

Server-based Scheduling of Parallel Real-
Time Tasks

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-121001

Version:

Date: 10-07-2012

Luis Miguel Nogueira

Luis Miguel Pinho

Technical Report HURRAY-TR-121001 Server-based Scheduling of Parallel Real-Time Tasks

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Server-based Scheduling of Parallel Real-Time Tasks
Luis Miguel Nogueira, Luis Miguel Pinho

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract
Multicore platforms have transformed parallelism into a main concern. Parallel programming models are being put
forward to provide a better approach for application programmers to expose the opportunities for parallelism by
pointing out potentially parallel regions within tasks, leaving the actual and dynamic scheduling of these regions onto
processors to be performed at runtime, exploiting the maximum amount of parallelism.

It is in this context that this paper proposes a scheduling approach that combines the constant-bandwidth server
abstraction with a priority-aware work-stealing load balancing scheme which, while ensuring isolation among tasks,
enables parallel tasks to be executed on more than one processor at a given time instant.

Server-based Scheduling of Parallel Real-Time Tasks

Luís Nogueira and Luís Miguel Pinho
CISTER/INESC-TEC

School of Engineering (ISEP), Polytechnic Institute of Porto (IPP)
Porto, Portugal

lmn@isep.ipp.pt, lmp@isep.ipp.pt

ABSTRACT
Multicore platforms have transformed parallelism into a main
concern. Parallel programming models are being put for-
ward to provide a better approach for application program-
mers to expose the opportunities for parallelism by pointing
out potentially parallel regions within tasks, leaving the ac-
tual and dynamic scheduling of these regions onto proces-
sors to be performed at runtime, exploiting the maximum
amount of parallelism.

It is in this context that this paper proposes a scheduling
approach that combines the constant-bandwidth server ab-
straction with a priority-aware work-stealing load balancing
scheme which, while ensuring isolation among tasks, enables
parallel tasks to be executed on more than one processor at
a given time instant.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management—Schedul-

ing

General Terms
Design, Algorithms, Theory

Keywords
Real-time systems, Task-level parallelism, Constant-bandwidth
servers, Capacity sharing, Work-stealing

1. INTRODUCTION
In contrast to the conventional real-time scheduling the-

ory that focus upon the worst-case analysis of systems that
are restricted to execute in strictly controlled environments,
there is now the understanding that not all applications
need the same degree of real-time support. The constant-
bandwidth server abstraction [1] has proved very useful in
designing, implementing, and reasoning on systems where
tasks can dynamically enter or leave at any time, a paradigm

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

EMSOFT’12, October 7–12, 2012, Tampere, Finland.

Copyright 2012 ACM 978-1-4503-1425-1/12/09 ...$15.00.

that has been somewhat formalised in the concept of open
real-time environments [17]. In this approach, each real-
time task is assigned a fraction of the computational re-
sources and it is handled by an abstract entity called server
to achieve the goals of temporal isolation and real-time ex-
ecution.

With multicore processors quickly becoming the norm,
there have been significant efforts to extend reservation-
based real-time scheduling theory to make it applicable to
multiprocessor systems as well [5, 39, 18, 24]. Nevertheless,
all these works consider task models where real-time tasks
use at most a single core at each time instant. The advent of
multicore technologies has also resulted in a renewed inter-
est on parallel programming. In fact, dynamic task paral-
lelism is steadily gaining popularity as a programming model
for multicore processors. Parallelism is easily expressed by
spawning threads that the implementation is allowed, but
not mandated, to execute in parallel, using frameworks such
as OpenMP [3], Cilk [19], Intel’s Parallel Building Blocks
[14], Java Fork-join Framework [27], Microsoft’s Task Par-
allel Library [15], or StackThreads/MP [42]. The idea is to
allow application programmers to expose the opportunities
for parallelism by pointing out potentially parallel regions
within tasks, leaving the actual and dynamic scheduling of
these regions onto processors to be performed at runtime,
exploiting the maximum amount of parallelism.

However, while several models of parallelism have been
used in programming languages and Application Program-
ming Interfaces (APIs) few of them have been studied in
real-time systems. Recent work on real-time scheduling of
parallel tasks define a parallel task as a collection of several
regions, both sequential and parallel, with synchronisation
points at the end of each region [26, 41]. A task always starts
with a sequential region, which then forks into several paral-
lel independent threads (the parallel region) that finally join
in another sequential region. However, these models require
that each region of a task contains threads of execution that
are of equal length.

In contrast, in this paper we consider a more general
model of fork-join parallel real-time tasks, where threads
within a parallel region can take arbitrarily different amounts
of time to execute. Indeed, many real-time applications,
such as radar tracking, autonomous driving, and video surveil-
lance, have a lot of potential parallelism which is not regular
in nature and which varies with the data being processed.
As the problem sizes scale and processor speeds saturate, the
only way to meet deadlines in such systems is to parallelise
the computation.

Irregular parallelism in these applications is often expressed
in the form of dynamically generated threads of work that
can be executed in parallel, generally represented as a Di-
rected Acyclic Graph (DAG). Applications with these prop-
erties pose significant challenges for high-performance par-
allel implementations, where equal distribution of work over
cores and locality of reference are desired within each core.
For task graphs where the number of threads and their ac-
tual execution times are not known in advance one must use
a dynamic approach to efficiently load-balance the compu-
tation. One of the simplest, yet best-performing, dynamic
load-balancing algorithms for shared-memory architectures
is work-stealing [7]. Blumofe and Leiserson have theoret-
ically proven that the work-stealing algorithm is optimal
for scheduling fully-strict computations, i.e computations
in which all join edges from a thread go to its parent thread
in the spawn tree [7]. Under this assumption, an applica-
tion running on P processors achieves P -fold speedup in its
parallel part, using at most P times more space than when
running on one CPU. These results are also supported by
experiments [40].

Motivated by these observations, this paper breaks new
ground in several ways. It proposes p-CSWS (Parallel Ca-
pacity Sharing by Work-Stealing), a novel scheduling ap-
proach for parallel real-time runtimes that will coexist with a
wide range of other complex independently developed appli-
cations, without any previous knowledge about their real ex-
ecution requirements, number of parallel regions, and when
and how many those parallel threads will be generated. Sched-
ulers in these type of systems are therefore required to main-
tain a certain (quantifiable) level of service for each appli-
cation, with the exact guarantee depending upon the CPU
reservation’s parameters. p-CSWS combines a multiproces-
sor residual capacity reclaiming scheme with a priority-based
work-stealing policy which, while ensuring isolation among
tasks, allows a task to be executed in more than one pro-
cessor at a given time. To the best of our knowledge, no
research has ever focused on this subject.

The remainder of this paper is structured as follows. The
next section discusses the current challenges in supporting
task-level parallelism in open real-time systems. Section 3
presents the system model. Sections 4 and 5 present the
main principles of the proposed approach, while the p-CSWS
scheduler is formally presented in Section 6 and proved cor-
rect in Section 7. Section 8 validates the effectiveness of
p-CSWS through extensive simulations. Finally, Section 9
concludes the paper and discusses future work.

