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Abstract 

Federated learning (FL) has been increasingly considered to preserve data training privacy from eavesdropping 

attacks in mobile edge computing-based Internet of Thing (EdgeIoT). On the one hand, the learning accuracy of FL 
can be improved by selecting the IoT devices with large datasets for training, which gives rise to a higher energy 

consumption. On the other hand, the energy consumption can be reduced by selecting the IoT devices with small 
datasets for FL, resulting in a falling learning accuracy. In this paper, we formulate a new resource allocation 

problem for privacy-preserving  EdgeIoT to balance the learning accuracy of FL and the energy consumption of the 
IoT device. We propose a new federated learning-enabled twin-delayed deep deterministic policy gradient (FL-

DLT3) framework to achieve the optimal accuracy and energy balance in a continuous domain. Furthermore, long 
short term memory (LSTM) is leveraged in FL-DLT3 to predict the time-varying network state while FL-DLT3 is 

trained to select the IoT devices and allocate the transmit power. Numerical results demonstrate that the 
proposed FL-DLT3 achieves fast convergence (less than 100 iterations) while the FL accuracy-to-energy 

consumption ratio is improved by 51.8% compared to existing state-of-the-art benchmark. 
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Abstract—Federated learning (FL) has been increasingly
considered to preserve data training privacy from eavesdrop-
ping attacks in mobile edge computing-based Internet of Thing
(EdgeIoT). On the one hand, the learning accuracy of FL
can be improved by selecting the IoT devices with large
datasets for training, which gives rise to a higher energy
consumption. On the other hand, the energy consumption can
be reduced by selecting the IoT devices with small datasets
for FL, resulting in a falling learning accuracy. In this paper,
we formulate a new resource allocation problem for privacy-
preserving EdgeIoT to balance the learning accuracy of FL
and the energy consumption of the IoT device. We propose
a new federated learning-enabled twin-delayed deep deter-
ministic policy gradient (FL-DLT3) framework to achieve the
optimal accuracy and energy balance in a continuous domain.
Furthermore, long short term memory (LSTM) is leveraged
in FL-DLT3 to predict the time-varying network state while
FL-DLT3 is trained to select the IoT devices and allocate
the transmit power. Numerical results demonstrate that the
proposed FL-DLT3 achieves fast convergence (less than 100
iterations) while the FL accuracy-to-energy consumption ratio
is improved by 51.8% compared to existing state-of-the-art
benchmark.

Index Terms—Federated learning, online resource alloca-
tion, deep reinforcement learning, mobile edge computing,
Internet of Things.

I. INTRODUCTION

Mobile edge computing (MEC) provides a promising

solution to enabling cloud computing services in privacy-

persevering mobile edge computing-based Internet of Thing

(EdgeIoT) [1]–[3]. The IoT devices can offload their local

computation-intensive tasks to computationally powerful

edge servers [4], [5]. In EdgeIoT, offloading the source

data of the IoT devices to the edge server is vulnerable

to eavesdropping attacks [6], [7]. To prevent private data

leakage of the IoT devices, federated learning (FL) [8] is
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used to train a global data learning model at the edge server

by aggregating the data structure parameters of the IoT

devices, while the source data remains at the IoT devices.

Fig. 1 depicts an FL-enabled EdgeIoT, where the IoT

devices are deployed to sense and process private infor-

mation, e.g., health reports of patients [9]. Specifically,

mobile phones use image classification models to classify

pictures or images. FL can help multiple mobile phones to

cooperatively train an effective global image classification

model, without the need of sharing the images and pictures

used for the training [10]. Likewise, vehicles can train

an accurate autonomous driving model by aggregating the

local models trained separately by multiple vehicles [11].

A local model (e.g., the weight vector [12]–[14] or gradi-

ent [15]) is trained on the sensing data of an IoT device to

sense and process private information, such as private health

reports of patients. Next, the edge server aggregates the

local models of all IoT devices to create a comprehensive

and effective global model without collecting the private

data of the IoT devices. A global model is obtained at

the edge server, e.g., by applying FedAvg [12] to the local

models. The edge server broadcasts the global model back

to all the IoT devices. According to the global model,

each of the IoT devices renews the training of its local

model. By iteratively training the local model at the IoT

device and updating the global model at the edge server,

the learning accuracy of FL on the data classification and

event prediction can be progressively improved [16].

