

Maximizing Contention-Free Executions in
Multiprocessor Scheduling

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-110401

Version:

Date: 04-14-2011

Jinkyu Lee

Arvind Easwaran

Insik Shin

Technical Report HURRAY-TR-110401 Maximizing Contention-Free Executions in Multiprocessor Scheduling

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Maximizing Contention-Free Executions in Multiprocessor Scheduling
Jinkyu Lee, Arvind Easwaran, Insik Shin

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract
It is widely assumed that scheduling real-time tasks becomes more difficult as their deadlines get shorter. With
deadlines shorter, however, tasks potentially compete less with each other for processors, and this could produce more
contention-free slots at which the number of competing tasks is smaller than or equal to the number of available
processors. This paper presents a policy (called CF policy) that utilizes such contention-free slots effectively. This
policy can be employed by any work-conserving, preemptive scheduling algorithm, and we show that any algorithm
extended with this policy dominates the original algorithm in terms of schedulability.We also present improved
schedulability tests for algorithms that employ this policy, based on the observation that interference from tasks is
reduced when their executions are postponed to contention-free slots. Finally, using the properties of the CF policy, we
derive a counter-intuitive claim that shortening of task deadlines can help improve schedulability of task systems. We
present heuristics that effectively reduce task deadlines for better scheduability without performing any exhaustive
search.

Maximizing Contention-Free Executions in Multiprocessor Scheduling

Jinkyu Lee∗, Arvind Easwaran† and Insik Shin∗‡

∗Dept. of Computer Science, KAIST, South Korea
†Cister Research Unit, Polytechnic Institute of Porto, Portugal

jinkyu@cps.kaist.ac.kr; aen@isep.ipp.pt; insik.shin@cs.kaist.ac.kr

Abstract—It is widely assumed that scheduling real-time
tasks becomes more difficult as their deadlines get shorter.
With deadlines shorter, however, tasks potentially compete less
with each other for processors, and this could produce more
contention-free slots at which the number of competing tasks
is smaller than or equal to the number of available processors.
This paper presents a policy (called CF policy) that utilizes such
contention-free slots effectively. This policy can be employed
by any work-conserving, preemptive scheduling algorithm,
and we show that any algorithm extended with this policy
dominates the original algorithm in terms of schedulability. We
also present improved schedulability tests for algorithms that
employ this policy, based on the observation that interference
from tasks is reduced when their executions are postponed to
contention-free slots. Finally, using the properties of the CF
policy, we derive a counter-intuitive claim that shortening of
task deadlines can help improve schedulability of task systems.
We present heuristics that effectively reduce task deadlines for
better scheduability without performing any exhaustive search.

I. INTRODUCTION

With the increasing popularity of multi-core architectures,
real-time multiprocessor scheduling has been receiving a
growing interest in the recent past. Some multiprocessor
studies (e.g., [1], [2], [3]) have focused on adapting exist-
ing uniprocessor scheduling to multiprocessors, and some
others have developed novel scheduling theories specific to
multiprocessors (e.g., [4], [5], [6], [7], [8], [9], [10], [11]).
While real-time scheduling on uniprocessor platforms has
successfully matured over years so that Earliest Deadline
First (EDF) [12] was developed as an optimal scheduler in
this domain, the same cannot be said about scheduling theory
for multiprocessors. In particular, though optimal schedulers
are known for implicit deadline task systems (deadline equal
to task period) [4], no such scheduler has yet been developed
for constrained deadline task systems (deadline no larger
than task period). This entails new scheduling concepts and
methods that can utilize the characteristics of constrained
deadline task systems.

It is intuitive to generally infer that meeting the deadline
of a job gets harder as we make the deadline shorter. This
implies that a constrained deadline task set is generally

†Currently with Honeywell Inc., Minneapolis, USA
‡A corresponding author

 





      

Figure 1. An example of contention-free slots

more difficult to schedule than the corresponding implicit
deadline task set, with the same periods and execution times.
The fact that no optimal scheduler can exist for certain
constrained deadline systems [13], lends further credibility
to this argument. However, a shorter deadline can sometimes
be favorable to schedulability as we will now demonstrate.
Consider a constrained deadline system consisting of tasks
τ1, τ2 and τ3, scheduled on a two processor platform as
shown in Figure 1. In such a system, it is guaranteed that a
task does not compete for processors between the deadline of
any job of the task and the release time of the next job of the
same task. For example, in Figure 1, it can be seen that task
τ1 does not compete for processors in the intervals [t1, t2)
and [t6, t7). If we consider such time slots for all tasks in the
example, we can see that there are at most two competing
tasks in intervals [t1, t2), [t3, t4) and [t5, t8). We call these
time slots contention-free, because the number of competing
tasks is at most the number of available processors. An
interesting property of these slots is that all pending tasks
are guaranteed to be scheduled in them, as long as any work-
conserving algorithm is used. By work-conserving, we mean
an algorithm that always schedules ready tasks if processors
are available.

Using the notion of contention-free slots, we may move
some job executions from contending slots to contention-
free ones, so that we reduce the number of competing
jobs in contending slots. To safely move executions, we
introduce a policy under which a job postpones its remaining
executions to contention-free slots whenever the available
contention-free slots up to its deadline is at least as many
as remaining executions. We call this policy of deferring
executions to contention-free slots as the CF (Contention-

Free) policy. Observe that the CF policy only postpones
those job executions that are guaranteed to be scheduled
before the job deadline by any work-conserving, preemptive
algorithm. Thus, the policy reduces competing jobs by
postponing some of them to contention-free slots, without
imposing any penalties on the postponed jobs. This policy
can be incorporated into any work-conserving, preemptive
base algorithm A, and in this paper we denote such a CF-
based algorithm as A-CF. The CF policy has an important
property that Algorithm A-CF dominates1 its base algorithm
A.

Although just incorporating the CF policy is sufficient
to improve the schedulability of any base algorithm, the
true potential of the policy will only be realized when a
corresponding improvement in the schedulability tests is
achieved. Hence, using the notion of contention-free slots,
we develop an interference reduction technique for the CF
policy, which can be incorporated into existing interference-
based schedulability tests for the base algorithms (e.g.,
[14], [15], [16], [17]). As an example, we introduce a
schedulability test for EDF-CF based on an existing test
for EDF [16], [14], and demonstrate that the proposed test
significantly dominates the existing test.

