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Abstract 
Composition is a practice of key importance in software engineering. When real-time applications are composed it is 
necessary that their timing properties (such as meeting the deadlines) are guaranteed. The composition is performed by 
establishing an interface between the application and the physical platform. Such an interface does typically contain 
information about the amount of computing capacity needed by the application. In multiprocessor platforms, the 
interface should also present information about the degree of parallelism. Recently there have been quite a few interface 
proposals. However, they are either too complex to be handled or too pessimistic.In this paper we propose the 
Generalized Multiprocessor Periodic Resource model (GMPR) that is strictly superior to the MPR model without 
requiring a too detailed description. We describe a method to generate the interface from the application specification. 
All these methods have been implemented in Matlab routines that are publicly available. 
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ABSTRACT
Composition is a practice of key importance in software en-
gineering. When real-time applications are composed it is
necessary that their timing properties (such as meeting the
deadlines) are guaranteed. The composition is performed
by establishing an interface between the application and the
physical platform. Such an interface does typically con-
tain information about the amount of computing capacity
needed by the application. In multiprocessor platforms, the
interface should also present information about the degree
of parallelism. Recently there have been quite a few inter-
face proposals. However, they are either too complex to be
handled or too pessimistic.

In this paper we propose the Generalized Multiprocessor
Periodic Resource model (GMPR) that is strictly superior
to the MPR model without requiring a too detailed descrip-
tion. We describe a method to generate the interface from
the application speciÞcation. All these methods have been
implemented in Matlab routines that are publicly available.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and DesignÑ
Real-time systems and embedded systems

General Terms
Theory

Keywords
real-time scheduling, compositional scheduling, multiproces-
sors, real-time interfaces

1. INTRODUCTION
Reusing application code is a key design principle to shorten

the overall design time. According to this design methodol-
ogy, software components are designed in isolation, possibly
by di ! erent developers. Then, during the integration phase,
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all components are bound to the same execution platform.
Clearly, the integration must be performed in such a way
that the properties of components are preserved even after
the composition is made.

In real-time systems, the key property that has to be pre-
served during the integration phase is time predictability: a
real-time application that meets all its deadlines when de-
signed in isolation, should also meet all deadlines when it is
integrated with other applications on the same system. This
property is often guaranteed by introducing an interface be-
tween the application and the physical platform. Then the
application is guaranteed over the interface, and the physical
platform must provide a virtual platform that conforms with
the interface. The scheduling problem over a virtual plat-
form is often called hierarchical scheduling problem. In fact,
the application tasks may contain an entire application in a
hierarchical fashion. The beneÞt of using an interface-based
approach is signiÞcant: during the design phase the inter-
face of a virtual platform is designed such that the timing
requirements of the application are met; during the integra-
tion phase the interfaces of all applications are combined
over the same physical platform.

Typically, interfaces that allow composition of real-time
components provide details about the amount of computa-
tion that can be provided by the virtual platform. This
information can be provided with a varying degree of detail.
For example, a very simple interface of a virtual processor
can be just the fraction of provided time.

With the broad di ! usion of multiprocessors, hierarchical
scheduling problems have recently been considered over ex-
ecution platforms that provide parallelism. The formulation
of interface models for multiprocessor, however, requires the
introduction of a new dimension: the degree of parallelism.
This extra characteristic of the interface makes the problem
to be addressed more challenging.

The problem in selecting the appropriate interface is to
Þnd the most opportune balance between accuracy and sim-
plicity of the interface. In this paper we propose a simple
interface that is a generalization of a previously proposed
one [20]. To better describe the context of our contribution,
next we describe the most relevant related works.

1.1 Related works
The problem of composing real-time applications is cer-

tainly not new. There actually have been numerous contri-
butions in this area. Being fully aware of the impossibility to
provide a full coverage of the topic, we describe in this sec-
tion the works that, to our best knowledge, are more related
to ours.



