
if the result of each iteration is not always proposing a feasible set of tasks.

The algorithm terminates when the time for the reception of proposals has
expired (this time is sent in user’s request), when it finds a set of QoS levels
that keeps all tasks feasible and the quality of the solution can not be further
improved, or when it finds that, even at the lowest QoS level for each task,

24

Algorithm 2 Service proposal formulation

Each task Ti has user defined QoS dimensions constraints Qi. Each Qkj is a
finite set of n quality choices for the jth attribute, expressed in decreasing
order of preference, for all k QoS dimensions.

while t < timeout do
Step 1: Improve QoS level of new arrived task Ta

Select the worst requested QoS level in all k dimensions, Qkj[n], for task
Ta. Maintain level of service for previously guaranteed tasks.
while the new set of tasks is feasible do

for each QoS dimension in Ta receiving service at Qkj[m] > Qkj[0] do
Determine the utility increase by upgrading attribute j to m− 1
Find maximum increase and upgrade attribute x to the m−1’s level

end for
end while

Step 2: Find local minimal service degradation to accommodate Ta

Select for all k dimensions of task Ta the final result of Step 1, Qkj[m]
while the new set of tasks is not feasible do

for each task Ti receiving service at Qkj[m] > Qkj[n] do
Determine the utility decrease by degrading attribute j to m + 1
Find task Tmin whose reward decrease is minimum and degrade at-
tribute x to the m + 1’s level

end for
end while

end while
return service configuration for new task

the new set is not feasible. In this case the new service request is rejected.
When it is not possible to find a valid solution for service execution within
available time, then no proposal will be sent to the requesting node, and the
node continues to serve existing tasks at their current QoS levels.

7.2 Formal description of the service proposal formulation’s anytime behaviour

Similarly to what has been presented for the coalition formation algorithm,
the different aspects of the anytime functionality of the service proposal for-
mulation algorithm will be described in this section using the four axioms
proposed in [40].

Axiom 5 (Initial behaviour) Until a feasible set of tasks is found the new
task is rejected

25

An intermediate solution can only be considered if it produces a feasible set
of tasks. If t′ indicates the time at which the first feasible solution is found
then, if interrupted at anytime t < t′, the algorithm will reject the new task.

∀t<t′ Qconf(t) = 0

Axiom 6 (Growth direction) The quality of a feasible set of tasks can only
improves over time

A new feasible set of tasks is only considered when it improves solution’s
quality.

∀t′>t Qconf(t) ≤ Qconf (t
′)

Axiom 7 (Growth rate) The amount of increase in the quality achieved by
a feasible set of tasks varies during computation

The solution’s quality rapidly increases in the first steps of the algorithm
and its growth rate diminishes over time. When there are spare resources the
algorithm starts to improve user’s preferred attributes. On the other hand,
when QoS degradation is needed in the search for a new feasible solution, the
algorithm starts to degrade users’ less important attributes.

∀t′>t Qconf(t + 1)−Qconf (t) > Qconf (t
′ + 1)−Qconf (t

′)

Axiom 8 (End condition) When is not possible to improve the quality of
the current service proposal the algorithm achieves its full functionality

When runs to completion, the anytime version of the algorithm will produce
exactly the same solution quality as its traditional version [15] that only pro-
duces a solution with quality Q′

conf at the end of computation. The algorithm
terminates when it finds a set of QoS levels that keeps all tasks feasible and
the quality of the solution can not be further improved, or when it finds that,
even at the lowest QoS level for each task, the new set is not feasible.

If the time required to improve or degrade an attribute and test for the schedu-
lability of the solution is given by ts, the total required runtime of the anytime
algorithm is the sum of all n needed changes in attributes to find the best fea-
sible solution.

Qconf (n ∗ ts) = Q′
conf

26

7.3 Conformity of the service proposal formulation algorithm with the desir-
able properties of anytime algorithms

The conformity of the proposed anytime service proposal formulation algo-
rithm according to with the desirable properties of anytime algorithms [21] is
checked in the next paragraphs.

