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Abstract 
LLF (Least Laxity First) scheduling, which assigns a higher priority to a task with smaller laxity, has been known as an 
optimal preemptive scheduling algorithm on a single processor platform. However, its characteristics 
uponmultiprocessor platforms have been little studied until now. Orthogonally, it has remained open how to efficiently 
schedule general task systems, including constrained deadline task systems, upon multiprocessors. Recent studies have 
introduced zero laxity (ZL) policy, which assigns a higher priority to a task with zero laxity, as a promising scheduling 
approach for such systems (e.g., EDZL). Towards understanding the importance of laxity in multiprocessor scheduling, 
this paper investigates the characteristics of ZL policy and presents the first ZL schedulability test for any work-
conserving schedulingalgorithm that employs this policy. It then investigates the characteristics of LLF scheduling, 
which also employs the ZL policy, and derives the first LLF-specific schedulability test on multiprocessors. It is shown 
that the proposed LLF test dominates the ZL test as well as the state-of-art EDZL test. 
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Abstract—LLF (Least Laxity First) scheduling, which assigns
a higher priority to a task with smaller laxity, has been
known as an optimal preemptive scheduling algorithm on a
single processor platform. However, its characteristics upon
multiprocessor platforms have been little studied until now.
Orthogonally, it has remained open how to efficiently schedule
general task systems, including constrained deadline task
systems, upon multiprocessors. Recent studies have introduced
zero laxity (ZL) policy, which assigns a higher priority to
a task with zero laxity, as a promising scheduling approach
for such systems (e.g., EDZL). Towards understanding the
importance of laxity in multiprocessor scheduling, this paper
investigates the characteristics of ZL policy and presents the
first ZL schedulability test for any work-conserving scheduling
algorithm that employs this policy. It then investigates the
characteristics of LLF scheduling, which also employs the ZL
policy, and derives the first LLF-specific schedulability test
on multiprocessors. It is shown that the proposed LLF test
dominates the ZL test as well as the state-of-art EDZL test.

I. INTRODUCTION
Real-time scheduling theory has been studied for satisfy-

ing timing constraints. In particular, scheduling policies for
uniprocessor platforms have been extensively studied, and
Earliest Deadline First (EDF) [1] and Deadline Monotonic
(DM) [2] were developed as optimal dynamic- and static-
priority scheduling policies. While uniprocessor scheduling
has successfully matured over years, the same cannot be said
about scheduling theory for multi-cores (multiprocessors).
Some multiprocessor studies in the past (e.g., [3], [4], [5])

have focused on adapting existing uniprocessor scheduling
to multiprocessors, and some others have developed novel
policies specific to multiprocessors (e.g., [6], [7], [8], [9],
[10], [11], [12]). In spite of some significant achievements of
these studies, many important scheduling problems continue
to pose challenges, including the efficient scheduling of
general task systems such as those in which task deadlines
differ from their periods. We believe that one of the primary
reasons for this lack of success is the sole focus on deadline
satisfaction (or “urgency”) by these existing approaches.
When a task cannot be simultaneously scheduled on more
than one processor at the same time (“parallelism” re-
striction), it becomes equally important to consider task
“parallelism” when assigning priorities to tasks. Otherwise,

‡A corresponding author

a task may fail to meet its deadlines because the scheduler
gave it processing capacity with more parallelism than it
could utilize.
Considering that a job with smaller time to deadline is

more urgent and a job with larger execution time has more
parallelism restriction, one of the simple but effective ways
to consider both urgency and parallelism is to assign the
highest priority to any zero-laxity task, where laxity of a task
at any time is defined as remaining time to deadline minus
the amount of remaining execution. We denote this policy as
the ZL policy, and any work-conserving1 scheduling algo-
rithm that employs this policy as a ZL-based scheduling al-
gorithm. EDZL scheduling [13], [3], which globally (single
run queue for all the processors) employs the EDF strategy
until tasks have zero-laxity and the ZL policy, thereafter, is
one example of a successful ZL-based scheduling algorithm;
it dominates2 global EDF [14] and it has been observed to be
relatively more efficient in scheduling general task systems
than many algorithms (see Figure 2). Likewise, Least Laxity
First (LLF) scheduling [15], which globally assigns a higher
priority to a task with lower laxity, is another example of
a ZL-based scheduling algorithm that has shown promise
in simulations (see Figure 2). Given the impact that the ZL
policy tends to have on multiprocessor scheduling of general
task systems, we provide the first general schedulability test
applicable to any ZL-based scheduling algorithm in this
paper. This test is a simple extension of the existing EDZL
schedulability test [16].
LLF is an interesting ZL-based scheduling algorithm

because, in addition to having good performance in sim-
ulations, it is known to be optimal for general task systems
in the uniprocessor case [15], [17]. Further, unlike in EDZL,
the ZL policy is implicit in LLF, suggesting a natural and
close connection between ZL and LLF policies. These,
combined with the fact that LLF multiprocessor scheduling
has received little attention, have driven us to focus on it in
this study. Although the aforementioned ZL schedulability
test can also be applied to LLF, we derive a tighter LLF-

1A work-conserving multiprocessor scheduling algorithm always sched-
ules any unfinished, ready-to-execute task if there are available processors.
2Scheduling algorithm (test) A dominates B if any task set deemed

schedulable by B is also deemed schedulable by A, but the vice-versa is
not true.



specific test in this paper. For this purpose, we perform the
following three steps.
1) We identify and define some properties associated with
the LLF policy. We consider the scenario that a task
misses its deadline at some time instant t0, and com-
pute the number of tasks that can have certain laxity
values at certain time instants ahead of t0. Lower
bounds on these numbers that ensure the deadline miss
are then used to define the properties. These properties
are significant because they represent invariants (lower
bounds) for highly dynamic system parameters (task
laxity values).

2) We characterize these properties using conditions on
worst-case higher-priority interference, because previ-
ous studies suggest that it is feasible to derive mul-
tiprocessor schedulability tests using such conditions
(e.g., [16]).

3) Using upper bounds on the higher-priority interfer-
ence, derived in this paper and shown to be tighter
than previously known bounds, we finally derive the
LLF-specific schedulability test.

To the best of our knowledge, this is the first LLF-specific
schedulability test for multiprocessors, and we show that it
dominates the state-of-art EDZL test [16] as well as the
aforementioned ZL test3.
In summary, this paper makes the following contributions.

It proposes the first general schedulability test applicable to
any ZL-based scheduling algorithm (Section III). It identifies
and characterizes some laxity properties associated with the
LLF policy (Section IV), and then derives the first LLF-
specific schedulability test (Section V). This test is shown
to dominate the state-of-art EDZL test as well as the ZL test
derived here.

