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Abstract 

In deflection-based Network-on-Chips (NoC), when several flits entering a router contend for the same output port, 

one of the flit is routed to the desired output and the others are deflected to alternatives outputs. The approach 

reduces power consumption and silicon footprint in comparison to virtual channels (VCs) based solutions. 

However, due to the non-deterministic number of deflections that flits may suffer while traversing the network, flits 

may be received in an out-of-order fashion at their destinations. In this work, we present IPDeN, a novel deflection-

based NoC that ensures in-order flit delivery. To avoid the use of costly reordering mechanisms at the destination 

of each communication flow, we propose a solution based on a single small buffer added to each router to 

prevents flits from over taking other flits belonging to the same communication flow. We also develop a worst-case 

traversal time (WCTT) analysis for packets transmitted over IPDeN. We implemented IPDeN in Verilog and 

synthesized it for an FPGA platform. We show that a router of IPDeN requires "483-times less hardware resources 

than routers that use VCs. Experimental results shown that the worst-case and average packets communication 

time is reduced in comparison to the state-of-the-art. 
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Abstract—In deflection-based Network-on-Chips (NoC), when
several flits entering a router contend for the same output port,
one of the flit is routed to the desired output and the others are
deflected to alternatives outputs. The approach reduces power
consumption and silicon footprint in comparison to virtual-
channels (VCs) based solutions. However, due to the non-
deterministic number of deflections that flits may suffer while
traversing the network, flits may be received in an out-of-order
fashion at their destinations. In this work, we present IPDeN, a
novel deflection-based NoC that ensures in-order flit delivery. To
avoid the use of costly reordering mechanisms at the destination
of each communication flow, we propose a solution based on a
single small buffer added to each router to prevents flits from
over taking other flits belonging to the same communication flow.
We also develop a worst-case traversal time (WCTT) analysis
for packets transmitted over IPDeN. We implemented IPDeN in
Verilog and synthesized it for an FPGA platform. We show that
a router of IPDeN requires ≈3-times less hardware resources
than routers that use VCs. Experimental results shown that the
worst-case and average packets communication time is reduced
in comparison to the state-of-the-art.

Index Terms—Real-Time Embedded Systems, Systems-on-
Chips, Network-on-Chips, Worst-Case Traversal Time

I. INTRODUCTION

As more powerful embedded systems are required to
perform advanced functionalities, the number of processing
elements (PEs) integrated in Systems-on-Chips (SoCs) has
increased significantly over the past decade. In this context,
shared communication buses, which used to connect all the
PEs together, suffer from several drawbacks, such as limited
bandwidth and scalability with respect to the growing number
of messages exchanged between PEs. They have been identi-
fied as one of the major bottlenecks for the performance of
SoCs. NoCs are router-based packet switching networks that
offer an alternative to the traditional communication architec-
tures based on buses [2], [8]. NoCs allow the integration of
a large number of computation nodes on a single SoC, as
they allow multiple PEs to transmit messages in parallel. In
this paper, we are interested about real-time systems, that is,
systems that have timing requirements associated to their tasks.
The hardware platform on which such systems execute should
preferably be analyzed from a timing perspective. Therefore,
NoCs used in real-time systems should provide certain guar-

antees, namely, packets that travel through the network must
reach their destinations within previously defined deadlines.

The two most popular types of NoCs architectures re-
volve around the concepts of wormhole switching with VCs,
and deflection-based routing. VCs are a popular solution to
improve NoCs throughput but significantly increase silicon
footprint and power consumption. They mainly target high-
end applications.

NoCs built upon the concept of deflection are a good
alternative, as they have lower implementation cost and power
consumption. Deflection-based NoCs are more suitable to sys-
tems with energy and/or area constraints and limited resource
availability.

In deflection-based NoCs, flits of the same communication
flow may be deflected to different routes with different lengths
while traversing the network. Hence, the flits may not be
received at their destinations in the same order as they were
injected into the network at their sources.

In-order packet delivery is a required feature in an extensive
variety of applications, such as control applications, where the
control actions depend on a specific sequence of inputs, or in
applications where large data blocks need to be transmitted
over multiple flits, which thus require the complete data to be
reconstructed at the destination. To guarantee in-order packet
delivery, reordering mechanisms are frequently used at the
destination nodes. However, those strategies add an additional
layer of complexity, thereby slowing down the application, and
considerably increasing hardware resources consumption.

Contribution. We propose IPDeN, a deflection-based NoC
that ensures in-order flit delivery at the destination. Specif-
ically, we propose a new router architecture associated to a
new routing policy that guarantees in-order flit delivery. It
introduces small constant size buffers in the router’s design to
avoid the use of costly reordering logic at the destination. We
derive a WCTT analysis for packets transmitted over IPDeN,
That is, we derive upper-bounds on the maximum number of
clock cycles taken by the flits injected into the network to
reach their destinations. We implement our NoC on an FPGA
platform, and compare against the state-of-the-art.



