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Abstract—Modern real-time embedded systems have increas-
ingly penetrated our daily life and are also often constrained
in terms of temperature and energy. In this paper, a thesis
is defended that from real-time systems perspective, thermally
constrained dynamic power management approaches behave
very similar to idealised dynamic voltage and frequency scaling.
Hence, existing dynamic voltage and frequency scaling solutions
proposed for periodic/sporadic task models can be applied to
thermally constrained dynamic power management systems with
moderate effort. This work presents the similarities along with
the distinctive elements between two approaches. Within the case
study, the porting of a dynamic voltage and frequency scaling
algorithm of the literature to thermally constrained dynamic
power management system is demonstrated.

I. INTRODUCTION

The increase in power density of modern processors de-
mands efficient thermal management solutions to keep the tem-
perature within given limits to avoid physical damage and also
to increase the reliability of the chip. Thermal management can
be done at design time through sophisticated packaging and
heat dissipation techniques, and at run time through dynamic
thermal management (DTM). However, packaging and active
heat dissipation solutions have become progressively more ex-
pensive [1]. This trend motivates to explore DTM techniques.

Energy consumption is another important concern in the
design process of embedded systems. The increased energy
demand, due to further integration can lead to an increase in
the size of embedded system which is not desirable in many
cases such as mobile phones. Furthermore, a longer lasting
battery is a market differentiator. Energy efficiency has the
objective to reduce the cumulative power dissipation, while
DTM techniques aim to keep the peak temperatures of the
processor below the critical limit. A large amount of work
exists dealing with both issues in a non real-time setting
summarised by Kong et al. [2]. However, the problem is
acerbated with additional timing constraints of real-time (RT)
systems, which are required to be met on top of functional
aspects for the overall system to be considered correct.

The commonly used DTM approaches in RT systems to
handle the thermal constraint along with energy and temporal
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restrictions are speed scheduling and thermally constrained
dynamic power management (TCDPM). Speed Scheduling:

The frequency of the processor is reduced to decrease the tem-
perature and the dynamic power consumption of the system.
TCDPM: The processor executes the workload at full speed
and switches off when the peak temperature is reached to cool
down the system, which is the focus of this research.

The state-of-the-art has mostly focused on the objective to
reduce the peak temperature of the system under performance
constraints [3], [4], [5]. For instance, Chaturvedi et al. [5]
developed a leakage-aware scheduling algorithm called m-
oscillating for frame-based (same period) hard RT systems
to minimise the peak temperature. Given 2-speed schedule,
their m-oscillating algorithm divides the high-speed level and
low-speed interval into m sections, and run them alternatively.
The maximum temperature decreases with an increase in m.
Similarly, the temporal aspects (schedulablity) of the hard RT
systems are explored by Quan et al. [6]. Another area of RT
research in this domain is the energy reduction under thermal
constraint. For example, Huang and Quan [7] extended the
m-oscillating algorithm [5] to reduce the energy of the frame-
based RT system. They derived the energy function in the form
of m and obtained its optimal value with an exhaustive search
under the given temperature constraint.

Recently, it has been shown that leakage power consump-
tion is temperature dependent and increases rapidly with a
rise in temperature [8]. Yuan et al. [9] proposed the online
temperature-aware leakage minimisation technique TALK for
frame-based RT systems. The basic idea is to execute workload
when the processor is cool and postpone it at high temperature.
A pattern based approach [10] reduces the energy consumption
of the frame-based RT systems with a temperature depen-
dent leakage-power consumption. This approach divides the
given frame (Time Horizon) into several equally-sized time-
segments. The execution of the task is performed in the
beginning of each time-segment and followed by a cooling
phase using a low power sleep state. The required execution
of the system and the idle time is equally divided among the
time-segments. They developed a procedure to determine the
optimal pattern that minimise the energy consumption.

The state-of-the-art though addresses the various aspects of
RT systems under thermal constraints but makes some of the
following assumptions: i) frame based (same period tasks)
RT system, ii) leakage power consumption is independent
of temperature, iii) ignore energy consumption. This paper



presents the detailed study on the equivalence of idealised
DVFS with TCDPM and shows conventional idealised DVFS
algorithms can be applied with minimal modifications to
TCDPM to reduce the energy consumption of the system. A re-
alistic power model is considered with temperature dependent
leakage current. The equivalence shown in this work, relaxes
the restriction of identical period tasks (frame-based systems)
and allows generic workload model such as sporadic tasks
model without any additional complexity in the analysis. Due
to space limitations, the proof of concept and effectiveness of
the proposed approach evaluated with the help of extensive
simulations is relegated to a technical report [11].