While selecting the IoT devices with large training

datasets can improve the learning accuracy of FL [17],

it can often result in fast depletion of the batteries at the

devices. On the other hand, selecting the IoT devices with

small data for training the local models can save the battery

energy of the IoT devices, but likely leads to a low accuracy

of the global model. In this sense, balancing the learning

accuracy of FL and energy consumption of the IoT devices

is crucial to EdgeIoT.

Moreover, the FL process is time-slotted by design and

sequential decision making is required. Hence, in this paper,

we propose an online resource allocation optimization to

balance the learning accuracy of FL and energy consump-

tion of the IoT devices. In practice, the instantaneous

information of data size, transmit power, and link qualities

between the edge server and the IoT devices is unlikely

to be known. The optimization is formulated as a partially
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Fig. 1: FL-enabled EdgeIoT. A local model is trained with

the dataset at the IoT device. The local model is aggregated

by an edge server, where the global model is trained and

returned to the IoT devices.

observable Markov decision process (POMDP), where the

network state consists of the source data size of the IoT

devices, channel conditions between the edge server and

the IoT devices, bandwidth and remaining energy of the

selected IoT devices. All the entries of a network state

are continuous. The action space includes the discrete

selection of IoT devices and the continuous transmit power

allocation. Given the continuous network states and actions,

a large number of IoT nodes lead to a large state and

action space, and complex network state transitions. This

results in difficulty in the joint optimization of IoT device

selection and transmit power allocation. Due to a large

and continuous state and action space in the formulated

POMDP, a new deep reinforcement learning-based device

selection and transmit power allocation algorithm is pro-

posed to maximize the ratio of the learning accuracy of FL

and the energy consumption of the IoT devices. The major

contributions of this article are summarized as follows:

• We propose to jointly optimize the selection of IoT

devices and their transmit powers in an FL-empowered

edge IoT system, thereby balancing the learning ac-

curacy of FL and energy consumption of the IoT

devices. The optimization is online, adapting to the

time-varying arrivals of training data and the energy

budget of the IoT devices, and the changing channel

conditions between the IoT devices and the base

station (i.e., the model aggregator).

• FL-DLT3 is proposed to learn the network state dy-

namics while maximizing the ratio of the learning

accuracy of FL to the energy consumption of the IoT

devices. Considering the continuous transmit powers

of the IoT devices, FL-DLT3 optimizes the edge

server’s selection of IoT devices for each round of

FL and the transmit powers of the IoT devices, based

on Twin Delayed Deep Deterministic Policy Gradient

(TD3).

• A new long short term memory (LSTM) layer is

designed in coupling with the proposed FL-DLT3

to predict the time-varying network states, e.g., data

size, bandwidth, channel gain, and remaining energy

of the IoT devices. The LSTM layer estimates the

unobserved states at every training iteration of the

TD3. To the best of our knowledge, this is the first

time that LSTM is employed in coupling with TD3

for the resource allocation of FL-enabled EdgeIoT.

• FL-DLT3 is implemented in PyTorch. The effective-

ness of FL-DLT3 is validated with the experimental

data. Numerical results show that FL-DLT3 achieves

fast convergence (less than 100 iterations) while the

FL-accuracy-to-energy-consumption ratio is improved

by 51.8%, as compared to the state of the art.

The rest of this paper is structured as follows. The liter-

ature on FL-based resource allocation in MEC is reviewed

in Section II. Section III presents the FL protocol and

system models. The resource allocation optimization for

EdgeIoT is formulated in Section IV. Section V proposes

the FL-DLT3 framework which conducts deep reinforce-

ment learning (DRL) based EdgeIoT devices selection and

resource allocation. Section VI evaluates the proposed FL-

DLT3 framework. Finally, Section VII concludes this paper.

II. RELATED WORK

This section presents the literature on resource allocation

with FL in MEC.