II. RELATED WORK

Time-triggered routing arbitration-based NoCs [1], [4], [17]
isolate the timing properties of the communication flows by
allocating pre-calculated transmission slots to them. If slots
are properly assigned, in-order packet delivery is ensured.
However, they require to know the complete system specifica-
tion at configuration time. Therefore, they difficultly support
changes in the system workload at run-time and are complex
to configure.

For those reasons, wormhole switching NoCs with
VCs [12], [13], [20] are the most popular NoC solutions.
Wormhole switching with VCs ensures in-order packets de-
livery if all packets of a same flow take the same route. [5]
proposes a solution that guarantees in-order packet delivery
while packets are routed through multiple paths in the network,
and [6] proposes a solution that supports in-order packet de-
livery under adaptive routing by reserving an alternate virtual
path during the VC allocation process. Yet, such approaches
are expensive to implement in terms of silicon footprint and
have high power consumption due to the extensive use of
buffers.

PaterNoster [11] and CAERUS [15] are two in-order deflec-
tion NoCs. The solutions rely on minimally buffered deflection
routing to preserve flit order between sending and receiving
nodes. [10] exposes the weaknesses of the solutions (e.g.,
large and costly reception buffers; the buffer overflow handling
mechanism may destroys the order of flits; and livelocks may
occur) and solves all the issues.

[9] presents a Butterfly Fat Tree NoC that ensures in-
order delivery at medium implementation cost and provides
bandwidth configuration flexibility. HopliteBuf [7] provides
in-order packet delivery by adding stall-free buffers in routers.
The fact that, a large buffer is added in each router leads for
increased resource and power requirements for the NoC.

III. SYSTEM MODEL

We assume a system composed of N programming ele-
ments (PEs) {π1, ..., πN} interconnected with a NoC of N
routers {R1, ..., RN}. Each PE πq is connected to a router
Rq with coordinates (xq, yq) in a grid representation of the
NoC. Each PE πq injects a set of nq communication flows
Fq = {fq,1, fq,2, ..., fq,nq

} into the network. A communication
flow fq,i generates a potentially infinite number of packets
with a minimum inter-arrival time Tq,i, i.e., the minimum
duration between the generation of two packets by fq,i is
Tq,i. A packet is split in Cq,i flits sequentially injected in
the router at coordinates (xoq,i, y

o
q,i). The destination of the

flits of fq,i is the PE at coordinates (xdq,i, y
d
q,i). We assume

that there is no distinction between header, body or tail flits.
Specifically, we assume that the destination coordinate of a
packet is encoded in all flits. Note that, the number of bits in
a flit that are used to encode its destination coordinate only
depends on the size of the network, e.g., 64-bits width flits
traversing a 4x4 IPDeN NoC must use 4-bits to encode their
destination coordinates. Each flit contains Sflit bits. We define

(a) Circulant topology (16;1,4). (b) Equiv. grid-based network.

Fig. 1. IPDeN NoC topology.

the utilization of flow fq,i as Uq,i =
Cq,i

Tq,i
. The utilization of a

PE πq is thus Uq =
∑

∀fq,i∈Fq
Uq,i.

IV. IPDEN NOC

In this section, we present IPDeN; the network topology,
router architecture, and routing policy. In the next section, we
present a timing analysis and discuss some of IPDeN’s main
properties.

A. NoC topology

In IPDeN, the routers are connected together according to
a ring circulant topology [16] with parameters (N ; g1, g2)
(where g1 = 1, N is the total number of routers, and g1, g2 are
the generatrices of the network). We assume that g2 divides
N . Under this circulant topology (see Fig. 1(a)), each router
of IPDeN has four inputs and four output ports (see Fig. 2(d)).
Two inputs ports referred to by the letters N and W (for North
and West), and two output ports referred to as E and S (for
East and South) are used for inter-routers communication. The
remaining two inputs ports, which are named PEi1 and PEi2,
are used by the PE to inject packets into the network. Similarly,
when a flit reaches its destination router, it is transmitted to
the PE via either of the remaining two output ports named
PEo1 and PEo2.

All the routers are connected by a single unidirectional ring
using the ports W and E of each router (see red line in Fig. 1).
Each router is also connected to the routers that are g2 hops
away on the ring using the N and S ports (see green and black
lines in Fig. 1).

As an alternative that facilitates later discussion about
coordinates of PEs and routers in the network, the circulant
network (N ; 1, g2) may be represented as a Sx×Sy grid-based
network (see Fig. 1(b)) where Sx and Sy correspond to the
number of routers on the horizontal and vertical dimensions,
respectively, and where Sx = g2 and Sy = N

g2
. Note that,

the grid-based network does not illustrate how the routers
should be mapped at the moment of creating the layout of
IPDeN. Figs.1(a) and 1(b) are abstract representations of the
topology. We provide the grid-based representation as a sup-
porting element to simplify the explanation and therefore the
understanding of the IPDeN’s routing policy in Section IV-B.
As further discussed in the experimental section, there is
no long wire in the actual implementation of the network.



Therefore, there is no transmission latency problems impacting
the maximum clock frequency of the network. Long wires
(e.g., the wire that connects the port E of router (3,3) with the
port W of router (0,0) in Fig. 1(b)) are simply artifacts of the
grid-based representation due to representing a 3D structure in
a 2D drawing. In fact, all wires connecting consecutive routers
on the ring have the same length (see Fig. 1(a)). The length of
the wires can be reduced by mapping the routers appropriately
during the placement and routing step on the final chip. Note
that the same happens with a torus topology.