2. TASK-LEVEL PARALLELISM IN OPEN
REAL-TIME SYSTEMS

Most results in multiprocessor real-time scheduling con-
centrate on sequential tasks running on multiple processors
or cores [16]. While these works allow several tasks to ex-
ecute on the same multicore host and meet their deadlines,
they do not allow individual tasks to take advantage of a
multicore machine. It is essential to develop new approaches
for real-time intra-task parallelism, where real-time tasks
themselves are parallel tasks which can run on multiple cores
at the same time instant.

Different scheduling algorithms and assumptions in par-
allel real-time scheduling can be found in [32, 25, 28, 13,
23]. Most early work in parallel real-time scheduling makes

simplifying assumptions about task models, assuming that
the parallelism degree of jobs is known beforehand and us-
ing this information when making scheduling decisions. In
practice, this information is not easily discernible, and in
some cases can be inherently misleading.

Recently, Lakshmanan et al. [26] proposed a scheduling
technique for synchronous parallel tasks where every task is
an alternate sequence of parallel and sequential regions with
each parallel region consisting of multiple threads of equal
length that synchronise at the end of the region. In their
model, all parallel regions are assumed to have the same
number of parallel threads, which must be no greater than
the number of processors. In [41], Saifullah et al. considered
a more general task model, allowing different regions of the
same parallel task to contain different numbers of threads
and regions to contain more threads than the number of
processor cores. Nevertheless, it still requires that each re-
gion of a task contains threads of execution that are of equal
length.

In contrast, in this paper we consider a more general
model of parallel real-time tasks where parallel jobs are rep-
resented as a DAG and threads (nodes) can take arbitrarily
different amounts of time to execute. Also, to the best of
our knowledge, we are the first to consider the scheduling of
multithreaded real-time jobs in open environments, without
any previous knowledge about their real execution require-
ments, number of parallel regions, and when and how many
threads will be generated at each parallel region.

The design and implementation of open real-time envi-
ronments is an active research area in the discipline of real-
time computing. As an increasing number of users runs both
real-time and traditional desktop applications in the same
system, it is necessary to isolate and protect the temporal
behaviour of one application from the others.

Conventional real-time scheduling theory has tended to
focus upon the worst-case execution time (WCET) analy-
sis of systems that are restricted to execute in strictly con-
trolled environments. This traditional perspective of real-
time scheduling theory has served the safety-critical em-
bedded systems community well. However, even on single-
core systems, WCET analysis is highly problematic and pes-
simistic WCET estimates are used. This leads to an under-
utilisation of computing resources in practice and severely
limits the computational workload that can be supported
by the system. The problem is exacerbated on a multicore
processor, where the worst-case scenario may be even less
likely but even more costly. Such a waste of resources can
only be justified for critical systems in which a single missed
deadline may cause catastrophic consequences.

Therefore, over the last years, there is a new perspec-
tive towards being able to provide significant real-time sup-
port within the context of general-purpose operating sys-
tems with the understanding that not all applications need
the same degree of real-time support. For soft real-time
tasks, processing capacities are then typically allocated based
on average-case execution times, with the result that the ex-
pected (mean) tardiness of a task is bounded [35].

Most open real-time environments that have been imple-
mented are based upon two-level scheduling schemes, com-
monly known as bandwidth servers. In [34], Mercer et al.
propose a scheme based on capacity reserves to remove the
need of knowing the WCET of each task under the Rate
Monotonic [31] scheduling policy. A reserve is a couple

(Ci, Ti) indicating that a task τi can execute for at most
Ci units of time in each period Ti. If a task instance needs
to execute for more than Ci, the remaining portion of the
instance is scheduled in background.

Based on a similar idea of capacity reserves, Abeni and
Buttazo [1] proposed the Constant Bandwidth Server (CBS)
scheduler to handle soft real-time requests with a variable
or unknown execution behaviour under the Earliest Dead-
line First (EDF) [31] scheduling policy. To avoid unpre-
dictable delays on hard real-time tasks, soft tasks are iso-
lated through a bandwidth reservation mechanism, accord-
ing to which each soft task gets a fraction of the CPU and
it is scheduled in such a way that it will never demand more
than its reserved bandwidth, independently of its actual re-
quests. This is achieved by assigning each soft task a dead-
line, computed as a function of the reserved bandwidth and
its actual requests. If a task requires to execute more than
its expected computation time, its deadline is postponed so
that its reserved bandwidth is not exceeded. As a conse-
quence, overruns occurring on a served task will only delay
that task, without compromising the bandwidth assigned to
other tasks.

However, the performance of CBS is highly dependent on
the correct allocation of resource shares [9]. If a server com-
pletes a task in less than its budgeted execution time no
other server is able to efficiently reuse the amount of com-
putational resources left unused. In order to make effective
use of the available computational bandwidth, a scheduling
methodology that makes use of this residual processing ca-
pability is desirable. Therefore, CBS has been extended with
several resource reclaiming schemes [30, 10, 33, 11, 29, 38]
proposed to support an efficient sharing of computational
resources left unused by early completing tasks. Such tech-
niques have been proved to be successful in improving the
response times of soft real-time tasks while preserving all
hard real-time constraints.

Unfortunately, due to well-known multiprocessor schedul-
ing anomalies [2], adopting the same rules as the uniproces-
sor case would lead to deadline violations in spite of the fact
that the considered task set is schedulable by using a global
EDF scheduler. As such, the extension of these reclaiming
schemes for the multiprocessor case is not trivial and only a
few works have address this subject.

M-CASH [39] is a resource reclaiming mechanism for iden-
tical multiprocessor platforms built on top of the M-CBS
algorithm [5], an extension for the multicore case of the
original CBS algorithm. It holds a global queue of resid-
ual capacities ordered by non decreasing absolute deadline.
Each time a server becomes idle with an execution capacity
greater than zero, a new residual capacity is inserted into
the global queue with the current server’s deadline and re-
maining capacity. Each time there is a residual capacity at
the head of the queue and one or more servers with deadline
greater than or equal to the capacity’s deadline are scheduled
for execution, those servers consume the capacity instead of
their own reserved capacity. Thus, residual capacities are
equally distributed across all processors, including idle ones.

EDF-HSB [8] uses a similar residual capacity redistribu-
tion method. Jobs that finish early donate their unused
capacity to a global capacity queue. These capacities are
treated as schedulable entities by the top-level scheduler,
i.e. they compete for processor time as regular jobs with
a deadline d. Whenever a capacity is selected to execute,

its processor time is donated to soft real-time tasks that are
likely to be tardy and best-effort jobs.