Assuming that the IoT devices have the same computa-

tional resources and wireless channel conditions, Federated

averaging (FedAvg) [12] randomly selects IoT devices

to participate FL training and synchronously aggregates

local models. This process is repeated until a desirable

training accuracy is achieved. In [18], different IoT devices

owns different computing capabilities and wireless channel

conditions, resulting in different local model training time

and upload time. The authors develop a FL protocol called

FedCS, which allows the server to aggregate as many local

model updates as possible to improve image classification

accuracy.

To improve the training accuracy of FL systems in

the context of wireless channels and energy arrivals of

mobile devices, the authors [19] model the transmission

power allocation and mobile device selection of the FL

training as a constrained Markov decision process. Due

to a high complexity, stochastic learning methods and

Lagrange multipliers are used to simplify the model and

to obtain an efficient policy for all mobile device. In [20],

the devices with limited battery energy, CPU computations,

and bandwidths, are considered in a mobile crowd network.

A deep Q-learning-based resource allocation for data, en-

ergy, and CPU cycles is developed to reduce the energy

consumption of FL-based mobile devices and training time

of the FL. Given limited computation and communication

resources at the devices, [21] analyzes the convergence

bound of distributed gradient descent. A control algorithm

is developed to determine the tradeoff between local update

and global parameter aggregation. Some IoT devices have

limited communication and computing resources and fail

to complete training tasks, which leads to many discarded

learning rounds affecting the model accuracy [22]. The

authors study multicriteria-based approach for IoT device
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selection in FL that reducing the number of communication

rounds to reach the intended accuracy and increasing the

number of selected IoT devices in each round.

The authors of [23] study a trial-and-error based IoT de-

vice selection based on multi-armed bandit (MAB), where

computation tasks, traffic, and link qualities are unknown.

The MAB-based IoT device selection balances the IoT

device selection according to the selection frequency and

IoT devices’ resources. In [24], the IoT device scheduling

in MEC is formulated without the IoT devices’ channel and

computing information. To reduce the training latency, the

IoT device scheduling is formulated as a MAB problem,

where ε-greedy is used to reduce the learning accuracy.

In [25], the authors develop a MAB-based IoT device

scheduling framework to reduce the training latency of FL.

Given the known independent and identically distributed

(i.i.d.) local data at the IoT devices, an FL-based IoT device

scheduling algorithm is designed.

The authors of [26] aim to reduce the average age of

data sources by controlling the IoT devices, scheduling the

data and allocating the bandwidth. An actor-critic learning

framework is developed, where the IoT devices learn the

scheduling strategies based on their local observations. To

reduce the training time and energy consumption of IoT

devices, the authors of [27] design an experience-driven al-

gorithm based on proximal policy optimization and produce

sub-optimal results. To improve the network throughput, the

authors of [28] present a cell association and base station

allocation method. Multi-agent deep deterministic policy

gradient is used to handle unexpected events and unreliable

channels in underwater wireless networks. In [29], the IoT

devices are selected to improve the FL accuracy and reduce

the training time and energy consumption. To balance the

training accuracy and delay of FL and energy consumption,

Twin Delayed Deep Deterministic policy gradient algorithm

(TD3) is employed to capture the interplay between func-

tion approximation error in both policy and value updates,

and produce the IoT devices scheduling policy, the CPU

frequency allocated for training, and the transmit power

allocation.

An FL-based device selection optimization is developed

in our preliminary work [30] to balance the energy con-

sumption of the IoT devices and the learning accuracy of

FL. The optimization model takes advantage of the a-priori

knowledge of the network state information, e.g., data size,

bandwidth, and channel gain. Due to NP-hardness of the

optimization, an energy efficiency-FL accuracy balancing

heuristic algorithm (FedAECS) was presented in [30] to

approximate the optimal IoT device selection policy offline.

In contrast, this paper considers a practical scenario without

the prior information about data size, bandwidth, channel

gain, and remaining energy of the IoT devices. Due to a

large state and action space, we propose a new FL-DLT3

to balance FL accuracy and energy consumption of the IoT

devices online, where LSTM is leveraged to predict the

hidden state of the IoT devices as input state of TD3. In

addition, we also compare the performance of the proposed

FL-DLT3 with the FedAECS in [30].

III. SYSTEM MODEL

In this section, we study the training protocol and energy

model of FL. The notations used in the paper are summa-

rized in Table I.

