

Provably Good Multiprocessor Scheduling
with Resource Sharing

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-100901

Version:

Date: 09-09-2010

Bjorn Andersson

Arvind Easwaran

Technical Report HURRAY-TR-100901 Provably Good Multiprocessor Scheduling with Resource Sharing

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Provably Good Multiprocessor Scheduling with Resource Sharing
Bjorn Andersson, Arvind Easwaran

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract
We present a 12(1+3R/(4m)) competitive algorithm for scheduling implicit-deadline sporadic tasks on a platform
comprising m processors, where a task may request one of R shared resources.

Real-Time Syst
DOI 10.1007/s11241-010-9105-6

Provably good multiprocessor scheduling
with resource sharing

Björn Andersson · Arvind Easwaran

© Springer Science+Business Media, LLC 2010

Abstract We present a 12(1 + 3R/(4m)) competitive algorithm for scheduling
implicit-deadline sporadic tasks on a platform comprising m processors, where a task
may request one of R shared resources.

Keywords Multiprocessor scheduling with resource sharing · Competitive ratio for
multiprocessor resource sharing

1 Introduction

Consider scheduling of n sporadically arriving tasks on m identical processors. A task
generates a sequence of jobs whose arrival times cannot be controlled by the schedul-
ing algorithm and are a priori unknown. The time between two successive jobs by
the same task τi is at least Ti . Every job by τi requires at most Ci units of execution
over the next Ti time units after its arrival. If a task executes for L time units on a
processor p having speed s, then the task performs s ·L units of execution. A proces-
sor executes at most one job at a time and no job may execute on multiple processors
simultaneously.

There is a set of R shared resources that tasks need in addition to the m proces-
sors. We assume that each task may request at most one shared resource from R, and

This work was funded by the Portuguese Science and Technology Foundation (FCT), the European
Commission (ARTISTDesign), the ARTEMIS-JU (RECOMP), and the Luso-American
Development Foundation (FLAD).

B. Andersson · A. Easwaran (!)
CISTER/IPP-HURRAY, Polytechnic Institute of Porto, Porto, Portugal
e-mail: aen@isep.ipp.pt

B. Andersson
e-mail: bandersson@dei.isep.ipp.pt

Real-Time Syst

further each job of that task may request the resource at most once during its execu-
tion; resource requests cannot be nested. The resource is granted to the job some time
instant at or after the request, and then at some future time instant the job voluntarily
releases the resource. We let Ci,k denote the maximum amount of execution of a job
of τi holding resource Rk . Jobs can access resources only in a mutually exclusive
manner, and further, a job whose request is not granted cannot execute; it must wait.
We however do not make any assumption on the placement of the resource request
within a job’s execution.

Our goal is to schedule all jobs to meet deadlines. In some scheduling problems,
the concept of utilization bound has been used to characterize the performance of
scheduling algorithms. But for characterizing scheduling algorithms for tasks that
share resources, the utilization bound is an inappropriate metric because there ex-
ists a task set for which the utilization approaches zero and a deadline is missed
regardless of algorithm used; this occurs when R contains just a single resource and
all jobs require this single resource during their entire execution. But the resource-
augmentation framework (Phillips et al. 1997) can be used in this context to charac-
terize the performance: We say that an algorithm A has competitive ratio CPTA if, for
every real-time task set for which it is possible to meet deadlines, it holds that if the
speed of each processor is multiplied by CPTA then A will meet deadlines as well.

Low competitive ratio is preferred; ideally it should be one. A scheduling algo-
rithm with a finite competitive ratio is desirable as well because it can ensure a
designer that deadlines will be met by using faster processors. Consequently, the
real-time systems community has embraced the development of scheduling algo-
rithms with finite competitive ratio (Baruah et al. 2009). Unfortunately, the com-
munity has not yet developed a multiprocessor scheduling algorithm with finite
competitive ratio for tasks that share resources, although many resource-sharing
schemes (Block et al. 2007; Rajkumar et al. 1988; López et al. 2004; Gai et al. 2001;
Easwaran and Andersson 2009) have been proposed.