Property 7.3.1 (Measurable quality) The quality of a service configura-
tion can be determined precisely

Proof: At each iteration of the algorithm, Eq. 9 measures the quality of the
proposed service configuration by considering the proximity of the proposal
with respect to user’s request under negotiation and the impact of that prox-
imity on the global satisfaction achieved by the previous existing tasks.

¤

Property 7.3.2 (Recognisable quality) The quality of a service configu-
ration can be easily determined at run time

Proof: The quality of each generated feasible service configuration is deter-
mined by using the rewards achieved by all tasks being locally executed as well
as the new arrived task. According to Eq. 7 the determination of the reward
achieved by each task is straitforward and time-bounded.

A non-feasible service configuration as zero quality.

¤

Property 7.3.3 (Monotonicity) The quality of the generated service con-
figurations is a nondecreasing function of time

Proof: The algorithm produces a new service configuration at each iteration,
as it tries to maximise the utility increase for the new task while minimises
the utility decrease for all tasks being locally executed when the resources
are scarce to accommodate the new task. Since a service proposal can only
be considered useful within a feasible set of tasks, the algorithm always re-
turns the best found feasible solution rather than the last generated service
configuration.

According to Zilberstein [21], this characteristic in addition to a recognisable
quality is sufficient to prove the monotonicity of an anytime algorithm.

¤

Property 7.3.4 (Consistency) For a given amount of computation time on

27

a given input, the quality of the generated service configuration is always the
same

Proof: For a given amount of computation time ∆t on a given input of a set of
QoS constraints Q associated with a set of tasks τ , the quality of the proposed
service configuration is always the same, since the selection of attributes to
improve or degrade is deterministic.

At each iteration, the QoS attribute to be improved is the one that maximises
an increase in the reward achieved by the new arrived task, while the QoS
attribute to be degraded is the one that minimises the decrease in the global
reward achieved by all tasks being locally executed. As such, the algorithm
guarantees a deterministic output quality for a given amount of time and
input.

¤

Property 7.3.5 (Diminishing returns) The improvement in the quality of
the generated service configuration is larger at the early stages of the compu-
tation and it diminishes over time

Proof: An initial solution that maintains the QoS levels of the previously
guaranteed tasks and selects the worst requested level in all QoS dimensions
for the new arrived task is quickly generated.

The quality of a service configuration is given by Eq. 9 that takes into consid-
eration the rewards achieved by all tasks, considering proposed and requested
values for the several QoS dimensions.

When there are spare resources the initial solution is improved by selecting
for upgrade the QoS attribute that maximises user’s satisfaction, according to
the preferences expressed in his request in relative decreasing order.

On the other hand, when QoS degradation is needed in order to accommodate
the new task, the next configuration tested for schedulability is the one that
minimises the rewards’ decrease achieved by all tasks being locally executed.

The improvement in solution quality is then larger at the early stages of the
computation and it diminishes over time.

¤

Property 7.3.6 (Interruptibility) The algorithm can be stopped at any time
and provide a service configuration proposal

Proof: When stopped at time t the algorithm returns the best feasible service
configuration generated until time t, according to user’s request and local

28

resources availability.

Let t′ be the time needed to generate the first feasible solution. In interrupted
at any time t < t′ the algorithm will return an empty service configuration,
resulting in zero quality.

Each iteration of the algorithm forms a contract algorithm. As such, a new
service configuration can only be generated at the end of a new iteration.

¤

Property 7.3.7 (Preemptibility) The algorithm can be suspended and re-
sumed with minimal overhead

Proof: Since the algorithm maintains the best generated feasible solution and
the current configuration values it can be easily resumed after an interrupt.

¤

8 Evaluation

In order to validate the design decisions of our approach we have conducted
extensive simulations to evaluate the formation of coalitions for cooperative
service execution among a set of distributed heterogeneous nodes, using the
anytime algorithms proposed in this paper. Since we are primarily interested
in dynamic scenarios a special attention was devoted to introduce a high vari-
ability in the conducted simulations’ characteristics.