One of the Þrst papers to address the isolation of appli-
cations using resource reservations was published in 1993
by Parekh and Gallager [19], who introduced the Gener-
alized Processor Sharing (GPS) algorithm to share a ßuid
resource according to a set of weights. Merceret al. [17]
proposed a more realistic approach where a resource can be
allocated based on a required budget and period. Stoica
et al. [22] introduced the Earliest Eligible Virtual Deadline
First (EEVDF) for sharing the computing resource. Deng
and Liu [6] achieved the same goal by introducing a two-level
scheduler (using EDF as a global scheduler) in the context
of multi-application systems. Kuo and Li [12] extended the
approach to a Fixed Priority global scheduler. Kuo et al. [13]
extended their previous work [12] to multiprocessors. How-
ever, they made very stringent assumptions (such as no task
migration and period harmonicity) that restricted the appli-
cability of the proposed solution.

Moir and Ramamurthy [18] proposed a hierarchical ap-
proach, where a set of P-fair tasks can be scheduled within
a time partition provided by another P-fair task (called Òsu-
pertaskÓ) acting as a server. However, the solution often
requires the weight of the supertask to be higher than the
sum of the weights of the served tasks [11].

Many independent works proposed to model the service
provided by a uniprocessor through a supply function. Feng
and Mok introduced the bounded-delay resource partition
model [8]. Almeida et al. [1] provided timing guarantees for
both synchronous and asynchronous tra" c over the FTT-
CAN protocol by using hierarchical scheduling. Lipari and
Bini [15] derived the set of virtual processors that can fea-
sibly schedule a given application. Shin and Lee [21] intro-
duced the periodic resource model also deriving a utilization
bound. Easwaran et al. [7] extended this model allowing the
server deadline to be di! erent than the period. Fisher and
Dewan [9] proposed an approximation algorithm to test the
schedulability of a task set over a periodic resource.

Recently, some authors have addressed the problem of
how to specify the application interface for an application
to be executed on multiprocessor systems, and provide ap-
propriate schedulability analysis to check if the application
is schedulable on the interface.

Leontyev and Anderson [14] proposed to use only the over-
all bandwidth requirement w as interface for soft real-time
applications. The authors propose to allocate a bandwidth
requirement of w onto ! w" dedicated processors, plus an
amount of w # ! w" provided by a periodic server globally
scheduled onto the remaining processors. An upper bound
of the tardiness of tasks scheduled on such interface was
provided.

Shin et al. [20] proposed the multiprocessor periodic re-
source model (MPR) that speciÞes a period, a budget and
maximum level of parallelism of the resource provisioning.
Since our work is a generalization of the MPR, in Section 2.2
we describe it in greater detail.

Chang et al. [5] proposed to partition the resource avail-
able from a multiprocessor by a static periodic scheme. The
amount of resource is then provided to the application through
a contract speciÞcation.

Bini et al. [4] proposed the Parallel Supply Function (PSF)
interface of a virtual multiprocessor. This interface can be
seen as a generalization of any possible interface model and it
is the most resource-e" cient. However, it is not investigated
the assignment of the interface parameters that guarantee a

real-time application.
Lipari and Bini [16] described an entire framework for

composing real-time applications running over a multipro-
cessor. However their proposed interface was extremely sim-
ple.

1.2 Contributions of the paper
The contributions of the paper are highlighted in bold in

the paragraph below.
In Section 2 we recall some previous interface models such

as the Parallel Supply Function (PSF) and the Multiproces-
sor Resource Model (MPR). In Section 3 we provide an ex-
ample illustrating that the MPR interface may require some
more resource than actually needed. Section 4 introduces
the Generalized Multiprocessor Periodic Resource
model (GMPR). We also show how to compute the
PSF interface of a GMPR interface. In Section 5 a
schedulability condition over a GMPR interface is
presented. This condition, inspired by the one proposed by
Bertogna, Cirinei and Lipari [3], can be applied to several
di! erent policies for scheduling the application tasks. In
Section 6 we showhow to design a GMPR interface
that requires the minimal resource and can guaran-
tee a real-time application speciÞed by a set of sporadic
tasks with deadline. In Section 7 we brießy describe the
problem of scheduling the GMPR interfaces. Finally,
in Section 8 we report some simulations.