Example: Fig. 1(a) shows the circulant network with pa-
rameters (16; 1, 4). In Fig. 1(b), we provide its equivalent
representation as a 4x4 grid-based network. The main uni-
directional ring (red link in Fig. 1(a)) corresponds to the rows
of the grid (see Fig. 1(b)), where the E port of the last router
in row number y is connected to the W port of the first router
in row number (y+1) mod Sy . Similarly, the bypasses (green
and black in Fig. 1(a)) correspond to the links on the columns
of the grid where the last router in a column is connected to
the first router in that same column.

B. Routing policy

A PE can inject packets on the ports E and S by using
the input ports PEi1 and PEi2, respectively (Fig. 2(d)). Note
that to reduce waiting time, packets may be injected via PEi1
and PEi2 in parallel. Therefore, a packet that is waiting to
be injected into the network only conflicts with the subset of
packets that must be injected to the same input port PEiu.

Property 1: In this paper, we assume that a flit of a flow fq,i
with origin coordinates (xoq,i, y

o
q,i) and destination coordinates

(xdq,i, y
d
q,i), is injected in the network using port PEi1 if and

only if xoq,i 6= xdq,i and using port PEi2 if and only if xoq,i =
xdq,i.

From Property 1, we get that all the flits of the same flow
will be injected in the network using the same input port.

IPDeN’s routing policy is mostly similar to that proposed
in [21], which is, a modified version of X-Y routing. A flit of
flow fq,i would first travel horizontally along the X-axis of the
network until it reaches a router with the same X coordinate
as its destination router. Once in that router, it requests the S
port and travels vertically along the Y-axis until reaching its
destination. IPDeN’s routing policy differs from X-Y routing
in that if two flits request the same port S at the same time, it
”deflects” one of the flits to the port E. A deflected flit must
then travel along the X-axis until reaching the same router as
it would have if it had not been deflected. It will then request
the port S again and continue traveling along the Y-axis.

The routing policy is summarized in Table I. Flits entering
by the port W may request the ports E or S, while flits enter-
ing by the port N may only request the port S. Flits entering
by the port W and requesting E never suffer contention, i.e.,
they travel freely through the X-axis (row 1 in Table I). In
addition, a flit entering a router by the port W always has the
highest priority to use the port S when it conflicts with a flit
entering by the port N . Under this scenario, the flit coming
from the port N is deflected to the port E inconsiderately of

its final destination (row 2 in Table I). The deflected flit will
now travel along the X-axis. It will enter the next routers via
the port W and will thus have the highest priority the next
time it will require an S port. Finally, flits entering by the
ports PEi1 and PEi2 always have the lowest priority to use
the ports E and S, respectively, and must wait for those ports
to become free (rows 3 to 9 in Table I).

The routing policy and network topology discussed so far
are identical to those presented in [16]. One issue with this
policy is that the number of deflection the flit suffers, and thus
the length of its route, depend on the congestion it encounters
during its travel. Therefore, flits from the same packet that
have been injected sequentially into the network may take
different routes while traveling until their destinations and
may not be received at the destination in the same order as
they were injected into the network, i.e., they may reach the
destination in an out-of-order fashion.

Example 1. Consider a packet p (red packet in Fig. 2) split
in 3 flits sequentially injected at router with coordinates (1; 0).
The destination router of p is router (1; 3). Flit 1 of red packet
enters the router (1; 1) by the input port N . Now, assume that
it contends to access port S with another flit (green flit in
Fig. 2(a)) coming from the port W . Then, according to the
arbitration policy (Table I), the green flit wins access to port
S and Flit 1 the of red packet is deflected to the port E. Next
cycle (see Fig. 2(b)), flit 2 of the red packet is routed N → S
at router (1; 1), since it does not conflict with other flits for
the port S. One cycle later, as we observe in Fig. 2(c), flit 2
of the red packet is the first flit from p to reach its destination
(1; 3), i.e., flits are received in an out-of-order fashion.

C. New router architecture

Example 1 shows the following shortfall of the routing
policy. If a flit flp of a communication flow fq,i is deflected in
a router Rq at time t, the length of its route to its destination
is increased by Sx − 1 hops. Thus, if the next flit, say flp+1

of fq,i passes through router Rq d clock cycles later (with
d < Sx − 1) without being deflected, it will be Sx − 1 − d
hops ahead of flp. Therefore, to avoid this issue, we added
a small buffer with (Sx − 1) slots and some clever logic in
each router of IPDeN (see Fig. 2(d)). The buffer delays the
transmission of flits through the port S by as many clock
cycles as needed to prevent a flit flp+1 to be ahead of a flit
flp that was previously deflected in the same router.