There were 6 different resources, randomly partitioned among the nodes. As
a result of this non-equal partition, some nodes could have amounts of some
resources which are significantly different from the average, generating a het-
erogeneous environment. This affected their ability to perform some tasks and
has driven nodes to coalition formation for cooperative service execution.

The number of simultaneous users varied from 1 to 100, the number of inde-
pendent tasks per requested service varied from 5 to 20, and available nodes
varied from 10 to 100. At each node, the QoS Provider had a fixed set of
mappings between user’s requested QoS levels and resource requirements, and
then reserved resources accordingly (resource reservations were made through
Resource Managers). The domain of the simulations was characterised by 4
QoS dimensions, each with 5 attributes. Each attribute had 6 possible values
(continuous or discrete).

At randomly generated times, one or more clients generated new service re-

29

quests at randomly selected nodes. Each service request had a set of multi-
dimensional QoS constraints, ranging from a minimal quality to a randomly
generated maximum value. Thus, QoS degradation within users’ requested
values could be performed in order to accommodate new tasks.

It is known that not much can be concluded with a single simulation run [41].
In fact, the results of a given simulation run are just particular instantiations
of random variables that may have large variances. Most of the methods for
the analysis of simulation output data rely on the fact that although the
simulation results of a single simulation run are not independent, it is possible
to obtain independent observations across the results of several simulation
runs (or simulation replicas) [42]. The replication/deletion method is a fairly
simple approach, with a reasonably good statistical performance.

The conducted simulations had two main objectives: analyse the performance
profiles of the proposed anytime algorithms and evaluate the computational
cost of those algorithms when compared against their traditional versions.

The results reported in the next subsections were observed from multiple and
independent simulation runs, with initial conditions and parameters, but dif-
ferent seeds for the random values 3 used to drive the simulations, obtaining
independent and identically distributed variables. The mean values of all gen-
erated samples were used to produce the charts, with a confidence level of
99,9% associated to each confidence interval. A confidence interval specifies a
range of values within which the unknown population parameter, in this case
the mean, may lie. For each chart, the wider confidence interval is discussed.

8.1 Evaluating performance profiles

The performance profile of an anytime algorithm denotes the expected output
quality as a function of the execution time [21]. Since there are many possible
factors affecting the execution time of an algorithm, the performance profile
has to be in many cases determined empirically and not analytically. Rather
than measuring the absolute execution time of the algorithms on every run
of the simulation, we have normalised it with respect to the completion time,
which is the minimal time when the expected quality is maximal [44].

In Section 6, we argue that the selection of the next proposal to be evaluated
should be done in a order that maximises the expected improvement in solution
quality. In the next paragraphs, we compare the proposed heuristic search of
a better solution against a sequential evaluation of received proposals.

3 The random values were generated by the Mersenne Twister algorithm [43].

30

The recipient nodes managed the coalition formation process by broadcasting
the service description, evaluating the set of received proposals formulated by
available service providers, and selecting those proposals that were closer to
user’s preferences, forming a new coalition for a cooperative service execution.

The anytime coalition formation algorithm ran until completion, using both
methods of next candidate proposal’s selection. The mean values for each
percentage of completion time obtained with the set of conducted simulations
were used to obtain the performance profile presented in Figure 3.

Fig. 3. Performance profile of the coalition formation algorithm

Two important conclusions can be taken, considering the desirable proper-
ties of an anytime algorithm reported in [21]. First, the coalition’s quality
measure is a non-decreasing function of time. Only a better proposal for a
specific task Ti ∈ S updates the coalition formation, increasing its quality.
The second conclusion refers to the diminishing returns property. It is a very
important property for an anytime algorithm’s practical usefulness, since it
means that after a small period of the running session, the results are ex-
pected to be sufficiently close to the results at completion time. At only 20%
of the completion time, the anytime coalition formation algorithm when using
the proposed heuristic selection of the next candidate proposal can achieve a
solution’s quality of 83% ± 6% of the optimal solution, with a 99,9% confi-
dence level. On the other hand, when evaluating proposals according to their
arrival time, at 20% of the completion time the algorithm achieves a solution’s
quality of 32% ± 25%. We see that a sequential evaluation is very sensitive to
the order of proposals’ reception. The proposed heuristic effectively maximises
the expected improvement in solution’s quality at a early stage of the needed
computation time, effectively resulting in a concave function of time.