2. BACKGROUND
As our work is tightly tied to several previous works, in

this section we brießy review concepts and notations we bor-
row.

2.1 The Parallel Supply Function
resource model

The parallel supply function (PSF) was proposed by Bini
et al. [4] to characterize the resource allocation in hierarchi-
cal systems executed upon a multiprocessor platform. This
interface introduces the minimum possible pessimism in ab-
stracting the amount of resource provided by a platform. As
a drawback it is certainly quite complicated to be handled.
Without entering all the details of the deÞnition (that can
indeed be found in [4]), we recall here the basic concepts.

Definition 1. The Parallel Supply Function interface
(PSF) of a multiprocessor resource is composed by the set of
functions { Yk } m

k =1 , where m is the number of virtual proces-
sors and Yk (t) is the minimum amount of resource provided
in any interval of length t with a parallelism of at most
k. The function Yk (t) is called the level-k parallel supply
function .

To clarify this deÞnition we propose an example. Sup-
pose that in the interval [0 , 11] the resource is provided by
three processors according to the schedule drawn in gray in
Figure 1.

In this case Y1(11) = 10 because there is always at least
one processor available in [0, 11] except in [8, 9]. Then Y2(11) =
16; that is found by summing up all the resource except
one with parallelism 3 (provided only in [4 , 5]). Finally,
Y3(11) = 17; that is achieved by summing all the resources
provided in [0 , 11]. In general, the parallel supply functions
are computed also by sliding the time window of length t and



10 2 3 4 5 6 7 8 9 10 11

Figure 1: From a resource schedule to the PSF.

by searching for the most pessimistic scenario of resource
allocation. This minimization is somehow equivalent to the
one performed on uni-processor hierarchical scheduling [8,
15, 21].

Although the PSF interface is capable to tightly capture
the amount of provided resource, its complexity prevents a
straightforward application. It is unclear how a PSF inter-
face should be designed so that an application is guaranteed.
On the other extreme, next we report a very simple interface
model.

2.2 The MPR interface model
The multiprocessor periodic resource model (MPR) [20]

is one of the simplest resource abstractions. Its deÞnition is
as follows.

Definition 2. Let us set 0 as the time instant when the
resource is firstly supplied. A Multiprocessor Periodic Re-
source model (MPR) is modeled by a triplet

$# , $ , m%,

where # is the time period and $ is the minimal amount
of supply provided within each interval [k# , (k + 1) # ), with
k & N, by at most m processors. Often we also say that
m is the concurrency (or the degree of parallelism) of the
interface. The utilization of a MPR interface is the ratio ⇥

⇧ .
In this work we assume that # and $ are positive integers.

Since a MPR interface Þxes only the aggregated parame-
ters # , $ and m of the supply pattern, any feasible alloca-
tion of $ resource units per time period # should preserve
the schedulability of the underlying task set. In Figure 2,
we show an example of the resource allocation of a MPR
interface $7, 14, 3%. It can be noted that in each period the
allocation patterns may be di ! erent.
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Figure 2: Graphical interpretation of a MPR model

As the task set should be guaranteed under any possible
resource allocation scenario, it is then necessary to Þnd the
worst-case supply allocation of the MPR. As shown by Shin
et al. [20], the worst-case scenario is the one depicted in
Figure 3. Since the PSF can be computed for any possible
resource allocation scheme, we can compute it also for the
MPR interface. At the bottom of Figure 3 we show the
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Figure 3: The worst-case supply allocation under
the MPR model

i Ci Ti D i

1 6 40 40
2 13 50 50
3 29 60 60
4 27 70 70

Table 1: An example of a task set.

level-m parallel supply function Ym (t) of a MPR interface.
More details about this computation can be found in [20].