II. SYSTEM MODEL

Task model. In this paper we assume a sporadic
task model [18]. In this model, we specify a task τi as
(Ti, Ci,Di), where Ti is minimum separation, Ci is the
worst-case execution time requirement, andDi is the relative
deadline. Task τi invokes a series of jobs, each separated
from its predecessor by at least Ti time units. Further, we as-
sume a constrained deadline task system, i.e., Ci ≤ Di ≤ Ti

for each task τi. We also assume that a single job of a task
cannot be executed in parallel.
In this paper we assume quantum-based time and without

loss of generality let one time unit denote the quantum
length. All task parameters are assumed to be specified as
multiples of this quantum length.
We use Di(t) and Ci(t) to denote the remaining time to

deadline and the remaining execution time, respectively, of
a job of τi at time t. Note that since we focus on constrained

3This dominance relation only applies to the schedulability tests, and not
to the algorithms themselves.

deadline task systems, these quantities are well-defined. We
express that a job of τi is active at t when Ci(t) is non-zero.
We use Li(t) to denote the laxity of a job of τi at t, and then
by definition we have Li(t) = Di(t)−Ci(t). We denote the
total number of tasks as n, and define system utilization by
Usys =

�
j

Cj

Tj
and system density by Dsys =

�
j

Cj

Dj
.

Multiprocessor platform. We assume that the platform
is comprised of m identical unit-capacity processors, and
therefore restrict the system utilization Usys to at most
m. It has been previously shown that Usys ≤ m is a
necessary condition for feasibility of the task system consid-
ered here [6]. Like most existing studies in multiprocessor
scheduling (for example, see [6]), we assume that the system
does not incur any penalty when a job is preempted or when
a job is migrated from one processor to another.

III. SCHEDULABILITY ANALYSIS FOR ZL-BASED
SCHEDULING ALGORITHMS

Recent studies have characterized the ZL policy and used
it in EDZL schedulability analysis [16], but this analysis
is EDZL-specific in that it cannot be directly used by any
other ZL-based algorithm. In this section, building upon the
EDZL analysis of [16], we derive schedulability conditions
for any ZL-based scheduling algorithm.

A. Analysis on existing EDZL schedulability test
The EDZL schedulability test proposed in [16], uses the

following two observations to capture characteristics of the
ZL policy in EDZL scheduling. When a deadline miss occurs
under EDZL, it must be true that

• Observation A: there exist at least m + 1 tasks which
have zero or negative laxity.

• Observation B: there exists at least one task which has
negative laxity.

In the above observations, when we use the term “task” it
actually refers to some “active job” of that task. Nevertheless
the usage is correct, because at any time instant there is
at most one “active job” for any constrained deadline task.
Note that Observation A is only a necessary condition for
the deadline miss because it does not require the m + 1
tasks to have zero or negative laxity “at the same time”.
Unlike this however, Observation B is both necessary and
sufficient. Nevertheless, Observation A is still relevant be-
cause the EDZL conditions derived in [16] to capture these
observations are only necessary and not sufficient. As a
result, schedulability tests that use both these observations
are tighter than those that use only Observation B.
Observation A originates from the ZL policy. If a job

misses its deadline at time t1, then there must exist t0

(< t1) at which the job has zero or negative laxity but
is not scheduled. This means, under EDZL scheduling, the
instant t0 will have at least m other jobs with zero or
negative laxity. Observation B can be applied to any work-
conserving scheduling algorithm in that it is impossible that



a job misses its deadline without having negative laxity.
Both these conditions are therefore necessarily true when
a deadline miss occurs under EDZL. Furthermore, since
both the conditions do not characterize any EDZL-specific
properties except the ZL and work-conserving policies, they
are also necessarily true when a deadline miss occurs under
any ZL-based scheduling algorithm. Schedulability test for
ZL-based scheduling algorithms can then be generally stated
as follows:
Observation 1: A task system is schedulable by any ZL-

based scheduling algorithm on m processors unless both
Observation A and Observation B are satisfied.

B. ZL schedulability test
In order to check whether a task τk can have zero or

negative laxity, existing approaches have used the concept
of worst-case interference of higher-priority tasks on a job
of task τk between its release and deadline. Following the
notations similar to existing studies [19], [16], [20], we
denote the total interference of a task τi on a task τk in
interval [ta, tb) as Ik,i(ta, tb). It represents the cumulative
length of all intervals within [ta, tb) in which τk is ready to
execute and τi is executing while τk is not. The worst-case
interference of τi on τk in any interval of length l is then
defined as

Ik,i(l) = max
t

Ik,i(t, t + l), (1)

and the overall worst-case higher priority interference on τk

is defined as
�

i �=k

Ik,i(l). (2)

Note that the above equation over-estimates interference,
because it does not consider the fact that the worst-case
interference scenario for each task may occur in different
time intervals. It is known that computing Ik,i(l) precisely
is hard, and therefore existing approaches have used an upper
bound that is valid under any work-conserving scheduling
algorithm [21], [20]. These studies describe the job-release
pattern corresponding to the largest workload of a task τi

that can interfere with a task τk. This pattern is depicted in
Figure 1. Given an interval [ta, tb) of length l, the first job
of τi starts at ta and ends at ta + Ci. Here ta + Ci is also
the deadline of the first job. Thereafter, jobs are released
and scheduled as soon as possible. We denote by ηi(l) the
number of jobs of τi that can execute completely within the
interval of interest (including the first job).

ηi(l) =

�
l − (Ci + Ti −Di)

Ti

�
+ 1 =

�
l + Di − Ci

Ti

�
(3)

The contribution of the last job can then be bounded by
min(Ci, l+Di−Ci−ηi(l)·Ti). The maximum interference of
a task τi on a task τk during an interval of length l under any
work-conserving scheduling algorithm (denoted by IWC

k,i (l))
is therefore

Figure 1. Situation when the maximum interference occurs under any
work-conserving algorithm.

IWC
k,i (l) = ηi(l) · Ci + min(Ci, l + Di − Ci − ηi(l) · Ti) (4)

Using IWC
k,i (l), the following lemma introduces a condition

for the case when jobs have zero or negative laxity under
any ZL-based scheduling algorithm (extension of Theorem 7
in [16]):

Lemma 1: If task τk has zero or negative laxity, then
�

i�=k

min(IWC
k,i (Dk), Dk − Ck) ≥ m · (Dk − Ck) (5)

Proof: Same as proof of Theorem 7 in [16].

In the above lemma, Lemma 4 in [19] (i.e.,�i�=k IWC
k,i (t) ≥

m · x ⇐⇒
�

i�=k min{IWC
k,i (t), x} ≥ m · x) is applied in order

to tighten the condition.
Similarly, the following lemma holds for tasks with nega-

tive laxity under ZL-based scheduling algorithms (extension
of Theorem 7 in [16]):

Lemma 2: If task τk has negative laxity, then4

1)
�

i�=k

min(IWC
k,i (Dk), Dk − Ck) > m · (Dk − Ck), or (6)

2)
�

i�=k

min(IWC
k,i (Dk), Dk − Ck) = m · (Dk − Ck)

and ∀i �= k : Dk − Ck < IWC
k,i (Dk) (7)

Proof: Same as proof of Theorem 7 in [16].

Using Lemmas 1 and 2, we formally express Observa-
tion 1 as follows:

Theorem 1 (ZL Schedulability): A task set is schedulable
by any ZL-based scheduling algorithm unless both 1) and
2) are true:
1) There are at least m + 1 tasks τk satisfying Eq. (5).
2) There is at least one task τk satisfying either Eq. (6)

or Eq. (7).