Another set of simulations was conducted to analyse the impact generated by
the arrival of a new task on the level of provided service of previously existing
tasks. Recall from Section 7 that the reward of a specific proposal measures
how useful it will be for a specific user with respect to his service request, and
that the local reward expresses a degree of global satisfaction for all the users

31

that have tasks being executed at a particular node.

The results were plotted by averaging the results of several independent runs
of the simulation, divided in two categories. Figure 4 presents the scenario
where the average amount of resources per node is greater than the average
amount of resources necessary for each service execution. Figure 5 presents
the scenario where the average amount of resources per node is smaller than
the average amount of resources necessary for each service execution.

Fig. 4. Expected quality improvement with spare resources

When there are enough resources to improve the initial solution until one of
the user’s requested levels of service, the quality of the next feasible solution
increases as the reward of the new task’s service increase. In Figure 4, the
increase in solution’s quality Qconf results from the increase in the new task’s
reward, since the average level of service of the previously existing tasks re-
mains the same. This also increases node’s local reward, that was affected by
the initial proposed solution of serving the new arrived task with the minimal
requested QoS level.

Figure 5 shows the algorithm behaviour when QoS degradation is needed in
order to provide one of the requested levels of service for the new arrived task.
When trying to upgrade the reward achieved by the new task, the generated
configuration may result in an unfeasible set of tasks. The algorithm minimises
the reward decrease of all tasks when trying to find a new feasible solution
that presents a higher satisfaction for the service request under negotiation.
It is the responsibility of the coalition formation algorithm to select between
proposals with similar evaluation values, those nodes that achieve higher local
rewards, promoting load balancing.

One can conclude that the proposed heuristic search for a better feasible solu-
tion, optimises the rate at which the quality of the current solution improves
in both scenarios. With spare resources (Figure 4), at only 20% of the com-
putation time, the solution’s quality for the new arrived task is near 70% ±
5% of the achieved quality at completion time, with a confidence degree of

32

Fig. 5. Expected quality improvement with limited resources

99,9%. When QoS degradation is needed (Figure 5), the service proposal for
the new task achieves 87% ± 4% of its final quality at 20% of computation
time. The quality of the node’s global service solution, identified by Qconf in
both figures, also quickly approaches its maximum value at an early stage of
the computation. As such, the diminishing returns property is also verified in
the proposal formulation anytime algorithm.

Figure 4 and 5 also show that the quality measure of a service proposal is a
non-decreasing function of time, since the best feasible configuration is only
replaced if, and only if, another feasible solution is found and has a higher
quality for the user’s request under negotiation.

Both algorithms if interrupted before their completion can still provide a solu-
tion for cooperative service execution and a measure of its quality. This quality
can be improved if the algorithms have more time to run, but it rapidly ap-
proaches its optimal value at an early stage of the needed computation time.
For complex and dynamic real-time systems, allowing the cooperative ser-
vice configuration to provide a solution at any time results in a significant
improvement of the framework’s behaviour.

8.2 Comparison against the traditional versions of the algorithms

Throughout the paper the idea that complex scenarios may prevent the possi-
bility of computing optimal resource allocations before a cooperative execution
among a set of nodes was stated and anytime algorithms that can tradeoff de-
liberation time for quality of results were proposed. The goal was to introduce
flexibility in the execution time of the coalition formation and service proposal
formulation algorithms in order to provide adaptation to changing conditions
in dynamic heterogeneous environments.