TABLE I: The list of key variables defined in system model

Notation Definition

K The total number of IoT devices

k Index of IoT device

T The total number of the rounds

t Index of the rounds

Dt,k IoT device k owns data size

xki Input of the FL model

yki Output of the FL model

w Weight parameter of FL training

βt,k Whether IoT device k is selected

fk CPU frequency of IoT device k

ζk Effective capacitance coefficient

L Number of local iterations of FL training

E
cmp

t,k1

Energy consumption for computing
ckDt,k CPU cycles

E
cmp

t,k

Total computation energy at
IoT device k

r
up

t,k Achievable uplink transmit rate

bt.k
Bandwidth allocated to IoT

device k by the server

Pt,k IoT device k transmit power

Gt,k Uplink channel gain

rdown
t,k

Achievable downlink transmit rate
of IoT device k

Ht,k Downlink channel gain

P s
t Transmit power of the edge server

τdown
t,k

Downloading time of the global model
at IoT device k

Sd Size of the global model

τ
up

t,k Transmission time of the local model at t

Su Size of the local model

E
up

t,k

Energy consumption of device k
on the local model transmission

Ec
t,k

Total energy consumption of
the selected device k

Et,k Remaining battery energy of device k

∆Et,k Amount of harvested energy

∆t Data evenness of selected devices

τt,k
Completion time of IoT
device k in t-th round

µk System parameter

ν Constant value

A. FL Protocol with MEC

Fig. 2 depicts the FL protocol, where the global model

at the edge server and the local models at the IoT devices

are trained in T rounds. Each FL round is composed

of resource request, IoT device selection, global model

aggregation, global model download, local model update

and upload. The edge server initializes the hyperparameters

of the global model, e.g., learning rate, batch size, and the

weights of the global model.

• Resource Request: The IoT devices send to the

edge server the information needed, i.e., data size, for

the device selection.
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Fig. 2: The whole training process of FL, in each round, the time consumption of IoT device k includes global model

download, local model update and upload.

• IoT Device Selection: The edge server selects

the IoT devices to upload the local model for the

training of the global model, where the details will

be presented in the next section.

• Global Model Aggregation: The edge server

aggregates the local models of the selected IoT devices

to produce the global model.

• Global Model Download: All the IoT devices

download the the global model from the edge server.

• Local Model Update and Upload: The se-

lected IoT devices individually train their local models

according to the FL parameters of the global model.

We consider K number of IoT devices, where k ∈ [1,K].
Let xki and yki denote the input (e.g., pixels of an image)

and the output (e.g., labels of the image) of the FL model

[31], respectively. The dataset of device k is denoted as

Dt,k = {xki, yki}
Dt,k

i=1 , where Dt,k is the size of the dataset

of device k in the t-th round and data sample i in device

k. Let f(w,xki, yki) denote the loss function of FL, which

captures approximation errors over the input xki and the

output yki. w is the weight parameter of the loss function

of the neural network being trained according to the FL

procedure. Given Dt,k, the loss function at IoT device k

can be specified as,

Ft,k(w) =
1

Dt,k

Dt,k∑

i=1

f(w,xki, yki), (1)

where f(w,xki, yki) can be specified according to the

FL structure. For example, f(w,xki, yki) = 1
2 (x

T
kiw −

yki)
2 is used to model linear regression, or f(w,xki, yki) =

− log(1 + exp (ykix
T
kiw)) is for the model of logistic

regression [32]. Since the training of FL aims to minimize

the weighted global loss function, we have

min
w

Ft(w) =

K∑

k=1

Dt,k

Dt

Ft,k(w)

=
1

Dt

K∑

k=1

Dt,k∑

i=1

f(w,xki, yki),

(2)

where Dt =
∑K

k=1 Dt,k, it represents the total amount of

data in the t-th round.

B. Energy Model

The energy consumption of the IoT devices accounts for

the local training of the dataset and the transmissions of

the local model. We assume that training a data sample at

the IoT device requires ck CPU cycles per bit. Given the

data size of Dt,k, the number of CPU cycles for the local

model training is ckDt,k. We denote fk as the computation

capacity of IoT device k, which is measured in CPU cycles

per second. According to [33], the computation time of

training the local model at device k in the each t-th round

[33], we have

τ traint,k =
ckDt,kL

fk
, (3)

where L is the number of local iterations of FL training.