As LLF scheduling employs the ZL policy implicitly,
Theorem 1 can be used as a schedulability test for LLF as
well. However, since LLF accommodates some additional
4Theorem 7 in [16] only includes Eq. (6), but it is corrected in [22].



properties in addition to ZL policy, it would be more
interesting to derive another LLF-specific schedulability
condition by generalizing the above observations used in the
ZL test. We therefore characterize LLF-specific properties
in Section IV, and in Section V introduce a new LLF
schedulability test based on these properties.

IV. CHARACTERISTICS OF LLF
In this section we first motivate our choice of LLF

policy among all ZL-based scheduling algorithms through
a discussion on its performance. We then characterize the
LLF-specific properties associated with a deadline miss,
which will serve as a basis for deriving a LLF-specific
schedulability test in the next section.

A. Scheduling performance of LLF
Substantial studies have been undertaken on multiproces-

sor scheduling theory (e.g., [6], [7], [8], [10], [11], [12]),
including those that have introduced optimal scheduling
algorithms (e.g., Pfair [6]) for certain classes of task sys-
tems. However, it has been observed that their performance
degrades significantly when considering more general task
systems, such as constrained deadline task systems consid-
ered here. Although optimal scheduling of such general task
systems has been shown to be impossible [23], we cannot
rule out the existence of algorithms which are more efficient
than the aforementioned ones. We believe the challenges
involved in efficiently scheduling such task systems have
not yet been well-understood (“urgency” vs. “parallelism”
issue), and this is the primary reason for the lack of success.
ZL policy, as discussed in the introduction, seems to be

a simple and effective mechanism in handling the twin-
issues of deadline satisfaction and parallelism restriction.
For example, EDZL studies [13], [3], [16] have demon-
strated the impact of the ZL policy on schedulability of
constrained deadline task systems. LLF strategy, which is
yet another ZL-based scheduling algorithm like EDZL, has
so far received very little attention in the literature on
multiprocessor scheduling [24]. Study [24] shows that a task
set feasible on m speed-1 processors is schedulable under
LLF scheduling on both (a) m speed-(2-1/m) processors
and (b) m+O(log(maxi Ci/ mini Ci)) speed-1 processors.
To use this test as a schedulability test for LLF however, a
sufficient feasibility test is required. To our best knowledge,
the only known technique to check feasibility is to use
schedulability tests such as those described above. This
means that any LLF test derived from [24] will be only
as good as these previously known schedulability tests.
One may then wonder how good the LLF strategy is for

scheduling constrained deadline task systems on multipro-
cessors. Figure 2 shows simulation results over a variety
of scheduling algorithms (see figure caption for a detailed
description of the simulation setting). Figure 2(a) shows
that when the system density is no greater than m (i.e.,

Dsys ≤ m), Pfair5, LLF, and EDZL, all perform well with-
out regard to the number of processors, and EDF however
performs worse as m increases. It is worth noting that in
spite of the non-optimality of LLF and EDZL as opposed
to the optimality of Pfair for task systems with Dsys ≤ m,
the performance of LLF and EDZL is very close to that of
Pfair in our simulations. For example, LLF fails to schedule
0.05% (m = 2), 0.007% (m = 4), and 0% (m > 4), and
EDZL fails to schedule 0.16% (m = 2), 0.06% (m = 4),
and 0% (m > 4). Figure 2(b) shows that when the system
density is greater than m (i.e., Dsys > m), Pfair, EDZL, and
LLF show different behaviors. LLF significantly outperforms
the others on average. In particular, Pfair performs quite
poorly in this case. In general, ZL-based algorithms (LLF,
EDZL, ZL) perform much better than non-ZL-based ones
(Pfair, EDF).
These simulation results indicate that LLF is quite ef-

fective in scheduling constrained deadline task systems on
multiprocessors, in particular, relatively more effective when
Dsys > m. Hence, in this paper, we aim to understand
LLF multiprocessor scheduling and introduce the first LLF-
specific schedulability test for multiprocessor platforms.
Note that we do not assume a specific tie-breaking rule with
the LLF algorithm, so that our proposed schedulability test
is generally applicable.
B. Observation from deadline miss under LLF
In this subsection we characterize LLF-specific properties

related to a missed task deadline. We first investigate neces-
sary conditions at each instant before the deadline miss, and
show that the conditions depend on various parameters of
tasks like laxity values, release times, and finishing times.
Then, we abstract the conditions such that they only depend
on the laxity values of tasks. These conditions form the basis
for the new LLF schedulability test proposed in Section V.
Let Sθ(t) denote a set of tasks whose jobs have a laxity

of θ at time instant t, and let Nθ(t) denote the size of Sθ(t).
Note that S−1(t) is defined to represent a set of tasks whose
jobs have negative laxity. Suppose there is a task that misses
a deadline, and let t0 denote the first time instant before
the deadline miss when there is a task with negative laxity.
That is, t0 is the first time instant such that S−1(t0) �= ∅.
Note that Sθ(t), Nθ(t), and t0, will be used in the rest of
the paper, including in lemmas, definitions, and theorems,
without restating what they stand for.
Let us consider what would happen at t0−1. In fact, there

must be more than m tasks with zero laxity, and we present
this observation formally as follows:

Observation 2: The following holds under LLF schedul-
ing:
5Pfair is originally defined for implicit-deadline task systems such that

each task’s period (equal to deadline) is split into sub-deadlines with
execution time of one unit. To adapt Pfair for constrained deadline task
systems, we split each task’s deadline into sub-deadlines.



 0

 5000

 10000

 15000

 20000

 25000

 30000

 1  2  4  8  16  32  64

Th
e 

nu
m

be
r o

f d
ed

ic
at

ed
 se

ts

The number of processors

LLF
EDZL

ZL
Pfair
EDF

(a) Dsys ≤ m

 0

 5000

 10000

 15000

 20000

 25000

 30000

 1  2  4  8  16  32  64

Th
e 

nu
m

be
r o

f d
ed

ic
at

ed
 se

ts

The number of processors

LLF
EDZL

ZL
Pfair
EDF

(b) Dsys > m

Figure 2. These figures show simulation results of various scheduling
algorithms over constrained deadline tasks on a different number of
processors. Such algorithms include LLF, EDZL, ZL, Pfair, and EDF, where
ZL algorithm gives the highest priority to tasks with zero laxity (ZL policy),
and gives randomly chosen static priority to tasks with positive laxity.
Here y-axis means the number of task sets that are deemed schedulable
by simulation. We perform simulation over 30, 000 task sets for both
Dsys ≤ m and Dsys > m during the first 100, 000 time units for
tractability. The simulation environment is described in more details in
our technical report [25].

[A1]: N0(t0 − 1) > m.