33

However, it is important to analyse the computational cost required by this
approach to reach its optimal solution when compared against the traditional
versions of those algorithms [15]. The results discussed in the next paragraphs
were normalised with respect to the completion time of the longest solution.

Fig. 6. Coalition formation: Anytime vs Traditional

The achieved results for both the anytime and traditional versions of the
coalition formation algorithm, considering the needed time to complete their
computations are described in Figure 6. The traditional version of the algo-
rithm, which performs a sequential proposal evaluation, reaches its end within
nearly 95% ± 2% of the needed time of the anytime approach, with a 99,9%
confidence degree. As such, the heuristic selection of the next service proposal
to evaluate, based on each service provider’s local reward, has an associated
cost. However, and in consonance with the performance profile presented in
the previous section, the anytime version needs as little as near 10% of its
completion time to achieve a solution’s quality of 50% ± 6% of its optimal
solution, and below 40% to achieve 90% ± 5% of its optimal solution. As dis-
cussed in the previous section, the same confidence cannot be achieved with
an evaluation that relies in the order of proposals’ reception.

The comparison between the computational cost of the anytime and tradi-
tional versions of the service proposal formulation algorithm is resumed in
Figure 7 and Figure 8 using the same scenarios of the previous section. Figure
7 presents the scenario where the average amount of resources per node is
greater than the average amount of resources necessary for each service exe-
cution. Figure 8 presents the scenario where the average amount of resources
per node is smaller than the average amount of resources necessary for each
service execution.

The discrepancy in the needed computation time to achieve its optimal solu-
tion of both versions is explained by the different approach of each version of
the algorithm. The anytime version tries to quickly find a feasible solution.
Its initial solution considers the worst requested values for all QoS dimensions

34

Fig. 7. Proposal formulation: Anytime vs Traditional with spare resources

for the new arrived task as opposed to the traditional version that starts by
maximising the requested level of service for the new task. The traditional
version stops at its first solution, as this is its optimal one. On the other hand,
the anytime algorithm continues to improve achieved feasible solutions until
the optimal one is reached.

Fig. 8. Proposal formulation: Anytime vs Traditional with limited resources

By analysing Figures 7 and 8 one can conclude that when there are spare
resources the traditional version is slightly quicker to find the optimal solution.
With limited resources both versions need almost the same time to conclude
their computations. However, in both scenarios the anytime version is by far
quicker to find a feasible solution. With spare resources the needed time to
find the first feasible solution with a quality near 10% ± 3% of the optimal
solution is less than 5% of the completion time. With limited resources, the
anytime version takes about 20% of its computation time to reach a feasible
solution with 15% ± 3% of the optimal solution’s quality.

35

9 Conclusions

This paper considers an heterogeneous distributed system, where computing
devices may range from small, resource limited mobile devices to stationary
powerful servers. The paper addresses a cooperative execution environment,
where a resource limited device with a set of tasks that it cannot execute (or
handles them inefficiently) may use additional resources offered by neighbour
nodes, opportunistically taking advantage of global distributed resources and
processing power.

Each of the system’s users may have its own QoS preferences as well as each
service provider different capacities for service provisioning, that can be ex-
pressed by a QoS description scheme that guarantees information consistency
and compatibility in a heterogeneous network. The scheme includes dimen-
sions, attributes and values of a particular domain, as well as relations that
map dimensions to attributes and attributes to values and their dependencies.
Having a QoS characterisation of a particular application domain, users and
service providers are able to define service requirements and proposals in order
to reach an agreement about service provisioning. To avoid the need to ex-
press absolute values for every quality tradeoff, a preference order is imposed
in users’ service requests.

Finding an optimal distributed service provisioning that deals with both users’
and service providers’ constraints can be extremely complex and take a long
time. For large and complex problems, a sub-optimal solution that can be
found quickly may be more useful. This paper proposes an anytime approach
that has the ability to tradeoff deliberation time for the quality of the solution,
upgrading our cooperative QoS-aware execution framework for a successful
operation in highly dynamic real-time environments. The search for a feasible
solution is adapted to the available time that is dynamically imposed as a
result of emerging environmental conditions. Furthermore, at each iteration of
the algorithms, the search of a better solution is guided by heuristic evaluation
functions that optimise the rate at which the quality of the current solution
improves overtime.

