

Mixed-Criticality Systems with Partial
Lockdown and Cache Reclamation Upon Mode
Change

Conference Paper

CISTER-TR-170507

2017/06/27

Konstantinos Bletsas

Muhammad Ali Awan

Pedro Souto

Benny Åkesson

Eduardo Tovar

Conference Paper CISTER-TR-170507 Mixed-Criticality Systems with Partial Lockdown and Cache ...

© CISTER Research Center
www.cister.isep.ipp.pt

1

Mixed-Criticality Systems with Partial Lockdown and Cache Reclamation Upon
Mode Change

Konstantinos Bletsas, Muhammad Ali Awan, Pedro Souto, Benny Åkesson, Eduardo Tovar

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: ksbs@isep.ipp.pt, muaan@isep.ipp.pt, pfs@fe.up.pt, kbake@isep.ipp.pt, emt@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract
In mixed-criticality multicore systems, the appropriate degree of isolation between applications of different
criticalities is a primary objective. However, efficient utilization of the platform 19s processing capacity and other
resources is still desirable and important. In recent work, we, therefore, proposed an approach that reclaims
cache resources assigned to low-criticality tasks when these are dispensed with, in the event of a system mode
change. The reclaimed cache resources are reassigned from the lower-criticality tasks to the remaining higher-
criticality tasks to improve performance. The per-task cache partitions can either be configured to hold frequently
accessed (1chot 1d) pages, locked in place, or they can be used dynamically, with cache lines moved in and out.
The first option simplifies WCET analysis while the second option simplifies the act of cache reconfiguration at
runtime.Meanwhile, the performance implications of the two options are not immediately obvious. Therefore, in
this work-in-progress, we explore an arrangement that combines both approaches, in order to achieve the best
tradeoff between efficient analysis, low reconfiguration overheads and good schedulability Simple per task cache
partitions (without page locking) are to be used for the portion of the cache that is subject to reclamation. At mode
switch, the high-criticality tasks keep the pages they had locked in the cache and get additional partitions, out of
reclaimed cache, to bring other pages in and out as needed.

Mixed-Criticality Systems with Partial Lockdown

and Cache Reclamation Upon Mode Change

Konstantinos Bletsas∗†, Muhammad Ali Awan∗†, Pedro Souto‡∗, Benny Akesson∗†, Eduardo Tovar∗†

∗CISTER Research Centre, Porto, Portugal
†ISEP, Polytechnic Institute of Porto, Portugal

{muaan, ksbs, kbake, emt}@isep.ipp.pt
‡ University of Porto, Faculty of Engineering, Portugal

pfs@fe.up.pt

Abstract—In mixed-criticality multicore systems, the appro-
priate degree of isolation between applications of different
criticalities is a primary objective. However, efficient utilisation of
the platform’s processing capacity and other resources is still de-
sirable and important. In recent work, we therefore proposed an
approach that reclaims cache resources assigned to low-criticality
tasks when these are dispensed with, in the event of a system
mode change. The reclaimed cache resources are reassigned from
the lower-criticality tasks to the remaining higher-criticality tasks
to improve performance. The per-task cache partitions can either
be configured to hold frequently accessed (“hot”) pages, locked
in place, or they can be used dynamically, with cache lines moved
in and out. The first option simplifies WCET analysis while the
second option simplifies the act of cache reconfiguration at run-
time. Meanwhile the performance implications of the two options
are not immediately obvious. Therefore, in this work-in-progress,
we explore an arrangement that combines both approaches, in
order to achieve the best tradeoff between efficient analysis, low
reconfiguration overheads and good schedulability Simple per-
task cache partitions (without page locking) are to be used for
the portion of the cache that is subject to reclamation. At mode
switch, the high-criticality tasks keep the pages they had locked
in the cache and get additional partitions, out of reclaimed cache,
to bring other pages in and out as needed.

I. APPLICATION DOMAIN AND CHALLENGE

Real-time embedded systems in different domains (au-

tomotive, avionics, aerospace) host computational tasks of

different criticalities. Lower-criticality tasks must not interfere

unpredictably with higher-criticality tasks at run-time, because

a deadline miss by a high-criticality task can be disastrous.