Note that the above observation holds generally for all
ZL-based scheduling algorithms. The next step is to consider
what would happen at t0− 2 depending on what happens at
t0−1. We first consider a case where there is no job released
or finished at t0−1. By definition, there are N0(t0−2) tasks
with zero laxity at t0− 2. We observe that N0(t0− 2) ≤ m

because otherwise t0 − 1 is the first instant when there is a
task with negative laxity. Thus, considering zero-laxity tasks
have the highest priority under LLF scheduling, N0(t0 − 2)
zero-laxity tasks will be all scheduled in [t0−2, t0−1), and
they will continue to have zero laxity at t0− 1. In addition,
some of the one-laxity tasks can be scheduled, and all the
remaining tasks will not be scheduled. That is, m−N0(t0−
2) one-laxity tasks will be scheduled at t0−2 together with
N0(t0−2) zero-laxity tasks. Hence, among N1(t0−2) one-
laxity tasks at t0−2, N1(t0−2)−(m−N0(t0−2)) tasks will

not be scheduled at t0−2, and their laxity will become zero
at t0− 1. Here we observe that N1(t0− 2)− (m−N0(t0−
2)) > 0. If it is not true, all tasks with one or zero laxity
at t0 − 2 are scheduled at [t0 − 2, t0 − 1), and then [A1] in
Observation 2 does not hold. So the number of zero-laxity
tasks at t0 − 1 is given by

N0(t0 − 1) = N0(t0 − 2) + N1(t0 − 2)− (m−N0(t0 − 2))

= 2 · N0(t0 − 2) + N1(t0 − 2)−m

> m. (8)

Extending Observation 2, we present this observation for-
mally as follows:

Observation 3: If there is no job released or finished at
t0 − 1, the following holds under LLF scheduling:

[A2]: 2 · N0(t0 − 2) + N1(t0 − 2) > 2 · m.

It is worth noting that the above observation is specific
to LLF, and in particular, does not necessarily hold for
other ZL-based scheduling algorithms. Now we consider the
general case where there are jobs released and/or finished at
t0− 1. We denote Zθ(t0−x) as the number of tasks whose
jobs are released at t0 − x + 1 with a laxity of θ. We also
denote Wθ(t0 − x) as the number of tasks whose jobs are
finished at t0 − x + 1 and have a laxity of θ at t0 − x. If
N0(t0 − 2) + N1(t0 − 2) is larger than m, we can calculate
N0(t0 − 1) similarly as in Eq. (8):

N0(t0 − 1) = 2 · N0(t0 − 2) + N1(t0 − 2)−m

+Z0(t0 − 2)−W0(t0 − 2) > m. (9)

If N0(t0− 2) + N1(t0− 2) is not larger than m, all tasks
in S0(t0 − 2) and S1(t0 − 2) are scheduled and keep their
laxity values at t0 − 1. This means no task in S1(t0 − 2)
will belong to S0(t0 − 1), and the following is true.

N0(t0 − 1) = N0(t0 − 2) + Z0(t0 − 2)−W0(t0 − 2) > m

=⇒ 2 · N0(t0 − 2) + 2 · {Z0(t0 − 2)−W0(t0 − 2)} > 2 · m (10)

To summarize, we present Eqs. (9) and (10) using suffi-
cient conditions as follows:

Observation 4: The following holds under LLF schedul-
ing:

[A�
2]: 2 · N0(t0 − 2) + N1(t0 − 2) +

(1 + 1t0−2){Z0(t0 − 2)−W0(t0 − 2)}
> 2 · m

where

1t0−x =

�
0 , if

�x−1
j=0 Nj(t0 − x) > m

1 , if
�x−1

j=0 Nj(t0 − x) ≤ m

Now we wish to generalize the above observation for all
time instants before t0, and present the following lemma.



Lemma 3: Each of the following holds under LLF
scheduling for x = 1, 2, 3, ...,∞:

[A�
x]:

x−1�

j=0

(x− j) · Nj(t0 − x)

+
x�

k=2

k−2�

j=0

{(k − j − 1) +
t0−k�

p=t0−x

1p}

·{Zj(t0 − k)−Wj(t0 − k)}
> x · m

Proof: The basic idea of the proof is to use mathemat-
ical induction, and we consider the following two cases for
each inductive step at t: 1t = 1 and 1t = 0. Detailed proof
is given in the Appendix.

Eq. [A�
x] in Lemma 3 can be further simplified by elimi-

nating the contribution of terms Zj(t0−k) and Wj(t0−k).
For this purpose, consider the following definition of per-
ceived laxity of a task.

Definition 1: The perceived laxity of a task τk at t (de-
noted by L̄k(t)) is defined as follows:

L̄k(t) =

�
Lk(t) (= Dk(t)− Ck(t)) , if t ≥ t0 −Dk

Dk − Ck , if t < t0 −Dk
(11)

Just as we defined L̄k(t) corresponding to Lk(t), we now
define N̄j(t) corresponding to Nj(t):

Definition 2: Let N̄j(t) denote the number of tasks with a
perceived laxity of j at time instant t under LLF scheduling.

Note that LLF still uses the actual laxity of tasks to
assign priorities; the perceived laxity is only used in the
schedulability test. Using Definition 1 and 2, we do not
have to care about the contribution of terms Zj(t0− k) and
Wj(t0− k). In particular, the following theorem shows that
Eq. [A�

x] can be safely simplified if we employ N̄j(t) instead
of Nj(t).

Theorem 2: Each of the following holds under LLF
scheduling for x = 1, 2, 3, ...,∞:

[Ax]:
x−1�

j=0

(x− j) · N̄j(t0 − x) > x · m

Proof: The basic idea of the proof is to show that the
LHS of [Ax] is equal to or larger than the LHS of [A�

x] in
Lemma 3. Then [Ax] is a necessary condition of [A�

x] and
therefore this theorem holds.
To prove that the LHS of [Ax] is equal to or larger than the

LHS of [A�
x], we investigate how much each task contributes

to these quantities. Detailed proof is given in the Appendix.

V. SCHEDULABILITY TEST FOR LLF

In the previous section, we derived necessary conditions
for a task to have negative laxity at t0 under LLF scheduling,
in terms of conditions on the number of tasks with certain
laxity values prior to t0 (N̄j(t0 − x)). In this section,
we investigate how to incorporate those conditions into
a schedulability test for LLF. For this purpose, we first
introduce a new worst-case task interference bound for LLF
scheduling. Based on this interference bound, we derive
upper-bounds for the terms N̄j(t0 − x). Then, we propose
a new schedulability test for LLF, and analyze its time
complexity.

A. Worst-case Interference function for LLF

To upper-bound N̄j(t0 − x)-terms in Theorem 2, we will
derive necessary conditions for a task to have a certain laxity
value at a certain time instant ahead of its deadline. To do
this, in this subsection, we derive the worst-case interference
bound of a task τi on a task τk in a time interval [ta, tb),
where ta is the release time of τk’s job and tb is some time
instant no later than the deadline of the job (i.e., tb ≤ ta +
Dk). Although the previously known interference bound for
any work-conserving algorithm (Eq. (4)) can also be used for
LLF, we present a tighter LLF-specific interference bound
in this section.
Consider the interference pattern shown in Figure 1 cor-

responding to the term IWC
k,i (Dk); here tb is the deadline of

τk’s job (i.e., tb = ta + Dk). Suppose the carry-out job of
task τi in the figure6 has a laxity of x or greater until tb.
Then this job cannot interfere with the execution of task τk

in the interval [tb−x, tb) under LLF scheduling. This follows
from the fact that by definition τk has a laxity of at most
x− 1 at tb − t ∈ [tb − x, tb) if it has remaining executions
at tb − t. That is, Dk(tb − t) = t, Ck(tb − t) ≥ 1, and
Lk(tb− t) ≤ t−1 ≤ x−1. Thus the worst-case interference
pattern of task τi on task τk in [ta, ta + Dk) is as shown
in Figure 3. For the interference function to be useful in
bounding N̄j(t0− x) for arbitrary values of j and t0− x, it
is necessary to define the function even for cases when the
considered interval has length smaller than Dk and τk has
some arbitrary laxity value θ or smaller at the end of the
interval. Suppose tb is prior to the deadline of τk’s job (i.e.,
tb ≤ ta +Dk) and τi has a laxity of θ +1+x until tb. Then
again, τi cannot interfere with τk in the interval [tb−x, tb),
because τk has a laxity of at most θ+x in that interval. Thus
the worst-case interference pattern of task τi on task τk in
[ta, tb) is as shown in Figure 4, and we formally express
the pattern as a function of l and θ, where l is the interval
length and θ is a laxity value which task τk has at the end
of the interval.