According to [34] and [35], the energy consumption on

ckDt,k CPU cycles at IoT device k is:

E
cmp
t,k1 = ζkckDt,kf

2
k , (4)

where ζk is the effective capacitance coefficient of comput-

ing chipset for device k. To compute the local model, IoT

device k needs to compute ckDt,k CPU cycles. Thus, the

total computation energy at IoT device k in the t-th round

can be given as

E
cmp
t,k = LE

cmp
t,k1 = LζkckDt,kf

2
k . (5)

Furthermore, the achievable uplink transmit rate of IoT

device k is given by

r
up
t,k = bt,k log2(1 +

Pt,kGt,k

N0bt,k
), (6)

where bt,k is the bandwidth allocated to IoT device k by the

edge server in the t-th round, Pt,k is the power consumption

of data transmit for IoT device k, Gt,k is the uplink channel

gain between device k and the edge server, and N0 is the

power spectral density of the Gaussian noise.
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The achievable downlink transmit rate of IoT device k

is

rdown
t,k = bt,k log2(1 +

P s
t Ht,k

N0bt,k
), (7)

where P s
t denotes the transmit power of the edge server,

and Ht,k is the downlink wireless channel gain from the

edge server to device k.

The downloading time of the global model at device k

in the t-th round is

τdown
t,k =

Sd

rdown
t,k

, (8)

where Sd denotes the size of the global model. The

transmission time of the local model at the t-th round can

be given by

τ
up
t,k =

Su

r
up
t,k

, (9)

where Su is the size of the local model. By substituting

(6) to (9), the energy consumption of an IoT device on the

local model transmission is

E
up
t,k = Pt,kτ

up
t,k =

Pt,kSu

bt,k log2(1 +
Pt,kGt,k

N0bt,k
)
. (10)

The total energy consumption Ec
t,k of the selected IoT

device k in the t-th round is

Ec
t,k = E

cmp
t,k + E

up
t,k (11)

The remaining battery energy of the selected IoT device

k in the t-th round is

Et,k = Et−1,k − Ec
t−1,k +∆Et,k, (12)

where ∆Et,k is the amount of harvested energy.

IV. PROBLEM FORMULATION

In this section, we study the IoT device selection and

transmit power allocation to maximize the ratio of the

learning accuracy of FL to the energy consumption of IoT

devices.

Let βt,k be a binary indicator. If IoT device k is selected

by the edge server in the t-th round, βt,k = 1; otherwise,

βt,k = 0. We define the accuracy of FL as the the fraction

of predictions FL model got right. According to [36]–[38],

the accuracy of FL, denoted by Γ(βt,k), can be simplified

as,

Γ(βt,k) = log(1 +

K∑

k=1

µkβt,kDt,k) ∀t ∈ T , (13)

where µk > 0 is a system parameter [37]. To improve the

evenness of data size of the selected IoT devices, similar to

[39], we define the expectation of the difference between

the total amount of data for all devices and the amount of

data for the selected devices at the t-th training round, and

normalize the expectation, we have,

∆t =
E

[
ν

∑K

k=1 Dt,k − βt,kDt,k

]

∑K

k=1 Dt,k

∀t ∈ T , (14)

where ν ∈ (0, 1] is a constant value, the arrival data

Dt,k of device k follows uniform distribution or normal

distribution. The objective function can be determined as
Γ(βt,k)∑

K
k=1 βt,kE

c
t,k

− ∆t, which aims to balance the learning

accuracy of FL and energy consumption of the IoT device

and improve the evenness of data size of the selected IoT

devices. We formulate the optimization as P1.