However, while these resource reclaiming schemes allow
tasks to efficiently execute on the same multicore host, they
do not allow an individual task to take advantage of the sev-
eral cores. In multicore platforms, an application can rely on
increasing its concurrency level to maximise its performance,
which often requires the application to divide its work into
several short-living work units, which can be mapped to
threads or other appropriate scheduling representation, in-
creasing the scheduler’s flexibility when distributing work
evenly across processors. The downside of such fine-grain
parallelism is that if the total scheduling cost is too large,
then parallelism is not worthwhile.

Therefore, having many short-lived threads requires a sim-
ple and fast scheduling mechanism to keep the overall over-
head low. Since many details of execution, such as the num-
ber of iterations in a loop and the number of threads that
will created in a parallel region are often not known in ad-
vance, much of the actual work of assigning threads of par-
allel tasks to cores must be performed dynamically. Unlike
static policies, dynamic processor-allocation policies allow
the system to respond to load changes, whether they are
caused by the arrival of new jobs, the departure of com-
pleted jobs, or changes in the parallelism of running jobs -
the last case is of particular importance to us in this paper.
One technique commonly employed to attempt to accom-
plish this dynamic load balancing is work-stealing.

As such, although previous works have previously consid-
ered residual capacity reclamation schemes in the context of
multiprocessors, we are the first to do so within a scheme
where reclamation is combined with a work-stealing policy
to support parallel multithreaded tasks. Different schedul-
ing algorithms and assumptions in parallel real-time schedul-
ing can be found in [32, 25, 28, 13, 23, 26, 41]. Most work
in parallel real-time scheduling assumes that the parallelism
degree of jobs is known beforehand and uses this information
when making its decisions. In practice, this information is
not easily discernible, and in some cases can be inherently
misleading. In contrast, p-CSWS allows the system to dy-
namically respond to load changes, whether they are caused
by the arrival of new jobs, the departure of completed jobs,
or changes in the parallelism degree of running jobs.

p-CSWS extends M-CBS with a novel residual capacity
reclaiming scheme and a priority-aware work-stealing policy
which, while ensuring isolation among tasks, enables paral-
lel tasks to be executed on more than one processor at a
given time instant. This way, it is possible to have parallel
and non-parallel tasks with different levels of temporal crit-
icality coexisting in the same system, while achieving the
goals of temporal isolation and real-time execution. To ease
the algorithm’s discussion, the system model and the main
principles of the proposed approach are discussed in the next
sections while the p-CSWS scheduler is formally presented
in Section 6.

3. SYSTEM MODEL
We consider the scheduling of sporadic independent servers

on m identical processors p1, p2, . . . , pm using global EDF.
With global EDF, each server ready to execute is placed
in a system-wide queue, ordered by nondecreasing absolute
deadline, from which the first m servers are extracted to
execute on the available processors.

We primarily consider a parallel implicit-deadline task
model where each task τi in the system can generate a virtu-
ally infinite number of multithreaded jobs. A multithreaded
job is modelled as a dynamic DAG, defined as G = (V, E),
where V is a set of nodes and E is a set of directed edges,
both created on the fly at runtime. A node represents a
thread, a set of instructions which must be executed sequen-
tially. Jobs may dynamically create an arbitrary number of
threads, which may have different execution requirements.
Therefore, the worst case execution time (WCET) for the
jth job of task τi is the sum of the execution requirements
of all of its threads, if all threads are executed sequentially
in the same core.

A directed edge (a, b) ∈ E represents the constraint that
b’s computation depends on results computed by a. There-
fore, a living thread may either be ready or stalled due to
an unresolved dependency. Because multithreaded jobs with
arbitrary dependencies can be impossible to schedule effi-
ciently, we limit our study to fully-strict computations. Any
multithreaded computation that can be executed in a depth-
first manner on a single processor can be made fully-strict
by altering the dependency structure, possibly affecting the
achievable parallelism, but not affecting the semantics of the
computation [7].

All multithreaded jobs generated by a task τi are dedi-
cated to a p-CSWS server Si, an extension for the parallel
case of the M-CBS algorithm [5]. Each p-CSWS server Si

is characterised by a pair (Qi, Ti), where Qi is the server’s
maximum reserved capacity and Ti its period. The ratio
Ui = Qi

Ti
is known as the server’s bandwidth and denotes

the fraction of the capacity of one processor that is assigned
to the server. We further define UΠ =

�n
i Ui as the system

utilisation on the identical multiprocessor platform Π com-
prised of m unit-capacity processors and uΠ = max1≤i≤nUi

as the maximum server bandwidth.
If the needed execution time and the minimum inter-arrival

time of jobs are known beforehand, it is possible to guaran-
tee the deadline of hard tasks by assigning its server a proper
pair (Qi, Ti). As such, ti refers to the minimum inter-arrival
time between successive jobs of τi so that ai,j+1 ≥ ai,j + ti
and its execution requirements ei,j are characterised by the
task’s WCET. Thus, for a hard real-time task τi, its dedi-
cated server Si has a reserved capacity Qi equal to the task’s
WCET and a period Ti equal to the task’s period.

For soft real-time tasks, the timing constraints are more
relaxed. In particular, for a soft task τi, ti represents the ex-
pected inter-arrival period between successive jobs. As such,
the arrival time ai,j of a particular job is only revealed at
runtime and the exact execution requirements ei,j can only
be determined by actually executing the job to completion
until time fi,j . Thus, as with M-CBS, we do not require
an a priori upper bound on the value of ei,j and for soft
real-time tasks, Qi and Ti are set based on the served tasks’
expected average values. Recall that our goal with respect
to designing the global scheduler is to be able to provide
complete isolation among the servers and to guarantee a
certain degree of service to each individual server. If a job
does not receive an allocation of ei,j time units before its
implicit deadline di,j , then it is tardy. If a job executes for
ei,j < Qi time units, the resulting unused capacity Qi − ei,j
is referred to as dynamic residual capacity.

At each instant t, the following values are associated with
a p-CSWS server Si: (i) its currently assigned deadline dik;

and (ii) its remaining execution capacity 0 ≤ cik ≤ Qi. Each
time a new job of τi arrives, it is enqueued in a FCFS job
queue held by Si. The server is said to be active if its job
queue is not empty, otherwise it is idle. Whenever the server
is active, the job at the top of the queue is released with
deadline equal to dik. Upon reaching 0, the execution ca-
pacity of a server Si is recharged to Qi and its deadline is
incremented by Ti.

Dynamically generated ready threads are maintained in a
local work-stealing double-ended queue (deque) of the server
where the job is currently being executed, thus reducing
contention on the global queue. For any busy server, paral-
lel threads are pushed and popped from the bottom of the
deque and these operations are synchronisation free.

At runtime, the performance of the system is enhanced
through a novel redistribution of residual capacities that not
only lessens tardiness for soft real-time tasks and quickly
adapts to load changes, but also enables parallel tasks to be
executed on more than one processor at a given time instant.
For that, the p-CSWS scheduler considers a second type of
servers named residual capacity work-stealing servers. A
residual capacity server is a p-CSWS server that applies a
priority-based work-stealing policy whenever its local deque
its empty.