The computation of the PSF interface { Yk } m
k =1 of a MPR

enables the adaptation of schedulability tests developed over
a PSF interface to a MPR interface. More details about the
schedulability test will be provided in Section 5.

3. MOTIVATION FOR EXTENDING THE
MPR INTERFACE

In this section we motivate the necessity for extending the
MPR interface model. By proposing this extension we aim
at minimizing the overall resource abstracted in the MPR
interface required to guarantee the schedulability of the un-
derlying task set.

Assume that a MPR interface $# , $ , m%abstracts the pro-
cessing requirements of a real-time tasks set. By deÞnition,
a MPR interface speciÞes only the aggregated supply $ .
However, we show below that, preserving the schedulability,
our approach allows to reduce the value of the required re-
source in the abstraction by further detailing its allocation
in processors.

As an example, consider the tasks set with the parameters
reported in Table 1, to be scheduled by global EDF (GEDF)
over the MPR interface. In this table, tasks are reported in
rows and for each task we denote its execution time by Ci ,
its period by Ti , and its deadline by D i .

After setting the period of the interface # = 15, we com-



pute a MPR interface $# , $ , m%that can guarantee the task
set. To check the schedulability, we reuse the PSF-based test
proposed by Bini et al. [4] (see Section 5 for details). Based
on this test, we determine that the minimal feasible value of
resource to guarantee the schedulability is $ = 39. Notice
that there is quite a signiÞcant gap between the utilization
of the interface ⇥

⇧ = 2 .6 and the utilization of the task setP
i

C
i

T
i

= 1 .28.
As we will show in greater detail in the next sections,

our proposed interface requires only 34 resource units per
period, meaning that it has a utilization of 34

15 = 2 .267.

4. THE GENERALIZED MULTIPROCESSOR
PERIODIC RESOURCE MODEL

As highlighted in Section 3, the MPR resource model can
lead to some waste of computational resources. In this sec-
tion we describe a resource model that is better capable to
tightly capture the resource requirement of the underlying
task set.

Definition 3. Let us set 0 as the time instant when the
resource is firstly supplied. We define the Generalized Mul-
tiprocessor Periodic Resource model interface (GMPR) as

$# , { $ 1, . . . , $ m } %,

where # is the time period, $ k is the minimal supply pro-
vided by at most k processors. The period # and all the
values of $ k are positive integers. Also, the values of $ k

must satisfy the following constraints for any k = 1 , . . . , m
(for notational convenience we denote $ 0 = 0 ):

0 < $ k +1 # $ k ' #

$ k +1 # $ k ' $ k # $ k ! 1
(1)

The (k+1) th virtual processor provides $ k +1 # $ k sup-
ply units every period # . Thus, we impose a strict con-
straint $ k +1 > $ k to avoid the case when no real supply
is provided by the (k+1) th processor. At the same time,
the constraint $ k +1 # $ k ' # reßects the fact that a sin-
gle virtual processor is not capable to provide more than #
supply units within an interval of # . The last constraint
$ k +1 # $ k ' $ k # $ k ! 1 aims to put some determinism into
the supply allocation, meaning that the (k+1) th processor
does not provide a larger supply than the k th processor.

By deÞnition, a GMPR interface is a guarantee for the
schedulability of a task set, meaning that any feasible sup-
ply allocation compliant to the GMPR model will result in
meeting all the deadlines under the employed scheduling pol-
icy.

The GMPR model $# , { $ 1, . . . , $ m } %is a generalization
of the MPR $# , $ , m%, where $ = $ m .

4.1 The Parallel Supply Functions of GMPR
To be able to borrow the schedulability tests developed

over the PSF interface [4], we introduce the computation of
the parallel supply functions Yk (t) for the GMPR speciÞca-
tion.