Conversely, rigid prioritisation by criticality and/or using the

same development processes and worst-case execution time

(WCET) estimation techniques for lower-criticality software as

for high-criticality software is inefficient in terms of platform

utilisation and engineering cost. Such issues are exacerbated

with the move to multicores. Therefore, the research commu-

nity has focused on assembling a toolset of scheduling models

and techniques for (i) efficient use of processing capacity and

(ii) schedulability guarantees for all tasks under typical condi-

tions subject to (iii) ensured schedulability of high-criticality

tasks in all cases. Most works [1] build on Vestal’s model [2],

as refined by Baruah and Burns [3]. This versatile model

views the system operation as different modes, whereby only

tasks of a certain criticality or higher execute; additionally,

different WCETs estimates are assumed for the same task in

each mode that it can be a part of, with corresponding degrees

of confidence. In the simpler case of just two criticality levels

(and two modes, L and H), whenever a task overruns its WCET

estimate for the L-mode, the system switches to the H-mode,

and lower-criticality tasks are dispensed with.

II. MOTIVATION

This line of work is motivated by our view that when de-

signing scheduling arrangements for mixed-criticality systems,

(i) the consideration of more detailed architectural models and

(ii) the leveraging of their properties can provide both greater

confidence in the analysis and improved schedulability. We

also noticed, that just as the classic Vestal model dynamically

adjusts the allocation of one resource (the processor) whenever

a mode change occurs, the same principle could be put to

use for other resource types. So, in our latest work [4], we

proposed an arrangement whereby the shared last-level cache

on a multicore is partitioned among the tasks and, at mode

change, the cache resources assigned to the lower-criticality

tasks are reallocated to the remaining higher-criticality tasks,

when the former ones are discarded. The principle leveraged

is that a task’s WCET time (and estimates of it) is a function

of the cache resources available to the task. However, this

principle can be exploited in different ways.

In particular, we assumed that each task will lock its most-

frequently accessed (“hottest”) pages into its partition, using

Coloured Lockdown [5]. At mode change, the portion of the

cache reclaimed from the lower-criticality tasks would be

reused for bringing in and locking in additional hot pages of

the high-criticality tasks. This was the “default” arrangement

but we also acknowledged the possibility of instead entirely

foregoing any page locking in the cache and just using per-

task partitions, with their contents (cache lines) dynamically

updated at run-time, as lines are brought in and evicted. One

way or the other, at mode change, the high-criticality tasks

receive more cache.

The main reason for considering the alternative arrangement

(without locking) is that of potentially substantial latencies

associated with unlocking pages of L-tasks at mode change,

bringing in pages by H-tasks in their place and locking them

in place.

Refraining from the use of in-cache page locking would

largely solve the problem of high cache reconfiguration la-

tencies at mode change, in practice. However there are other

analysis and performance implications from choosing this

approach.

Cache-aware static WCET analysis of a task using a dedi-

cated cache partition without any locking is computationally

more complex and necessitates keeping track of a larger state,

compared to the case of when the cache partition holds locked

memory pages. To the extent that this necessitates simplifying

(pessimistic) assumptions for the sake of tractability, it may

add pessimism to the WCET estimation. We expect that, in

some cases, such pessimism may result in higher WCET

estimates for a task whose cache partition of a given size is

used dynamically than if page locking were used – whatever

the actual (but, ultimately, unknowable) exact WCETs are.

Static WCET analysis techniques are to be used for WCET

estimates used in the high-criticality mode.

Conversely, for the low-criticality mode WCET estimates, a

measurement-based approach could be used, perhaps in con-

junction with statistical analysis and Extreme Value Theory,

to estimate excedance probabilities for a given execution time.

We conjecture that measurement-based estimates of WCET

could be lower, more often than not, when a task’s cache

partition is used dynamically than in the case of holding locked

pages.

These conjectures would need to be experimentally tested,

with benchmarks on real hardware but in any case, the mode

of use of the cache partition has implications on the WCET

estimates derivable for the task. Therefore, we seek to identify

how to most appropriately combine the two approaches, for the

best performance in terms of mixed-criticality schedulability.