6Here a carry-out job means it is released within the given interval, but
its deadline is after the interval.



Figure 3. Situation when the maximum interference occurs under LLF
scheduling with interval length Dk .

Figure 4. Situation when the maximum interference occurs under LLF
scheduling with at most θ laxity y time units ahead of Dk .

ILLF
k,i (l, θ) = ηi(l) · Ci + max{0, min(Ci, l + Di − Ci − ηi(l) · Ti

−(Di − Ci −max{0, min(Di − Ci, θ)})}
= ηi(l) · Ci + max{0, min(Ci, l − ηi(l) · Ti

+ max{0, min(Di − Ci, θ)})}.
(12)

Here ηi(l) is defined as in Eq. (3). The above equation is
similar to Eq. (4), but the difference is that the interference
of the carry-out job is deducted by at most Di − Ci − θ as
shown in Figure 4.

B. Laxity and interference relation
Lemmas 1 and 2 use the interference function IWC

k,i to
determine whether a task τk can have zero or negative laxity
under any ZL-based scheduling algorithm. To be able to
bound N̄j(t0 − x) for all possible values of j and t0 − x in
Theorem 2, we now generalize these lemmas for different
possible laxity values of task τk and for different possible
interval lengths under LLF scheduling.

Lemma 4: If a task τk has a laxity of θ or less at y time
units ahead of its deadline, then the following inequality
holds:

�

i�=k

ILLF
k,i (Dk − y, θ) ≥ m · (Dk − Ck − θ) (13)

By Lemma 4 in [19], the above inequality can be further
tightened as:
�

i�=k

min(ILLF
k,i (Dk − y, θ), Dk − Ck − θ) ≥ m · (Dk − Ck − θ)

(14)

Proof: We prove this lemma by contraposition. That is,
assuming

�
i �=k ILLF

k,i (Dk − y, θ) < m · (Dk − Ck − θ), we

prove that task τk must have a laxity larger than θ at y time
units ahead of its deadline.
The total interference to task τk is less thanm·(Dk−Ck−

θ), and τk cannot execute at some time instant only when m

other tasks execute at that instant. Thus, during the interval
[ta, ta+Dk−y) (where ta is the release time of τk’s job), τk

is prevented from executing for less thanm·(Dk−Ck−θ)/m

time units due to interference. This means that τk executes
for at least Dk−y−(Dk−Ck−θ−1) = Ck +θ+1−y time
units in that interval. Then, the laxity of τk at ta + Dk − y

can be computed as follows:

Dk(ta + Dk − y) = y

Ck(ta + Dk − y) ≤ Ck − (Ck + θ + 1− y) = y − θ − 1

Lk(ta + Dk − y) ≥ y − (y − θ − 1) = θ + 1
(15)

Thus, task τk’s laxity at y time units ahead of its deadline
is larger than θ, and this conclude the proof.

For a given time to deadline y (≤ Dk), let us define the
following indicator function δ∗k(θ, y) for a task τk based on
Lemma 4. This function indicates whether τk can reach a
laxity of exactly θ at y time units ahead of its deadline.

δ
∗
k(θ, y) =






1, if this is the smallest θ

for which Eq. (14) is true.
0, otherwise.

(16)

Also, to be consistent with our definition of N̄j(t0 − x),
let us define δ∗k(θ, y) for y > Dk as follows.

δ
∗
k(θ, y) =

�
1, if θ = Dk − Ck.
0, otherwise. (17)

Incorporating δ∗k(θ, y) into Theorem 2 we get the follow-
ing lemma.

Lemma 5: Each of the following holds under LLF
scheduling for x = 1, 2, 3, ...,∞.

[Bx]:
x−1�

j=0

(x− j)
�

k

δ∗k(j, x) > x · m

Proof: We show that the LHS of [Bx] is equal to
or larger than the LHS of [Ax] in Theorem 2 for x =
1, 2, 3, ...,∞. Then [Bx] is a necessary condition of [Ax]
and the lemma directly follows from Theorem 2.
We investigate how much individual tasks contribute to

the LHS of [Ax] in Theorem 2 and to that of [Bx] in
Lemma 5. Then, we prove that the contribution of a task
τk to the LHS of [Bx] is always equal to or larger than that
to the LHS of [Ax]. We denote the LHS of [Ax] as (A), and
the LHS of [Bx] as (B). We consider two cases depending
on the value of x.
(Case 1) t0 − x, where x = 1, 2, ..., Dk.



Suppose task τk has a laxity of θ� at t0 − x. It then
contributes x− θ� to (A). Recall that δ∗k(θ, x) = 1 means τk

can reach a laxity of θ at x time units ahead of its deadline,
but it cannot reach a laxity of less than θ. This means that
condition δ∗k(θ, x) = 1 is necessary for τk to have a laxity of
θ or less at x time units ahead of its deadline. Now, since τk

has a laxity of θ� at t0−x, it holds that δ∗k(θ, x) = 1 for some
θ such that θ ≤ θ�. But then the contribution of τk to (B) is
exactly x− θ, which is at least as much as its contribution
to (A). Thus, we can conclude that the contribution of any
task to (B) is equal to or larger than that to (A) in this case.
(Case 2) t0 − x, where x = Dk + 1,Dk + 2, ...,∞.
By definition of δ∗k(θ, x) for x > Dk, task τk contributes

x − Dk + Ck to (B). Similarly by definition of perceived
laxity for time instants before t0 −Dk, task τk contributes
x−Dk + Ck to (A). Thus, the contribution to (A) and (B)
are identical.
Finally, using the results of (Case 1) and (Case 2), we can

conclude that the contribution of any task to (B) is larger
than or equal to that of its contribution to (A). This concludes
the proof.

Here note that [Bx] in Lemma 5, unlike [Ax] in Theorem 2,
only depends on the task parameters and nothing else; in
particular it is independent of time instant t0.