II. SYSTEM MODEL

This section presents the workload model and the character-
istics of the underlying hardware. The power and the thermal
model used in our work are adopted from Yang et al. [10].

A. Workload Model

This work assumes a hard RT system, where a system
cannot afford to miss any deadline. The workload consists
of a task-set ⌧ of ` independent sporadic tasks i.e. ⌧

def
=

{⌧
1

, ⌧
2

, · · · , ⌧`}. A task ⌧i is characterised by a 3-tuple
hCi, Di, Pii, where Ci is the worst-case execution time
(WCET), Di is the relative deadline and Pi is the minimum
inter-arrival time of the tasks. This work can be extended for
Di < Pi, however, for the ease of presentation it is assumed
Di = Pi. The optimal uniprocessor Earliest-Deadline-First
(EDF) dynamic priority algorithm is used to schedule a task-
set ⌧ . A Task ⌧i has an individual utilisation of Ui

def
= C

i

P
i

and

the overall system utilisation is defined as U
def
=

P`
i=1

Ui.
Each task ⌧i releases potentially an sequence of infinite jobs
ji,m. A job ji,m of a task ⌧i may execute for less than its Ci.

B. Power Model

We consider temperature dependent leakage-current. The
average leakage current Ī(T, Vdd) at temperature T and Supply
voltage Vdd is modelled by Laio et al. [8] as given in Eqn. 1,

Ī(T, Vdd) = Ī(T
0
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where ↵,�, �, �, A and B are empirical constants. Ī(T
0

, V
0

) is
a reference leakage current on temperature T

0

with a reference
supply voltage of V

0

. The unit of temperature is in Kelvin (K).
It is based on the curve fitting of the power consumption of
the different circuit types at different temperatures with SPICE
simulations. Yang et al. [10] found a good approximation of
such modelling in a quadratic form as shown in Eqn. 2, where
Â and B̂ are constants, while TH and TL define the operating
temperature range of the chip. They showed difference of this
approximation is negligible when compared to average leakage
current modelled by Laio et al. [8] (Eqn. 1).

Ī(T, Vdd) = ÂT 2 + B̂ (2)

Â =
Ī(TH , Vdd)� Ī(TL, Vdd)

T 2

H � T 2

L

(3)

B̂ = Ī(TL, Vdd)� ÂT 2

L (4)

The processor assumed in this work has two modes: active

and sleep state. The execution of tasks is performed in the
active mode and Pa denotes its power consumption. It has
two components: a) dynamic power consumption Pdyn and b)
static or leakage power consumption Plkg . The dynamic power
consumption is considered constant in active mode, while the
static power consumption is modelled as Plkg = AT 2 + B,
where A and B are NgateÂVdd and NgateB̂Vdd respectively.
Ngate is a constant that depends on the circuit characteristics
(see [10], [8] for details). The system can transition to a sleep
state for two different purposes: 1) to cool down the processor
and 2) to reduce the energy consumption. Each sleep transition
has energy and delay cost associated to it. The transition time
of going into and out of sleep state is denoted as tstr and twtr
respectively. The extra energy consumed during a transition
phase is denoted as Esw. The processor has to complete its
transition into and out of a sleep state once initiated. The power
consumption in the sleep state is denoted as Ps. The processor
assumed in this model does not support DVFS.

C. Thermal Model

A widely adopted [9], [10] thermal RC model is used
to characterise the temperature behaviour of the proces-
sor and expressed as a differential equation (Eqn. 5),
where Cth, Rth, PW , T and Tamb are the thermal capacitance
(Joule/K), thermal resistance (K/Watts), processor’s power
consumption (Watts), processor’s temperature (K) and the
ambient temperature (K) respectively. Yang et al. [10] solved
the differential equation (Eqn. 5) and derived temperature as
a function of time for both active (Eqn. 6) and sleep state
(Eqn. 7) modes. We used same notations here for consistency.
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When the processor is in active mode for an interval of