III. PROBLEM STATEMENT

A. The proposed “Partial-Lockdown” arrangement

Consider a mixed-criticality multicore system where the

shared last-level cache is partitioned among the tasks. At mode

change, the cache portions originally assigned to the L-tasks

are redistributed to the remaining H-tasks, as described earlier.

In order to keep the latency of this cache reconfiguration low,

we therefore mandate, in this work, that

• The cache partitions of the L-tasks be used dynamically

in L-mode, to bring lines in an out, as needed.

• Upon being reassigned to the H-tasks, these same cache

lines are to be again used dynamically, by the H-tasks.

This avoids the high latencies from unlocking/re-

populating/locking anew every line of such a reclaimed

partition. However, for the H-tasks, it would still be practical

to arrange for some hot pages to be locked in place in their

cache partitions at startup, throughout the L-mode, and even

after the switch to H-mode.

Figure 1 illustrates the Partial-Lockdown arrangement we

propose. In the L-mode, the H-task cache partitions (τ1 to τ4),
shown in dark blue) may use some (or all) of the available

lines to hold some of their hot pages (locked in place); the

Fig. 1: Illustration of the Partial-Lockdown hybrid cache

partitioning arrangement in the two modes.

rest of an H-task’s partition may be employed dynamically.

As for the L-tasks (τ5 to τ9), their entire partitions (shown

in light green) are used dynamically. In the figure, the bigger

rectangles with the pin symbol in the corner stand for locked

pages; the smaller narrower rectangles stand for parts of the

cache whose lines are populated and replaced dynamically.

In the H-mode, the H-task partitions are enlarged with the

reclaimed portions (shaded in lighter blue) of the cache that

were previously part of the L-tasks’ partitions. Those parts of

the cache will also be used dynamically by the H-tasks.

It follows that a task’s WCET (estimate) is now a function

of two variables:

• The number σ of the task’s pages (selected in order of

hotness, from a predetermined ranking) that are locked

in its partition.

• The size π of the part of the task’s partition1 that is

available for dynamic use (i.e., with lines populated and

evicted at run-time).

This is a generalisation of what held, e.g., in [6], where the

“progressive lockdown curve” indicated the WCET estimate as

1For symmetry and apples-to-apples comparison, instead of bytes or lines,
we also expect the size π to be specified in terms of how many memory pages
would fit in there.

a non-increasing function of just one parameter (the number

of locked pages). 2

B. The objective

Assuming partitioned EDF scheduling, with per-task L-

mode deadline-scaling, as conceived by Ekberg and Yi [8],

how to identify what the appropriate values for σ and π are,

for each task, in each of the two modes, in order to have a

schedulable system (if at all possible)?

IV. PROPOSED APPROACH AND PRELIMINARY RESULTS

To solve the problem, we need (i) WCET estimation

techniques for creating the parametric 3-dimensional WCET

curves, as a function of σ and π, for each task; (ii) appropriate

schedulability analysis, to which these WCET estimates will

be fed; and (iii) good heuristics for selecting σ and π, for each

task and mode.

For parametric H-WCET estimation, we will be considering

cache-aware static WCET analysis approaches. Accesses to

locked pages will be always-hit upon reuse. Some potentially

useful principles for parametric WCET characterisation have

been identified in [9]. For the parametric L-WCETs, we

could use measurements in conjunction with the application

of statistical analysis and Extreme Value Theory, as in our

work on WCET estimation for GPU kernels [10].

In terms of schedulability analysis, we can largely piggy-

back on the existing analysis from our recent work [4]. It

requires (at most) three WCET estimates per task τi:

• CL

i
(σi, π

L

i
), the WCET estimate of τi for the L-mode,

assuming σi locked pages and size πL

i
for its dynamic

cache.

• CH

i
(σi, π

L

i
), the WCET estimate of τi for the H-mode,

assuming σi locked pages and size πL

i
for its dynamic

cache. This is only defined for H-tasks and pertains to a

carry-over job (i.e., released before the mode change but

completed after it).

• CH

i
(σi, π

H

i
), the WCET estimate of τi for the H-mode,

assuming σi locked pages and size πH

i
≥ πL

i
for its

dynamic cache. This is, again, only defined for H-tasks

and characterises jobs released after the mode change.