The conformity of the proposed algorithms for coalition formation and service
proposal formulation with the desired properties of anytime algorithms was
proved and the design decisions of our approach validated through extensive
simulations in different highly dynamic scenarios. The achieved results demon-
strate that the proposed algorithms are able to quickly find a good initial
solution and effectively optimise the rate at which the quality of the current
solution improves at each iteration. The computation overhead of the pro-
posed anytime approach to reach its optimal solution when compared against
the traditional versions of the algorithms can be considered negligible.

36

References

[1] M. Stonebraker, U. Cetintemel, S. Zdonik, The 8 requirements of real-
time stream processing, SIGMOD Record 34 (4) (2005) 42–47.

[2] L. Marcenaro, F. Oberti, G. L. Foresti, C. S. Regazzoni, Distributed ar-
chitectures and logical-task decomposition in multimedia surveillance sys-
tems, Proceedings of the IEEE 89 (10) (2001) 1419–1440.

[3] V. S. W. Eide, F. Eliassen, O.-C. Granmo, O. Lysne, Supporting timeli-
ness and accuracy in distributed real-time content-based video analysis,
in: Proceedings of the 11th ACM international conference on Multimedia,
ACM Press, Berkeley, CA, USA, 2003, pp. 21–32.

[4] S. Schmidt, T. Legler, D. Schaller, W. Lehner, Real-time scheduling for
data stream management systems, in: 17th Euromicro Conference on
Real-Time Systems, IEEE Computer Society, Palma de Mallorca, Spain,
2005, pp. 167–176.

[5] L. Nogueira, L. M. Pinho, Iterative refinement approach for qos-aware ser-
vice configuration, From Model-Driven Design to Resource Management
for Distributed Embedded Systems 225 (2006) 155–164.

[6] L. Nogueira, L. M. Pinho, Building adaptable, qos-aware dependable em-
bedded systems, in: Proceedings of the 3rd International Workshop on
Dependable Embedded Systems, Leeds, United Kingdom, 2006.

[7] C. Wang, Z. Li, Parametric analysis for adaptive computation offloading,
in: Proceedings of the ACM SIGPLAN 2004 Conference on Program-
ming Language Design and Implementation, ACM Press, Washington,
DC, USA, 2004, pp. 119–130.

[8] X. Gu, A. Messer, I. Greenberg, D. Milojicic, K. Nahrstedt, Adaptive
offloading for pervasive computing, IEEE Pervasive Computing Magazine
3 (3) (2004) 66–73.

[9] G. Chen, B.-T. Kang, M. Kandemir, N. Vijaykrishnan, M. J. Irwin,
R. Chandramouli, Studying energy tradeoffs in offloading computation/
compilation in java-enabled mobile devices, IEEE Transactions on Paral-
lel and Distributed Systems 15 (9) (2004) 795–809.

[10] Z. Li, C. Wang, R. Xu, Task allocation for distributed multimedia pro-
cessing on wirelessly networked handheld devices, in: Proceedings of the
16th International Symposium on Parallel and Distributed Processing,
IEE Computer Society, Florida, USA, 2002, p. 79.

[11] U. Kermer, J. Hicks, J. Rehg, A compilation framework for power and
energy management on mobile computers, in: 14th International Work-
shop on Parallel Computing, Cumberland Falls, Kentucky, USA, 2001,
pp. 115–131.

[12] Z. Li, C. Wang, R. Xu, Computation offloading to save energy on hand-
held devices: a partition scheme, in: Proceedings of the 2001 International
Conference on Compilers, Architecture and Synthesis for Embedded Sys-
tems, ACM Press, Atlanta, Georgia, USA, 2001, pp. 238–246.