(t̂, t̂ + t], Tact(t̂, t) is the temperature at time instant t̂ + t
assuming t̂ is the time instant in the beginning of execution.
Similarly, Tdor(ť, t) is a temperature at the end of the interval
(ť, ť+t] assuming system in the sleep state starting from a time
instant ť. Tact(t̂, 0) and Tdor(ť, 0) are temperatures at time in-
stance t̂ and ť respectively. The parameters ✓
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. Assume, Tcri defines the maximum
allowed temperature for the safe operation of the chip. The
Eqn. 6 and Eqn. 7 can be rewritten in terms of temperature
and their corresponding equations are given in Eqn. 8 and
Eqn. 9 respectively. With Eqn. 8 and Eqn. 9, one can compute
the time units system takes to move from one temperature to
another both in active and sleep modes respectively.
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⌘ � Tdor(ť, 0)

◆
(9)



The energy consumption in sleep state for an interval of
[t
1

, t
2

] is Es = Ps(t2 � t
1

). The active energy consumption
Ea is computed by integrating Pa [10] as given in Eqn. 10.
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III. AVAILABLE UTILISATION

The execution of a workload on a processor increases
its temperature. When its temperature reaches the thermal
threshold, a cooling phase is triggered. The decision should
be made about the duration of the cool down phase. Before
making such decision, discussion of two conflicting scenarios
is required as given below.

1) The exponential nature of the thermal model allows the
system to perform more execution at high temperatures
as the temperature rise in the active phase is slower
and the fall in the cooling phase is faster. The leakage
current also increases at high temperature and results
in additional energy consumption. Moreover, performing
execution at high temperatures also increase the number
of sleep transitions to decrease its temperature, which
is not desirable due to an overhead associated to each
sleep transition.

2) Conversely, when the processor cools down to low
temperatures, its temperature rises faster in the active
phase and falls slower in the cooling phase. The leak-
age current is also relatively less at low temperatures.
Nevertheless, a relatively long cooling phase is required
to attain the low temperature. A long cooling phase de-
creases the system’s energy by reduced sleep transitions.

Hence, a trade-off between performance and the energy con-
sumption exists between two different aforementioned cases.
In RT systems, the worst-case requirements of the system
are known a-priori. Initially the available utilisation of the
system is defined as a function of time while later extended
to a function of temperature. The available utilisation of the
system is the maximum amount of execution per unit time that
system can ensure respecting the thermal constraint. Assume,
Tmax is the upper threshold temperature after which scheduler
switch on the cooling phase. The value of T

max

 Tcri. The
scheduler allows the system to execute unless its temperature
reaches T

max

. Similarly, the cooling phase is switched off
when the temperature reaches to a lower threshold temperature
To < T

max

. The available utilisation Uavail of the processor
with such repetitive cycles is given in Eqn. 11, where ta is
the time system takes in active state to reach from To to T

max

and tc is the time it takes to cool down to To from T
max

.

Uavail =
ta

ta + tc
(11)

The execution is performed during ta time interval, while
tc is the idle time. Using the empirical data given in the work
of Yang et al. [10], Fig. 1 plots the temperature profile of the

processor versus time. The cooling phase and the execution
phase are exponential functions and the rate of change in
temperature is higher in the beginning of their respective
phases. This illustrates the fact that one can execute more
by setting T

max

and To at high temperatures. The available
utilisation of the system for different lengths of execution
times in active phase (ta) are presented in Fig. 2. The value
of T

max

is fixed to 400K. Given the system requirements in
terms of Uavail, one can vary the values of ta and tc, to reduce
energy consumption while respecting the thermal constraint.

Assume, a system transition into a sleep state in the cooling
phase. Eqn. 8 and Eqn. 9 can be used to replace the cor-
responding values of ta and tc respectively to define Uavail

as a function of temperature given in Eqn. 12. The value of
Tdor(ť, 0) = Tact(t̂, t) and replaced with T

max

. Similarly,
Tdor(ť, t) = Tact(t̂, 0) and these symbols are replaced with To.
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IV. ENERGY CONSUMPTION OF RT SYSTEMS UNDER
THERMAL CONSTRAINT

The energy consumption of the system with leakage-aware
TCDPM can be minimised through two different factors by
either initiating the sleep state for longer intervals to reduce the
total cost of sleep transitions and to maximise the idle period
in low power state. or by running the system at low operating
temperatures to avoid the higher leakage power dissipation at
high temperatures.