4. SHARING RESIDUAL CAPACITIES
Although the server abstraction is an essential method in

open real-time systems for achieving predictability in the
presence of tasks with variable execution times, the overall
system’s performance becomes quite dependent on a cor-
rect resource allocation. To overcome this limitation, an
efficient reclaiming of unused computation times generated
by earlier completions is fundamental in order to relax the
bandwidth constraints enforced by isolation and efficiently
manage overruns.

By the very dynamic nature of open real-time systems,
the availability of residual capacities is unknown beforehand
and can only be scheduled dynamically when it is detected.
Therefore, the proposed algorithm considers two different
types of servers: (i) a p-CSWS server for managing the exe-
cution of each task in the system; and a (ii) residual capac-
ity work-stealing server for managing each residual capacity
that is dynamically generated by the earlier completion of
jobs.

A p-CSWS server extends the M-CBS server with a work-
stealing deque for supporting the parallel execution of mul-
tithreaded jobs. Dynamically generated threads are main-
tained in a local work-stealing deque of the server where the
job is currently being executed. Each p-CSWS server succes-
sively dequeues a thread from the head of its deque, executes
it, and continues with the next thread unless the deque is
empty. If at time t, Si finishes the execution of its currently
served job without exhausting its reserved execution capac-
ity Qi and it has no pending work, a residual capacity of
min(cik, d

i
k − t) and deadline dik is dynamically generated.

By pending work we refer to the case when there exists at
least a served job such that its release time is si,j ≤ t < fi,j .

Residual capacities greater than a lower bound Qmin are
released to the global queue as a new residual capacity work-
stealing server. A residual capacity server is a p-CSWS
server that applies a priority-based work-stealing policy when-
ever its local deque its empty. Whenever a residual capacity
server Sr

j is enqueued in the global queue it competes for pro-

cessor time as if it were a regular active server with pending
work and deadline at time drj . If a residual capacity server
is selected for execution, then it may execute only prior to
time drj and the processor time it receives can be consumed
by any eligible thread with a current deadline at least drj ,
through work-stealing. This subject will be detailed in the
next section.

Whenever a residual capacity server is executing a thread,
the execution capacity of the threads’s dedicated server re-
mains unchanged. If the thread completes while consuming
the residual capacity and if that residual capacity is neither
expired nor exhausted, the leftover capacity crj > 0 may be
used to execute another thread.

If the available execution capacity of a residual capacity
server is either expired or exhausted it is not replenished.
If there is pending work, the residual capacity server re-
mains active until all work has been reclaimed back by the
respective dedicated server. Otherwise, it becomes idle and
is erased from the system.

Due to work-stealing overheads, not every amount of resid-
ual capacity can be efficiently released as a new residual ca-
pacity server. Thus, residual capacities smaller than Qmin

are assigned to the processor on which it was generated and
will be consumed by the next server with a later deadline
that executes on that processor, in a similar fashion of the
residual capacity reclaiming scheme of M-CASH. This allows
small capacities to accumulate into usable chunks, avoiding
excessive overheads.

If a processor ever idles and there is any residual capac-
ity server in the global queue, then it dequeues the earliest
deadline residual capacity server and executes it without do-
nating the resulting execution to any job/thread. The pro-
cessor continues to execute the residual capacity server as
long as it would otherwise be idle or the capacity is neither
exhausted nor expired.

5. PRIORITY-BASED WORK-STEALING
Dynamic scheduling of parallel computations by work-

stealing [7] has gained popularity in academia and industry
for its good performance, ease of implementation and theo-
retical bounds on space and time. Work-stealing has proven
to be effective in reducing the complexity of parallel pro-
gramming, especially for irregular and dynamic computa-
tions, and its benefits have been confirmed by several studies
[37, 36]. Therefore, it has been widely adopted in both com-
mercial and open-source software and libraries, including
Cilk++, Intel TBB, Microsoft Task Parallel Library (TPL)
in the .NET framework, and the Java Fork/Join Framework.

A work-stealing scheduler employs a fixed number of work-
ers, usually one per core. Each of those workers has a local
double-ended queue (deque) to store ready threads. Work-
ers treat their own deques as a stack, pushing and popping
threads from the bottom, but treat the deque of another
randomly chosen busy worker as a queue, stealing threads
only from the top, whenever they have no local threads to
execute. This reduces contention, by having stealing workers
operate on the opposite end of the queue than the worker
they are stealing from, and also helps to increase locality,
since stealing a thread also migrates its future workload [19].
All queue manipulations run in constant-time (O(1)), inde-
pendently of the number of threads in the queues. Further-
more, several works (e.g. [4, 12, 22]) have addressed how a
non-blocking deque can be implemented to limit overheads.

However, the need to support tasks’ priorities fundamen-
tally distinguishes the problem at hand in this paper from
other work-stealing extensions previously proposed in the
literature [45, 21, 44]. With classical work-stealing, threads
waiting for execution in a deque may be repressed by new
threads, which are enqueued at the bottom of the worker’s
deque. As such, a thread at the tail of a deque might never
be executed if all workers are busy. Consequently, there is no
upper bound on the response time of a multithreaded real-
time job. Therefore, considering threads’ priorities and us-
ing of a single deque per core would require, during stealing,
that a worker iterate through the threads in all deques until
the highest priority thread to be stolen was found. This can-
not be considered a valid solution since it greatly increases
the theft time and, subsequently, the contention on a deque.

Our proposal is to replace the single per-core deque of clas-
sical work-stealing with the concept of a per-server virtual

deque. A virtual deque of a p-CSWS server Si is composed
by its local deque and by all the deques of active residual ca-
pacity servers that have stolen some thread from Si at some
time instant. Thus, all parallel threads of job ji,k continue to
be dedicated to the same server Si, ensuring isolation among
tasks. The concept is detailed in the next paragraphs.

Whenever a residual capacity server with execution ca-
pacity crk > 0 finds its local deque empty, crk can be used to
execute any eligible thread with a current deadline at least
drk through work-stealing.

Definition 1. The set of active servers Ar eligible for

work-stealing is given by Ar = {Ar|Ar ∈ A, djl ≥ drk, c
r
k >

0}, where A is the set of all active p-CSWS servers with

parallel threads in their local deques, djl is the current dead-

line of parallel threads on the top of a deque, and drk is the

currently assigned deadline of server Sr.

Having Ar, a residual capacity server Sr with available
capacity and an empty local deque steals the thread from the
top of the deque of the earliest deadline active server Sedf

from the set of eligible servers Pr, following a deterministic
approach as opposed to the random selection of classical
work-stealing.

Definition 2. The earliest deadline active server Sedf

from the set of eligible servers Pr is defined as ∃1Sr ∈ Pr :
mindrk

(Pr), Pr �= ∅.