Following a similar reasoning as for the MPR in [20], the
worst-case supply pattern for the GMPR model is as de-
picted in Figure 4. Let us introduce an auxiliary function
supplyk (t) to quantify the supply provided by the Þrst k con-
currency levels within the time interval [0 , t ]. According to
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Figure 4: The worst-case supply allocation under
the GMPR model

the worst-case scenario of Figure 4, it follows that

supplyk (t) =
kX

`=1

min { t, $
`

# $
`! 1 } +

�
(t # # )0

#

⌫
$ k +

+
kX

`=1

((( t # # )0 mod # ) # (# # ($
`

# $
`! 1 ))) 0

where (x)0 denotes max(x, 0). Then, from the deÞnition of
the PSF function, it follows that

Yk (%t) = min
" t # 0

(supplyk (t + %t) # supplyk (t))

Now we make the classic observation that a minimum of the
previous expression must always occur at t equal to some
instant of termination of a resource supply. These candi-
date time instants are denoted in Figure 4 by t$

i . Hence the
minimum can be computed over T $ = { t$

1 , t$
2 , ..., t $

m } with-
out making any optimistic assumption. Therefore the PSF
of a GMPR can be computed by

Yk (%t) = min
t %T ⇤

(supplyk (t + %t) # supplyk (t)) . (2)

We also observe that the k-th function of the PSF can be
upper bounded by the following simple linear function

Yk (t) ' Y k (t) =
$ k

#
t. (3)

This upper bound will be exploited in Section 6 to reduce the
complexity of the algorithm to compute the GMPR interface
of an application composed by a set of tasks.

As an example, in Figure 5 we illustrate the 4 parallel
supply functions { Yk (t)} 4

k =1 of the GMPR interface
$7, { 6, 11, 15, 17} %. At the bottom of the Þgure we also repre-
sent the worst-case resource supply that originates the par-
allel supply functions.

5. SCHEDULABILITY OVER GMPR
The GMPR interface describes the amount of computing

resources provided to an application. We can then formulate
a schedulability test over the GMPR.

Let us consider a task setT composed by the tasks⌧1, . . . , ⌧n .
Each task ⌧i is modeled by its computation time Ci , period
Ti , and deadline D i .

As schedulability test for the application, we choose the
extension of the test by Bertogna et al. [3] to the PSF in-
terface developed in [4]. We choose this condition because
it applies to several di ! erent application schedulers such as
global EDF or global FP, although it assumes constrained
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Figure 5: The PSF (top) and the worst-case
supply pattern (bottom) of the GMPR interface
$7, { 6, 11, 15, 17} %. The bold points indicate the slope
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deadline tasks, i.e. for all tasks ⌧i , D i ' Ti . While choos-
ing other tests is possible [2], the proposed formulation has
the advantage of highlighting the constraint on the inter-
face. Thanks to the lossless transformation of a GMPR in-
terface into a PSF (see Section 4.1), we can apply directly
the schedulability condition developed over PSF. Below we
report, for completeness, the schedulability condition in the
simpler expression proposed by Lipari and Bini [16].

Theorem 1 (Theorem 1 in [16]). A set of tasks
{ ⌧i } n

i =1 is schedulable on a resource modeled by the PSF
{ Yk } m

k =1 , if
^

i =1 ,...,n

_

k =1 ...,m

k Ci + Wi ' Yk (D i ), (4)

where Wi is the maximum interfering workload that can be
experienced by task ⌧i in the interval [0, D i ], defined as

Wi =
nX

j =1 ,j &= i

�
D i

Tj

⌫
Cj + min

⇢
Cj , D i #

�
D i

Tj

⌫
Tj

�
, (5)

if the application tasks are scheduled by global EDF. Instead
if the application tasks are scheduled by global FP

Wi =
X

j %hp( i )

Wji , (6)

where hp denotes the set of indices of tasks with higher pri-
ority than i , and Wji is the amount of interfering workload
caused by ⌧j on ⌧i , that is

Wji = Nji Cj + min { Cj , D i + D j # Cj # Nji Tj } (7)

with Nji =
j

D
i

+ D
j

! C
j

T
j

k
.