In the first case, duration of the sleep intervals is increased,
the system gets more time to cool down. This effect decreases
the available utilisation of the system as the temperature rises
at faster rate at low temperatures in active mode and on
contrary, the rate of cooling is slower at low temperatures.
In the second case, running a system at high temperature
increases the leakage power consumption. However, if the
operating temperature range, i.e. both T

max

and To, is shifted
to low temperatures, the available utilisation of the system also
decreases because of the same aforementioned reason. Hence,
in both cases the decrease in available utilisation is due to a
reduction in the duty cycle.

An optimal solution should consider both factors mentioned
above to minimise the overall energy consumption of the
system. Nevertheless, intuition is clear that the energy con-
sumption of the system in TCDPM is reduced by running the
system at the lowest possible available utilisation (decreasing
the duty cycle). One can propose different techniques to find
the optimal set of T

max

and To considering both factors
for different values of Uavail. However, the objective of this
research effort is not to find such values, rather to show that
idealised DVFS algorithms are equivalent to TCDPM in a
sense that both have the same objective to run the system
at low available utilisation Uavail whenever it is possible.
As a first approximation it is assumed that the value Uavail

is computed by fixing T
max

to Tcri and varying To. Fig. 3
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shows the energy consumption per unit time (power) of the
system using such approximation for different values of To

(T
max

= 400K). It is evident that the energy consumption of
the system increases when increasing the value of To. Given
T
max

and To, the values of tc and ta can be determined by
using Eqn. 8 and Eqn. 9.

V. EQUIVALENCE OF IDEALISED DVFS AND TCDPM

The available utilisation Uavail given in Eqn. 11 provides
the execution per unit time for long time intervals (i.e. �t �
tc), which is virtually equivalent to the normalised speed of
the processor. The reduction in the amount of work per unit
time (i.e. available utilisation or virtual speed of the processor)
also decreases the energy consumption of the system. This
occurs as the amount of work per unit time is decreased by
reducing the duty cycle in TCDPM which can be achieved
either by allowing the system to stay longer in the sleep state or
by decreasing the operating temperature range (i.e. T

max

and
T
0

) of the system. This virtual reduction of speed also means
prolonging the execution time of the tasks as the temperature
rise is exponential and execution per unit of time does not
scale linearly with a decrease in temperature.

The traditional idealised DVFS theory is also based on
a convex function of the power consumption. The decrease
in speed/frequency of the processor though saves energy but
also prolongs the execution time of the given workload by
running the processor slower. In real DVFS, the execution
time does not scale linearly with the processor speed 1

f
(for example, memory access time does not scale with the
processor frequency) [12]. However, the above assumption is
often made in the literature.

Under TCDPM, the execution of the workload is performed
at full speed and it behaves almost at 50% speed when given
a 50% duty cycle (available utilisation). Similarly, in idealised
DVFS, it is assumed the execution scales by a factor of 1

f . If
the frequency is 50%, the execution time scales by a factor
of 2 which is equivalent to 50% duty cycle in TCDPM at full
speed. Moreover, another reason for similarity is that idealised
DVFS has a continuously spectrum of available frequencies
and similarly, TCDPM can represent the duty cycle in any
ratio. If frequencies are normalised in idealised DVFS, there
is a correlation between idealised DVFS frequencies and
normalised speed (duty cycle) in TCDPM. In both cases the
objective is to reduce the amount of work per unit time to
reduce the overall energy consumption.
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A. Schedulability Concerns

The similarities between these two problems allow us to
apply any existing DVFS algorithms on TCDPM to reduce
the system’s energy with some minor modifications in the
schedulability analysis and/or speed modifications in TCDPM.

In DVFS, the amount of work per unit time is reduced
by decreasing the physical frequency of the processor. The
processor runs the instruction at slow but constant rate. The
schedulability of the sporadic task model in DVFS is preserved
if f

t

f
m

� U , where ft is the processor’s frequency at any time
t and fm is its maximum frequency. On the other side, the
suspension of the execution in the cooling phase of TCDPM
may cause some of the tasks to miss their deadlines under EDF.
Lets consider one task in isolation to show its deadline miss
and then propose a method to avoid it. Later in this section,
this analysis is extended for multiple sporadic tasks.