Note that the ∃1 relation is guaranteed by the min func-
tion which, whenever there is more than one server with the
same earliest deadline, always returns the first server on the
list.

As with any p-CSWS server, a residual capacity server
dequeues a thread from the head of its deque, executes
it, and continues with the next thread unless the deque is
empty. Similarly, all dynamically generated ready threads
are pushed to the bottom of the residual server’s deque.
Therefore, a residual capacity server follow the same rules
of operation as a regular p-CSWS server, except when (i) it
finds its local deque empty, since it tries to work-steal; and
(ii) when its capacity is exhausted or expired, since it is not
replenished.

Thus, in order to efficiently manage the virtual deque of
a p-CSWS server, whenever a steal occurs, a pointer to the
bottom of the residual capacity stealing server’s deque is
added to a thief list of the stolen server. This pointer re-
mains in the list until all work dedicated to the stolen server,

currently in the residual capacity server’s deque, has been
executed. Recall that a residual capacity server only remains
active if there is some pending work, even if its capacity is ex-
hausted or expired. Otherwise, the residual capacity server
no longer exists.

Whenever a server Si finds its local deque empty, it ver-
ifies its thief list. If not empty, Si follows the first pointer
in the thief list, iteratively removing and executing the par-
allel threads from the top of the pointed residual capacity
server’s deque. Whenever a pointed deque has no more par-
allel threads dedicated to Si, the pointer is removed from
the server’s thief list, and the next pointer is followed, until
no more pointers exist.

6. THE P-CSWS SCHEDULER
The p-CSWS scheduler extends the Multiprocessor Con-

stant Bandwidth Server (M-CBS), first introduced by Baruah
et al. [5], with a powerful residual capacity reclaiming scheme
combined with a work-stealing load balancing policy used to
allow parallel tasks to execute on more than one processor
at the same time instant. Recall that our goal with respect
to designing the global scheduler is to be able to provide
complete isolation among the servers, and to guarantee a
certain degree of service to each individual server.

A single ready queue exists in the system, ordered by non-
decreasing absolute deadlines. At each instant, the higher
priority (with shorter absolute deadline) servers are sched-
uled for execution. Execution capacities and deadlines are
managed using the following rules:

• Rule A: whenever a server Si changes its state from
idle to active at some time t, a test is executed. If
cik < (dik − t)Ui, no update of deadline and budget is
necessary. Otherwise, cik is recharged to Qi and the
new value dik = t+ Ti is assigned to its deadline.

• Rule B: whenever a server Si is selected for execu-
tion, it picks the thread at the bottom of its deque,
dynamically generated by its kth job. While executing
it, its budget cik is decreased by the same amount. If
the server’s capacity is either expired or exhausted, it
is recharged to Qi and its deadline dik is incremented
by Ti.

• Rule C: whenever a server Si finds its local deque
empty, it verifies its thief list. If non-empty, Si fol-
lows the first pointer in the list, iteratively remov-
ing and executing those parallel threads. Whenever a
pointed deque has no more parallel threads dedicated
to server Si, the pointer is removed from the thief list,
and the next pointer (if present) is followed, until no
more pointers exist.

• Rule D: whenever a server Si completes its kth job
at time t < dik, after having consumed eik < Qi time
units, and it has no pending work, a new residual ca-
pacity with capacity min(cik, d

i
k− t) and deadline dik is

generated. Si becomes idle and its remaining reserved
capacity cik is set to zero.

• Rule E: a new residual capacity less than a lower
bound Qmin is assigned to the processor in which it
was generated. The next active server Sj with a later
deadline that executes on that processor consumes the

earliest deadline residual capacity prior to consuming
its own dedicated capacity. When consuming a resid-
ual capacity, server Sj runs with the deadline of the
residual capacity. If the processor idles beforehand, or
if the capacity expires or is exhausted, it is disposed
of.

• Rule F: a new residual capacity consisting of at least
Qmin is released to the global ready queue as a new
residual capacity server with an execution capacity of
min(cik, d

i
k − t) and deadline dik. Whenever a residual

capacity server is enqueued, it immediately competes
for processing time as if it were a regular server with
deadline drk.

• Rule G: if a residual capacity server is selected for
execution, it may only execute until time drk and the
processor time crk it receives is used to steal and ex-
ecute the earliest deadline eligible thread with a cur-
rent deadline at least drk. Whenever a steal occurs,
a pointer to the bottom of the deque of the residual
capacity server is added to the thief list of the stolen
server.

• Rule H: whenever a thread is executed by a resid-
ual capacity server, it is scheduled using the residual
server’s capacity crk and deadline drk. As such, the ex-
ecution capacity cik of its dedicated server Si remains
unchanged. If the execution capacity of the residual
capacity server is either expired or exhausted, it is not
recharged. If there is pending work, the residual ca-
pacity server remains active. Otherwise, it is removed
from the system.

• Rule I: If a processor ever idles and there is any resid-
ual capacity server in the global queue, then it de-
queues the earliest deadline residual capacity server
and executes it without donating the resulting execu-
tion to any thread. The processor continues to execute
the residua capacity server as long as it would other-
wise be idle or the capacity of the residual capacity
server is neither exhausted nor expired.

Note that from the point of view of the global scheduler a
p-CSWS server performs the same three actions as a M-CBS
server: (i) it inserts an execution request in the ready queue
each time the server transitions from idle to active; (ii) it re-
moves the execution request when it transitions from active
to idle; and (iii) it postpones the deadline of its execution
request once its capacity is depleted. Postponing a deadline
is effectively equal to removing the current execution request
and inserting a new one. Hence, as in [5], we can also ab-
stract the execution requirements of a p-CSWS server as a
series of server jobs. However, as opposed to M-CBS, with
p-CSWS the computation time of a served multithreaded
job can actually be greater than the reserved capacity of
its dedicated server and it can be executed in more than
one processor at a time, since parallel threads can be stolen
and executed by residual capacity servers as well as by its
dedicated server.

7. CORRECTNESS
In [5], it is proven that a M-CBS server with parame-

ters (Qi, Ti) cannot occupy a bandwidth greater than Qi
Ti

.

That is, if DSi(t1, t2) is the server’s bandwidth demand
in the interval [t1, t2], it is shown that ∀t1, t2 ∈ N : t2 >
t1, DSi(t1, t2) ≤ Qi

Ti
(t2 − t1). This isolation property allow

us to use a bandwidth reservation strategy to allocate a frac-
tion of the processor to a task whose demand is not known
a priori. The most important consequence of this property
is that soft real-time tasks, characterised by average values,
can be scheduled together with hard tasks, even in the pres-
ence of overloads.

Here, we show that the residual capacity reclaiming scheme
and work-stealing policy of p-CSWS do not compromise the
real-time correctness of the system.

We start by proving that each p-CSWS server Si never
miss its deadlines, or equivalently, whenever a server dead-
line dik is reached, its reserved execution capacity is zero.
Hence, Si is able to guarantee an execution time Qi every
Ti time units to its served task.