P1: max
βt,k,Pt,k

T∑

t=1

[
Γ(βt,k)

∑K

k=1 βt,kE
c
t,k

−∆t

]

s.t. : βt,kE
c
t,k ≤ Et,k, (t ∈ [1, T ], k ∈ [1,K]). (15)

Γ(βt,k) ≥ ε0, (ε0 ∈ (0, 1]). (16)

K∑

k=1

βt,kbt,k ≤ B, (t ∈ [1, T ], k ∈ [1,K]). (17)

1 ≤
K∑

k=1

βt,k ≤ K, (t ∈ [1, T ], k ∈ [1,K]). (18)

βt,kτt,k ≤ td, (t ∈ [1, T ], k ∈ [1,K]). (19)

Pmin
k ≤ Pt,k ≤ Pmax

k , (t ∈ [1, T ], k ∈ [1,K]). (20)

βt,k ∈ {0, 1}, (t ∈ [1, T ], k ∈ [1,K]). (21)

Specifically,

• Constraint (βt,kE
c
t,k ≤ Et,k) guarantees that the se-

lected IoT device has sufficient energy to complete

the local model training in t.

• Constraint (Γ(βt,k) ≥ ε0) specifies the minimum

requirement of the FL accuracy in t, where ε0 ∈ (0, 1]
defines the lower bound threshold.

• Constraint (
∑K

k=1 βt,kbt,k ≤ B) guarantees that the

total bandwidth of the selected IoT devices is smaller

than the bandwidth capacity B.

• Constraint (1 ≤
∑K

k=1 βt,k ≤ K) describes that at

least one IoT device is selected for FL.

• Constraint (βt,kτt,k ≤ td) ensures that the download,

computation and transmit delay of the selected device

has to be less than the duration of the round td.

As shown in Fig. 2, the each t-th round contains

the downloading time of the global model, and local

computation and transmission time of the local model.

According to (3), (8), and (9), we can obtain the time

delay τt,k, i.e., τt,k = τ traint,k + τ
up
t,k + τdown

t,k . Note that

the IoT device selection time and training time of the

global model at the edge server can be neglected since

the edge server supports more powerful CPUs than the

IoT device.

• Constraint (Pmin
k ≤ Pt,k ≤ Pmax

k ) indicates the upper

and lower bounds of IoT devices’ transmit power.
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Problem P1 involves nonlinear problems with continuous

and integer variables [40]. The typical 0-1 Multidimen-

sional Knapsack Problem (MKP) [41] is a special case of

problem P1. Assume that transmit power is a constant. In

this case, the only variable is the selected IoT device. The

items to be put in the knapsack are the IoT devices with

energy consumption Et,k, data size Dt,k, and bandwidth

bt,k. The capacity of the knapsack is equal to the total

bandwidth, the optimization variable βt,k is a binary in-

dicator of item (IoT device) k selection. βt,k is set to 1 to

indicate that item k is selected. Otherwise, βt,k is set to

0. The total reliability of the knapsack has lower bounds

which are equal to the minimum requirement of accuracy

constraint (16). Note that every item to be put into the

knapsack must obey the time constraint (19). Coupled with

the energy consumption of IoT devices on the transmission

is a non-linear function of the transmit power, which has a

continuous variable. Therefore, the proposed optimization

is NP-hard. It is also mentioning that problem P1 involves a

long time horizon with random and unpredictable data and

energy arrivals. This leads to an intractable large state space

of the problem require online optimization of selection and

allocation decisions.

V. DRL-BASED IOT DEVICES SELECTION AND

RESOURCE ALLOCATION

A. POMDP Formulation for FL-based IoT Device Selec-

tion and Resource Allocation

The considered resource allocation can be formulated as

a POMDP that is a generalization of a Markov decision

process (MDP) with only partially observable states [42]. A

POMDP can be represented by a 6-tuple (S,A, P,R,O,Ω),
where S is the state space, A is the action space, P is

the transition probability, R is the reward function, O is

the observation space and Ω is the observation model. The

edge server cannot observe the underlying state. Instead, an

observation So
α

′ ∈ O is received after a state transition to

the next state Sα
′ with the probability Ω(So

α
′ |Sα

′ ).

State and Action Space: According to problem P1, the

state space of the POMDP consists of data size, uplink

channel gains, downlink channel gains, bandwidth and

remaining energy of the IoT devices. The network state

Sα is defined as

Sα = {(Dα,k, Gα,k, Hα,k, bα,k, Eα,k), k = 1, · · · ,K}.
(22)

The action of the POMDP is the selection of the IoT

devices for FL, denoted by βα,k, and the transmit powers

of the selected IoT devices, Pα,k, as given by

A ∈ {(βα,k, Pα,k), k = 1, · · · ,K}, (23)

where βα,k ∈ {0, 1} and Pα,k ∈ [Pmin
k , Pmax

k ].