1) Single Task Case: Fig. 4 represents TCDPM processing
in an execution vs time graph commonly known as service
curve. The continuous line step function represents the ideal-
case, where the task starts its execution in the beginning of the
active phase. The straight line beneath it shows the gradient of
execution i.e. Uavail. Assume, a worst-case scenario, i.e. the
task arrives in the beginning of the cooling phase and suffers
an initial delay of tc, it may miss its deadline (see dotted step
function in Fig. 4). This delay reduces the effective amount
of work that a system should deliver per unit time to meet all
deadlines in the system. Assume t

1

is the initial time instant
and t

2

is any time instant such that t
2

> t
1

&& t
2

> tc. The
amount of work done in ideal-case in the interval �t = t

2

�t
1

will be equal to �tUavail = Cx. While, in worst-case with an
initial delay of tc it will be equal to Uavail�t�Uavailtc = Cy .
By substituting the value of Cx and rearranging, Cx � Cy =
Uavailtc. This is the maximum delay that a task can have in
its minimum inter-arrival time Ti.



To preserve the system schedulability, the effect of this
additional delay of tc should be accounted in the requested
utilisation. The effect of this error is quantified by computing
the requested utilisation Ureq as given Eqn. 13. The value of tc
is computed by considering the ideal-case (no blocking in the
beginning of execution phase). The scaling of Uavail � Ureq

ensures that the extra amount of work done per unit time will
be greater than or equal to t

c

P
i

. The schedulability of the single
task is ensured if its period satisfy the condition given in
Eqn. 14. Both Eqn. 13 and Eqn. 14 are sufficient conditions.
Eqn. 14 computes the number of active phases required to
execute the task and adds the corresponding cooling phase,
and ensures it is greater than the period/deadline of the task
to preserve schedulability.

Ureq =
Ci

Pi
+

tc
Pi

(13)

Pi >

�
Ci

ta

⌫
(ta + tc) + (Ci%ta) + tc (14)

2) Multiple Tasks Case: This analysis is extended to mul-
tiple sporadic tasks to ensure their schedulability. First of all,
a slight modification is made in Ureq as given in Eqn. 15.
Instead of t

c

P
i

, t
c

min(P
i

)

is used and now for each period of the
highest priority task the amount of extra work will be equal
to Uavailtc. Similar to a single task case, the value of tc is
obtained by considering the ideal-case and the original value
of Uavail is raised to Ureq to ensure the system schedulability
of all tasks. Moreover, all the tasks should satisfy the condition
given in Eqn. 16 to check that they are getting enough active
phases in their period to compete their execution to ensure the
schedulability. The quantisation error that occurs in TCDPM
due to cooling and active phases is bounded to t

c

min(P
i

)

. This
is a pessimistic but safe bound. Similar to single task, Eqn. 15
and Eqn. 16 are sufficient conditions.

Ureq =
X

8⌧
i

Ci

Pi
+

tc
min(Pi)

(15)

8⌧i, Pi >

�
Ci

ta

⌫
(ta + tc) + (Ci%ta) + tc (16)

Now consider the other effects (that may affect the schedu-
lability of tasks) such as if a task is executing with a worst-case
scenario and other tasks are released during its execution. The
arriving task may have higher or lower priority when compared
to the currently executing task. If there is an arrival of a
lower priority task(s) the normal execution of the system is
not interrupted at all as it has to wait for the currently running
task to complete its execution. Now consider the effect of the
higher priority task ⌧i. The schedulability of the higher priority
task ⌧i is ensured by Eqn. 16. The phasing of ⌧i with respect
to the phasing of the cooling is of no concern as the overall
execution requirement is only increased by Ci. Similarly, it
can be shown that by adding extra tasks, the schedulability of
the system remains unaffected.

VI. CASE STUDY

This section shows that TCDPM problem can be solved
with existing DVFS algorithms. For demonstration purpose,
two DVFS algorithms for RT systems from the work of Pillai
and Shin [13] are considered in this case study. It is assumed
all the frequency set-points of the processor are normalised
with the maximum frequency of the processor.