Each router πq of IPDeN contains a buffer with Sx−1 slots
numbered from 1 to Sx − 1 and a variable Bq that points to
one of the slots of the buffer. After each deflection, Bq is set
to Sx − 1, thereby pointing to the last slot of the buffer. At
each clock cycle, if a flit is routed to port S, it is saved at the
buffer position pointed by Bq . The value of Bq is then kept
the same. Otherwise, i.e., if no flit is routed to port S, the
value of Bq decreases by 1. At each clock cycle, the flits in
the buffer are shifted one slot closer to the head of the queue.
A flit reaching the buffer’s head is then transmitted through
port S. This approach ensures that flits wait exactly Bq clock
cycles before being transmitted through port S, and Bq is



(a) (b) (c) (d)

Fig. 2. (a), (b), and (c) Example of an out-of-order reception. (d) New router architecture of IPDeN that ensures in-order-packet delivery.

TABLE I
ROUTING TABLE OF IPDEN.

Input requests Routing decisions Explanation
W → E + N → S W → E + N → S No contention.
W → S + N → S W → S + N → E Conflict over the S port. W → S requests wins. N packet is deflected.
N → S + PEi1 → E N → S + PEi1 → E No contention.
N → S + PEi2 → S N → S PEi2 cannot inject its packet.
W → S + PEi1 → E W → S + PEi1 → E No contention.
W → S + PEi2 → S W → S PEi2 cannot inject its packet.
W → E + PEi1 → E W → E PEi1 cannot inject its packet.
W → E + PEi2 → S W → E + PEi2 → S No contention.
PEi1 → E + PEi2 → S PE1 → E + PEi2 → S No contention.

always larger than Sx − 1 − d where d is the delay between
the arrival of a new flit in port S of router Rq , and the last time
a flit was deflected in Rq , thus avoiding the problem discussed
above. When Bq is equal to 0, flits are not buffered and are
directly transmitted through port S.

Example 2. Consider a 4× 4 IPDeN NoC (see Fig. 3) and
a packet p (red packet) that traverses the network from its
origin router (1; 0) to its destination (1; 3). Let’s assume that
initially the value of Bq is 0 in all routers. The packet p is
split in three flits sequentially injected to the port S of its
origin router (since xoq,i = xdq,i). Assume that in router (1; 1),
the flit 1 of p requests the port S at the same time as the flit
of a green packet (see Fig. 3(a)). In this contention scenario,
according to Table I, the first red flit is deflected to the port
E and the green flit is routed to the port S (see Fig. 3(a)).
Because there is a deflection, the variable Bq of router (1; 1)
is set to Sx−1 = 3. Thus, at the next clock cycle, the flit 2 of
p, which is routed to the port S as it does not conflict with any
other flow, is buffered in the last position of the buffer and the
value of Bq remains unchanged (see Figs. 3(a) and 3(b)). One
clock cycle later, flit 3 of p requests also the port S of router
(1; 1). However, if a flit of another packet (blue packet) also
requests the port S at the same time as in Fig. 3(c). The flit 3
of p is deflected to the port E and the blue flit is buffered in
the last position of the buffer (Figs. 3(b) and 3(c)). The value
of Bq is thus still equal to 3 since a flit has been buffered at
each clock cycle since the last deflection. If no flit requests
the port S at the next clock cycle as in Fig. 3(c), the value of
Bq becomes 2. Therefore, the next flit to be routed to the port
S of router (1; 1) (pink flit), is buffered in position number
2 of the buffer (Figs. 3(d) and 3(e)). Note that, thanks to the
fact that flit 2 of red packet p was buffered in router (1; 1),
the flits 1, 2, and 3 of p reach the destination router (1; 3) in

an orderly fashion (see Figs. 3(d)-3(f)).

V. IPDEN’S ANALYSIS

A. Buffer size analysis

One of the biggest advantage of IPDeN is that the buffers are
small and their sizes do not depend on the set of flows that tra-
verse the network. It is a clear difference with most NoCs that
implement VCs or other type of buffering mechanisms meant
to avoid back-pressure or losing flits during the transmission.
For instance, in HopliteBuf buffers are also added to routers to
enforce in-order flit delivery, but those buffers have size that
depends on the bandwidth requested by the communication
flows transmitted through the NoC as well as their source and
destination. In practice buffers tend to be oversized to ensure
they can cope with unforeseen circumstance. In IPDeN, no
such resources waste is needed. The size of the buffers depends
solely on the network topology, i.e., it is equal to Sx − 1,
ensuring that the NoC’s power and silicon footprint remains
small and independent of the specific applications running on
the network.

B. Livelock and deadlock situations

Livelock occurs when a packet travels indefinitely through
the network and never reaches its destination. IPDeN’s routing
policy guarantees livelock-free transmissions. The circulant
topology ensures that flits always progress towards their des-
tination routers even when they are deflected. Once at the
destination routers, flits always exit the network by using the
output ports PEo1 and PEo2.