Performance of the proposed CF policy depends largely
on the number of available contention-free slots. A larger
number implies that more competing jobs can be postponed,
and thus overall schedulability can be improved. One sim-
ple way to increase contention-free slots is to reduce the
deadline of some tasks in the system. Note that reducing a
task deadline is also safe from the point of view of the task’s
original requirements, in that it is more restrictive. Reducing
task deadlines to improve schedulability is very counter-
intuitive however, mainly because of the perceived difficulty
in meeting the shortened deadlines. In this paper we show
that combining deadline reduction with the CF policy can
have a surprisingly positive impact on schedulability. We
introduce novel heuristics to reduce task deadlines, with
an aim to increase the number of contention-free slots and
thereby overall system schedulability. We show through
simulations that a significant number of task systems that
were not schedulable under either EDF or EDF-CF, are
eventually deemed to be schedulable when deadlines of
some tasks are reduced. This deadline reduction technique
not only increases the number of contention-free slots in
constrained deadline systems, but also introduces such slots
in implicit deadline systems of which there were none to
begin with. Thus, by combining deadline reduction with the
CF policy, we are able to improve schedulability even for
implicit deadline systems.

In summary, this paper makes the following contribu-
tions. It proposes a novel concept of the CF policy, which
can be incorporated into any work-conserving, preemptive

1Algorithm X dominates Algorithm Y if any task set schedulable by
Algorithm Y is also schedulable by Algorithm X.

algorithm and has the property that it dominates the base
algorithm in terms of schedulability (Section III). It intro-
duces an interference reduction technique that can improve
interference-based schedulability tests of algorithms, when
they employ the CF policy (Section IV). It also presents
how deadline reduction improves the schedulability of CF-
based algorithms (Section V). Finally, it presents further
improvement on both applicability and performance of the
CF policy (Section VI), and demonstrates the effectiveness
of the CF policy through simulations (Section VII).

II. SYSTEM MODEL

Task model. In this paper we assume a sporadic task
model [18]. In this model, we specify a task τi ∈ T as
(Ti, Ci, Di), where Ti is the minimum separation, Ci is the
worst-case execution time requirement, and Di is the relative
deadline. Further, we assume a constrained deadline task
system, i.e., Ci ≤ Di ≤ Ti for each task τi. A task τi invokes
a series of jobs, each separated from its predecessor by at
least Ti time units. We denote Ji,q as the qth job of τi, and
ri,q and ri,q+Di as the release time and the deadline of Ji,q ,
respectively. We assume that a single job of a task cannot be
executed in parallel. We use Ci(t) to denote the remaining
execution time of a job of τi at time t, and this quantity
is well-defined since we focus on constrained deadline task
systems. We denote the total number of tasks as n.

In this paper we assume quantum-based time and without
loss of generality let one time unit denote the quantum
length. All task parameters are assumed to be specified as
multiples of this quantum length.

Multiprocessor platform. We assume that the platform
is comprised of m identical unit-capacity processors, and
therefore restrict the system utilization Usys (=

∑

τj∈T
Cj

Tj
)

to at most m. It has been previously shown that Usys ≤ m
is a necessary condition for feasibility of the task system
considered here [19].

III. THE CF POLICY

In this section, we present the CF policy. We first in-
troduce the definition and property of the contention-free
slot, and present how to calculate the minimum number
of contention-free slots in an interval. Second, using the
minimum number, we show how the CF policy operates
without knowing future release patterns of jobs. Finally, we
present and prove an important property of the CF policy,
which is that of dominance.

A. The contention-free slot

We express that a job Ji,q is active at a time instant t if the
remaining execution time at t is positive, i.e., Ci(t) > 0. We
also express that a job Ji,q is available at a time instant t if
the instant is included in the interval between its release time
and deadline, i.e., t ∈ [ri,q , ri,q + Di). Since a job can be

active only when it is available2, we observe the following
relationship between the number of active and available jobs.

Observation 1: The number of active jobs at t does not
exceed the number of available jobs at t.

We denote N(t) as the number of available jobs at t,
and express that a time slot [t, t + 1) is contention-free

(contending) if N(t) ≤ m (N(t) > m). Then, the following
property of the contention-free slot always holds:

Lemma 1: All active jobs in any contention-free slot are
executed under any work-conserving scheduling algorithm.

Proof: It is clear that all active jobs at t are executed
under any work-conserving algorithm if there are at most m
active jobs at t. From Observation 1, the number of active
jobs is upper-bounded by the number of available jobs, and
thus this lemma holds.

In constrained deadline task systems, at most one active
job per task exists in any time slot, and hence, for simplicity
of presentation, we use the term “task” also to refer to
“active job of a task” in the rest of this paper. Based on
this observation, the above definitions of availability and
contention-free slot can be easily extended from jobs to
tasks. We define that a task τi is available at t if there
exists an available job of that task at t. Likewise, we let
N(t) denote the number of available tasks at t, and define
that a slot [t, t + 1) is contention-free if N(t) ≤ m.

Note that it does not depend on scheduling algorithms
whether a time slot is contending or not. Instead, it only
depends on the release patterns of jobs. Based on this
observation, we may consider using a policy to shift ex-
ecutions from contending slots to contention-free slots,
orthogonally to any scheduling algorithm. This policy is
beneficial to schedulability in that such shifting reduces the
number of competing executions in the contending slots
while the shifted executions are successfully performed in
the contention-free slots. When we apply this policy, we
need to know which slot is contention-free, meaning that we
should know the future release patterns of all jobs (i.e., the
policy should be clairvoyant). To make the policy applicable
to more general models, such as the sporadic model consid-
ered in this paper, we do not count the actual number of
contention-free slots depending on release patterns. Instead,
we analyze the minimum number of contention-free slots
that each job encounters in the interval between its release
time and deadline, regardless of release patterns. We will
explain how to determine the shifting policy using this
number in Section III-B.