However, to make it more realistic, we intend to extend that

analysis by incorporating the cache reconfiguration latencies,

occuring at the mode change. Those latencies would also

depend on the variables σi, π
L

i
and πH

i
that specify the cache

partitioning arrangement in the two modes.

As for suitable heuristics for setting σi, πL

i
and (where

applicable) πH

i
for each task, we do not yet have any strong

intuition, but we have some ideas about how to get there.

V. ENVISIONED SOLUTION

We intend to try various approaches and see what works

best or learn from them to design an even better heuristic.

2The WCET is not always non-increasing with the size of task’s dynami-
cally used partition but a non-increasing over-approximation typically entails
little loss of precision [7].

Mirroring our approach in [4] we could identify a design

metric that correlates with schedulability (such as, for exam-

ple, the system utilisation) and then optimise for that. For

example, we could encode the parametric WCET curves as

variables and use an ILP solver to come up with an assignment

that minimises the utilisation in the L-mode. Subsequently, we

could do the same for the H-mode, subject to the outputs for

the L-mode. Given though that the parametric characterisation

of the WCET uses two parameters, σ and π, care should be

taken to keep this tractable. We expect that this may imply a

more coarse-grained partitioning of the cache than in [4].

Alternatively, we could use a meta-heuristic, like simulated

annealing or genetic algorithms, to explore the design space.

To the extent that we can identify patterns of good solutions

from the output of the ILP or the metaheuristic, we could also

come up with our own rules-of-thumb and express them as

heuristics. Another thing to consider is to over-approximate

the (probably, very irregular) three-dimensional parametric

WCET curves with more regular ones, that can be described

by relatively simple (e.g., low-order polynomial) equations, in

order to leverage their mathematical properties and formulate

conceptually clear heuristics.

This work fits into our vision of extending the Vestal model

with reclamation of multiple resources types, at mode change.

ACKNOWLEDGMENTS

This work was partially supported by National Funds through
FCT/MEC (Portuguese Foundation for Science and Technology)
and co-financed by ERDF (European Regional Development Fund)
under the PT2020 Partnership, within the CISTER Research Unit
(CEC/04234); also by by FCT/MEC and the EU ARTEMIS JU within
project ARTEMIS/0001/2013 – JU grant nr. 621429 (EMC2).

We thank the reviewers of our ECRTS 2017 paper [4], for their

insightful comments.

REFERENCES

[1] A. Burns and R. Davis, “Mixed criticality systems – a review (9th ed.),”
Dept. of Computer Science, University of York, Tech. Rep., Jan. 2017.

[2] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in Proc. RTSS, 2007, pp.
239–243.

[3] S. Baruah and A. Burns, “Implementing mixed criticality systems in
Ada,” in Proc. 16th Ada-Europe Conf., 2011, pp. 174–188.

[4] M. A. Awan, K. Bletsas, P. F. Souto, B. Åkesson, and E. Tovar, “Mixed-
criticality scheduling with dynamic redistribution of shared cache,” in
Proc. 29th ECRTS, 2017.

[5] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pel-
lizzoni, “Real-time cache management framework for multi-core archi-
tectures,” in Proc. 19th RTAS, 2013, pp. 45–54.

[6] R. Mancuso, R. Pellizzoni, M. Caccamo, L. Sha, and H. Yun,
“WCET(m) estimation in multi-core systems using single core equiv-
alence,” in Proc. 27th ECRTS, 2015, pp. 174–183.

[7] S. Altmeyer, R. Douma, W. Lunniss, and R. I. Davis, “On the effec-
tiveness of cache partitioning in hard real-time systems,” Real-Time
Systems, vol. 52, no. 5, p. 598643, 2016.

[8] P. Ekberg and W. Yi, “Bounding and shaping the demand of mixed-
criticality sporadic tasks,” in Proc. 24th ECRTS, 2012, pp. 135–144.

[9] J. Reineke and J. Doerfert, “Architecture-parametric timing analysis,”
in 20th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2014, pp. 189–200.

[10] K. Berezovskyi, F. Guet, L. Santinelli, K. Bletsas, and E. Tovar,
“Measurement-based probabilistic timing analysis for graphics proces-
sor units,” in Proceedings of the 29th International Conference on
Architecture of Computing Systems (ARCS), 2016.