IPDeN also guarantees freedom from deadlock. Deadlock
occurs when a packet cannot progress in the network because
it is waiting permanently for an event that cannot happen.
In IPDeN, any flit entering a router and requesting a certain



(a) (b)

(c) (d)

(e) (f)

Fig. 3. Example of how buffers are used in IPDeN.

output port may be: (1) routed the desired port, (2) deflected
to an alternative port, (3) or buffered. Under scenarios 1 and
2, the flit never stops progressing towards its destination.
Conversely, in scenario 3, the flit is forced to wait inside a
buffer before exiting the router. Nonetheless, as discussed in
section IV-C, it is shifted one slot every clock cycle until
reaching the head of the buffer no matter what. Once at
the buffer’s head, the flit is always routed to the port S of
the router and is thus allowed to resume its journey to its
destination. A flit is therefore never blocked indefinitely.

C. Priority levels

IPDeN’s routing policy does not make any distinction
between different priority levels, i.e., all flits are treated
identically. The main reason behind this design choice in that
the worst-case transmission time of all flits will always be the
same, whatever their priority. Indeed, in each router of IPDeN,
the transmission of a flit may be delayed by a deflection to
an alternative port or, if it is not deflected, may be buffered
inside the router for a number of clock cycles equal to the
extra-cost introduced by a deflection. Note that buffering must
happen without any consideration of flit’s priorities in order to
ensure in-order flit delivery. Therefore, the worst case traversal

time will remain the same when it does or does not support
priority-aware routing. Although our solution does not provide
different quality-of-service to different classes of traffic, our
network architecture does ensure predictable traversal time for
all flits.

D. Bound on the worst-case communication time

In this section, we present an analysis for the worst-case
communication time (WCCT) between two PEs connected
with IPDeN. The WCCT of any flit of a packet is composed
of two parts, the worst-case injection time (WCIT) and the
WCTT. The WCIT is defined as the maximum amount of clock
cycles between the generation of a packet by a PE and the
injection of its last flit into the network. The WCIT depends
on the load of the network and can be computed as in [16].
The WCTT is defined as the maximum amount of clock cycle
taken by a flit to traverse the network and reach its destination
once it has been injected. The WCTT of a flit of a packet of
flow fq,i is computed as

wctti = hi
r(x

d
q,i, y

d
q,i) + hi

b(x
d
q,i, y

d
q,i)× (1 + cost) + 2 (1)

where hir(x
d
q,i, y

d
q,i) is the number of hops made by the flit

on the ring until reaching its destination, assuming a zero
contention (i.e., that no flit is ever deflected in the network).
Similarly, hib(x

d
q,i, y

d
q,i) is the number of hops on the bypasses

until its destination, assuming no contention. Simply speaking,
hir(x

d
q,i, y

d
q,i)+h

i
b(x

d
q,i, y

d
q,i) is the Manhattan distance between

the origin and destination routers, where hir(x
d
q,i, y

d
q,i) and

hib(x
d
q,i, y

d
q,i) are the X- and Y-distance, respectively. cost is

the maximum number of cycles by which the journey of a flit
may be increased due to a single deflection or buffering in one
of the routers. The two hops added at the end of Equation (1)
account for the one cycle needed to inject the flit into the
network and the one cycle needed by the destination PE to
read that flit. We now explain how Equation (1) was derived.

It was proved in [16] that hir(x
d
q,i, y

d
q,i) + hib(x

d
q,i, y

d
q,i) + 2

is the maximum number of hops a flit must make between its
origin and destination if it suffers no deflection and is never
buffered in any router along its route. We must thus still prove
(using Property 2 and Lemma 1 below) that the maximum total
delay that may be suffered by any flit of fq,i due to deflections
or buffering is upper bounded by hib(x

d
q,i, y

d
q,i)×cost. We then

prove in Lemma 2 that cost = Sx − 1.
Property 2: A flit of flow fq,i may only be deflected in

routers in which it requests the port S.
Proof: As discussed in previous sections, a flit of flow

fq,i can suffer a deflection if and only if it requests the same
output port as other coming flit at the same time. According
to IPDeN’s routing policy (see Table I), a flit of flow fp,i
entering a router Rk by the port W may request the port E or
S, while a flit of flow fq,i entering Rk by the port N can only
request the port S. Then, flits coming from the port W and
requesting the port E travel freely along the X-axis as they
do not conflict over the port E with other flits traversing the
network. However, if the flit of flow fp,i requests the port S
at the same time as the flit of flow fq,i, one of the flit wins



access to port S and the another one is deflected to the port
E. Hence, a flit may only be deflected in a router in which it
requests the port S and thus, the property is proved.

Let nidef (x
d
q,i, y

d
q,i) and nibuf (x

d
q,i, y

d
q,i) be the maximum

number of times a flit of fq,i suffers a deflections and the
maximum number of times it enters a buffer, respectively. The
following lemma holds

Lemma 1:

nidef (x
d
q,i, y

d
q,i) + nibuf (x

d
q,i, y

d
q,i) = hib(x

d
q,i, y

d
q,i), (2)

Proof: According to Property 2, a flit of flow fq,i may be
deflected or buffered as many times as it requests the port S
of a router on its route, that is, as many time as the Y-distance
between the origin and destination router, i.e., hib(x

d
q,i, y

d
q,i).

Since, a flit is either deflected or buffered (but not both) in
each such router, we have nidef (x

d
q,i, y

d
q,i)+n

i
buf (x

d
q,i, y

d
q,i) =

hib(x
d
q,i, y

d
q,i).