Observation Space: At each state Sα, the edge server can

observe partially the network state from the selected IoT

devices, where the state observation So
α can be packed in

its uploaded local model. Particularly, the state observation

So
α ∈ Sα is given by

So
α = {(Dα,k, Gα,k, Hα,k, bα,k, Eα,k)o, k = 1, · · · ,K}.

(24)

Note that the state of unselected IoT devices cannot be

observed by the edge server.

Reward: Let R(So
α

′ |So
α, Aα) denote the immediate re-

ward received when the action Aα ∈ A is taken at state

Sα. The reward is defined to consist of the AE gain that

is the ratio of the FL accuracy to the energy consumption

of the selected IoT devices, and the penalty resulting from

the data unevenness among the selected IoT devices, i.e.,

R(So
α

′ |So
α, Aα) =

Γ(βα,k)
∑K

k=1 βα,kE
c
α,k

−∆α, (25)

where R(So
α

′ |So
α, Aα) indicates that the state observation

transits to subsequent So
α

′ from the current state observation

So
α. For illustration convenience, we use Rα to denote the

reward in the following sections.

To evaluate the action selected by a policy πθ with pa-

rameters θ, where πθ is a mapping from state observations

to actions, and the set of all policies is defined as Π. We aim

to maximize the expected total reward denoted as action-

value function Qπθ
(So

α, Aα),

Qπθ
(So

α, Aα) = max
π∈Π

E
πθ

So
α

{ ∞∑

n=0

γnRα

}
, (26)

where γ ∈ [0, 1] is a discount factor for future state

observations. E
πθ

So
α
{·} takes the expectation with respect

to policy πθ and state observation So
α. According to the

Bellman equation [43], the optimal action-value function

(26) of a state-action pair (So
α, Aα) and the value of

the subsequent state-action pair (So
α

′ , Aα
′ ) can be further

rewritten as

Qπθ
(So

α, Aα) = max
πθ∈Π

E
πθ

So
α

{
Rα + γQπθ

(So
α

′ , Aα
′ )

}
.

(27)

The optimal action, namely, A∗

α, which satisfies (27), can

be given by

A∗

α = arg max
πθ∈Π

E
πθ

So
α

{
Rα + γQπθ

(So
α

′ , Aα
′ )

}
, (28)

where A∗

α provides the maximized AE gain.

Given a practical scenario where the edge server has no

prior knowledge on the transition probabilities, we propose

a FL-DLT3 framework that joint IoT device selection and

transmit power allocation algorithm that utilizes TD3, one

of the deep reinforcement learning techniques, to maximize

the AE gain.

The state and action space increases dramatically with

the number of devices, and the action space has both

continuous and discrete actions. Moreover, the network

state, in practice, is not always observable at the edge server

because the data size and remaining energy information

of IoT devices are always kept locally before the server

takes the devices selection. In view of these challenges, it

is difficult to find the exact solution of P1. To this end,
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we develop FL-DLT3 framework to find the near optimal

solution of problem P1.

In general, FL-DLT3 consists of the TD3-based deep

reinforcement learning and the LSTM-based state charac-

terization layer, as depicted in Fig. 3. FL-DLT3 leverages

the actor-critic neural network structure to develop the TD3-

based deep reinforcement learning [44]. The TD3 at the

edge server is trained to optimize IoT device selection and

transmit power allocation in a continuous action space,

where the edge server has no priori information on the

state transition probabilities. The LSTM is used to predict

the hidden state of the IoT devices as input state of TD3.

The AE gain is maximized over the large continuous

state and action spaces. Specially, the global model is

trained iteratively to improve the learning accuracy of the

local model. With the growth of FL iterations, FL-DLT3

optimally selects the IoT devices to maximize the accuracy

of FL while ensuring the energy consumption requirement.