C. LLF schedulability test
Lemma 5 presents the necessary conditions for a deadline

miss under LLF scheduling. Recall that these conditions
are derived using constraints on the number of tasks with
a certain laxity value at time instants t0 − 1, t0 − 2, ...,
where t0 denotes the time instant when there exists at
least one task which has negative laxity. At t0 we know
that there exists at least one task with a negative laxity
(Observation B). Therefore the conditions in Lemma 5 can
be further augmented with one more necessary condition
characterizing the negative laxity task at t0. Similar to the
ZL schedulability test in Theorem 1, we use Lemma 2
for this condition, replacing IWC

k,i (Dk) with ILLF
k,i (Dk,−1)

in Eq. (12). Thus, combining all these observations, we
formally express our LLF schedulability test as follows:

Theorem 3 (LLF schedulability): A task set is schedula-
ble by LLF unless all the below statements ([B0], [B1], ...,
[BDmax]) are true, where Dmax = max{Dk}.

[B0] There is at least one task τk satisfying either Eq. (6)
or Eq. (7), where IWC

k,i (Dk) is replaced with ILLF
k,i (Dk,−1).

[Bx]:
x−1�

j=0

(x− j)
�

k

δ∗k(j, x) > x · m,

where x = 1, 2, ..., Dmax

Proof: This theorem holds from Lemmas 2 and 5. The
difference between Lemma 5 and this theorem is in the

range of x for [Bx]. Since satisfying [Bx] in a limited
range of x is a necessary condition for satisfying it in a
more general range of x, correctness of this theorem holds
trivially. Nevertheless, we now show that there is no need to
investigate conditions [Bx] for x > Dmax. That is, assuming
[Bx] holds for all x ≤ Dmax, we show that [Bx] holds for
all x > Dmax by mathematical induction.
(The basis) [Bx] holds for all x ≤ Dmax.
(The inductive step) We will prove that if [Bx] holds,

then [Bx+1] also holds for x ≥ Dmax. Since x ≥ Dk for
all τk, only δ∗k(θ = Dk − Ck, y) terms are equal to 1 for
both y = x and y = x + 1. Thus, the LHS of [Bx+1]
is increased by n (the number of tasks) compared to that
of [Bx], while the RHS of [Bx+1] is increased by m (the
number of processors). It holds that n > m to meet [B1] is
true, so [Bx+1] is also true.
We conclude that we do not need to investigate conditions

[Bx] for x > Dmax.

It is not known whether there exists any dominance
relationship between LLF and EDZL scheduling algorithms,
but our LLF schedulability test described in Theorem 3
dominates the state-of-art EDZL schedulability test in [16],
as well as the ZL test proposed in Theorem 1. To prove
this dominance, we first prove that interference function
ILLF
k,i (l, θ) for θ ≤ 0 is equal to or less than the corresponding
interference function under EDZL as described in [16], [20].

Lemma 6: ILLF
k,i (l, θ) ≤ IEDZL

k,i (l) for all values of l and
θ ≤ 0, where IEDZL

k,i is defined as follows (from [16], [20]):

IEDZL
k,i (l) =

�
l
Ti

�
Ci + min(Ci, l −

�
l
Ti

�
Ti), (18)

Proof: Due to the space limit, we refer readers to our
technical report [25].

The following theorem then states the dominance rela-
tionship between schedulability tests.

Theorem 4: The LLF schedulability test in Theorem 3
dominates the EDZL test in [16] and the ZL test in Theo-
rem 1.

Proof: The EDZL (and ZL) schedulability test is equiv-
alent to the first two necessary conditions [B0] and [B1]
where only ILLF

k,i (l, θ) for θ ≤ 0 is used. Thus, this theorem
holds from Lemma 6.
In the above theorem we did not consider the iterative test

method for EDZL [16]. This method computes each task’s
slack (minimum time interval between the latest finishing
time and the deadline), and uses it to reduce the interference
from carry-in jobs7 of tasks. Since this technique can also
be applied orthogonally to our LLF schedulability test, the
aforementioned dominance relationship nevertheless holds.
7A carry-in job is released before the start of the interval, but may execute

within the interval.



Remaining time Laxity (θ)
to deadline (y) 0 1 ... Dk − Ck − 1 Dk − Ck

0
1

√

2
√ √

...
√ √

...
Dk − Ck

√ √ √ √

Dk − Ck + 1
√ √ √ √ √

...
√ √ √ √ √

Ck
√ √ √ √ √

Ck + 1
√ √ √ √

... ...
√ √

Dk − 1
√ √

Dk
√

Table I
A SET OF POSSIBLE NON-NEGATIVE LAXITY VALUES ACCORDING TO

REMAINING TIME TO DEADLINE

D. Complexity of LLF schedulability analysis
When we apply the ZL (as well as EDZL) schedulability

test, the calculation of the LHS of Eq. (5) for a given task
τk has complexity O(n). We need to calculate the LHS of
Eq. (5) for all tasks in the worst case, and then the ZL (as
well as EDZL) schedulability test has the complexity O(n2).
Similarly, when we test schedulability of LLF, calculation

of the LHS of Eq. (14) for a given τk, θ, and y, has
complexity O(n). Given a task τk, we need to calculate
Eq. (14) for all pairs (θ, y) marked as

√
in Table I in the

worst-case, where the number of pairs is O(Dk ·(Dk−Ck)).
Therefore, overall, the LLF schedulability test has complex-
ity O(n2 ·maxk Dk ·(Dk−Ck)). In fact, this complexity can
be reduced to O(n2 · maxk(Dk)), if we take advantage of
properties associated with δ∗k(θ, y). Details how to achieve
the complexity are presented in our technical report [25].
Note that the structure of LLF schedulability test consists

of a set of necessary conditions for a deadline miss. The
correctness of our LLF test holds even if we investigate any
partial subset of the [Bi] conditions in Theorem 3. For ex-
ample, if we only consider [B0] and [B1], the schedulability
test has similar complexity to that of the ZL test. Thus there
exists a trade-off between complexity and schedulability in
terms of how many necessary conditions [Bi] are checked.

VI. CONCLUSION
In this work we have identified some properties of LLF

scheduling, over and above those associated with the zero-
laxity (ZL) policy. A successful characterization of these
properties using worst-case higher priority interference has
led to the first LLF-specific schedulability test for unit-
capacity multiprocessor platforms. Dominance of this test
over previously known tests for ZL-based algorithms has
also been established.
While LLF is effective in terms of schedulability, a large

number of preemptions is the main barrier to its practical
use. LLF itself cannot avoid frequent preemptions; for ex-
ample, when two jobs have the same laxity, they repeatedly

preempt each other under LLF. We can however reduce the
number of preemptions if we incorporate some tie-breaking
rules into LLF. For example, by executing jobs that have
the same laxity in EDF order, we can prevent them from
repeatedly preempting each other. In the future, we will
consider such tie-breaking rules for the LLF scheduling
algorithm, and develop corresponding schedulability tests,
based on the test developed in this paper. In spite of such
modifications, relative performance of the LLF test may
degrade if preemption costs are considered. Therefore, we
also plan to develop preemption-aware LLF analysis, so that
our results can be compared with other algorithms (e.g.,
EDZL) under more practical environments.
Another direction of future work is to evaluate and

understand how and why performance of LLF and other
online algorithms degrades for various task systems such
as implicit, constrained, and arbitrary deadline task systems
(e.g., [23] for constrained deadline task systems). Based on
understanding how urgency and parallelism constraints influ-
ence multiprocessor schedulability, we plan to design more
efficient scheduling algorithms in multiprocessor platforms.
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APPENDIX
A. Proof of Lemma 3