The additional cost (in terms of clock cycles) added by each
deflection or buffering is defined in Lemma 2.

Lemma 2: The maximum cost of a deflection or buffering
is upper bounded by cost = Sx − 1.

Proof: First, when a flit is deflected in a router Rq , it must
do Sx hops instead of 1, before reaching the same router as it
would have if it could have used the S port instead. Therefore,
each deflection involves an additional cost of Sx − 1 hops.
Second, the size of the buffer in each router is Sx−1. Hence,
the cost of a buffering is at most Sx− 1. Then, the maximum
cost of a deflection or buffering is Sx − 1.

Combining Lemmas 1 and 2, we get that the total additional
delay suffered by a flit of fq,i due to both deflections and
buffering is upper bounded hib(x

d
q,i, y

d
q,i)× cost, thus proving

Equation (1).

E. Discussion about the network latency

The timing behavior of IPDeN is deterministic. The timing
analysis proposed in Section V-D only utilizes information
of the flit under analysis and does not use any information
from other flows that may traverse the network. Hence, this
analysis is useful for applications with dynamically varying
workload and timing properties. IPDeN provides predictable
performances to those applications without any need to over-
provision or dynamically reconfigure the network. Injection
time however may vary with the workload. Nonetheless, this
could be addressed by adding leaky buckets at each network
input to limit the maximum bandwidth that may be claimed
by each PE and/or communication flow.

VI. EXPERIMENTAL RESULTS

A. Implementation of IPDeN

We implemented IPDeN with the hardware description
language Verilog. We synthesized a single router of IPDeN
for flits of 64 bits. The target platform was a Xilinx Virtex-7
485T FPGA. A 64-bits IPDeN router required 471 LUTs and
715 Flip-Flops (FFs). This corresponds to only 0.16% and
0.12% of the total number of LUTs and FFs available in the
target FPGA, respectively.

TABLE II
RESOURCES UTILIZATION OF ONE ROUTER.

NoC VC-based HopliteBuf IPDeN
LUTs 1300-1574 402 471

We compared the hardware resource utilization with Ho-
pliteBuf [7], our closest competitor (as it is, as far as we
know, the most recent solution for in-order packet delivery
inspired by a deflection based routing policy), and three VC-
based NoCs: CONNECT [13], IDAMC [20], and ProNoC [12]
(see Table II). According to [13] and [20], a single router
of CONNECT and IDAMC requires approximately 1500 and
1300 LUTs, respectively. A ProNoC router with two VCs
requires 1574 LUTs. Comparatively, a router of HopliteBuf
requires 402 LUTs. Therefore, IPDeN needs three times less
resources than VC-based solutions. It is, however, 20% more
expensive than HopliteBuf (in terms of LUTs utilization), but
IPDeN uses smaller buffers, which is an advantage in terms of
silicon footprints and power consumption. The size of IPDeN’s
buffers is also fixed, while those of HopliteBuf depend on the
properties of the application using the network.

B. RTL simulations

In this section, we provide experimental results by per-
forming cycle-accurate simulations. We used an HDL Verilog
implementations of a 4x4 IPDeN and a 4x4 HopliteBuf NoC.
We generated sets of flows according to a random traffic
pattern. We configured each PE to inject one, two, or three
flows into the network. The destination coordinates of each
flow was randomly generated using a uniform probability
distribution. The inter-arrival time Tq,i of each flow was
randomly selected within the set {100, 200, ..., 900}. The
utilization of each PE was randomly chosen within the interval
[Ubound − 5%, Ubound], where Ubound is a parameter of the
experiment. The utilization Uq,i of each flow was generated
using the method described in [3]. The number of flits Cq,i in
each packet is determined by multiplying the flow’s utilization
Uq,i by Tq,i. The flit size was set to 64 bits. Each value
reported in Fig. 4 and 5 is the result of running 20 experiments.

In Fig. 4, we show the average measured communication
time for an increasing number of communication flows per PE
(i.e., one, two, and three flows per PE) when Ubound = 20%.
As discussed in Sec. V-D, the average measured communi-
cation time is given by the sum of the average measured
traversal time and average injection time. We observe that
IPDeN performs better than HopliteBuf in terms of traversal
time. That can be explained by the fact that in HopliteBuf,
flits can wait long periods of time in the buffer inside each
router. Indeed, the number of cycles that flits must wait inside
buffers depends on the set of flows that travel trough the
network. That is, flits may be blocked in the buffers as many
cycles as other flows use the port S. In IPDeN, however, the
worst-case buffering time in each router is limited to Sx − 1
clock cycles, i.e., it is independent of the traffic and only
depends on the network topology. As another consequence
of the aforementioned property, the average traversal time



Fig. 4. Average measured communication time for random traffic with
Ubound = 20%.

keeps practically the same when the number of flows that
are traversing IPDeN increases. On the other hand, HopliteBuf
performs better than IPDeN in terms of average injection time.
We suspect that can be explained by the fact that, HopliteBuf
replaces the need for deflection by using bigger buffers in
each router instead. Therefore, less flits use the port E of
the routers, and those can be used by PEs to inject new flits
in the network instead. Note that, the average injection time
decreases when the number of flows injected by PEs increases.
It can be explained by the fact that, if the number of flows
increases for a same value of Ubound, the average utilization of
each flow decreases, thereby meaning that the number of flits
in the packets in each flow decreases. Therefore, the injection
time of all flits of a packet decreases too. Finally, we see that
the average measure communication time of packets is more
or less 20% smaller than with HopliteBuf.