For this policy, we need to calculate the minimum number

2We assume the situation where there is no job missing its deadline so
that there is no job that is active after its deadline.

 





 

 



 

Figure 2. Situation when the number of slots where task τi is available
is maximized

of contention-free slots in any interval of length l, which in
turn can be obtained by computing the maximum number of
contending slots in the same interval. By definition, whether
a time slot is contending or not depends on the number of
available tasks in that slot. We first calculate the number
of slots for a task to be available in a given interval. In an
interval of length l, τi is available during at most ζi(l) slots,
where

ζi(l) =

—

l

Ti

!

Di + min

„

Di, l −

—

l

Ti

!

Ti

«

. (1)

This is because the number of slots where a task is available
is maximized either when the release time of the first job
of τi in the interval [ta, tb) of length l is the same as the
beginning of the interval as shown in Figure 2 or when the
deadline of the last job of τi in the interval [tc, td) of length
l is the same as the end of the interval as shown in the same
figure.

Using ζi(l), we can calculate the maximum number of
contending slots in an interval of length l, and equivalently,
we derive the minimum number of contention-free slots in
the interval as follows:

Lemma 2: In an interval of length l, the number of
contention-free slots is at least as many as Φ(l), where

Φ(l) = max

0, l −

$

P

τi∈T ζi(l)

m + 1

%!

. (2)

Proof: If there are at most m available tasks in a time
slot, the slot is contention-free. This means at least m + 1
available tasks are required for a slot to be contending. Thus,

there exist at most min(l,
⌊

P

τi∈T
ζi(l)

m+1

⌋

) contending slots

in an interval length of l. Since any slot which is not a
contending slot is contention-free by definition, we conclude
the number of contention-free slots is at least Φ(l). An
example of this calculation when m = 5 and n = 9 is
shown in Figure 3.

B. Description of the CF Policy

From Lemma 2 we know that there are at least Φ(Di)
contention-free slots between the release time and deadline
of any job of task τi. We denote Φ(Di) as φi. When a
job of τi is released, it knows the minimum number of

  






 



Figure 3. An example of calculating contention-free slots when m = 5
and n = 9

contention-free slots φi, but it does not know when it will
encounter those slots. Under this limited information, we
want to shift executions from contending slots to contention-
free slots for better schedulability. Also, we want to do
this shifting under an important principle that it does not
make any previously schedulable job unschedulable. For this
purpose, we maintain a variable that stores the remaining
number of contention-free slots for a job of τi at time t
(denoted by φi(t)). When a job is released, φi(t) is set to
φi. And whenever the number of active jobs is not larger
than m (i.e., contention-free slot), φi(t) is reduced by one.
Once the job satisfies φi(t) = Ci(t), its priority becomes the
lowest, because the remaining executions can be successfully
performed in contention-free slots as long as the scheduling
algorithm is work-conserving and preemptive. We denote
this shifting policy as the CF (contention-free) policy. This
policy can be incorporated into any work-conserving, pre-
emptive base scheduling algorithm, and we call such an ex-
tended base algorithm as a CF-based scheduling algorithm.
Also, we denote such a CF-based algorithm, derived from a
base algorithm A, as A-CF. In the rest of the paper, we only
consider work-conserving, preemptive base algorithms.

Figure 4 gives a formal description of how the CF policy
operates with its base algorithm A at each time slot t. Here,
two queues are maintained: the higher priority queue (QH)
and the lower priority queue (QL). Note that Steps 1-b), 1-
c), 4), and 5), are required even when the CF policy is not
incorporated in the base algorithm. The CF policy itself only
requires Steps 1-a), 2), and 3), and thus has time complexity
O(n) for each t; at most one comparison and two updates
for each job are performed.

C. Properties of the CF Policy

In the previous subsection, the CF policy is designed
under the principle that it does not make any schedulable
job unschedulable. Based on this principle, we can easily de-
rive a dominance relationship between any base scheduling

1) For each job Ji,q released at t,

a) Set φi(t) ← φi (= Φ(Di)).
b) Set Ci(t) ← Ci.
c) Put the job in QH .

2) For each job Ji,q in QH ,

a) If φi(t) = Ci(t), move the job to QL.

3) If N(t) = |QH | + |QL| ≤ m∗, for each job Ji,q in
QH ,

a) Update φi(t + 1) ← max(0, φi(t) − 1).

4) Prioritize jobs in QH separately according to the base
algorithm A.

5) For each job Ji,q chosen among the m highest-
priority jobs (considering any job in QH has higher
priority than any job in QL),

a) Execute the job.
b) Update Ci(t) ← Ci(t) − 1.
c) If the job satisfies Ci(t) = 0, remove the job

from its queue.

∗Here |Q| means the number of jobs in Q.

Figure 4. Description of A-CF scheduling algorithm

algorithm A and the corresponding CF-based algorithm A-

CF. To prove the dominance relationship, we introduce two
properties of the CF policy in the following two lemmas:
one holds when a job is in the higher priority queue QH ,
and the other holds when a job is in the lower priority queue
QL.

Lemma 3: When a job Ji,q is in the higher priority
queue QH , executions of the job under Algorithm A-CF are
performed no later than the corresponding executions under
Algorithm A.

Proof: We consider the case where the k-th execution
of the job is performed in [t, t + 1) under Algorithm A.
Suppose the k-th execution is not performed until t under
Algorithm A-CF. We claim that only those active jobs, which
have higher priority than Ji,q under Algorithm A at time t,
can have higher priority than Ji,q under Algorithm A-CF.

We consider two types of active jobs at t under Algo-
rithm A-CF: jobs which are active under both A and A-CF,
and jobs which are active only under A-CF. For jobs which
are active under both the algorithms, the claim holds because
active jobs in QH are prioritized by A and those in QL have
lower priority than Ji,q . For jobs which are active under A-

CF but not under A, it holds that they are all in QL and
hence have a lower priority than Ji,q . This follows from the
fact that only a job in QL can have its executions postponed
under A-CF in comparison to its executions under A. Thus,
the claim is true, and this proves the lemma.

Lemma 4: When a job Ji,q is in the lower priority queue
QL, the remaining executions are successfully performed
within its deadline under Algorithm A-CF.

