

Mixed-criticality scheduling with memory
regulation

Conference Paper

CISTER-TR-160604

Muhammed Ali Awan

Konstantinos Bletsas

Pedro Souto

Benny Akesson

Eduardo Tovar

Jibran Ali

Conference Paper CISTER-TR-160604 Mixed-criticality scheduling with memory regulation

© CISTER Research Center
www.cister.isep.ipp.pt

1

Mixed-criticality scheduling with memory regulation

Muhammed Ali Awan, Konstantinos Bletsas, Pedro Souto, Benny Akesson, Eduardo Tovar, Jibran Ali

CISTER Research Center

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

http://www.cister.isep.ipp.pt

Abstract

The state-of-the-art models and schedulability analysis for mixed-criticality multicore systems overlook low-
levelaspects of the system. To improve their credibility, we therefore incorprate, in this work, the effects of delays
from memory contention on a shared bus. Specifically, to that end, we adopt the predictable memory reservation
mechanism proposed by the Single Core Equivalence framework. Additionally, we explore how the reclamation, for
higher-criticality tasks, of cache resources allocated to lower-criticality tasks, whenever there is a criticality (mode)
change in the system, can improve schedulability.

Mixed-criticality scheduling with memory regulation

Muhammed Ali Awan∗, Konstantinos Bletsas∗, Pedro Souto†∗, Benny Akesson∗, Eduardo Tovar∗, Jibran Ali∗

∗CISTER/INESC-TEC, ISEP/IPP, Portugal †Faculty of Engineering, University of Porto, Portugal

Abstract—The state-of-the-art models and schedulability anal-
ysis for mixed-criticality multicore systems overlook low-level
aspects of the system. To improve their credibility, we therefore
incorprate, in this work, the effects of delays from memory
contention on a shared bus. Specifically, to that end, we adopt the
predictable memory reservation mechanism proposed by the Sin-
gle Core Equivalence framework. Additionally, we explore how
the reclamation, for higher-criticality tasks, of cache resources
allocated to lower-criticality tasks, whenever there is a criticality
(mode) change in the system, can improve schedulability.

I. INTRODUCTION

On mixed-criticality scheduling: The integration of func-

tionalities of different criticalities on a multicore necessitates

some scheduling isolation between criticality levels. The most

notable analytical model for those problems, by Vestal [1],

in its basic form, assumes two criticality levels, high and low.

High-criticality tasks (H-tasks) have two different estimates of

their worst-case execution time (WCET): The L-WCET which

is de facto deemed safe, and the H-WCET, which is provably

safe and possibly much greater. For low-criticality tasks, only

the L-WCET is defined. There are two modes of operation.

The system boots and remains in low-criticality mode (L-

mode) as long as no job (instance of a task) executes for longer

than its L-WCET. However, if any job exceeds its L-WCET

then the system immediately switches into high-criticality

mode (H-mode) and drops all L-tasks. It is pessimistically

assumed that in H-mode all jobs by H-tasks (including any

existing jobs at the time of the mode switch) may execute

for up to their H-WCET. Under these assumptions, it must be

provable offline that (i) no task misses a deadline in L-mode

and (ii) no H-task misses a deadline in H-mode.

Various scheduling approaches for this model exist. Below,

we only discuss works employing deadline-scaling. This tech-

nique originated with the EDF-VD (Earliest Deadline First -

with Virtual Deadlines) scheduling algorithm [2] for implicit-

deadline mixed-criticality sporadic task sets. EDF-VD uses

standard EDF scheduling rules but instead of reporting the real

task deadlines to the scheduler, for the purpose of scheduling

decisions, it reports shorter deadlines (if needed) for H-tasks

during L-mode operation. In doing so, it prioritises H-tasks

more than conventional EDF would, over parts of the schedule.

This allows H-tasks to be sufficiently ahead of schedule such

that they can catch up with their true deadlines if any task

overruns its L-WCET. After the switch to H-mode, the true H-

task deadlines are used for scheduling and L-tasks are dropped.

This work was partially supported by National Funds through FCT/MEC (Portuguese Foundation for Science and

Technology) and co-financed by ERDF (European Regional Development Fund) under the PT2020 Partnership, within the

CISTER Research Unit (CEC/04234); also by by FCT/MEC and the EU ARTEMIS JU within project ARTEMIS/0001/2013

- JU grant nr. 621429 (EMC2).

EDF-VD proportionately scales all H-task deadlines by a

common factor. Ekberg and Yi improve on this by using

distinct scaling factors for different H-tasks and a more precise

demand bound function (dbf) based schedulability test [3].