In this paper, we present a new multiprocessor scheduling algorithm for tasks
which share resources and prove that it has a finite competitive ratio of 12(1 +
3R/(4m)). We call this algorithm gEDF-vpr, which stands for “global Earliest
Deadline First with virtual processor based resource sharing”.

2 Framework for gEDF-vpr algorithm

The main idea is to use m processors of speed 1 to emulate 2m + R virtual proces-
sors using generalized processor sharing1 (Parekh and Gallager 1993). Specifically
the following virtual processors are used: (1) m type-1 virtual processors of speed
2m/(4m + 3R) each, (2) R type-2 virtual processors of speed 3m/(4m + 3R) each,
and (3) m type-3 virtual processors of speed 2m/(4m + 3R) each.

A task τi with unfinished execution is at every instant assigned to exactly one
phase; see Fig. 1. When a job of τi arrives, τi is assigned phase-1. Ti/3 time units later

1Under generalized processor sharing, it is assumed that a virtual processor has access to some fraction of
a physical processor at all times, and hence processing capacity is not wasted in this emulation.

Real-Time Syst

Fig. 1 Different execution phases of a job are scheduled on different sets of virtual processors

it is assigned phase-2, and an additional Ti/3 time units later it is assigned phase-3.
Additionally, each phase is given a relative deadline of Ti/3 time units. A task per-
forming no resource request is only in phase-1 and executes only on type-1 virtual
processors. For a task τi which makes resource requests, the following apply: (1) It is
ready for execution in phase-1 only if it has not yet made a resource request, (2) It is
ready for execution in phase-2 only if it has not yet been granted the shared resource
it requested,2 and (3) It is ready for execution in phase-3 only if it has unfinished
execution after releasing the shared resource.

Algorithm gEDF-vpr schedules (i) all phase-1 tasks onto type-1 processors using
gEDF, (ii) a phase-2 task that requests resource Rk onto the kth type-2 processor
using non-preemptive EDF, and (iii) all phase-3 tasks onto type-3 processors using
gEDF. Thus, the use of non-preemptive scheduling on type-2 processors ensures that
shared-resources are accessed in a mutually exclusive manner.

3 Competitive ratio of gEDF-vpr algorithm

In this section, we first present results on the competitive ratio of gEDF (multiproces-
sor) and non-preemptive EDF (single processor),3 and then derive the competitive
ratio for gEDF-vpr.

3.1 Fundamental results on competitive ratio

We let sched(A, τ,m, s) denote a predicate meaning that task set τ meets all dead-
lines when scheduled by algorithm A on m processors of speed s. The following
lemma re-states the gEDF result.

Lemma 1 (Theorem 2.2 in Phillips et al. 1997) sched(feasible, τ,m,1) ⇒
sched(gEDF, τ,m,2), where “feasible” implies that there exists some schedule
which meets all the deadlines; this schedule may use inserted idle time and it may be
generated using future arrival times and it may be different from EDF.

The following lemma presents a finite competitive ratio for non-preemptive EDF
scheduling on a single processor, assuming, as in this paper, tasks have implicit dead-
lines. That is, Ti for task τi denotes not only the minimum time between successive
job releases but also the relative deadline of jobs.

2Once the request is granted, execution occurs non-preemptively on the virtual processor in this phase.
3Although the gEDF result is known, we present the first competitive ratio for non-preemptive EDF.

Real-Time Syst

Lemma 2 sched(non-preemptive-feasible, τ,1,1) ⇒ sched(non-preemptive EDF,
τ,1,3), where “non-preemptive-feasible” implies that there exists some non-
preemptive schedule which meets all the deadlines; this schedule may use inserted
idle time and it may be generated using future arrival times and it may be different
from EDF.

Proof Suppose the lemma is incorrect. Let us consider the schedule where τ failed
under non-preemptive EDF; τ is assumed to be non-preemptive-feasible. Let t1 de-
note the time when a deadline miss occurred, and let t0 denote the earliest time,
before t1, when the processor transitioned from idle to busy. Let t ′ = t1 − t0. Further,
let Jf denote a job of task τk which failed to meet a deadline at t1.