Proof: Job Ji,q migrates from QH to QL only when
the number of remaining executions is no more than the
remaining number of contention-free slots for this job up
to its deadline. Since any active job is always executed
in contention-free slots, it follows that all the remaining
executions of Ji,q will be successfully scheduled. Hence the
lemma holds.

Now, we prove a dominance property of the CF policy
using the above two lemmas.

Theorem 1: If a task set is schedulable by Algorithm A,
it is also schedulable by Algorithm A-CF.

Proof: By Lemmas 3 and 4, any job meeting its dead-
line under Algorithm A also finishes its executions within its
deadline under Algorithm A-CF. This proves the theorem.

By Theorem 1, we know that the CF policy is beneficial to
schedulability. In the next section, we introduce a technique
to improve schedulability analysis of existing algorithms
when the CF policy is incorporated.

IV. SCHEDULABILITY ANALYSIS OF THE CF POLICY

In this section, we present schedulability analysis of the
CF policy. We first describe how the CF policy reduces inter-
ference from higher priority tasks. Then, we show how the
interference reduction improves existing schedulability tests.
While we can apply this interference reduction technique to
any interference-based schedulability test (e.g., [14], [15],
[16], [17]), in this paper we demonstrate it on the EDF test
presented in [16], [14].

A. Interference reduction

Many existing schedulability tests (e.g., [14], [15], [16],
[17]) decide schedulability using the concept of interference.
Interference of a task τi on a task τk during some interval
[ta, tb), denotes the time duration in this interval when jobs
of τk are waiting to execute while jobs of τi are executing. If
the maximum interference from all tasks during an interval
of length Dk is enough to block τk’s executions by more
than Dk − Ck, the task is deemed unschedulable.

When the CF policy is employed, we may reduce in-
terference using the property of contention-free slots. That
is, a job cannot interfere with other jobs in contention-
free slots because all active jobs in contention-free slots
are always scheduled. Since the CF policy shifts some
executions to contention-free slots, it reduces interference
in the contending slots. We now introduce a lemma and a
theorem that bound the maximum interference that a single
job of task τi can cause on any other job.

Lemma 5: A job Ji,q can interfere with any job in the
higher priority queue QH during at most Ci −φi time slots.

Proof: When the job is released, φi(t) is set to φi. We
consider the following two cases.

(Case 1: the job is in QH until its deadline.) In this case,
it should hold that φi(t) < Ci(t) for any t. This means
φi(t) = 0 after some t′ where Ci(t′) = 1. Then, this
job encounters at least φi contention-free slots while it is
active. In other words, at least φi executions of this job are
performed in contention-free slots. Since no job interferes
with other jobs in contention-free slots, we can conclude that
job Ji,q interferes with other jobs during at most Ci − φi

time slots.
(Case 2: the job moves to QL at t′, i.e., φi(t′) = Ci(t′).)

Before t′, the job uses at least φi − φi(t′) contention-free
slots. After t′, the job cannot interfere with other jobs in
QH because the job is in QL. Hence, at most Ci −Ci(t′)−
(φi − φi(t′)) = Ci − φi executions of the job can interfere
with other jobs in QH .

Using the above lemma and Lemma 4, we now derive in
how many time slots a job can cause interference to other
jobs under the CF policy.

Theorem 2: A job Ji,q can interfere with any job in either
QH or QL during at most Ci − φi time slots.

Proof: From Lemma 5 we guarantee that a job can
interfere with any job in QH during at most Ci − φi time
slots. The remaining part is to analyze the case that a job
interferes with other jobs in QL. Lemma 4 guarantees that
the remaining executions of any job in QL are scheduled
by its deadline in contention-free slots. This means no job
can cause interference to any job in QL. This proves the
theorem.

B. Schedulability Analysis of EDF-CF

Theorem 2 indicates that we can reduce interference when
the CF policy is employed. We now describe how this
reduction can be applied to the EDF schedulability test
presented in [16], [14]. In other words, we introduce a new
schedulability test for EDF-CF.

We first re-visit the test in [16], [14]. This test checks
whether a task τk has enough interference from other tasks to
miss its deadline. Since finding the maximum interference is
hard, it uses an upper bound based on the task release pattern
depicted in Figure 5. Since a task with a later deadline cannot
interfere with another task with an earlier deadline under
EDF, the maximum interference of τi on τk occurs when the
deadlines of two tasks are aligned as shown in the figure.
This interference during an interval of length l (denoted by
IEDF
k,i (l)) is given by

IEDF
k,i (l) =

—

l

Ti

!

Ci + min

„

Ci, l −

—

l

Ti

!

Ti

«

. (3)

Using IEDF
k,i (l), the following lemma introduces a schedu-

lability test for EDF.

 





 

 



Figure 5. Situation when the maximum interference occurs under EDF

Lemma 6 (Theorem 7 in [16]): A task set is schedulable
under EDF if the following inequality holds for each task
τk:
X

i#=k,τi∈T

min(IEDF
k,i (Dk), Dk − Ck + 1) < m · (Dk − Ck + 1).

(4)

Proof: The proof is given in Theorem 5 in [16]. To
summarize, for τk to miss its deadline, τk is executed at most
Ci − 1 time units. At each time slot, interference from at
least m other jobs is needed to block τk’s execution. Hence,
if the total interference of other tasks on a job of τk is less
than m · (Dk − (Ci − 1)), the job cannot miss its deadline.

By the dominance property of the CF policy (Theorem 1),
we can use Lemma 6 as a schedulability test for EDF-CF.
However, we now introduce a tighter schedulability analysis
using the interference reduction technique presented earlier.

Theorem 2 indicates that at most Ci − φi executions of
a job Ji,q interferes with other jobs. Instead of counting
the whole execution time Ci as interference as in Eq. (3),
we only count Ci −φi executions as interference. With this
modification, Lemma 6 can be modified as follows:

Theorem 3: A task set is schedulable under EDF-CF if
the following inequality holds for each task τk:
X

i#=k,τi∈T

min(IEDF-CF
k,i (Dk), Dk − Ck + 1) < m · (Dk − Ck + 1)

(5)

where

IEDF-CF
k,i (l) =

—

l

Ti

!

