How Realistic is the Mixed-Criticality Real-Time System Model?

Alexandre Esper, Geoffrey Nelissen, Vincent Nélis, Eduardo Tovar
Introduction

Current status

MC model gradually gaining in sophistication
Introduction

Current status

MC model gradually gaining in sophistication

Issue

Safety-related standards not freely accessible → many academic works are building on top of previous models and claims
Current status

MC model gradually gaining in sophistication

Issue

Safety-related standards not freely accessible → many academic works are building on top of previous models and claims

Risk

Facilitates the propagation of misconceptions and drift from actual standards requirements
Introduction

Current status
MC model gradually gaining in sophistication

Issue
Safety-related standards not freely accessible
→ many academic works are building on top of previous models and claims

Risk
Facilitates the propagation of misconceptions and drift from actual standards requirements

Contribution
Elaborate on misinterpretations and discuss motivating arguments for future work
System Design and Development Assurance Process

Safety-Critical Systems

- Aeronautics
- Railway
- Automotive
- Space
- Industry
System Design and Development Assurance Process

Safety-Critical Systems

- Aeronautics
- Railway
- Automotive
- Space
- Industry

Safety-Critical Systems Development Process

System Development Process

- HW
- Specs.
- SW
- Integ. + Test

Development Assurance Process

- Safety Analyses
- Reliability, Availability, Maintainability Analyses
System Design and Development Assurance Process

Safety-Critical Systems
- Aeronautics
- Railway
- Automotive
- Space
- Industry

Development Assurance Process
- Safety Analyses
- Reliability, Availability, Maintainability Analyses

System Development Process
- HW
- Integ. + Test
- HW
- SW
- Specs.

Certification Process
- Certification Authority
- System Operation
The Notion of Mixed-Criticality Systems

System Safety Assessment Process

Hazard Analysis ➔ Fault Analysis ➔ Criticality Category Assignment

- Input documentation (System, Software, Operations)
- Functional analysis

Step 1: Define generic and function specific failure modes ➔ Functions and failure modes
Step 2: Analyse failure causes and effects ➔ Failure causes and effects identified
Step 3: Assign severities according to the established criteria ➔ Severities per failure mode and failure effects
Step 4: Identify existing compensating provisions ➔ Compensating provisions
Step 5: Criticality categories assignment and recommendations ➔ Criticality classification and recommendations

<table>
<thead>
<tr>
<th>Criticality Category</th>
<th>Failure Condition Severity Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Catastrophic</td>
</tr>
<tr>
<td>B</td>
<td>Hazardous</td>
</tr>
<tr>
<td>C</td>
<td>Major</td>
</tr>
<tr>
<td>D</td>
<td>Minor</td>
</tr>
<tr>
<td>E</td>
<td>No Safety Effect</td>
</tr>
</tbody>
</table>
The Notion of Mixed-Criticality Systems

System Safety Assessment Process

Hazard Analysis → Fault Analysis → Criticality Category Assignment

- Input documentation (System, Software, Operations)
- Functional analysis

Step 1: Define generic and function specific failure modes
- Functions and failure modes

Step 2: Analyse failure causes and effects
- Failure causes and effects identified

Step 3: Assign severities according to the established criteria
- Severities per failure mode and failure effects

Step 4: Identify existing compensating provisions
- Compensating provisions

Step 5: Criticality categories assignment and recommendations
- Criticality classification and recommendations

Criticality Category	Failure Condition Severity Classification
A | Catastrophic
B | Hazardous
C | Major
D | Minor
E | No Safety Effect

Initial criticality assignment
The Notion of Mixed-Criticality Systems

System Safety Assessment Process

1. Hazard Analysis
2. Fault Analysis
3. Criticality Category Assignment

- Initial criticality assignment
- Final criticality assignment → considering compensating provisions

Criticality Category	**Failure Condition Severity Classification**
A | Catastrophic
B | Hazardous
C | Major
D | Minor
E | No Safety Effect

FMEA

Step

1. Define generic and function specific failure modes
2. Analyse failure causes and effects
3. Assign severities according to the established criteria
4. Identify existing compensating provisions
5. Criticality categories assignment and recommendations

Documentation

- Input documentation (System, Software, Operations)
- Functional analysis

Analysis

- Functions and failure modes
- Failure causes and effects identified
- Severities per failure mode and failure effects
- Compensating provisions
- Criticality classification and recommendations
Safety-Related Industrial Standards

