Poster

Scheduling Parallel Real-Time Tasks In Multiprocessor Platforms

Cláudio Maia
Luís Nogueira
Luís Miguel Pinho

CISTER-TR-180410
Scheduling Parallel Real-Time Tasks in Multiprocessor Platforms

Cláudio Maia, Luís Nogueira, Luís Miguel Pinho

*CISTER Research Centre
Polytechnic Institute of Porto (ISEP-IPP)
Rua Dr. António Bernardino de Almeida, 431
4200-072 Porto
Portugal
Tel.: +351.22.8340509, Fax: +351.22.8321159
E-mail: http://www.cister.isep.ipp.pt

Abstract
Scheduling Parallel Real-Time Tasks in Multiprocessor Platforms

Cláudio Maia, Luís Nogueira, Luís Miguel Pinho
{crrm, lmn, lmp}@isep.ipp.pt

Supported by National Funds through FCT/MEC within the CISTER Research Unit (CEC/04234).

Multiprocessor Systems

- Computing systems are gradually becoming **multiprocessor**
- **Opportunity** for an increase in application performance, throughput and responsiveness
- **Real-time systems** may take advantage of platform parallelism to distribute workload among the cores for simultaneous execution

Proposed Solutions

Response time analysis for the synchronous task model

Semi-Partitioned Scheduling of Fork-Join Tasks using Work-Stealing

Results

230% improvement over SOA

Gain achieved in average response-time when combining work-stealing with semi-partitioned scheduling

Problems Addressed

- **Problem of scheduling parallel real-time tasks in multiprocessor systems**
 - Intra-task parallelism vs. Inter-task parallelism
- **Problem of resource sharing in multiprocessor systems**
 - Cores are not independent entities, they share resources such as memory buses, memory controllers and last level caches
 - Schedulability may be jeopardized when two or more applications access shared resources simultaneously

Schedulability Analysis for Global Fixed-Priority Scheduling of the 3-Phase Task Model

13% improvement over SOA