[13] M. Othman, S. Hailes, Power conservation strategy for mobile comput-

37

ers using load sharing, SIGMOBILE Mobile Computing Communications
Review 2 (1) (1998) 44–51.

[14] A. Rudenko, P. Reiher, G. J. Popek, G. H. Kuenning, Saving portable
computer battery power through remote process execution, Mobile Com-
puting and Communications Review 2 (1) (1998) 19–26.

[15] L. Nogueira, L. M. Pinho, Dynamic qos-aware coalition formation, in:
Proceedings of the 19th IEEE International Parallel and Distributed Pro-
cessing Symposium, IEEE Computer Society, Denver, Colorado, 2005.

[16] L. M. Pinho, L. Nogueira, R. Barbosa, An ada framework for qos-aware
applications, in: Proceedings of the 10th Ada-Europe International Con-
ference on Reliable Software Technologies, Lecture Notes in Computer
Science, Springer, York, UK, 2005, pp. 25–38.

[17] J. W. Liu, K.-J. Lin, W.-K. Shih, A. C. shi Yu, J.-Y. Chung, W. Zhao, Al-
gorithms for scheduling imprecise computations, IEEE Computer 24 (5)
(1991) 58–68.

[18] J. W. S. Liu, K.-J. Lin, R. Bettati, D. Hull, A. Yu, Use of imprecise com-
putation to enhance dependability of real-time systems, Foundations of
Dependable Computing: Paradigms for Dependable Applications (1994)
157–182.

[19] T. Dean, M. Boddy, An analysis of time-dependent planning, in: Pro-
ceedings of the 7th National Conference on Artificial Intelligence, MIT
Press, St. Paul, MN,USA, 1988, pp. 49–54.

[20] E. J. Horvitz, Reasoning under varying and uncertain resource con-
straints, in: Proceedings of the 7th National Conference on Artificial In-
telligence, MIT Press, St. Paul, MN,USA, 1988, pp. 111–116.

[21] S. Zilberstein, Using anytime algorithms in intelligent systems, Artificial
Inteligence Magazine 17 (3) (1996) 73–83.

[22] J. A. Stankovic, K. Ramamritham, The spring kernel: A new paradigm
for real-time systems, IEEE Software 8 (3) (1991) 62–72.

[23] C. W. Mercer, S. Savage, H. Tokuda, Processor capacity reserves: Oper-
ating system support for multimedia applications, in: Proceedings of the
IEEE International Conference on Multimedia Computing and Systems,
IEEE Computer Society Press, Boston,MA,USA, 1994, pp. 90–99.

[24] M. Jones, P. Leach, R. Draves, J. Barrera, Modular real-time resource
management in the rialto operating system, in: Proceedings of the Fifth
Workshop on Hot Topics in Operating Systems, IEEE Computer Society,
Orcas Island,Washington,USA, 1995, p. 12.

[25] R. Rajkumar, K. Juvva, A. Molano, S. Oikawa, Resource kernels: a
resource-centric approach to real-time and multimedia systems, Readings
in multimedia computing and networking (2001) 476–490.

[26] T. F. Abdelzaher, E. M. Atkins, K. G. Shin, Qos negotiation in real-time
systems and its application to automated flight control, IEEE Transac-
tions on Computers 49 (11) (2000) 1170–1183.

[27] L. Palopoli, P. Valente, T. Cucinotta, L. Marzario, A. Mancina, A unified
framework for multiple type resource scheduling with qos guarantees,

38

in: Proceedings of the Workshop on Operating Systems Platforms for
Embedded Real-Time applications, Palma de Mallorca, Spain, 2005, pp.
67–75.

[28] T. Cucinotta, L. Palopoli, L. Marzario, G. Lipari, L. Abeni, Adap-
tive reservations in a linux environment., in: Proceedings of the 10th
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium, Toronto, Canada, 2004, pp. 238–245.