- **Automotive**
 - ISO 26262: Road vehicles – Functional safety

- **Railway**
 - EN 50126: Railway applications – Specification and demonstration of reliability, availability, maintainability and safety
 - EN 50128: Railway applications – Communication, signalling and processing systems – Software for railway control and protection systems
 - EN 50129: Railway applications – Communication, signalling and processing systems – Safety related electronic systems for signalling

- **Industry**
 - IEC 61508: Functional safety of E/E/PE safety-related systems
 - IEC 61511: Functional safety – Safety instrumented systems for the process industry sector
 - IEC 62061: Safety of machinery – Functional safety of electrical, electronic and programmable electronic control systems

- **Aeronautics**
 - ARP 4761: Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment
 - ARP 4754: Certification Considerations for Highly-Integrated or Complex Aircraft Systems
 - DO-178B/C: Software Considerations in Airborne Systems and Equipment Certification
 - DO-254: Design Assurance Guidance for Airborne Electronic Hardware

- **Space**
 - ECSS series: Processes for project management, engineering and product assurance in space projects and applications

- **CISTER**
 - Research Center in Real-Time & Embedded Computing Systems
Requirements of Safety-Related Industrial Standards

- IEC61508 (General E/E/PE)
- DO-178C (aeronautics)
- ISO26262 (automotive)
- Partitioning
- Diverse Monitor
- Dynamic Reconfiguration
- Graceful Degradation
- Resources Sharing
- Performance Modelling
- Response timing and memory constraints

CISTER - Research Center in Real-Time & Embedded Computing Systems
Requirements of Safety-Related Industrial Standards

- Response timing and memory constraints
- Performance Modelling
- Resources Sharing
- Partitioning
- Diverse Monitor
- Dynamic Reconfiguration
- Graceful Degradation

IEC61508 (General E/E/PE)
DO-178C (aeronautics)
ISO26262 (automotive)
Safety-related Industrial Standards

...but specify stringent safety requirements

→ isolation and independence between applications.

Additional challenges

Multicore + Shared Resources
Safety-related Industrial Standards...but specify stringent safety requirements

Additional challenges

Industrial Solutions
ARINC-653 & AUTOSAR

→ isolation and independence between applications.

Multicore + Shared Resources
Most MCS works are Based on the Vestal Model:

- Several modes of execution (1, 2, ..., L)
- tasks → period, deadline, WCET and an assurance level
- System running in mode k
- Budget of a task is overshot
- System switches to mode k + 1
- All the tasks of criticality not greater than k are suspended (potentially reactivated)
The Use of the Word “Function”

Safety-related Industrial Standards

• Used at system level
• System functionality (HW + SW)

Academic Publications

• Used like a pure SW function
• E.g.: C function or real-time task
Mismatch of Interpretation of the Concept of “System Criticality”

Safety-related Industrial Standards

- Level of assurance (e.g. DAL, SIL, ...)
- Safety functions

Academic Publications

- Based on Vestal
- Modes of execution
- E.g. high and low criticality

System Criticality
The Misalignment of Terminology

Safety-related Industrial Standards

IEC61508
ISO26262
DO-178

=≠=

Academic Publications

Although *not fundamentally wrong*, it creates confusion in the context of industrial MCS
→ leads the two communities to *misunderstand* each others’ work
Confusion Between the Notions of Criticality and Importance

Function 1

Severity: Car unusable
Probability: Probable
Controllability: Driver can keep the car on the road

Function 2

Severity: Car unusable
Probability: Probable
Controllability: Uncontrollable
Confusion Between the Notions of Criticality and Importance

Function 1

Severity: Car unusable
Probability: Probable
Controllability: Driver can keep car on the road

Function 2

Severity: Car unusable
Probability: Probable
Controllability: Uncontrollable

Both are important!
Confusion Between the Notions of Criticality and Importance

Function 1

Severity: Car unusable
Probability: Probable
Controllability: Driver can keep the car on the road