(Ci − φi) + min

„

Ci − φi, l −

—

l

Ti

!

Ti

«

.

(6)

Proof: The theorem holds from Theorem 2 and
Lemma 6.

It is easy to see that Theorem 3 dominates Lemma 6.
Although we have chosen EDF-CF to demonstrate the
interference reduction technique, it can be easily applied to
any interference-based schedulability analysis that calculates

interference similar to Eq. (3), such as the ones for any work-
conserving algorithm [16], fixed-priority algorithms [16],
EDZL [15] and LLF [17].

V. IMPROVING SCHEDULABILITY BY DEADLINE

REDUCTION

Real-time scheduling aims at meeting the resource re-
quirements of each job. That is, Ci executions should be
performed within its deadline Di. While increasing the
deadline of a job violates this requirement, reducing it
does not; a shorter deadline only forces the job to finish
earlier than required. So far however, there are no studies
that consider deadline reduction for better schedulability,
mainly because deadline reduction provides no benefit to
existing scheduling algorithms or schedulability tests. On
the contrary, a shorter deadline gives less time for jobs to
complete their executions.

The CF policy however, can benefit from deadline reduc-
tion. Whenever the deadline of a job is reduced, the number
of slots for the job to be available in an interval is also
reduced, and then the number of contention-free slots in the
interval may increase. This can result in better schedulability.
Considering both the negative effect of reduced time to
deadline and the positive effect of increased contention-
free slots, in this section we present deadline reduction
techniques for better schedulability of the EDF-CF test in
Theorem 3. Deadline reduction for improved schedulability
is a novel concept, whose benefits are specific to the CF
policy proposed in this paper.

A. The effect of deadline reduction on the schedulability of

EDF-CF

We may change the relative deadline Dk of a task to
D′

k where D′
k = Ck, Ck + 1, ..., Dk. This means we have

Dk − Ck + 1 options for the deadline of a task, and the
number of all possible combinations of deadlines for a task
set is

∏

τk∈T (Dk−Ck +1). Examining all the combinations
is beneficial for schedulability in that a task set is deemed
schedulable if we find just one combination that satisfies
Theorem 3. However, such an exhaustive search requires ex-
ponential time-complexity. Therefore, to develop a tractable
deadline reduction technique, we must investigate only some
combinations. This entails the analysis of identifying which
deadline combinations are most likely to be schedulable. For
this purpose, we first analyze how the deadline reduction of
a single task affects the minimum number of contention-free
slots for each task.

Deadline reduction of a task τj has two different impacts:
(a) possible increase in {φh}h #=j,τh∈T , and (b) possible de-
crease in φj . Once Dj is reduced, the number of maximum
slots where τj is available during an interval of length Dh is
also reduced (ζj(Dh) in Eq. (1)), and this leads to impact (a).
On the other hand, if we look at φj = φ(Dj), the interval
length l = Dj itself in Eq. (2) decreases, and this results in
impact (b).

The next step is to analyze how the deadline reduction
of a single task affects the schedulability of EDF-CF in
Theorem 3. We re-arrange the inequalities in Eq. (5) so that
the RHS does not vary with tasks as follows:

m · (Ck − 1)

Dk

+

P

i#=k,τi∈T min(IEDF-CF
k,i (Dk), Dk − Ck + 1)

Dk

< m

, for all τk ∈ T .
(7)

We look at how the deadline reduction of a task affects the
first and second term of the LHS of inequalities in Eq. (7).
Suppose we reduce Dj and keep the relative deadlines of
other tasks as is. Then, the first term for task τj gets larger
due to the decreased denominator (k = j in Eq. (7)), while
the first term for {τh}τh∈T ,h #=j does not change. The change
in the second term is more complicated and unpredictable
due to the changes in {φh}τh∈T . In the second term for task
τj , while the denominator decreases, IEDF-CF

k,i (Dk) may also
decrease due to reduction in the interval length (Dj) and
increases in {φi}i#=j . In the second term for {τh}τh∈T ,h #=j ,
the interval length of IEDF-CF

k,i (Dk) and the denominator

of the term do not change. However, IEDF-CF
k,i (Dk) for

{τi}τi∈T ,i#=j may decrease due to the possible increase in
{φi}i∈T ,i#=j , while that for τj may increase due to the
possible decrease in φj .

To summarize, the deadline reduction of a single task
affects the schedulability of each task in a negative and
positive way at the same time, so that there is a possibility of
improving schedulability through deadline reduction. Note
that the positive effect of deadline reduction on schedula-
bility is derived solely from the CF policy. In other words,
schedulability tests of algorithms that do not employ the
CF policy can hardly be improved through this technique.
For example, deadline reduction has almost no impact on
the LHS of inequalities in Eq. (7) (test for EDF). This is
because there is no effect of {φi}τi∈T on IEDF

k,i (l), and as

a result IEDF(l)
k,i /l does not generally get smaller when l is

reduced. In the next subsection, we introduce heuristics for
deadline reduction based on the above analysis.

B. Heuristics for deadline reduction

For tractability, we need to investigate a polynomial
number of combinations of deadlines. Hence we consider
the following procedure with a step size of α: the initial
deadline of each task is the same as the original deadline; we
reduce the deadline of a task by α, where the task is chosen
based on a heuristic (described later); and such a reduction
is repeated until the current setting of deadlines is deemed
schedulable by Theorem 3 or the deadlines of at least m+1
tasks are equal to their execution times. It is trivially true
that m+1 tasks satisfying Dk = Ck are not schedulable on a
platform comprised of m processors, and therefore we stop
the process once we satisfy this condition. Figure 6 gives
a formal description of this deadline reduction procedure.

1) For each τi ∈ T ,

a) Calculate the LHS of inequalities in Eq. (7). If
the value is not smaller than m, go to 3)

2) If the LHS of inequalities in Eq. (7) are all less than
m, the task set is deemed schedulable.

3) Check whether there are at least m + 1 tasks sat-
isfying Dk = Ck. If so, the task set is deemed
unschedulable.