In Fig. 5, we show the average measured communication
time for an increasing utilization bound by measuring the
average traversal time and injection time. We varied the
utilization bound Ubound from 10 to 30% by steps of 10. We
configured each PE to inject three communication flows into
the network. Note that, greater PEs utilization means that each
packet contains more flits. Therefore, it is expected that the
injection time of a packet increases too when the number of
flits it must inject increase (as seen in Fig. 5). However, as in
the previous experiment, and for the same reasons discussed
there, we observe that the average traversal time stays the
same in IPDeN when Ubound increases. This is not the case
for HopliteBuf which sees its traversal time increasing when
Ubound increases. Therefore, overall, IPDeN has an smaller
average communication time and IPDeN performs better than
HopliteBuf when the volume of data transmitted increases.

C. Test Cases

In this section, we use a synthetic test case [19] and a
real case study (Orion Crew Exploration Vehicle) [14] to

Fig. 5. Average measured communication time for random traffic with 3
flows per PE.

evaluate our proposed NoC architecture. Both test cases are
commonly used to evaluate Ethernet-based systems, but we
adapted them to compare the performances of IPDeN to other
types of NoCs when those networks must support realistic
communication loads. To perform our experiments, we assume
that the entire system is consolidated in a single chip, and that,
the computation nodes rely on a NoC to communicate instead
of using an Ethernet network.

The configuration details of the test cases are presented
in Table III. The origin and destination PEs of each com-
munication flow were randomly generated in both test cases.
For the synthetic test case, the traffic flows’ parameters were
taken from [22]. For the realistic test case, upper and lower
bounds on packet size and inter-arrival time were set as in [18].
Then, the packet size and the inter-arrival time associated
to each communication flow were randomly selected within
the intervals [Smin, Smax] and [Tmin, Tmax], respectively. For
both test cases, the flit size was set to 64 bits.

We evaluate IPDeN against HopliteBuf and a generic VCs-
based NoC. For HopliteBuf, we consider 128-deep buffers in
the routers. For the VCs-based NoC, we consider one-slot
VCs . We measured the traversal and communication times of
flits of the flow sets defined by the test cases when traversing
IPDeN, HopliteBuf and the VCs-based NoC. We identified for
each flow the worst measured traversal time (WMTT) and the
worst measured communication traversal (WMCT). Moreover,
we computed the average measured traversal time (AMTT)
and the average measured communication time (AMCT).

Tables IV-VII show the number of flows, for which IPDeN
performs better, the same, or worse than HopliteBuf or the
VCs-based NoC. The results are presented for both test cases.

In Tables IV and V, we observe that the WMTT and AMTT
of between 59% and 66% of flows are better with IPDeN
as compared to HopliteBuf. HopliteBuf performs better than
IPDeN for ≈20% of flows, and between 14% and 20% of
flows have similar traversal times with both NoCs. In terms



TABLE III
CONFIGURATION DETAILS FOR THE TEST CASES.

Test case Network size Number of PEs Number of PEs generating
communication flows

Number of flows Smin

(Bytes)
Smax

(Bytes)
Tmin

(Clock cycles)
Tmax

(Clock cycles)
Synthetic 4x4 16 12 46 20 1443 2 25
Orion 6x6 36 31 187 20 1460 4 375

TABLE IV
IPDEN VS HOPLITEBUF (SYNTHETIC TEST CASE).

IPDeN<HopliteBuf IPDeN=HopliteBuf IPDeN>HopliteBuf
WMTT 27 out of 46 9 out of 46 10 out of 46

(58.7%) (19.6%) (21.7%)
WMCT 19 out of 46 0 out of 46 27 out of 46

(41.3%) (0%) (58.7%)
AMTT 28 out of 46 8 out of 46 10 out of 46

(60.9%) (17.4%) (21.7%)
AMCT 23 out of 46 0 out of 46 23 out of 46

(50%) (0%) (50%)

TABLE V
IPDEN VS HOPLITEBUF (ORION TEST CASE).

IPDeN<HopliteBuf IPDeN=HopliteBuf IPDeN>HopliteBuf
WMTT 124 out of 187 27 out of 187 36 out of 187

(66.3%) (14.4%) (19.3%)
WMCT 52 out of 187 0 out of 187 135 out of 187

(27.8%) (0%) (72.2%)
AMTT 120 out of 187 27 out of 187 40 out of 187

(64.2%) (14.4%) (21.4%)
AMCT 49 out of 187 0 out of 187 138 out of 187

(26.2%) (0%) (73.8%)

of communication time (which is the sum of traversal time
and injection time), between 50% and 74% of flows have
better results with HopliteBuf, while IPDeN performs better
for between 26% and 50% of flows. Note that, 73220 flits out
of 225995 flits never reach their destination when HopliteBuf
was used for the synthetic test case, since the buffers in the
routers overflowed even when each router contains a 128-deep
buffer. For the realistic test case, the number of lost flits was
79583 out of 301746 flits. This shows that HopliteBuf must
be oversized to support realistic communication loads. This is
not the case for IPDeN, which only needs a single 3-deep or
5-deep buffer in each router (depending on test case).