Lower-priority jobs which arrive after the arrival of Jf cannot block Jf . Therefore
any such job which blocked Jf must have arrived before Jf arrived. Further, since
this job has lower priority than Jf , its deadline must be at t1 or later (EDF schedul-
ing). Hence, any task τi which blocks Jf with lower-priority jobs, must satisfy the
condition Ti ≥ Tk . Therefore, Jf can experience lower-priority blocking for at most
maxTi≥Tk Ci/3 time units. Here the execution is divided by 3 because processors un-
der non-preemptive EDF are assumed to be 3 times as fast as the original ones. Since
Jf missed a deadline

n∑

j=1

⌊
t ′

Tj

⌋
· Cj/3 + max

Ti≥Tk

Ci/3 > t ′ and t ′ ≥ Tk (1)

Now for τ to be non-preemptive feasible, it holds that

n∑

j=1

⌊
t ′

Tj

⌋
· Cj ≤ t ′ and ∀τu, τv : Cu ≤ 2(Tv − Cv) (2)

In the above equations, terms
∑n

j=1' t ′
Tj

(·Cj/3 and
∑n

j=1' t ′
Tj

(·Cj denote the maxi-
mum higher-priority workloads that must be completed in a time interval of length t ′.
Also, the expression τu, τv : Cu ≤ 2(Tv − Cv) is necessary for non-preemptive fea-
sibility as can be seen by considering the periodic arrival pattern of tasks τu and τv

and realizing that τu needs a (non-existing) contiguous time window of length greater
than 2(Tv − Cv) to execute successfully. Multiplying (1) by 3 and rewriting yields

n∑

j=1

⌊
t ′

Tj

⌋
· Cj > t ′ + 2 · t ′ − max

Ti≥Tk

Ci (3)

Applying the two expressions in (2) and t ′ ≥ Tk on (3) yields: t ′ > t ′ + 2 · Tk − 2 ·
(Tk − Ck). Subtracting t ′ on both sides and rewriting yields 0 > 2 · Ck . This is a
contradiction and it proves the lemma. !

3.2 Competitive ratio of gEDF-vpr

We let T D1(τ) denote a function which takes task set τ as a parameter and outputs
a task set which differs from τ only in that for each task τi ∈ T D1(τ), the parameter

Real-Time Syst

Ti is one third of the parameter Ti of the corresponding task in τ and we also set
Ci,k = 0 for every resource and task.

For each resource Rk ∈ R, we let T D2,k(τ) denote a function which takes task set
τ as a parameter and outputs a task set constructed as follows:

1. ∀τi ∈ T D2,k(τ), the parameter Ti is one third of the parameter Ti of the corre-
sponding task in τ .

2. ∀τi ∈ T D2,k(τ), Ci,j = 0 for all j *= k.
3. ∀τi ∈ T D2,k(τ), Ci,k is equal to Ci,k of the corresponding task in τ .
4. ∀τi ∈ T D2,k(τ), Ci is equal to Ci,k of the corresponding task in τ .

That is, task τi in T D2,k(τ) accesses resource Rk throughout its execution and for
the same amount of time as τi in τ accesses Rk . It is easy to see that T D1(τ) models
tasks in phases 1 and 3, whereas T D2,∗(τ) models tasks in phase 2.

In these definitions, we can intuitively understand the meaning of “TD” as “one
ThirD”. The following theorem proves the competitive ratio of gEDF-vpr.

Theorem 1 Competitive ratio of gEDF-vpr is 12(1 + 3R/(4m)).

Proof Since processors that are 3 times as fast as the original ones make it feasible
to meet deadlines that are one third of the original deadlines, we have by definition

∃A : sched(A, τ,m,1) ⇒ ∃A : sched(A,T D1(τ),m,3) (4)

For each resource Rk , since Rk is accessed in a mutually exclusive manner, all the
task executions in τ that use Rk must be sequential. Then, a single dedicated proces-
sor is sufficient to guarantee feasibility of all such task executions. The following
equation is a consequence of this observation.