Below we exploit such a schedulability condition to com-
pute the GMPR parameters $ 1, . . . , $ m for a given task set.

Algorithm 1 Reduction of the search space.
1: procedure reduceSearchSpace
2: S⇥ ( ) . initialize S⇥

3: for each ⌧i & T do
4: compute vi . from Eq. (9)
5: S

new

( { vi } . initialize S
new

6: for v & S⇥ do
7: if * k, vk

i ' vk then
8: S

new

( ) . ignore vi

9: break
10: end if
11: if * k, vk

i + vk then
12: S⇥ ( S⇥ \ { v} . remove v
13: end if
14: end for
15: S⇥ ( S⇥ , S

new

16: end for
17: return S⇥

18: end procedure

6. THE GMPR COMPUTATION
When an application T = { ⌧1, . . . , ⌧n } is given, it is of key

importance to select the interface that can guarantee the
timing constraints of the application and, at the same time,
requires the minimal amount of resource. Hence, in this sec-
tion we describe an algorithm to generate a GMPR interface
$# , { $ k } m

k =1 %of a given sporadic task set { ⌧1, . . . , ⌧n } . As
schedulability condition, we choose the one of Theorem 1.

To compute a GMPR interface, we follow a similar ap-
proach as the one proposed by Shinet al. [20] to gener-
ate a MPR interface. First, the period # of the GMPR
interface is set by the system designer considering such as-
pects as preemption overheads and etc. Then for a Þxed
value of m (the parallelism of the interface) not smaller

than
lP

i
C

i

T
i

m
, our algorithm Þnds the values of cumula-

tive resource $ m , . . . , $ 1 such that the computing resource
is minimized.

Rather than simply (but in a very time consuming way)
enumerating all possible values of $ k as proposed by Shin
et al. [20], we exploit the condition on $ k that follows from
the linear upper bound of Eq. (3). In fact, from (4) and (3)
it follows that any feasible values of $ 1, . . . , $ m must also
be such that

^

i =1 ,...,n

_

k =1 ...,m

k Ci + Wi '
$ k

#
D i ,

from which we have the following condition on all $ k

^

i =1 ,...,n

_

k =1 ...,m

$ k +
⇠

#
D i

(k Ci + Wi )
⇡

, (8)

by also accounting for the integrality of $ k .
The necessary condition of Eq. (8) can be exploited to

reduce signiÞcantly the search space. For any task⌧i , let us
deÞne the vector vi =

⇥
v1

i , . . . , vm
i

⇤
as

vi =
⇠

#
D i

(Ci + Wi )
⇡

, . . . ,
⇠

#
D i

(mCi + Wi )
⇡�

. (9)

The reduced search space is computed by Algorithm 1. We
illustrate its execution by an example.
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Figure 6: Illustration of the search space reduction.

i Ci Ti D i Wi (GEDF)
1 12 40 40 38
2 23 50 50 37
3 15 60 60 57

Table 2: An example of a task set.

Let us assume to have 4 tasks andm = 2. Let us also
assume that the values of v1, v2, v3, v4 are the ones depicted
in Figure 6. In the Þrst run of the outer loop (lines 3Ð16) the
set S⇥ is empty. Then v1 is simply added to S⇥. When i = 2,
none of the two conditions of lines 7, 11 are true, hencev2 is
also added toS⇥. When i = 3, the condition at line 11 is true
when v = v2. Hence,v2 can be removed fromS⇥ because the
schedulability condition (8) for i = 3 is stricter than the one
for i = 2. Finally, when i = 4 the condition at line 7 is true
when v = v3 and then the vector v4 can be ignored. It can be
noted that Algorithm 1 for determining the reduced search
space has complexity o(n2m) that is polynomial. Moreover
its result does not depend on the order in which the vectors
vi are visited.