Theorem 1. A server Si executed on the identical mul-

tiprocessor platform Π comprised of m unit-capacity proces-

sors never misses its scheduling deadline under the following

conditions:

uΠ ≤ 1;

UΠ ≤ m− uΠ(m− 1)

Proof Sketch

The scheduling condition is equivalent to the schedulabil-
ity bound expressed in [20] for periodic task sets scheduled
by global EDF. It has been shown, e.g. in [1, 39], that the
resulting schedule of a resource reservation-based system is
the same as the one of a set of periodic real-time tasks, one
per server, each with an utilisation equal to the server’s re-
served capacity Qi and period equal to the server’s period
Ti.

Since the computation time of task τi is equal toQi, its job
ji,k will complete before its deadline leaving zero execution
capacity. Then, by following the same reasoning, job ji,k+1

will be released to the ready queue at ai,k+1 = dik, and
will therefore meet its deadline as well. Hence, the theorem
follows by induction.

�

We now ensure that all generated capacities under p-
CSWS are either consumed or exhausted before their re-
spective deadlines.

Lemma 1. Given a set of p-CSWS servers, each execu-

tion capacity generated during scheduling is either consumed

or discharged until its deadline.

Proof sketch

Let ai,k denote the instant at which a new job Ji,k arrives
and its associated p-CSWS server Si ∈ I is inactive. At ai,k,
a new capacity cik = Qi is generated and Si is released to
the ready queue.

Let ∀i,k dik = max{ai,k, d
i
k−1} + Ti be the deadline asso-

ciated with the generated execution capacity cik.
Let [t, t+∆t[denote a time interval during which server Si

is executing, consuming its own capacity cik. Consequently,

Si has used an amount equal to ci
�
k = cik −∆t ≥ 0 of its own

capacity during ∆t. As such, the server’s reserved capacity
cik must be decreased to ci

�
k , until it is exhausted.

Let fi,k denote the time instant at which server Si com-
pletes its job Ji,k. Assume that there are no pending jobs
for server Si at time fi,k and cik > 0. According to rule D,
a new residual capacity with capacity min(cik, d

i
k − t) and

deadline dik is generated.
According to Rule E, small capacities are assigned to the

processor in which they were generated and are consumed
by the next server with a later deadline that executes on
that processor prior to its own reserved capacity. Assume
that, at instant fi,k, another active server Sj is scheduled
for execution on the same processor. According to Rule E,
if the inequality dik ≤ djl holds, let [t, t+∆t[denote the time
interval during which server Sj is executing, consuming the
residual capacity. Consequently, cik must be decreased to

ci
�
k = cik−∆t ≥ 0, until the residual capacity is exhausted or
the currently assigned deadline dik is reached. In this later
case, the residual capacity is depleted.

As for larger capacities that are dealt with via Rule F,
the residual capacity dynamically generated on a early job
completion can immediately be released as a new residual
capacity server Sr. Assume now that, at instant fi,k, Sr

is scheduled for execution. According to Rule G, if the in-
equality djl ≥ drk holds, let [t, t+∆t[denote the time interval
during which server Sr is executing the stolen thread with
deadline djl , consuming its own capacity crk. Consequently,

crk must be decreased to cr
�

k = crk−∆t ≥ 0, until the capacity
of server Sr is exhausted or the currently assigned deadline
drk is reached. At deadline drk, any remaining residual capac-
ity crk of server Sr not used is discharged.

�
Theorem 2. The dynamic residual capacity reclaiming

scheme of p-CSWS does not invalidate the timing guaran-

tees made in Theorem 1.

Proof Sketch

The theorem follows immediately from Lemma 1. In fact,
Lemma 1 ensures that each generated capacity is always
exhausted before or discharged at its deadline.

Small residual capacities that are dealt with Rule E may
merely cause the consuming job to consume less of its dedi-
cated execution capacity, which cannot increase tardiness.

As for larger residual capacities that are dealt with via
Rule F, then the reasoning is also straightforward. The ex-
ecution capacity of the residual capacity server is scheduled
essentially as it would have been included as part of the
execution of the donating job.

Since the worst case response time of a task is independent
of whether the reserved capacity of some server is being used
by that server to execute its dedicated task or it is being con-
sumed to execute any other task in the system, the system’s
schedulability is independent of whether the proposed dy-
namic residual capacity reclaiming mechanism of p-CSWS
is in operation or not. In the worst case, the longest time
a residual capacity can be used to execute tasks dedicated
to other servers is bounded by the original server’s capacity
and deadline.

�

8. EXPERIMENTAL EVALUATION
Both M-CBS, M-CASH, and p-CSWS have been imple-

mented in Linux, at user-space level, to measure the per-
formance of the proposed approach to support parallel real-
time tasks in open real-time systems through extensive sim-
ulations. In particular, we have considered a system of
4 processors with 15 periodic tasks where τ1, . . . , τ5 were
hard real-time tasks, each served by a server with maximum
budget equal to the task’s worst-case execution time, and
τ6, . . . , τ15 were parallel soft real-time tasks that could ex-
perience overload conditions.

Each task was a simple fork-join application whose ac-
tual work was limited to a series of NOP instructions to
avoid memory and cache interferences. Each of the task’s
jobs (i) executes sequentially; (ii) splits into multiple par-
allel threads (a random number between [2, 10]); and (iii)
synchronises at the end of the parallel region, resuming the
execution of the master thread. This sequence could occur
a random number of times between [1, 3].

The actual execution time of each hard task varied be-
tween [0.3 ∗Qi, Qi] of its dedicated server’s reserved capac-
ity Qi, according to a Gaussian distribution. Hence, this
variation provides a measure of the amount of bandwidth
left free by early completing hard real-time jobs. For par-
allel multithreaded soft tasks, the total execution time var-
ied between [0.7 ∗Qi, 1.8 ∗Qi] of their respective dedicated
server’s reserved capacity Qi, with sequential and parallel
execution times being randomly distributed as a function of
the chosen total execution time. All periods were chosen to
be uniformly distributed in the interval [600, 6000] ms.

In each simulation run, the performance of each algorithm
was evaluated by computing the average tardiness for all soft
real-time tasks. The global tardiness was computed by aver-
aging over all soft real-time jobs executed in the simulation
run.

Since both M-CBS and M-CASH do not support the par-
allel execution of multithreaded jobs, all dynamically gener-
ated threads were sequentially executed by their dedicated
server when scheduled by these two algorithms. On the
other hand, with p-CSWS, a multithreaded job could be
simultaneously executed by both its dedicated server and
one or more residual capacity work-stealing servers at the
same time instant. Figure 1 shows the obtained results.