∀Rk ∈ R, (∃A : sched(A, τ,m,1) ⇒ ∃A : sched(A,T D2,k(τ),1,3)) (5)

Now, using Lemma 1 for type-1 and type-3 virtual processors (one instance of (4)
for each type), and Lemma 2 for type-2 virtual processors (R instances of (5)), we
get

type 1: (∃A : sched(A, τ,m,1)) ⇒ (sched(gEDF, T D1(τ),m,6)), (6)

type 2: ∀Rk ∈ R, (∃A : sched(A, τ,m,1))

⇒ (sched(non-preemptive EDF, T D2,k(τ),1,9)), (7)

type 3: (∃A : sched(A, τ,m,1)) ⇒ (sched(gEDF, T D1(τ),m,6)) (8)

Multiplying the processor speeds of (6)–(8) by m/(12m + 9R) and using the em-
ulation with virtual processors as mentioned in Sect. 2 gives

(∃A : sched(A, τ,m,m/(12m + 9R)) ⇒ (sched(gEDF-vpr, τ,m,1)) (9)

This proves the theorem. !

Real-Time Syst

4 Conclusions

This paper presented the first provably good multiprocessor scheduling algorithm for
tasks that share resources. As stated in the introduction however, this initial result
required some simplifying assumptions on the task model. It would be interesting to
relax those assumptions; in particular, restrictions on deadlines and shared-resource
access pattern of tasks.

References

Baruah S, Bonifaci V, Marchetti-Spaccamela A, Stiller S (2009) Implementation of a speedup-optimal
global EDF schedulability test. In: Proceedings of Euromicro conference on real-time systems,
pp 259–268

Block A, Leontyev H, Brandenburg BB, Anderson JH (2007) A flexible real-time locking protocol for
multiprocessors. In: Proceedings of real-time and embedded computing systems and applications
conference, pp 47–56

Easwaran A, Andersson B (2009) Resource sharing in global fixed-priority preemptive multiprocessor
scheduling. In: Proceedings of IEEE real-time systems symposium, pp 377–386

Gai P, Lipari G, Di Natale M (2001) Minimizing memory utilization of real-time task sets in single and
multi-processor systems-on-a-chip. In: Proceedings of IEEE real-time systems symposium, pp 73–
83

López JM, Díaz JL, García FD (2004) Utilization bounds for EDF scheduling on real-time multiprocessor
systems. J Real-Time Syst 28(1):39–68

Parekh A, Gallager R (1993) A generalized processor sharing approach to flow control—the single node
case. IEEE/ACM Trans Netw 1(3):344–357

Phillips CA, Stein C, Torng E, Wein J (1997) Optimal time-critical scheduling via resource augmentation.
In: Proceedings of the ACM symposium on theory of computing, pp. 140–149

Rajkumar R, Sha L, Lehoczky JP (1988) Real-time synchronization protocols for multiprocessors. In:
Proceedings of IEEE real-time systems symposium, pp 259–269

Björn Andersson received his M.Sc. degree at Chalmers University of
Technology in Sweden in 1999 and received the SNART best master of
science thesis award that year. He extended (together with others) static-
priority scheduling from uniprocessors to multiprocessors and earned
his Ph.D. degree at Chalmers University of Technology. He is currently
a visiting scientist at CISTER/IPP-Hurray, exploring real-time commu-
nication, real-time scheduling on multiprocessors and data aggregation
in cyber-physical computer systems.

Real-Time Syst

Arvind Easwaran received a Bachelor of Engineering (BE) degree in
Computer Engineering from Mumbai University, India, in 2001, and a
Master of Science in Engineering (MSE) degree in Computer and Infor-
mation Science from the University of Pennsylvania, USA, in 2005. He
received a Ph.D. from the University of Pennsylvania, USA, in 2008 on
Advances in Hierarchical Real-Time Systems: Incrementality, Optimal-
ity, and Multiprocessor clustering. Since January 2009, he is a research
associate in CISTER/IPP-HURRAY lab, at the Polytechnic Institute of
Porto, Portugal. His research interests lie in real-time systems.