In Tables VI and VII, we evaluate IPDeN against the VCs-
based NoC. The WMTT, WMCT, and AMCT of more than
50% of the flows are better or the same with IPDeN in contrast
to the VCs-based NoC. In term of AMTT, the VCs-based NoC
performs better than IPDeN. That is, between 52% and 67%
of flows have better results with the VCs-based NoC. This is
however at the cost of much complex logic since VC-based
routers require three times more hardware resources than a
IPDeN router (see Section VI-A ).

Tables VIII and IX show the number of flows for which
IPDeN performs better, the same, or worse than both Hoplite-
Buf and the VCs-based NoC for the synthetic test case and
the real-life case study, respectively.

Figures 8 - 11 present plots showing the WMTT, AMTT,

TABLE VI
IPDEN VS VCS-BASED NOC (SYNTHETIC TEST CASE).

IPDeN<VCs-NoC IPDeN=VCs-NoC IPDeN>VCs-NoC
WMTT 19 out of 46 8 out of 46 19 out of 46

(41.3 %) (17.4%) (41.3%)
WMCT 26 out of 46 0 out of 46 20 out of 46

(56.5%) (0%) (43.5%)
AMTT 14 out of 46 8 out of 46 24 out of 46

(30.4%) (17.4%) (52.2%)
AMCT 24 out of 46 0 out of 46 22 out of 46

(52.2%) (0%) (47.8%)

TABLE VII
IPDEN VS VCS-BASED NOC (ORION TEST CASE).

IPDeN<VCs-NoC IPDeN=VCs-NoC IPDeN>VCs-NoC
WMTT 80 out of 187 14 out of 187 93 out of 187

(42.78%) (7.48%) (49.73%)
WMCT 104 out of 187 0 out of 187 83 out of 187

(55.6%) (0%) (44.4%)
AMTT 47 out of 187 14 out of 187 126 out of 187

(25.1%) (7.5%) (67.4%)
AMCT 96 out of 187 0 out of 187 91 out of 187

(51.3%) (0%) (48.7%)

WMCT, and AMCT of some of the flows for both test
cases. The segments were selected to show when IP-
DeN performs better, the same o worse than HopliteBuf
and the VCs-based NoC. The results for all communi-
cation flows can be found in an Appendix available at
https://www.dropbox.com/s/hwvm56f7clbpvaw/Appendix.pdf?dl=0 .

VII. SUMMARY AND CONCLUSION

In this paper, we presented IPDeN, a deflection-based NoC
that ensures that flits reach their destinations in the same
order as they were injected into the network using a new
adaptive buffering mechanism in each router. We showed that
the WCTT of flits across the network is deterministic and only
depends on the properties of the communication flow under
the analysis. Cycle-accurate simulations on a Xilinx Virtex-7
FPGA showed that IPDeN performs better in terms of network
communication latency than HopliteBuf, which is, as far as
the authors know, the most recent solution for in-order packet
delivery inspired by a deflection based routing policy.
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TABLE VIII
IPDEN VS HOPLITEBUF AND IPDEN VS VCS-BASED NOC (SYNTHETIC TEST CASE).

IPDeN < HopliteBuf and IPDeN < VCs-NoC IPDeN = HopliteBuf = VCs-NoC IPDeN > HopliteBuf and IPDeN > VCs-NoC
WMTT 13 out of 46 (28.3%) 4 out of 46 (8.7%) 8 out of 46 (17.4%)
WMCT 13 out of 46 (28.3%) 0 out of 46 (0%) 14 out of 46 (30.4%)
AMTT 11 out of 46 (23.9%) 4 out of 46 (8.7%) 10 out of 46 (21.7%)
AMCT 14 out of 46 (30.4%) 0 out of 46 (0%) 13 out of 46 (28.3%)

TABLE IX
IPDEN VS HOPLITEBUF AND IPDEN VS VCS-BASED NOC (ORION TEST CASE).

IPDeN < HopliteBuf and IPDeN < VCs-NoC IPDeN = HopliteBuf = VCs-NoC IPDeN > HopliteBuf and IPDeN > VCs-NoC
WMTT 62 out of 187 (33.2%) 11 out of 187 (5.9%) 28 out of 187 (15%)
WMCT 40 out of 187 (21.4%) 0 out of 187 (0%) 71 out of 187 (38%)
AMTT 34 out of 187 (18.2%) 11 out of 187 (5.9%) 37 out of 187 (19.8%)
AMCT 37 out of 187 (19.8%) 0 out of 187 (0%) 79 out of 187 (42.2%)

Fig. 6. Worst measured traversal time (Synthetic test case).

Fig. 7. Average measured traversal time (Synthetic test case).
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