Once S⇥ is determined by Algorithm 1, the GMPR gener-
ation process is then based on searching the assignment that
requires the minimum amount of resource among all values
($ 1, . . . , $ m ) satisfying the following constraints

* v & S⇥ - k = 1 , . . . m, $ k + vk (10)

$ 1 ' # (11)

* k = 1 , . . . , m # 1 $ k +1 # $ k ' $ k # $ k ! 1 (12)

$ m + $ m ! 1 (13)

where Condition (10) follows from (8), while Conditions (11)Ð
(13) follow from DeÞnition 3 of the GMPR interface.

6.1 Example of GMPR computation
We illustrate the algorithm by an example. To ease the

graphical representation of the concept we analyze the case
of m = 2.

Let us consider the task set T with the parameters re-
ported in Table 2. If the task set is scheduled by GEDF
over the interface then, from Eq. (5), we can compute the
quantities Wi that are reported in the last column of the
table.

We set # = 15 and m = 2. From (9), we have that

v1 = (19 , 24), v2 = (18 , 25), and v3 = (18 , 22). However, by
executing the reduceSearchSpace algorithm we Þnd that
the vector v3 can be ignored, since the condition (8) with
i = 3 is implied by the others. Hence S⇥ = { v1, v2} .

The search space is depicted in Figure 7, in gray. Fig-
ure 7(a) shows the feasible values of ($ 1, $ 2) by only consid-
ering the constraints (11)Ð(13) that follow from DeÞnition 3
of GMPR. In Figure 7(b) we show how much the search
space is shrunk by enforcing the necessary condition of (8).
Among the possible selections of ($ 1, $ 2), in Figure 7(b),
we also show, which ones are capable to guarantee the dead-
line constraints of the task set (denoted by a black dot) and
which ones are not (denoted by a red cross). Hence the
GMPR interface that consumes the minimal amount of re-
source is$15, { 15, 26} %. It is also interesting to observe that
in this example the best MPR interface was $15, 27%that
consumes one unit of resource more than the best GMPR.

7. SCHEDULABILITY ANALYSIS OF
GMPR INTERFACES

Once the processing requirements of each component in a
hierarchical system are abstracted using GMPR interfaces,
they should be scheduled upon a hardware platform. For
this purpose we introduce a notion of interface tasks. An
interface task set for a GMPR interface $# , { $ k } m

k =1 %is de-
Þned as

T ' = { ⌧ '
1 = ( C'

1, # ), . . . , ⌧m = ( C'
m , # )} ,

where C'
i = ( $ k # $ k ! 1). We recall that we set $ 0 = 0

for notational convenience. It is easy to see that the over-
all processing requirement of T ' is $ m per period # asPm

k =1 C'
k = $ m . Therefore, we propose to schedule GMPR

interfaces by transforming each one into interface tasks and
to schedule the resulting union of these periodic tasks in-
stead.

The notion of interface tasks supports another important
property for hierarchical systems, which is composability: by
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Figure 7: The example of a GMPR interface com-
putation



the given GMPR interfaces of child components we can com-
pute a GMPR interface of a parent component.

8. IMPLEMENTATION AND SIMULATIONS
The algorithm for generating GMPR interfaces is imple-

mented in Matlab and it is available at https://sites.
google.com/site/artemburmyakov/home/papers .

8.1 Task set generation
To generate a task set T = { ⌧i = ( Ci , Ti )} the user spec-

iÞes the total task set utilization UT , an upper bound for
individual task utilizations Umax , and the ratio of maximum
to minimum periods T

max

T
min

. The number of tasks in T is not
Þxed a priori.

The generation of T is based on distributing the total
utilization UT between the tasks. So, the utilization ui of a
task ⌧i is randomly selected from the range (0; Umax ) and
the overall utilization of the remaining tasks to be generated,
denoted as Ur , is reduced by the value of ui . Once Ur '
Umax , the last task ⌧n is created with un = Ur . Thus, the
total utilization of T is UT .