Access isolation for caches, memory buses and DRAMs: A

prominent approach for making multicores more predictable

regarding sources of contention is Single-Core Equivalence

(SCE) [4]. Under SCE, fixed-priority scheduling is used and

MemGuard [5], a periodic software mechanism, regulates

memory accesses from different cores. Over a fixed interval

called the regulation period, all cores get an equal “slice” of

the overall memory bandwidth. This assumes that all memory

accesses go through the same memory controller. MemGuard

stalls any core that exceeds its share, until the start of the next

regulation period. The analysis must consider such regulation

stalls in addition to conventional contention stalls, caused by

contention between different cores at the DRAM controller.

SCE’s stall-aware schedulability analysis [6], characterises

each task by its WCET in isolation and its worst-case number

of residual memory accesses. These correspond to the WCET

when no other task is present in the system and an upper

bound on the number of memory accesses by the task that go

all the way to DRAM. It is also assumed that each task has its

most frequently accessed pages locked in place in the shared

last-level cache by the Colored Lockdown [7] mechanism.

This arrangement promotes determinism by eliminating inter-

task interference in the cache and Mancuso et al. use this

information to more tightly characterise the WCET in isolation

and the number of residual memory accesses. Both quantities

decrease as the number of locked pages increases [6]. Using

these derived attributes for each task, Mancuso et al. then

calculate contention stall and regulation stall terms for the

tasks that add to their response time, assuming round-robin

memory arbitration. Their analysis also assumes DRAM Bank

Partitioning via the OS-level memory allocator PALLOC [8].

Contribution #1: We combine Ekberg and Yi’s work and

SCE. The rationale is that the former overlooks the effects of

contention for platform resources. Conversely, SCE provides a

form of scheduling isolation over those resources that is handy

for safety-critical applications, but is criticality-oblivious.

Contribution #2: We identify and leverage an opportunity

for improved schedulability and resource efficiency, afforded

by such a unified approach. Consider a system conforming

to the SCE principles (including the cache partitioning) and

scheduled by a variant of Ekberg and Yi’s algorithm. When a

mode change occurs, L-tasks are dropped, which means that

their cache partitions are no longer of any use. We therefore

assign them to the remaining H-tasks, after the mode change,

to accommodate additional pages by the latter. This re-uses

resources that would otherwise be idle and lowers the H-

WCETs of jobs released after the mode change, leading to bet-

ter scheduling performance. The challenge then is to develop

schedulability analysis that safely quantifies the improvement.

II. SYSTEM MODEL AND ASSUMPTIONS

We assume m identical physical cores (π1 .. πm) accessing

DRAM via a shared memory controller. A core can have many

outstanding memory requests. Prefetchers/speculative units are

disabled. Our assumptions are inline with SCE [4]:

• The last-level cache is shared among the cores. The Colored

Lockdown mechanism [7] is used to mitigate the intra-

/inter-core interference. It allows a task to lock its most

frequently used pages in the last-level cache, providing a

deterministic approach to compute the residual number of

memory accesses and WCET as a function of the number

of locked pages.

• DRAM-bank partitioning (e.g., using PALLOC [8]) is not

strictly required. However, lower and upper bounds on the

memory access time of a single transaction (Lmin and

Lmax, respectively) are needed as inputs. These can be

computed as in [6]. The DRAM controller is round-robin.

• The memory bandwidth is managed via the MemGuard [5]

OS-level regulation mechanism. It uses the the worst-case

memory access time Lmax to determine the maximum

number of memory accesses, K, during a regulation period

P , as K
def
= P

Lmax

. The memory bandwidth of K mem-

ory accesses is distributed equally among different cores,

i.e. Ki
def
= K

m
requests per regulation period for core πi.

This budget is allocated at the start of the regulation period.

The execution of a core is stalled until the end of current

regulation period as soon as it exhausts its per-regulation-

period budget of Ki memory requests.

Each task τi has a minimum inter-arrival time Ti, a relative

deadline Di (with Di ≤ Ti) and a criticality level κi ∈ {L,H}
(low or high, respectively). The subsets of low-criticality and

high-criticality tasks are defined as τ(L)
def
= {τi ∈ τ |κi ∈ L}

and τ(H)
def
= {τi ∈ τ |κi ∈ H}. However, since (i) the (actual)

WCET of a task depends on its number of pages (selected in

order of access frequency) locked in place in the last-level

cache and (ii) different estimates of that WCET (derived via

different techniques), are to be used for the L-mode and H-

mode, we extend Vestal’s model by assuming that for each

task, a different L-WCET/H-WCET pair can be available as

input, for each possible value of the number of locked “hot”

pages. For example CL
i (6) denotes the L-WCET of τi when

this task is configured with its 6 “hottest” pages locked in the

cache. In detail:

The Colored Lockdown approach determines the most fre-

quently accessed (hot) pages for each task through the profiling

framework in [7]. The WCET of a task in isolation is computed

as a function of the number of hot pages locked in the last-

level cache and represented as a progressive lockdown curve

(WCET vs locked pages in last-level cache). The increase in

number of locked pages in the last-level cache decreases the

last-level cache misses and, consequently, also the WCET of

the task. The approach proposed by Mancuso et al. [7] is a

measurement-based technique, so its outputs are not provably

safe, but they can serve as L-WCETs. However, some static

analysis tools comprehensively cover all possible control flows

(or even some infeasible paths) in a task, and these can be used

for estimating the H-WCETs.