Proof: The basic idea is to prove the lemma by math-
ematical induction.
(Basis) Conditions of t0 − 1 and t0 − 2 ([A�

1] and [A�
2])

are true by Observations 2 and 4.
(Inductive step) We wish to prove the following: for all

x ≥ 2, if the condition of t0 − x ([A�
x]) is true, then the

condition of t0− (x+1) ([A�
x+1]) is also true. We consider

two cases depending on the value of 1t0−x−1.
(Case 1) Assume

1t0−x−1 = 1 ⇐⇒
x�

j=0

Nj(t0 − x− 1) ≤ m. (19)

All tasks in Sj(t0 − x− 1) for 0 ≤ j < x are serviced in
[t0 − x− 1, t0 − x), and thus Lk(t0 − x− 1) = Lk(t0 − x)



for all tasks τk ∈ Sj(t0 − x− 1) where 0 ≤ j < x. So, the
following relationship holds:

Nj(t0 − x) = Nj(t0 − x− 1) + Zj(t0 − x− 1)−Wj(t0 − x− 1)

, ∀0 ≤ j < x
(20)

Using the above equation in [A�
x] we get:

x−1�

j=0

(x− j) · {Nj(t0 − x− 1) + Zj(t0 − x− 1)−Wj(t0 − x− 1)}

+
x�

k=2

k−2�

j=0

{(k − j − 1) +
t0−k�

p=t0−x

1p} · (Zj(t0 − k)−Wj(t0 − k))

> x · m
(21)

Multiplying the above equation by x+1
x , we get:

x−1�

j=0

x + 1

x
(x− j){Nj(t0 − x− 1)+Zj(t0 − x− 1)−Wj(t0 − x− 1)}

+
x�

k=2

k−2�

j=0

x + 1

x
{(k − j − 1)+

t0−k�

p=t0−x

1p}(Zj(t0 − k)−Wj(t0 − k))

> (x + 1) · m
(22)

Using the above equation, we will now prove that [A�
x+1]

holds in this case. First, observe that

(k − j − 1) +
t0−k�

p=t0−x

1p ≤ (k − j − 1) + x− k + 1 = x− j ≤ x

, for x > 0, j ≥ 0.

Combining this with the assumption of (Case 1), i.e.,
1t0−x−1 = 1, we get:

x + 1

x
{(k − j − 1) +

t0−k�

p=t0−x

1p}

=
1

x
{(k − j − 1) +

t0−k�

p=t0−x

1p} + {(k − j − 1) +
t0−k�

p=t0−x

1p}

≤ 1 + {(k − j − 1) +
t0−k�

p=t0−x

1p} = (k − j − 1) +
t0−k�

p=t0−x−1

1p

(23)

Second, to transform the current coefficient (x+1
x (x− j))

of Nj(t0 − x − 1) to the coefficient of Nj(t0 − x − 1) in
[A�

x+1], we apply the following inequality:

x + 1

x
(x− j) = x + 1−

x + 1

x
· j < (x + 1− j), for x > 0, j ≥ 0

(24)

Now, by applying Eqs. (23) and (24) to Eq. (22), the
following inequality holds:

x−1�

j=0

(x + 1− j) · {Nj(t0 − x− 1)+Zj(t0 − x− 1)−Wj(t0 − x− 1)}

+
x�

k=2

k−2�

j=0

{(k − j − 1) +
t0−k�

p=t0−x−1

1p} · (Zj(t0 − k)−Wj(t0 − k))

=
x−1�

j=0

(x + 1− j) · Nj(t0 − x− 1)

+
x−1�

j=0

(x + 1− j) · {Zj(t0 − x− 1)−Wj(t0 − x− 1)}

+
x�

k=2

k−2�

j=0

{(k − j − 1)+
t0−k�

p=t0−x−1

1p} · (Zj(t0 − k)−Wj(t0 − k))

> (x + 1) · m
(25)

We will arrange terms such that the LHS of Eq. (25) is
equal to that of [Ax+1]. To do this, we use that the following
equation which holds for k = x + 1.

k−2�

j=0

{(k − j − 1) +
t0−k�

p=t0−x−1

1p} =
x−1�

j=0

{(x− j) + 1t0−x−1}

=
x−1�

j=0

(x + 1− j) (26)

Then, the LHS of Eq. (25) can be represented as follows:
x−1�

j=0

(x + 1− j) · Nj(t0 − x− 1)

+
x+1�

k=2

k−2�

j=0

{(k − j − 1) +
t0−k�

p=t0−x−1

1p} · (Zj(t0 − k)−Wj(t0 − k))

(27)

We can now check that [A�
x+1] holds by adding the non-

negative term for j = x to the first summation of the above
inequality. Finally, we conclude that if [A�

x] is true, then
[A�

x+1] is true for this case.

(Case 2) Assume

1t0−x−1 = 0 ⇐⇒
x�

j=0

Nj(t0 − x− 1) > m. (28)

Since only m tasks can be serviced in [t0 − x − 1, t0 −
x), there exists a minimum number y (≤ x) such that at
least one of the tasks in Sy(t0 − x − 1) is not serviced in
[t0 − x − 1, t0 − x). It holds that y ≥ 1 because otherwise
N0(t0−x− 1) > m, which means t0−x is the first instant
when there is a task with negative laxity. Thus, all tasks in
Sj(t0−x−1) for j = 0, ..., y−1 are serviced while all tasks
in Sj(t0−x−1) for j = y+1, ..., x are not serviced. Among
tasks in Sy(t0−x−1),

�y
j=0 Nj(t0−x−1)−m tasks are not

serviced and m−
�y−1

j=0 Nj(t0 − x− 1) tasks are serviced.
Considering that serviced tasks keep their laxity and non-
serviced ones reduce their laxity by one, we establish the
following relationship betweenNj(t0−x) andNj(t0−x−1):



Nj(t0 − x) =






Nj(t0 − x− 1)+Zj(t0 − x− 1)−Wj(t0 − x− 1), 0≤j≤y−2

Nj(t0 − x− 1) + {
�y

k=0 Nk(t0 − x− 1)−m}
+Zj(t0 − x− 1)−Wj(t0 − x− 1), j = y − 1

{m−
�y−1

k=0 Nk(t0 − x− 1)+Nj+1(t0 − x− 1)}
+Zj(t0 − x− 1)−Wj(t0 − x− 1), j = y

Nj+1(t0 − x− 1) + Zj(t0 − x− 1)

−Wj(t0 − x− 1), y+1≤j≤x−1

Using the above equation in [A�
x], we can easily arrive at

[A�
x+1] after some mathematical simplications. The detailed

derivation is given in our technical report [25].
From (Case 1) and (Case 2), the inductive step is correct,

and this concludes the proof.