[29] R. Rajkumar, C. Lee, J. Lehoczky, D. Siewiorek, A resource allocation
model for qos management, in: Proceedings of the 18th IEEE Real-Time
Systems Symposium, IEEE Computer Society, San Francisco, California,
USA, 1997, p. 298.

[30] C. Lee, J. Lehoczky, D. Siewiorek, R. Rajkumar, J. Hansen, A scalable
solution to the multi-resource qos problem, in: 20th IEEE Real-Time
Systems Symposium, IEEE Computer Society Press, Phoenix, AZ, USA,
1999, pp. 315–326.

[31] C. Lee, J. Lehoezky, R. Rajkumar, D. Siewiorek, On quality of service
optimization with discrete qos options, in: Fifth IEEE Real-Time Tech-
nology and Applications Symposium, 1999, pp. 276–286.

[32] J. P. Hansen, J. Lehoczky, R. Rajkumar, Optimization of quality of ser-
vice in dynamic systems, in: Proceedings of the 9th International Work-
shop on Parallel and Distributed Real-Time Systems, IEEE Computer
Society, 2001.

[33] S. Ghosh, R. Rajkumar, J. P. Hansen, J. P. Lehoczky, Scalable resource
allocation for multi-processor qos optimization, in: Proceedings of the
23rd International Conference on Distributed Computing Systems, IEEE
Computer Society, Rhode Island, USA, 2003, p. 174.

[34] S. Ghosh, J. Hansen, R. R. Rajkumar, J. Lehoczky, Adaptive qos op-
timizations with applications to radar tracking, in: Proceedings of the
10th International Conference on Real-Time and Embedded Computing
Systems and Applications, Gothenburg, Sweden, 2004.

[35] K. Fukuda, N. Wakamiya, M. Murata, H. Miyahara, Qos mapping be-
tween user’s preference and bandwidth control for video transport, in:
Proceedings of the 5th International Workshop on Quality of Service,
New York,USA, 1997, pp. 291–302.

[36] V. Goebel, T. Plagemann, Mapping user-level qos to system-level qos
and resources in a distributed lecture-on-demand system, in: I. C. Soci-
ety (Ed.), Proceedings of the 7th IEEE Workshop on Future Trends of
Distributed Computing Systems, Cape Town, South Africa, 1999, p. 197.

[37] H. Berthold, S. Schmidt, W. Lehner, C.-J. Hamann, Integrated resource
management for data stream systems, in: Proceedings of the 2005 ACM
Symposium on Applied Computing, ACM Press, Santa Fe, New Mexico,
2005, pp. 555–562.

[38] R. Barbosa, L. M. Pinho, Mechanisms for reflection-based monitoring
of real-time systems, in: Work-In-Progress Session of the 16th Euromi-
cro Conference on Real-Time Systems, IEEE Computer Society, Cata-

39

nia,Sicily,Italy, 2004.
[39] B. Landfeldt, A. Seneviratne, C. Diot, User services assistant: An end-

to-end reactive qos architecture, in: Proceedings of the 6th International
Workshop on Quality of Service, Napa,California, USA, 1998.

[40] F. van Harmelen, A. ten Teije, Describing problem solving methods us-
ing anytime performance profiles, in: Proceedings of the 14th European
Conference on Artificial Intelligence, Berlin,Germany, 2000, pp. 181–186.

[41] N. Pereira, E. Tovar, B. Batista, L. M. Pinho, I. Broster, A few what-
ifs on using statistical analysis of stochastic simulation runs to extract
timeliness properties, in: Proceedings of the PARTES’04 Workshop, Pisa,
Italy, 2004.

[42] A. M. Law, W. D. Kelton, Simulation modeling and analysis, 3rd Edition,
McGraw-Hill, 2000.

[43] M. Matsumoto, T. Nishimura, Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator, ACM Trans-
actions on Modeling and Computer Simulation 8 (1) (1998) 3–30.

[44] S. Zilberstein, Operational rationality through compilation of anytime
algorithms, Ph.D. thesis, Department of Computer Science, University of
California at Berkeley (1993).

40