As a next step we randomly select the value of Tmin from
some predeÞned range and computeTmax = Tmin

T
max

T
min

.
Then the period Ti of each task ⌧i is randomly taken from
the range [Tmin ; Tmax ], and Þnally its execution time is
computed as Ci = ui Ti .

8.2 Experiments
In the performed experiments, we compared the utiliza-

tion of the interface ⇥
m

⇧ as the interface period # varies.
For all the Þve experiments reported below we plot the in-
terface utilization of GMPR and MPR for both FP and EDF
scheduling policies. All the experiments share the following
characteristics:

¥ each experiment was conducted by randomly generat-
ing 200 task sets,

¥ the minimum task period was random extracted be-
tween 20 and 40, and

¥ the total utilization of tasks was set equal to U = 1 .5.

In the Þrst experiment, reported in Figure 8, we set the
number of processorsm = 4, the maximum utilization of a
single task equal to U

max

= 0 .4, and the ratio between the
maximum and minimum task periods T

max

T
min

= 1 .5. It can be
observed that the gain in term of overall resource usage of
GMPR w.r.t. MPR is in the order of 5%, when tasks are
scheduled by FP (blue plots) and around 10% when tasks
are scheduled by EDF (black plots). Notice that the gain of
GMPR increases with the period of the interface.

To explore the dependency on the weight of the individual
tasks, in the second experiment we setU

max

= 0 .7, keeping
the number of processorsm = 4 and the ratio T

max

T
min

= 1 .5.
Results are shown in Figure 9. With these settings, the gain
of GMPR compared to MPR is in the order of 10% for FP
(blue plots) and 15% for EDF (black plots). The trend with
an increasing gain as a function of # is conÞrmed.

In the third and fourth experiments (depicted in Fig-
ures 10, 11), we also investigate the dependency on the task
periods by setting T

max

T
min

= 10 and T
max

T
min

= 100 correspond-
ingly, keeping m = 4 and U

max

= 0 .4. An interesting phe-
nomenon that we observe in this case is that FP requires a
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Figure 8: Case (a): m = 4 , U
max

= 0 .4, T
max

T
min

= 1 .5.
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Figure 9: Case (b): m = 4 , U
max

= 0 .7, T
max

T
min

= 1 .5.

smaller amount of resource w.r.t. EDF. This has to be ex-
plained with the nature of the schedulability test. The gains
of GMPR over MPR are in the same order of magnitude as
in the previous experiments.

In the last experiment we analyze the dependency on the
number of processors by setting m = 5, and keeping T

max

T
min

=
100, Umax = 0 .4. The results are depicted in Figure 12.
It can be clearly seen that the gain of GMPR compared to
MPR increases asm increases.

In all experiments we can observe a quite signiÞcant dis-
tance between the interface utilization, always around 3 and
the task set utilization that is 1 .5. This waste of resource,
however, does not depend on the particular interface se-
lected. It has instead to do with the pessimism introduced
by the schedulability tests. We believe that if the schedu-
lability tests can be tightened, for example by using more
sophisticated tests that better account for the amount of
task interference [10], then the loss due to the interface can
certainly be reduced as well.
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Figure 10: Case (c): m = 4 , U
max

= 0 .4, T
max

T
min

= 10 .
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Figure 11: Case (d): m = 4 , U
max

= 0 .4, T
max

T
min

= 100.

9. CONCLUSIONS
Motivated by the need to save resource, we introduced the

Generalized Multiprocessor Periodic Resource model. Since
GMPR is a generalization of MPR, it can consume at most
as much as MPR. We provided a schedulability algorithm
for task sets scheduled over GMPR by FP or EDF. We also
provided an algorithm that is capable to select the minimal
interface parameters for a given set of tasks.
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