4) Choose τj among tasks satisfying Dj > Cj using
the given heuristic. Set Dj ← max(Cj , Dj − α)

Figure 6. Description of the deadline reduction procedure

Here, the number of iterations is O(
∑

k∈T $(Dk −Ck)/α%),
which is at most n ·maxτk∈T (Dk −Ck) even when α is 1.
The next step is to determine a suitable value for step-size
α and heuristics for task selection.

In this paper we choose α as maxτk∈T (Dk −Ck) so that
the number of iterations of Steps 1) - 4) in Figure 6 is O(m),
resulting in a total time complexity of O(m · n2). While
it is trivial that a larger α leads to a low time-complexity
procedure, we observed that the resulting improvement in
schedulability is also comparable to those obtained with
smaller values of α. From this observation, we can infer
that one of the effective strategies to make task systems
schedulable is to keep original deadlines of some tasks
and reduce deadlines of other tasks as much as possible.
Reduced deadline tasks generate additional contention-free
slots, which can be utilized to schedule those tasks whose
deadlines have not been reduced. This further decreases
contention for the reduced deadline tasks, which enables the
scheduler to successfully schedule them within those highly
constrained deadlines.

We consider three heuristics for choosing a task whose
deadline is reduced in some iteration: (i) the largest density
(Ci/Di) first, (ii) the smallest laxity (Di−Ci) first, and
(iii) the largest LHS of inequalities in Eq. (7) first. We
chose (i) and (ii) because they identify tasks that are the
most difficult to schedule. Moreover, the negative impact of
deadline reduction on the first term of the LHS in Eq. (7) is
the least for tasks selected by (i). That is, Ci/Di increases
by the smallest amount for the largest density task, when
Di is reduced to Ci. Likewise, the negative impact on the
denominator of the LHS is minimized for tasks selected
by (ii), because the decrease in deadline is the smallest
possible. Heuristic (iii) also tries to identify difficulty to
schedule tasks, but instead of relying on task parameters,
it uses Eq. (7). Theorem 3 can be re-phrased such that a
task set is deemed schedulable if the maximum of the LHS
of inequalities in Eq. (7) is less than m. In order to reduce
the maximum, (iii) identifies the task that contributes this
maximum value.

To evaluate the performance of the three heuristics, in

Section VII we consider seven heuristics: random choice as
a reference point, (i), (ii) and (iii), and their corresponding
counter approaches (e.g., the smallest density first is a
counter approach to (i)).

VI. DISCUSSION

In this section, we discuss two issues regarding appli-
cability of the deadline reduction technique and further
schedulability improvement of the CF policy.

A. Deadline reduction for implicit deadline task systems

For implicit deadline task systems where the deadline
of each task is equal to its period, we cannot derive any
contention-free slots because it is zero the minimum interval
between the deadline of a job of a task and the release time
of the next job of the same task. This means, the CF policy
cannot improve the schedulability of base algorithms for
implicit deadline task systems.

However, we still apply the CF policy for better schedu-
lability using the deadline reduction technique in Figure 6.
Once the deadlines of implicit deadline tasks are reduced,
contention-free slots come into existence, and then the CF
policy operates for better schedulability. We will demon-
strate how much this CF policy improves the schedulability
of implicit deadline task systems in Section VII.

B. Further schedulability improvement of the CF policy for

periodic tasks

In this subsection we address how to further improve the
schedulability of the CF policy when task releases are strictly
periodic [12]. The CF policy described in Figure 4 uses
the minimum number of contention-free slots by Eq. (2)
assuming the worst-case release patterns, and this makes it
possible for the policy to operate without knowing which
future time slots are contention-free. In case that we know
all the future releases (e.g., a periodic task model), we can
derive a larger lower-bound of the number of contention-
free slots by considering the actual release pattern of jobs.
For example, in Figure 3, while the minimum number of
contention-free slots is 3, the exact number is 9. These
increased contention-free slots improve schedulability by
moving more executions in contending slots to contention-
free ones.

In Section VII, we evaluate the EDF-CF* algorithm that
employs the larger lower-bound of contention-free slots
under a periodic task model. Note that the schedulability
test for EDF-CF in Theorem 3 also holds for EDF-CF*.

VII. PERFORMANCE EVALUATION

This section presents simulation results to evaluate the
performance of the proposed CF policy and its schedulability
test.

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 4 8 16 32 48 64

S
ch

ed
u

la
b
le

 r
at

io
 (

%
)

The number of processors

t-EDF-CF-D (max. the LHS of inqualities in Eq.(7))
t-EDF-CF-D (min. laxity)

t-EDF-CF-D (max. density)
t-EDF-CF-D (random)

t-EDF-CF-D (min. density)
t-EDF-CF-D (max. laxity)

t-EDF-CF-D (min. the LHS of inqualities in Eq.(7))
t-EDF-CF

t-EDF

(a) Constrained deadline task systems

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 4 8 16 32 48 64

S
ch

ed
u

la
b
le

 r
at

io
 (

%
)

The number of processors

t-EDF-CF-D (max. the LHS of inqualities in Eq.(7))
t-EDF-CF-D (min. laxity)

t-EDF-CF-D (max. density)
t-EDF-CF-D (random)

t-EDF-CF-D (min. density)
t-EDF-CF-D (max. laxity)

t-EDF-CF-D (min. the LHS of inqualities in Eq.(7))
t-EDF-CF, t-EDF

(b) Implicit deadline task systems

Figure 7. The schedulability of the schedulability tests t-EDF, t-EDF-CF,
and t-EDF-CF-D with various heuristics over varying number of processors

A. Evaluation Settings

We generate task sets based on a technique proposed
earlier [20], which has also been used in many previous
studies (e.g., see [16], [21]). We have three input parameters:
(a) the number of processors m (1, 2, 4, 8, 16, 32, 48 or 64),
(b) the task system (constrained or implicit deadline), and
(c) individual task utilization (Ci/Ti) distribution (bimodal
with parameter3: 0.1, 0.3, 0.5, 0.7, or 0.9, or exponential
with parameter4: 0.1, 0.3, 0.5, 0.7, or 0.9). For each task,
Ti is uniformly chosen in [1, Tmax = 1000], Ci is chosen
based on the bimodal or exponential parameter, and Di is
uniformly chosen in [Ci, Ti] for constrained deadline task
systems or Di is equal to Ti for implicit deadline task
systems.