Function 2

Severity: Car unusable
Probability: Probable
Controllability: Uncontrollable

But ...
ASIL = Severity + Probability + Controllability

<table>
<thead>
<tr>
<th>Severity class</th>
<th>Probability class</th>
<th>Controllability class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E1</td>
<td>C1 QM QM QM</td>
</tr>
<tr>
<td>S1</td>
<td>E2</td>
<td>QM QM QM</td>
</tr>
<tr>
<td></td>
<td>E3</td>
<td>QM QM A</td>
</tr>
<tr>
<td></td>
<td>E4</td>
<td>QM A B</td>
</tr>
<tr>
<td>S2</td>
<td>E1</td>
<td>QM QM QM</td>
</tr>
<tr>
<td></td>
<td>E2</td>
<td>QM QM A</td>
</tr>
<tr>
<td></td>
<td>E3</td>
<td>QM A B</td>
</tr>
<tr>
<td></td>
<td>E4</td>
<td>A B C</td>
</tr>
<tr>
<td>S3</td>
<td>E1</td>
<td>QM QM QM</td>
</tr>
<tr>
<td></td>
<td>E2</td>
<td>QM A B</td>
</tr>
<tr>
<td></td>
<td>E3</td>
<td>A B C</td>
</tr>
<tr>
<td></td>
<td>E4</td>
<td>B C D</td>
</tr>
</tbody>
</table>
Confusion Between the Notions of Criticality and Importance

Function 1
- **Severity:** Car unusable
- **Probability:** Probable
- **Controllability:** Driver can keep the car on the road

Function 2
- **Severity:** Car unusable
- **Probability:** Probable
- **Controllability:** Uncontrollable

But ...
ASIL = Severity + Probability + Controllability

<table>
<thead>
<tr>
<th>Severity class</th>
<th>Probability class</th>
<th>Controllability class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C1</td>
</tr>
<tr>
<td>S1</td>
<td>E1</td>
<td>QM</td>
</tr>
<tr>
<td></td>
<td>E2</td>
<td>QM</td>
</tr>
<tr>
<td></td>
<td>E3</td>
<td>QM</td>
</tr>
<tr>
<td></td>
<td>E4</td>
<td>QM</td>
</tr>
<tr>
<td>S2</td>
<td>E1</td>
<td>QM</td>
</tr>
<tr>
<td></td>
<td>E2</td>
<td>QM</td>
</tr>
<tr>
<td></td>
<td>E3</td>
<td>QM</td>
</tr>
<tr>
<td></td>
<td>E4</td>
<td>A</td>
</tr>
<tr>
<td>S3</td>
<td>E1</td>
<td>QM</td>
</tr>
<tr>
<td></td>
<td>E2</td>
<td>QM</td>
</tr>
<tr>
<td></td>
<td>E3</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>E4</td>
<td>B</td>
</tr>
</tbody>
</table>

ASIL C
Confusion Between the Notions of Criticality and Importance

Function 1
Severity: Car unusable
Probability: Probable
Controllability: Driver can keep the car on the road

Function 2
Severity: Car unusable
Probability: Probable
Controllability: Uncontrollable

But ...
ASIL = Severity + Probability + Controllability
Confusion Between the Notions of Criticality and Importance

Function 1
Severiy: Car unusable
Probability: Probable
Controllability: Driver can keep the car on the road

ASIL C

Function 2
Severiy: Car unusable
Probability: Probable
Controllability: Uncontrollable

ASIL D

We cannot always stop lower criticality tasks in favour of higher criticality ones.
Confusion Between the Notions of Criticality and Importance

Example from IEC61508

System Control

Error and Event Logging

Sends Data

HW A

HW B
Confusion Between the Notions of Criticality and Importance

Example from IEC61508

Highest criticality

System Control

Error and Event Logging

Sends Data

HW A

HW B
Confusion Between the Notions of Criticality and Importance

Example from IEC61508

Highest criticality

System Control

Inherits criticality

Error and Event Logging

Sends Data

HW A

HW B
Confusion Between the Notions of Criticality and Importance

Example from IEC61508

- **Highest criticality**
 - System Control
 - Error and Event Logging
 - Sends Data

- **Hardware failure**
 - HW A
 - HW B
Confusion Between the Notions of Criticality and Importance

Example from IEC61508

- **Highest criticality**
 - System Control
 - Hardware failure

- **Highest criticality**
 - Error and Event Logging
 - HW B

Example from IEC61508
Confusion Between the Notions of Criticality and Importance

Example from IEC61508

- Hardware failure
- Highest criticality
- System
- Error and Event Logging
- HW A
- HW B