A. Static Allocation of Frequency

In the first algorithm of Pillai and Shin [13], it is assumed
that all the tasks execute for their worst-case and they find
statically the operating frequency of the processor. The oper-
ating frequency fo of the processor is set to U ⇥ f

max

. The
execution time of all the tasks are scaled by a factor of 1

f
o

.
Similarly, Uavail in TCDPM corresponds to U in DVFS. The
value of Ureq is computed to eliminate the error caused due to
the quantisation effect and set the value of Uavail � Ureq . The
selected value of Uavail in turn is used to estimate ta and tc.
Afterwards, periods of all the tasks are checked for condition
given in Eqn. 16

B. Using Generated Slack to further reduce the Frequency

In RT systems, tasks are budgeted for the worst-case sce-
nario but normally, they execute less than their worst-case
estimation. The difference of WCET and the actual execution
time is collated and terms as execution slack. Pillai and Shin
[13] explored execution slack to further reduce the operating
frequency. On the early completion of any task the unused
execution time is reclaimed and the utilisation of the system
is recomputed by considering the actual execution time of the
current task. The operating frequency is set accordingly with
this newly computed system utilisation. The individual utili-
sation of the task considering its actual execution is used until
its next arrival. On any task arrival, the system utilisation is
computed again by replacing the previous individual utilisation
of the currently arrived task with C

i

P
i

. The operating frequency
is changed accordingly. This algorithm does the frequency
adjustment on the task arrival and on its completion.

Similar to Pillai and Shin’s approach [13], TCDPM should
also make decisions about changing Uavail at the arrival and
the completion of all tasks. For the temporal correctness,
Uavail should be greater than or equal to Ureq (i.e. Uavail �
Ureq). Ureq is composed of two components. The first com-
ponent computes the current utilisation of the system, while
second factor considers the effect of blocking. A change in
current utilisation of the system will vary the cooling phase,
which in turn will effect the blocking time (i.e. second factor
in Ureq). To eliminate this issue, it is assumed that tmax

c is a
maximum achievable cooling time in the system. This value
can be estimated by setting T

max

and To to their feasible
extremes (i.e. T

max

= Tcri and To = Tamb). In theory the
value of tmax

c can reach to infinity if To is set equal to Tamb.
Therefore, for practical purposes To can be set to a value
Tamb + tth, where tth is a small offset to keep tmax

c in a
reasonable limit. If min(Pi) � tmax

c , then second component
in Ureq equation can be replaced with tmax

c

min(P
i

)

. Any task in a



system cannot suffer from a blocking greater than tmax

c . The
first component of Ureq equation (that estimates the current
required utilisation of the system) can be computed in a similar
way as computed in Pillai and Shin’s approach [13]. However,
there is just one exception, if a task arrives in the cooling
phase, then system needs to wait for the completion of the
current cooling phase to make decision about the new Uavail.

C. Reducing Pessimism

The blocking factor of tmax

c

min(P
i

)

in Ureq equation is a
pessimistic bound. The tasks rarely face such huge blocking.
Another less pessimistic approach is also presented to compute
Ureq . Assume, the previous cooling phase has a length of toldc .
On every task completion or new task arrival in the active
phase, the individual utilisation Ui of the task is updated and
the total system utilisation is recomputed. Considering this
new value of total system utilisation, the potential length of
the next cooling phase is estimated and denoted as tnewc . The
value of Ureq is set to

P`
i=1

Ui +
tnew

c

min(P
i

)

. However, if there
is a new task ⌧i arrival in the cooling phase of the system,
its processing is postponed by the end of this cooling phase.
At the end of the cooling phase, the total system utilisation
is computed by considering ⌧i’s worst-case execution and the
value of tnewc is determined. If tnewc is shorter than the current
cooling phase time, than ⌧i has suffered an extra delay. To
compensate for this extra delay, its individual utilisation Ui

is set to C
i

+max(t�r
i,m

�tnew

c

,0)
P

i

, where ri,m is the absolute
release time of ⌧i and t is the current time instant at the end
of cooling phase. With this new value of Ui and tnewc , the value
of Ureq is computed as Ureq =

P`
i=1

Ui +
tnew

c

min(P
i

)

. Uavail is
then set to any feasible value greater than or equal to Ureq

and the corresponding values of tc and ta are computed.
One more concern that system needs to deal with is the idle

mode. If a system has no workload to execute, it transition into
a sleep mode. It is equivalent to the early start of a cooling
phase. However, the sleep state is terminated on the arrival
of a new task. The delay caused due to this sleep transition
can be included in the individual utilisation of the arrived task
and that is Ui =

C
i

+tw
tr

+ts
tr

P
i

. Such additional overhead can be
ignored, if the system has an idle mode with zero transition
delay to and from active mode. Similar to the examples given
in this case study, any other DVFS algorithm can be similarly
ported and applied in TCDPM setting.