For each combination of (a), (b) and (c), we repeat the

3For a given bimodal parameter p, a value for Ci/Ti is uniformly chosen
in [0, 0.5) with probability p, and in [0.5, 1) with probability 1 − p.

4For a given exponential parameter 1/λ, a value for Ci/Ti is chosen
according to the exponential distribution whose probability density function
is λ · exp(−λ · x).

following procedure and generate 10,000 task sets.

1. Initially, we generate a set of m + 1 tasks.
2. In order to exclude unschedulable sets, we check

whether the generated task set can pass a necessary
feasibility condition [19], [22].

3. If it fails to pass the feasibility test, we discard the
generated task set and return to Step 1. Otherwise, we
include this set for evaluation. Then, this set serves as
a basis for the next new set; we create a new set by
adding a new task into the old set and return to Step 2.

For any given m and given task system, 10,000 task sets
are created for each task utilization model, thus resulting
in 100,000 task sets in total. We evaluate the performance
of three schedulability tests: 1) the EDF test in Lemma 6,
2) our proposed EDF-CF test in Theorem 3, and 3) our
proposed EDF-CF test with deadline reduction in Figure 6.
These tests are respectively annotated as ‘t-EDF’, ‘t-EDF-

CF’, and ‘t-EDF-CF-D’. Note that the tests are independent
of whether a task set is comprised of periodic or sporadic
tasks; they only depend on the task parameters Ti, Ci and
Di.

We also perform actual simulation of the EDF and EDF-
CF scheduling algorithms over the generated task sets during
the first 100,000 time units for tractability. Results from
these simulations show the effectiveness of the CF policy
in improving schedulability. Whether a task set consists of
periodic or sporadic tasks has a direct impact on schedula-
bility of the scheduling algorithms, and hence we simulated
both the cases. We observed that the overall results under
the sporadic release are the same as that under the periodic
release, except that the sporadic release slightly increases
schedulability. Therefore, due to lack of space, we only
present results from the periodic release in this paper. We
annotate EDF and EDF-CF as ‘EDF’ and ‘EDF-CF’. We
also present simulation results of another EDF-CF algorithm,
which utilizes the knowledge of future releases as described
in Section VI-B. We annotate this algorithm as ‘EDF-CF*’.

B. Comparison of the heuristics for deadline reduction

Figure 7 evaluates seven heuristics for the deadline re-
duction procedure presented in Figure 6: the proposed three
heuristics in Section V-B including (i) the largest density
(Ci/Di) first, (ii) the smallest laxity (Di−Ci) first and (iii)
the largest LHS of inequalities in Eq. (7) first, and their
corresponding counter approaches including (iv) the smallest
density first, (v) the largest laxity first and (vi) the smallest
LHS of inequalities in Eq. (7) first, and lastly a non-strategic
heuristic - (vii) random choice. For both constrained and
implicit task sets in Figure 7(a) and (b), respectively, the
schedulability of (iii) is better than that of (i) and (ii).
However, (i) and (ii) are also effective heuristics in that
they definitely outperform the reference point (vii). We also
observe that the schedulability of the counter approaches
(iv), (v) and (vi) are worse than that of (vii). This observation

 0

 20

 40

 60

 80

 100

 1 2 4 8 16 32 48 64

S
ch

ed
u

la
b
le

 r
at

io
 (

%
)

The number of processors

EDF-CF*
EDF-CF

EDF

Figure 8. The schedulability of constrained deadline task systems over
varying number of processors identified using scheduling algorithms EDF,
EDF-CF and EDF-CF*

lends further support to the view that heuristics (i), (ii) and
(iii) are generally effective in improving schedulability. We
employ the best heuristic (iii) for t-EDF-CF-D, and present
results in the following subsection.

C. The schedulability improvement of the CF policy

Figure 7(a) plots the percentage of constrained deadline
task sets deemed schedulable by schedulability tests t-EDF,
t-EDF-CF, and t-EDF-CF-D for a variety of the number
of processors (m). While t-EDF only deems few task sets
schedulable as m increases, t-EDF-CF deems about 5%
of the task sets schedulable even when m = 64, and
this improvement comes from the interference reduction
associated with the CF policy. Moreover, if we apply the
deadline reduction technique in Figure 6, the number of
task sets deemed schedulable by t-EDF-CF-D is more than
doubled when compared to t-EDF-CF.

Now we look at the percentage of constrained deadline
task sets deemed schedulable by the scheduling algorithms
EDF, EDF-CF, and EDF-CF* in Figure 8. We first confirm
that the performance of EDF-CF dominates that of its base
algorithm EDF. Second, we observe that the schedulability
of EDF-CF* is remarkably improved when compared to
that of EDF, and the gap between EDF and EDF-CF* gets
amplified as m increases. For example, the schedulability
of EDF-CF* when m = 64 is 1.77 times larger than that of
EDF (EDF-CF*: 26.7%, EDF: 15.1%). This means the CF
policy significantly enhances the schedulability of EDF if
we know future release patterns, and this enhancement is
also scalable with the number of processors.

The next results are aimed at implicit deadline task sets.
Figure 7(b), which corresponds to Figure 7(a), plots the
percentage of implicit deadline task sets deemed schedulable
by the schedulability tests t-EDF, t-EDF-CF, and t-EDF-CF-

D. Here the CF policy does not have an impact on schedu-
lability, unless deadline reduction is used. This means that
the schedulability ratio of t-EDF-CF is the same as that of

t-EDF (in Figure 7(b)). However, as seen in the same figure,
the CF policy improves schedulability using the deadline
reduction technique of Figure 6. While t-EDF (as well as
t-EDF-CF) rarely finds schedulable task sets as m increases,
t-EDF-CF-D deems about 15% task sets schedulable when
m = 64.

In summary, the CF policy significantly improves the
schedulability of EDF only when it has knowledge of future
(as in the case of periodic task systems), but our proposed
schedulability test associated with the CF policy remarkably
improves the schedulability of EDF in all cases.