B. Proof of Theorem 2
Proof:

To prove this theorem, we investigate how much a task τk

contributes to the LHS of [Ax] in Theorem 2 and to the LHS
of [A�

x] in Lemma 3. Then, we prove that this contribution
to [Ax] is always equal to or larger than that to [A�

x]. We
denote the LHS of [Ax] by (A), and the LHS of [A�

x] by
(B).
Let t0−tτk denote the release time of the latest job of task

τk before t0. Further, let t0 − tτk(q) and t0 − t�τk(q) denote
the release and finishing times, respectively, of the qth job
of τk prior to the job released at t0 − tτk (a larger q means
earlier job). We also define t0 − tτk(0)

�= t0 − tτk .
Since Zθ(t0 − y) is the number of tasks whose jobs are

released at t0 − y + 1 with a laxity of θ, τk contributes to
(B) through Zθ(t0 − y)-terms only when θ = Dk −Ck and
to − y = t0 − tτk(q) − 1. Similarly, since Wθ(t0 − y) is the
number of tasks whose jobs are finished at t0 − y + 1 and
have a laxity of θ at t0 − y, τk contributes to (B) through
Wθ(t0 − y)-terms only when t0 − y = t0 − t�τk(q) − 1. Both
these contributions to (B) occur at all time instants t0 − x

such that x ≥ y. Finally, at any time instant when τk is active
(i.e., t0−x such that t0− tτk(q) ≤ t0−x ≤ t0− t�τk(q) +1),
it contributes to (B) through at most one N -term.
We now consider three cases depending on the value of

time instant t0 − x to prove this theorem.
(Case 1) t0 − x, where x = 1, 2, ..., min(tτk ,Dk).
Since τk does not contribute through any Z-terms after

t− tτk , it only contributes to (B) at t0 − x through at most
one N - and oneW -terms. Here the contribution throughW -
term is negative, and that through the N -term is the same
as what τk contributes through the N̄ -term to (A). So, the
contribution of τk to (A) is equal to or larger than that to
(B).
(Case 2) t0 − x, where x = Dk + 1,Dk + 2, ..., tτk .
Here, τk contributes x − Dk + Ck to (A), because the

perceived laxity of τk when t < t0 −Dk is Dk − Ck.
Similar to (Case 1), τk does not contribute through any

Z-terms to (B). Further, since Dk < tτk in this case, the last
job of τk finishes in the interval [t0−x, t0), meaning that τk

contributes through exactly one W -term to (B). If we denote
t0 − y as this job finish time and θ as the laxity of the job
at t0 − y− 1, the contribution of τk through W -term to (B)
is −{y− θ +

�t0−y−1
p=t0−x 1p}. Additionally, τk can contribute

to (B) at t0 − x through at most one N -term. If we denote
θ� as the laxity of τk at t0 − x, this N -term contribution is
x− θ�.
Now, during [t0 − x, t0 − y), the job is not executed for

exactly θ� − θ time units, and execution occurs for at most
Ck time units. Then x − y ≤ θ� − θ + Ck, for all x such
that Dk +1 ≤ x ≤ tτk . That is, in particular, −y− θ� + θ ≤
Ck − tτk . Then, as shown by the following inequality, τk’s
contribution to (B) is at most its contribution to (A):

−{y − θ +
t0−y−1�

p=t0−x

1p} + {x− θ�} = x− y − θ� + θ −
t0−y−1�

p=t0−x

1p

≤ x + Ck − tτk ≤ x + Ck −Dk
(29)

(Case 3) t0 − x, where x = tτk + 1, tτk + 2, ...,∞.
Similar to (Case 2), task τk contributes x −Dk + Ck to

(A).
We now compute the contribution of τk to (B) for each

time instant. For this purpose, we consider two types of time
instants: (Case 3-1) time instants between the finishing time
of a job of τk and the release time of the next job and (Case
3-2) time instants between the release time of a job of τk to
the finishing time of the job.
(Case 3-1) t0 − x such that t0 − t�τk(q+1) ≤ t0 − x ≤

t0 − tτk(q) − 1, where q ≥ 0.
In these time instants, τk is inactive. So it cannot con-

tribute through N -terms. Further, at any such instant, there is
contribution from at least one Z-term (ZDk−Ck(t0−tτk(0)−
1)). Except for this Z-term, whenever there is contribution
from the qth job of τk through a Z-term, there is also
contribution from the (q−1)st job of τk through a W -term.
Thus, at any time instant t0−x in this case, τk contributions
through y +1 Z-terms and y W -terms, where y +1 denotes
the number of jobs of τk released in [t0 − tτk(q), t0). These
contributions to (B) can be expressed as follows:

y�

q=0

{tτk(q) −Dk + Ck +

t0−tτk(q)−1�

p=t0−x

1p}

(coefficients of Z-terms)

−
y�

q=1

{t�τk(q) − θq +

t0−t�τk(q)−1
�

p=t0−x

1p}

(coefficients of W -terms)

= (y + 1) · (−Dk + Ck) +
y�

q=1

θq + {tτk(0) +

t0−tτk(0)−1�

p=t0−x

1p}

+
y�

q=1

{tτk(q) +

t0−tτk(q)−1�

p=t0−x

1p − t�τk(q) −
t0−t�τk(q)−1

�

p=t0−x

1p}

(30)



Using the fact that laxity θq cannot be larger than Dk−Ck

and re-arranging, it can be easily shown that Eq. (30) is
upper-bounded by −Dk + Ck + x. Detailed derivation is
given in our technical report [25]. Thus, contribution of τk

to (B) is at most its contribution to (A) under this case.
(Case 3-2) t0 − x such that t0 − tτk(q) ≤ t0 − x ≤ t0 −

t�τk(q) − 1, where q ≥ 0.
At these time instants, τk contributes through the same

number of Z- and W -terms, and at most one N -term from
its earliest job. Excluding the contribution through this N -
term and the earliest job’s W -term, contribution through all
other Z- and W -terms is the same as in Eq. (30) of (Case
3-1).
We now calculate the contributions through the earliest

job’s W - and N -terms. Denote the earliest job’s finishing
time as t0 − t�τk(y+1). At t0 − x, contribution of this job

through theW -term is−{tτk(y+1)−θy+1+
�t0−tτ�

k
(y+1)−1

p=t0−x },
where θy+1 denotes the laxity of the job at t0−t�τk(y+1)−1.
Contribution through the N -term is x− θ, where θ denotes
the laxity of τk’s job at t0 − x. Since the laxity of a job is
a non-increasing parameter, it holds that θy+1 ≤ θ. Then,
the contribution of τk through its earliest job’s W - N -terms
can be calculated as follows:

−{tτk(y+1) − θy+1 +

t0−t�τk(y+1)−1
�

p=t0−x

1p} + {x− θ}

≤ −tτk(y+1) −
t0−t�τk(y+1)−1

�

p=t0−x

1p + x (31)

Finally, adding the above quantity to Eq. (30), gives us
the overall contribution of τk to (B). It can be easily shown
that this sum is upper-bounded by −Dk + Ck + x. Detailed
derivation is given in our technical report [25]. Thus, the
contribution of τk to (B) is at most its contribution to (A)
even in this case.
Finally, using the results of (Case 1), (Case 2), (Case 3-1)

and (Case 3-2), we can conclude that the contribution of any
task to (A) is larger than or equal to that of its contribution to
(B) at any time instant t0−x, where x ≥ 1. This concludes
the proof.
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