Figure 1: Average tardiness for parallel soft real-
time tasks

As expected, the tardiness of soft tasks is smaller when

hard tasks execute for less time, thus leaving more resid-
ual capacity. Thus, M-CASH significantly outperforms M-
CBS, clearly justifying the use of a residual capacity reclaim-
ing mechanism to significantly reduce the average tardiness
of soft tasks. However, p-CSWS is always able to obtain
better performance than M-CASH. One can conclude that
p-CSWS: (i) is indeed able to exploit the available resid-
ual bandwidth, thus lowering the average tardiness of soft
tasks significantly; and (ii) is able to exploit work-stealing to
improve the performance of parallel programs, dynamically
balancing the work load among processors. This is particu-
larly for larger amounts of available residual capacity. Nat-
urally, since no residual capacity is left free by hard tasks
when they need to execute for the totally of their WCET,
the tardiness of parallel soft real-time tasks grows rapidly.

A second study measured the impact of the chosen work-
stealing policy on the tardiness of soft real-time tasks. The
study considered two work-stealing policies applied to p-
CSWS: (i) the classical random choice [7] of a stolen thread;
and (ii) the proposed deterministic priority-based selection
of the stolen thread. Figure 2 shows the obtained results.

Figure 2: Average tardiness as a function of the cho-
sen work-stealing policy

Similar trends exists for the several relative computation
times of hard tasks with respect to their WCET. The bound
on average tardiness is by far tighter when stolen threads
are chosen according to their deadline rather than randomly.
One can conclude that random selection, while fast and easy
to implement, may not always select the best victim to steal
from. Furthermore, as core counts increase, the number
of potential victims also increases, and the probability of
selecting the best victim decreases. This is particularly true
under severe cases of work imbalance, where a small number
of cores may have more work than others [6]. Moreover,
when a thief cannot obtain tasks quickly, the unsuccessful
steals it performs waste computing resources, which could
otherwise be used to execute waiting threads. In fact, if
unsuccessful steals are not well controlled, applications can
easily be slowed down by 15%–350% [7].

9. CONCLUSIONS AND FUTURE WORK
Multiple programming models are emerging to address an

increased need for dynamic task parallelism in applications
for multicore processors and shared-address-space parallel
computing, both in the general purpose and real-time em-

bedded software development. Scheduling algorithms based
on work-stealing are gaining in popularity but also have in-
herent limitations for real-time systems. This paper pro-
posed and proved correct a novel scheduling approach that
combines a priority-based work-stealing load balancing pol-
icy with a multicore reservation-based approach to support
dynamic task-level parallelism in real-time systems.

p-CSWS is particularly suitable to open systems, where
independently developed applications can enter and leave
the system at any time but, nevertheless, it is important to
achieve the goals of temporal isolation and real-time execu-
tion among tasks whose resource demands are only know at
runtime. The performance of the proposed approach was
demonstrated by extensive simulation studies. We are cur-
rently pursuing an evaluation of its efficiency in real-world
scenarios by implementing it as new scheduling class in the
Linux kernel.

Although it is possible to guarantee the schedulability of
parallel hard real-time tasks with p-CSWS, in the worst-
case we must consider all threads to execute sequentially on
its dedicated server, since parallel execution is only possi-
ble when some other server releases residual capacity. This
kind of guarantee is very pessimistic and leads to an overal-
location of resources. We plan to consider the possibility to
pre-allocate empty servers with some reserved capacity to
immediately take care of spawned threads, so that it could
be possible to provide less pessimistic guarantees to hard
real-time tasks. Naturally, if only soft real-time tasks are
considered, servers may miss their deadlines by bounded
amounts, eliminating such restrictive utilisation limits. It
has been shown that, when using global EDF to schedule
sporadic real-time tasks on m processors, deadline tardiness
is bounded, provided total utilisation is at most m [43].

Acknowledgements
This work was partially supported by National Funds through
FCT (Portuguese Foundation for Science and Technology)
and by ERDF (European Regional Development Fund) through
COMPETE (Operational Programme ’Thematic Factors of
Competitiveness’), within REGAIN and VIPCORE projects,
ref. FCOMP-01-0124-FEDER-020447 and FCOMP-01-0124-
FEDER-015006

10. REFERENCES
[1] L. Abeni and G. Buttazzo. Integrating multimedia

applications in hard real-time systems. In Proceedings

of the 19th IEEE Real-Time Systems Symposium,
page 4, Madrid, Spain, December 1998.

[2] B. Andersson and J. Jonsson. Preemptive
multiprocessor scheduling anomalies. In Proceedings of

the 16th International Parallel and Distributed

Processing Symposium, page 271, April 2002.
[3] O. ARB. Openmp. Available at

http://www.openmp.org/.
[4] N. S. Arora, R. D. Blumofe, and C. G. Plaxton.

Thread scheduling for multiprogrammed
multiprocessors. In Proceedings of the 10th annual

ACM symposium on Parallel algorithms and

architectures, pages 119–129, New York, NY, USA,
1998. ACM.

[5] S. Baruah, J. Goossens, and G. Lipari. Implementing
constant-bandwidth servers upon multiprocessor

platforms. In Proceedings of the 8th IEEE Real-Time

and Embedded Technology and Applications

Symposium, pages 154–163, September 2002.
[6] A. Bhattacharjee, G. Contreras, and M. Martonosi.

Parallelization libraries: Characterizing and reducing
overheads. ACM Transactions on Architecture and

Code Optimization, 8(1):5:1–5:29, February 2011.
[7] R. D. Blumofe and C. E. Leiserson. Scheduling

multithreaded computations by work stealing. Journal
of the ACM, 46(5):720–748, September 1999.

[8] B. Brandenburg and J. Anderson. Integrating
hard/soft real-time tasks and best-effort jobs on
multiprocessors. In Proceedings of the 19th Euromicro

Conference on Real-Time Systems, pages 61 –70, Pisa,
Italy, July 2007.

[9] G. Buttazzo and E. Bini. Optimal dimensioning of a
constant bandwidth server. In Proceedings of the 27th

IEE International Real-Time Systems Symposium,
pages 169–177, Rio de Janeiro, Brasil, December 2006.

[10] M. Caccamo, G. Buttazzo, and L. Sha. Capacity
sharing for overrun control. In Proceedings of 21th

IEEE RTSS, pages 295–304, Orlando, Florida, 2000.
[11] M. Caccamo, G. C. Buttazzo, and D. C. Thomas.

Efficient reclaiming in reservation-based real-time
systems with variable execution times. IEEE
Transactions on Computers, 54(2):198–213, February
2005.

[12] D. Chase and Y. Lev. Dynamic circular work-stealing
deque. In Proceedings of the 17th ACM Symposium on

Parallelism in Algorithms and Architectures, pages
21–28, 2005.

[13] S. Collette, L. Cucu, and J. Goossens. Integrating job
parallelism in real-time scheduling theory. Information

Processing Letters, 106:180–187, May 2008.
[14] I. Corporation. Parallel building blocks. Available at

http://software.intel.com/en-us/articles/
intel-parallel-building-blocks/.