We can sometimes stop high criticality tasks
Vestal’s model:
High and low criticality tasks run on the same processor and scheduler
Vestal’s model:
High and low criticality tasks run on the same processor and scheduler

Industrial perspective

Failure mode:
Period change of external event

FMEA analysis

Processor A

LC task

HC task
Vestal’s model:
High and low criticality tasks run on the same processor and scheduler

Industrial perspective

Failure mode: Period change of external event

Local Effect: Change of LC task period

FMEA analysis

Processor A

LC task

HC task
Vestal’s model:
High and low criticality tasks run on the same processor and scheduler

Industrial perspective

Failure mode:
Period change of external event

Local Effect:
Change of LC task period

Processor A

FMEA analysis

LC task

HC task

propagates
Vestal’s model:
High and low criticality tasks run on the same processor and scheduler

Industrial perspective

FMEA analysis

Failure mode:
Period change of external event

Local Effect:
Change of LC task period

End Effect:
HC task misses deadline
Vestal’s model: High and low criticality tasks run on the same processor and scheduler

Industrial perspective

Failure mode: Period change of external event

Local Effect: Change of LC task period

FMEA analysis

Inherits criticality

End Effect: HC task misses deadline

CISTER - Research Center in Real-Time & Embedded Computing Systems
Vestal’s Model and Isolation

Vestal’s model:
High and low criticality tasks run on the same processor and scheduler

Industrial perspective
Failure mode:
Period change of external event

HC task

Local Effect:
Change of LC task period

FMEA analysis

Criticality propagates

End Effect:
HC task misses deadline

HC and LC tasks not isolated in time. All tasks will have to be certified at HC level.
Vestal’s model:
High and low criticality tasks run on the same processor and scheduler

- Will never be able to convince a certification authority that the tasks are isolated in time
- The cost of the system would increase exponentially...
- We miss the initial goal of integrating a mixed-criticality system in the same platform to decrease costs
WCET Estimation

Vestal’s model & Derivatives:
Assumption: Higher degree of assurance of a task \rightarrow more pessimistic WCET estimation

- WCET upperbound \rightarrow necessary but not sufficient condition to ensure safety
WCET Estimation

Vestal’s model & Derivatives:
Assumption: Higher degree of assurance of a task → more pessimistic WCET estimation

- WCET upperbound → necessary but not sufficient condition to ensure safety
- Requires mechanisms to ensure that safety is not compromised in case of timing violation
 - E.g. time partitioning

Safety-Standards
Probabilistic WCET
- Provides a probabilistic upper-bound on the execution time
- Aims at building a reliability model of the software
Probabilistic WCET
- Provides a probabilistic upper-bound on the execution time
- Aims at building a reliability model of the software

Software reliability models:
- Still under debate
- Confidence cannot be placed in such models
Probabilistic WCET
- Provides a probabilistic upper-bound on the execution time
- Aims at building a reliability model of the software

Software reliability models:
- Still under debate
- Confidence cannot be placed in such models

Safety Standards
- Important research direction
- But... cannot assume that they will ever be used in industrial systems to prove software safety
Probabilistic WCET
- Provides a probabilistic upper-bound on the execution time
- Aims at building a reliability model of the software

Software reliability models:
• Still under debate
• Confidence cannot be placed in such models

• Important research direction
• But... cannot assume that they will ever be used in industrial systems to prove software safety

• Need to work on the safety argumentation
Probabilistic WCET
- Provides a probabilistic upper-bound on the execution time
- Aimed at building a reliability model of the software
Probabilistic WCET
- Provides a probabilistic upper-bound on the execution time
- Aimed at building a reliability model of the software

Certification Authority

Typical question: would you fly an airplane designed with probabilistic software reliability models?
Probabilistic WCET
- Provides a probabilistic upper-bound on the execution time
- Aimed at building a reliability model of the software

Typical question: would you fly an airplane designed with probabilistic software reliability models?
• Clear gap between some of the guidelines provided in safety-related standards and their interpretation by the academic community

• Misalignment of terminology leads to misunderstanding of each other’s work

• Confusion between the notions of criticality and importance

• Ensuring safety in terms of timing isolation goes beyond accurate WCET estimates

• Probabilistic WCET estimates: in case that direction is followed → need to work on the argumentation
Question & Answers