D. Implementation Concerns

1) Computation of Uavail, To and T
max

: In order to reduce
the online complexity of the system, an offline table for
Uavail is computed that contains the corresponding values of
T
max

, To, ta and tc. Given the values of T
max

and To, the val-
ues of tc and ta can be easily computed for the required table.
The values of T

max

and To against Uavail can be computed
through various techniques such as exhaustive exploration,
dynamic programming, approximation algorithm in which a
value of T

max

is fixed and To is varied to get different values
of Uavail. The values of this table are platform dependent
only and are estimated once for the given platform. This table

reduces the online complexity of the system to O(log
2

(n))
to obtain T

max

, To, ta and tc against Uavail, where n is the
number of Uavail entries in the table. The length of this table
defines the resolution of Uavail. In case of non-linear relation
of Uavail and the energy consumption, the efficient distribution
is to get high resolution of Uavail where the rate of change
of energy consumption is high. The computation of Uavail

depends on whether the transition period into the sleep state
causes an additional temperature increase or decrease. Due to
space limitations, the detailed discussion of this distinction is
relocated to the technical report [11].

VII. CONCLUSIONS AND FUTURE DIRECTIONS

In this research effort, it is demonstrated that idealised
DVFS and TCDPM are very similar in their nature and with
some minor modifications in the schedulability analysis and
online mechanisms, the work done for DVFS algorithms can
be applied to TCDPM to save energy. This strategy allows
to relax the assumptions commonly made in the literature
(such as frame based RT system, single task, neglecting energy
and temperature independent leakage power consumption) of
TCDPM and to apply it on generic RT task model under
dynamic priorities. This work has shown the proof of the
concept with the help of the case study on DVFS algorithms of
the literature. In future, it is intended to look into the efficient
ways to find the values of To and T

max

against Uavail. It will
be interesting to explore the optimal method to achieve such
values. This algorithm will be extended to multicore platform
implementing RT systems.

REFERENCES

[1] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez,
“Reducing power in high-performance microprocessors,” in 36th DAC,
june 1998, pp. 732 –737.

[2] J. Kong, S. W. Chung, and K. Skadron, “Recent thermal management
techniques for microprocessors,” Comput. Surveys, vol. 44, no. 3, Jun
2012.

[3] N. Bansal, T. Kimbrel, and K. Pruhs, “Speed scaling to manage energy
and temperature,” J. ACM, vol. 54, no. 1, pp. 3:1–3:39, Mar 2007.

[4] J.-J. Chen, S. Wang, and L. Thiele, “Proactive speed scheduling for
real-time tasks under thermal constraints,” in 15th RTAS, 2009.

[5] V. Chaturvedi, H. Huang, and G. Quan, “Leakage aware scheduling
on maximum temperature minimization for periodic hard real-time
systems,” in 10th CIT, July,2010, pp. 1802 –1809.

[6] G. Quan and V. Chaturvedi, “Feasibility analysis for temperature con-
straint hard rt periodic tasks,” Trans. Industrial Informatics, 2010.

[7] H. Huang and G. Quan, “Leakage aware energy minimization for
real-time systems under the maximum temperature constraint,” in 48th
DATE, 2011, pp. 479–484.

[8] W. Liao, L. He, and K. Lepak, “Temperature and supply voltage aware
performance and power modeling at microarchitecture level,” Trans.
CAD ICAS, vol. 24, no. 7, pp. 1042 – 1053, july 2005.

[9] L. Yuan, S. Leventhal, and G. Qu, “Temperature-aware leakage mini-
mization technique for real-time systems,” in ICCAD, 2006.

[10] C.-Y. Yang, J.-J. Chen, L. Thiele, and T.-W. Kuo, “Energy-efficient
real-time task scheduling with temperature-dependent leakage,” in 47th
DATE, 2010, pp. 9–14.

[11] M. A. Awan and S. M. Petters, “Applying idealised dvfs algorithms to
thermally constrained dpm,” CISTER-TR-130601, 2013, https://www.
cister.isep.ipp.pt/people/Muhammad%2BAli%2BAwan/publications/.

[12] D. C. Snowdon, S. M. Petters, and G. Heiser, “Accurate on-line
prediction of processor and memory energy usage under voltage scaling,”
in 7th EMSOFT, Salzburg, Austria, Oct 2007, pp. 84–93.

[13] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for low-
power embedded operating systems,” in 18th SOSP, Oct 2001.