VIII. CONCLUSIONS

In this paper we have presented the CF policy that
takes advantage of contention-free slots. We have shown
that the CF policy, which can be incorporated into any
work-conserving, preemptive algorithm, improves not only
existing algorithms themselves but also the schedulability
tests of those algorithms. Further, we have derived a counter-
intuitive claim that reducing task deadlines can help schedu-
lability when the CF policy is employed.

Note that the proposed CF policy can be employed
independently of other policies like zero-laxity (ZL), to
achieve a cummulative improvement in schedulability. For
example, the EDZL algorithm [15] can be further improved
by expanding it with the CF policy. It is also worth noting
that the schedulability improvement arising from deadline
reduction is inherently tied to the CF policy, and therefore
cannot be achieved under other policies, including ZL.

One disadvantage of the CF policy is it may incur addi-
tional preemptions. We plan to understand how the policy
imposes such extra preemptions and derive some bound on
the number of additional preemptions. Another direction for
future work is to apply the CF policy to other scheduling
algorithms.

ACKNOWLEDGEMENTS5

This work was supported in part by the IT R&D
Program of MKE/KEIT [2011-KI002090, Development of
Technology Base for Trustworthy Computing], Basic Re-
search Laboratory (BRL) Program (2009-0086964), Basic
Science Research Program (2010-0006650), and the Per-
sonal Plug&Play DigiCar Research Center (NCRC, 2010-
0028680) through the National Research Foundation of
Korea (NRF) funded by the Korea Government (MEST),
KAIST-Microsoft Research Collaboration Center, KAIST
ICC, and KI-DCS grants.

This work was also partially funded by the Portuguese
Science and Technology Foundation (FCT), the Euro-
pean Commission (ARTISTDesign), the ARTEMIS-JU (RE-
COMP), and the Luso-American Development Foundation
(FLAD).

5The information in this document is provided “as is”, and no guarantee
or warranty is given that the information is fit for any particular purpose.
The user uses the information at its sole risk and liability.

REFERENCES

[1] S. Cho, S.-K. Lee, S. Ahn, and K.-J. Lin, “Efficient real-time
scheduling algorithms for multiprocessor systems,” IEICE
Trans. on Communications, vol. E85–B, no. 12, pp. 2859–
2867, 2002.

[2] A. Srinivasan and S. Baruah, “Deadline-based scheduling
of periodic task systems on multiprocessors,” Information
Processing Letters, vol. 84, no. 2, pp. 93–98, 2002.

[3] B. Andersson, S. Baruah, and J. Jonsson, “Static-priority
scheduling on multiprocessors,” in RTSS, 2001, pp. 193–202.

[4] S. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel,
“Proportionate progress: a notion of fairness in resource
allocation,” Algorithmica, vol. 15, no. 6, pp. 600–625, 1996.

[5] H. Cho, B. Ravindran, and E. D. Jensen, “An optimal real-
time scheduling algorithm for multiprocessors,” in RTSS,
2006, pp. 101–110.

[6] J. H. Anderson and A. Srinivasan, “Early-release fair schedul-
ing,” in ECRTS, 2000, pp. 35–43.

[7] B. Andersson and E. Tovar, “Multiprocessor scheduling with
few preemptions,” in RTCSA, 2006, pp. 322–334.

[8] K. Funaoka, S. Kato, and N. Yamasaki, “Work-conserving
optimal real-time scheduling on multiprocessors,” in ECRTS,
2008, pp. 13–22.

[9] B. Andersson and K. Bletsas, “Sporadic multiprocessor
scheduling with few preemptions,” in ECRTS, 2008, pp. 243–
252.

[10] A. Easwaran, I. Shin, and I. Lee, “Optimal virtual cluster-
based multiprocessor scheduling,” Real-Time Systems, vol. 43,
no. 1, pp. 25–59, 2009.

[11] J. Lee, A. Easwaran, I. Shin, and I. Lee, “On optimal multi-
processor scheduling considering concurrency and urgency,”
in RTSS Work-in-Progress Session, 2010, pp. 21–24.

[12] C. Liu and J. Layland, “Scheduling algorithms for multi-
programming in a hard-real-time environment,” Journal of
the ACM, vol. 20, no. 1, pp. 46–61, 1973.

[13] N. Fisher, J. Goossens, and S. Baruah, “Optimal online
multiprocessor scheduling of sporadic real-time tasks is im-
possible,” Real-Time Systems, vol. 45, pp. 26–71, 2010.

[14] M. Bertogna, M. Cirinei, and G. Lipari, “Improved schedu-
lability analysis of EDF on multiprocessor platforms,” in
ECRTS, 2005, pp. 209–218.

[15] T. P. Baker, M. Cirinei, and M. Bertogna, “EDZL scheduling
analysis,” Real-Time Systems, vol. 40, pp. 264–289, 2008.

[16] M. Bertogna, M. Cirinei, and G. Lipari, “Schedulability
analysis of global scheduling algorithms on multiprocessor
platforms,” IEEE Transactions on Parallel and Distributed
Systems, vol. 20, pp. 553–566, 2009.

[17] J. Lee, A. Easwaran, and I. Shin, “LLF schedulability analysis
on multiprocessor platforms,” in RTSS, 2010, pp. 25–36.

[18] A. Mok, “Fundamental design problems of distributed sys-
tems for the hard-real-time environment,” Ph.D. dissertation,
Massachusetts Institute of Technology, 1983.

[19] T. P. Baker and M. Cirinei, “A necessary and sometimes
sufficient condition for the feasibility of sets of sporadic hard-
deadline tasks,” in RTSS, 2006, pp. 178–190.

[20] T. P. Baker, “Comparison of empirical success rates of global
vs. paritioned fixed-priority and edf scheduling for hand real
time,” Dept. of Computer Science, Florida State University,
Tallahasee, Tech. Rep. TR-050601, 2005.

[21] B. Andersson, K. Bletsas, and S. Baruah, “Scheduling
arbitrary-deadline sporadic task systems on multiprocessor,”
in RTCSA, 2008, pp. 197–206.

[22] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, and
S. Stiller, “Implementation of a speedup-optimal global edf
schedulability test,” in ECRTS, 2009, pp. 259–268.