By safely modelling accesses to the hot pages locked-in by

Colored Lockdown as ”always hit”, the static analysis tool

can derive tighter WCET estimates than it would without this

knowledge – and the improvement will be greater the more

pages are locked in the cache. Hence, a progressive lockdown

curve similarly exists for the H-WCET CH
i (·).

Similarly to the WCETs, we extend the use of techniques of

different conservativeness for estimating the residual number

of memory accesses (last-level cache misses) of each task in

L-mode and H-mode. Similar to WCET estimates, these values

are functions of locked pages in the last-level cache (µL
i (·),

µH
i (·)) that decrease with the number of locked pages in the

last-level cache. The utilisation of a task in L-mode (H-mode)

of operation is defined as UL
i (σ)

def
=

CL

i
(σ)

Ti

(resp., UH
i (σ)

def
=

CH

i
(σ)

Ti

), for σ locked pages in the last-level cache. We assume

fully partitioned scheduling. i.e, no task ever migrates.

III. CACHE SCALING FOR MIXED CRITICALITY SYSTEM

A. Memory regulation stall

The MemGuard regulation mechanism bounds the number

of DRAM accesses by each core. A core can be stalled for two

main reasons. MemGuard allocates a memory access budget to

each core per regulation period P . A core exceeding its budget

is stalled until the start of the next regulation period; this is

a regulation stall. As all cores share the DRAM controller,

any delay in serving the memory accesses of a core due to

accesses by other cores is a contention stall.

Mancuso et al [6] assume an even allocation of memory

access budgets among cores and round-robin memory bus

sharing. With these assumptions, the worst-case regulation-

induced stall is computed for a given task τi performing µi(·)
residual memory accesses. It is shown that the regulation stall

always dominates the contention stall in a given regulation

period P . The duration of such a stall is (P −KiLmin). The

contention stall for any number of memory accesses Kq ≤ Ki

within a given regulation period P is equal to (m−1)KqLmax

under round robin arbitration. It has been shown [6, Th. 1])

that the stall due to µi(·) memory requests issued by a task

τi can be computed as:

stall(τi, c, σ) =

⌈

µc
i (σ)

Ki

⌉

(P −KiLmin)

+ (m− 1)(µc
i (σ))− (

⌈

µc
i (σ)

Ki

⌉

− 1)Ki)Lmax

(1)

where, c ∈ {L,H} and σ is the number of locked pages.

The L-WCET and H-WCET of a task τi with interference

from other cores on the shared bus with σ locked pages in the

last-level cache are defined as follows.

C̄L
i (σ)

def
= CL

i (σ) + stall(τi, L, σ) (2)

C̄H
i (σ)

def
= CH

i (σ) + stall(τi, H, σ) (3)

These values are computed using Equations (1)–(3), ∀σ ∈
{0, . . . , σT } on the progressive lockdown curves derived for

the L-mode and H-mode of operation.

B. Last-level cache allocation

Let σL
i and σH

i be the number of pages by τi in the last-

level cache in the two modes and σT be the total number of

pages that fit in that cache. A good heuristic could be to set the

σL
i values such that the total task set utilisation in L-mode is

minimised. Intuitively, lower utilisation correlates with better

schedulability. An optimal way to solve this heuristic would

be the following Integer Linear Programming model (ILP):

Mimimise
∑

∀τi∈τ

C̄L
i (σ

L
i)

Ti

, subject to
∑

∀τi∈τ

σL
i ≤ σT (4)

Next, without backtracking, we determine the σH
i values.

Mimimise
∑

∀τi∈τ(H)

C̄H
i (σL

i)

Ti

(5)

s.t. σH
i ≥ σL

i , ∀τi ∈ τ(H) and
∑

∀τi∈τ(H)

σH
i ≤ σT (6)

The constraint in Equation (4) ensures that the total number

of allocated pages does not exceed the available capacity of

the cache. Pages abandoned by the L-tasks in the H-mode are

“recycled” for H-tasks by the constraints in Equation (6). One

counter-intuitive property of our proposed heuristics is that

there may be a scenario in which the C̄H
i (σH

i) ≤ C̄L
i (σ

L
i).