[15] M. Corporation. Task parallel library. Available at
http://msdn.microsoft.com/en-us/library/
dd460717.aspx.

[16] R. I. Davis and A. Burns. A survey of hard real-time
scheduling for multiprocessor systems. ACM
Computing Surveys, 43(4):35:1–35:44, October 2011.

[17] Z. Deng and J. W.-S. Liu. Scheduling real-time
applications in an open environment. In Proceedings of

the 18th IEEE RTSS, page 308, Washington, DC,
USA, 1997.

[18] D. Faggioli, G. Lipari, and T. Cucinotta. The
multiprocessor bandwidth inheritance protocol. In
Proceedings of the 22nd Euromicro Conference on

Real-Time Systems, pages 90–99, July 2010.
[19] M. Frigo, C. E. Leiserson, and K. H. Randall. The

implementation of the cilk-5 multithreaded language.
ACM SIGPLAN Notices, 33(5):212–223, 1998.

[20] J. Goossens, S. Funk, and S. Baruah. Priority-driven
scheduling of periodic task systems on
multiprocessors. Real-Time Systems Journal,
25:187–205, September 2003.

[21] Y. Guo, J. Zhao, V. Cave, and V. Sarkar. Slaw: a
scalable locality-aware adaptive work-stealing
scheduler for multi-core systems. In Proceedings of the

24th IEEE International Symposium on Parallel and

Distributed Processing, pages 1–12, April 2010.
[22] D. Hendler, Y. Lev, M. Moir, and N. Shavit. A

dynamic-sized nonblocking work stealing deque.
Distributed Computing, 18:189–207, February 2006.

[23] S. Kato and Y. Ishikawa. Gang edf scheduling of
parallel task systems. In Proceedings of the 30th IEEE

Real-Time Systems Symposium, pages 459 –468,
December 2009.

[24] S. Kato, R. Rajkumar, and Y. Ishikawa. Airs:
Supporting interactive real-time applications on
multicore platforms. In Proceedings of the 22nd

Euromicro Conference on Real-Time Systems, pages
47–56, July 2010.

[25] O.-H. Kwon and K.-Y. Chwa. Scheduling parallel
tasks with individual deadlines. In Algorithms and

Computations, volume 1004 of Lecture Notes in

Computer Science, pages 198–207. Springer Berlin /
Heidelberg, 1995.

[26] K. Lakshmanan, S. Kato, and R. Rajkumar.
Scheduling parallel real-time tasks on multi-core
processors. In Proceedings of the 31st IEEE Real-Time

Systems Symposium, pages 259 –268, December 2010.
[27] D. Lea. A java fork/join framework. In Proceedings of

the ACM 2000 conference on Java Grande, pages
36–43, 2000.

[28] W. Y. Lee and H. Lee. Optimal scheduling for
real-time parallel tasks. Transactions on Information

and Systems, E89-D:1962–1966, June 2006.
[29] C. Lin and S. A. Brandt. Improving soft real-time

performance through better slack reclaiming. In
Proceedings of the 26th IEEE RTSS, pages 410–421,
2005.

[30] G. Lipari and S. Baruah. Greedy reclamation of
unused bandwidth in constant-bandwidth servers. In
Proceedings of the 12th EuroMicro Conference on

Real-Time Systems, pages 193–200, Stockholm,
Sweden, 2000.

[31] C. L. Liu and J. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment.
Journal of the ACM, 1(20):40–61, 1973.

[32] G. Manimaran, C. S. R. Murthy, and
K. Ramamritham. A new approach for scheduling of
parallelizable tasks inreal-time multiprocessor systems.
Real-Time Systems Journal, 15:39–60, July 1998.

[33] L. Marzario, G. Lipari, P. Balbastre, and A. Crespo.
Iris: A new reclaiming algorithm for server-based
real-time systems. In Proceedings of the 10th IEEE

Real-Time and Embedded Technology and Applications

Symposium, page 211, Toronto, Canada, 2004.
[34] C. W. Mercer, S. Savage, and H. Tokuda. Processor

capacity reserves: Operating system support for
multimedia applications. In Proceedings of the IEEE

International Conference on Multimedia Computing

and Systems, pages 90–99, May 1994.
[35] A. Mills and J. Anderson. A stochastic framework for

multiprocessor soft real-time scheduling. In
Proceedings of the 16th IEEE Real-Time and

Embedded Technology and Applications Symposium,
pages 311 –320, Stockholm, Sweden, April 2010.

[36] A. Navarro, R. Asenjo, S. Tabik, and C. Caşcaval.
Load balancing using work-stealing for pipeline
parallelism in emerging applications. In Proceedings of

the 23rd International Conference on Supercomputing,
pages 517–518, New York, NY, USA, 2009. ACM.

[37] D. Neill and A. Wierman. On the benefits of work
stealing in shared-memory multiprocessors. Technical
report, Department of Computer Science, Carnegie
Mellon University, 2009.

[38] L. Nogueira and L. M. Pinho. A capacity sharing and
stealing strategy for open real-time systems. Journal
of Systems Architure, 56(4-6):163–179, 2010.

[39] R. Pellizzoni and M. Caccamo. M-cash: A real-time
resource reclaiming algorithm for multiprocessor
platforms. Real-Time Systems, 40:117–147, 2008.

[40] B. Saha, A.-R. Adl-Tabatabai, A. Ghuloum,
M. Rajagopalan, R. L. Hudson, L. Petersen,
V. Menon, B. Murphy, T. Shpeisman, E. Sprangle,
A. Rohillah, D. Carmean, and J. Fang. Enabling
scalability and performance in a large scale cmp
environment. ACM SIGOPS Operating Systems

Review, 41(3):73–86, June 2007.
[41] A. Saifullah, K. Agrawal, C. Lu, and C. Gill.

Multi-core real-time scheduling for generalized parallel
task models. In Proceedings of the 32nd IEEE

Real-Time Systems Symposium, pages 217 –226,
Vienna, Austria, December 2011.

[42] K. Taura, K. Tabata, and A. Yonezawa.
Stackthreads/mp: integrating futures into calling
standards. ACM SIGPLAN Notices, 34(8):60–71,
1999.

[43] P. Valente and G. Lipari. An upper bound to the
lateness of soft real-time tasks scheduled by edf on
multiprocessors. In Proceedings of the 26th IEEE

International Real-Time Systems Symposium, pages
311–320, December 2005.

[44] v. Vrba, H. Espeland, P. Halvorsen, and C. Griwodz.
Limits of work-stealing scheduling. In Proceedings of

the 14th International Workshop on Job Scheduling

Strategies for Parallel Processing, pages 280–299, May
2009.

[45] Z. Vrba, P. Halvorsen, and C. Griwodz. A simple
improvement of the work-stealing scheduling
algorithm. In Proceedings of the 4th International

Conference on Complex, Intelligent and Software

Intensive Systems, pages 925–930, February 2010.