This could happen if the effects of the reduction of residual

memory accesses for H-tasks in H-mode, from the additional

pages, offset the pessimism from using a more conserva-

tive estimation technique for H-WCETs than for L-WCETs.

Therefore, unlike the “classic” Vestal’s model, we may have

C̄H
i (σH

i) ≤ C̄L
i (σ

L
i) and better schedulability in the H-mode

when compared to Ekberg and Yi’s analysis.

C. Schedulability analysis

In the last step, we analyse the intra-core interference that

a task may have due to memory accesses by other tasks

running on the same core and integrate it to the schedualability

analysis. In this paper, we have adapted Ekberg and Yi’s

schedulability analysis [3] to our system model. Ekberg and

Yi proposed a demand-bound-function (dbf) based analysis

that assumes tasks are scheduled with Earliest Deadline First

(EDF). The deadlines of H-tasks are shortened in L-mode, so

that they can stay “ahead of schedule” and perform a smooth

transition from L- to H-mode of operation. In our approach, we

currently perform no deadline-scaling but get a similar effect

by allocating extra pages to the H-tasks in the last-level cache

in H-mode1. Since Ekberg and Yi’s technique is still usable

as a schedulability test when the scaling factors are given as

input, we use a scaling factor of 1 (no scaling) for all tasks. As

in that work, we check for schedulability in the L-mode with

a dbf-based [9] test. These derivations do not consider the

fact that a task may be preempted by other tasks allocated to

the same core. With the memory regulation employed, each

preempting job in the worst-case may exhaust the allocated

memory access budget within a given period P and hence,

may be causing the core to stall upon the resumption of the

preempted job. A job cannot preempt another job more than

once. Therefore, one approach is to include the preemption

overheads into the budget of preempting task.

Similar considerations apply to the adaptation of the test

for cheching the schedulability in H-mode. Note though that

any H-jobs caught up in the mode change may execute for

up to C̄H
i (σL

i) time units, since only subsequent H-jobs will

execute with more hot pages (σH
i) in the cache.

IV. CONCLUSIONS

Using low-level information about the hardware platform

and access regulation mechanisms, has potential to improve

schedulability and confidence in the analysis of mixed-

criticality systems. This work-in-progress paper is one step in

that direction. Currently, we are developing a mixed criticality

schedulability test that incorporates intra-core interference

while ensuring the schedulability in L-mode, H-mode and the

transition phase. Next, we will develop a testbed that incor-

porates these details and provides a platform to compare its

performance with state-of-the-art mixed criticality scheduling

algorithms. We hope this practical approach will outperform

the existing state-of-the-art solutions.

REFERENCES

[1] S. Vestal, “Preemptive scheduling of multi-criticality systems with vary-
ing degrees of execution time assurance,” in 28th RTSS, 2007.

[2] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
S. van der Ster, and L. Stougie, “The preemptive uniprocessor scheduling
of mixed-criticality implicit-deadline sporadic task systems,” in 24th
ECRTS, July 2012, pp. 145–154.

[3] P. Ekberg and W. Yi, “Bounding and shaping the demand of mixed-
criticality sporadic tasks,” in 24th ECRTS, July 2012, pp. 135–144.

[4] L. Sha, M. Caccamo, R. Mancuso, J.-E. Kim, M.-K. Yoon, R. Pellizzoni,
H. Yun, R. Kegley, D. Perlman, G. Arundale et al., “Single core equivalent
virtual machines for hard realtime computing on multicore processors,”
Univ. of Illinois at Urbana Champaign, Tech. Rep., 2014.

[5] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memory
bandwidth management for efficient performance isolation in multi-core
platforms,” Trans. Computers, vol. 65, no. 2, pp. 562–576, Feb 2016.

[6] R. Mancuso, R. Pellizzoni, M. Caccamo, L. Sha, and H. Yun, “WCET(m)
estimation in multi-core systems using single core equivalence,” in 27th
ECRTS, July 2015, pp. 174–183.

[7] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pelliz-
zoni, “Real-time cache management framework for multi-core architec-
tures,” in 19th RTAS, 2013, pp. 45–54.

[8] H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni, “PALLOC: DRAM
bank-aware memory allocator for performance isolation on multicore
platforms,” in 20th RTAS, April 2014, pp. 155–166.

[9] S. K. Baruah, L. E. Rosier, and R. R. Howell, “Algorithms and complexity
concerning the preemptive scheduling of periodic, real-time tasks on one
processor,” J. Real–Time Syst., 1990.

1In time, we intend to also incorporate (and speed up) the deadline-scaling.