B. TD3 on the Edge Server

TD3 utilizes the deterministic policy gradient algorithm

(DPG) [45] to optimally update the current policy by de-

terministically mapping network states to a specific action

of the edge server. The critic is used to approximate the

action-value function, which is related to the update of

the actor, also known as policy. Moreover, the edge server

stores the transition about previous actions of the edge

server, current observation, actions of the edge server, AE

gain, next observations, i.e., (Aα− , So
α, Aα, Rα, S

o
α

′ ), into

the replay buffer B at each training step. A mini-batch of

N transitions are randomly sampled from B to train the

actor-critic networks. The action will be selected according

to the policy network with exploration noise after the first

M time steps. Since the IoT device selection action output

from the policy network may not be binary, we classify

them as binary by setting thresholds. Based on the TD3

framework, the policy and critic networks can be trained to

approximate the optimal policy of the formulated POMDP

problem.

For the continuous IoT device selection and transmit

power allocation, the objective is to find the optimal pol-

icy πθ, which maximizes the expected AE gain J(θ) =
E
πθ

So
α

[
R(So

0 , A0)
]
, the parameterized policies πθ can be

updated by taking the gradient of the expected return with

respect to θ, i.e.,

∇θJ(θ) = Eπθ

[
∇Aα

Qπθ
(So

α, Aα)|Aα=π(So
α)∇θπθ(S

o
α)

]
,

(29)

where the optimal action-value function can be approx-

imated by the critic neural network [46] Qω(S
o
α, Aα)

with parameters ω, which obtains the AE gain. To up-

date Qω(S
o
α, Aα), the critic neural network minimizes the

approximation loss between the current target value and

Qω(S
o
α, Aα) by adjusting the parameter ω,

min
ω

E

[(
Rα + γQω

′

(
So
α

′ , πθ(S
o
α

′ )
)
−Qω(S

o
α, Aα)

)2]
,

(30)

where ω
′

stands for the periodically updated parameters

of the critic target network, πθ(S
o
α

′ ) is the policy target

network takes action in the next state observation So
α

′ .

However, the update of the critic neural network with the

above value function may result in overestimation, which

can produce sub-optimal policies of the policy network. To

deal with the overestimation bias problem, TD3 uses two

approximately independent critic networks {Qω1 , Qω2} to

estimate the value function, i.e.,

yα,1 = Rα + γQ
ω

′

1
(So

α
′ , πθ(S

o
α

′ )),

yα,2 = Rα + γQ
ω

′

2
(So

α
′ , πθ(S

o
α

′ )),
(31)

where the minimum of the two estimators is utilized in the

update of the value function, i.e., yα = min{yα,1, yα,2}.
Moreover, FL-DLT3 follows TD3 to update the policy

and targets less frequently than the Q functions. Delayed

policy updates consists of only updating the policy and

critic target network every d intervals. And we also add

noise to the target action, which makes the policy network

less likely to exploit actions with high Q-value estimates.

The proposed FL-DLT3 IoT device selection and transmit

power allocation policy is shown in Algorithm 1. Since the

network system has K IoT devices, each state of the IoT

devices is made up of the source of data size, uplink channel

gain, downlink channel gain, bandwidth, and the remaining

energy of the IoT device. It takes T rounds of iterations to

before the algorithm terminates. Therefore, the complexity

of FL-DLT3 is O
(
T [7K(npa+npc1+npc2)+(lpa−1)n

2
pa+

(lpc1 − 1)n2
pc1 + (lpc2 − 1)n2

pc2 + 12 × (7K × Nlstm +
(7K)2 + 7K)]

)
, where npa, npc1 and npc2 are the number

of neurons in the hidden layer of policy network, critic

network 1 and critic network 2, respectively; lpa, lpc1 and

lpc2 are the number of the hidden layers of policy network,

critic network 1 and critic network 2, respectively; Nlstm

is the hidden size of LSTM.

C. Network Architecture

Each network follows two-branch structure as in [47],

which consists of a feedforward branch and recurrent

branch (as shown in Fig. 3). The feedforward branch

and recurrent branch both use five fully-connected layers

neural network of 512 hidden nodes. The recurrent branch

consists of an embedding layer of 512 fully connected units

followed by 512 LSTM units. For each hidden layer (apart

from the LSTM), ReLU activations are used between the

two hidden layers for both the policy and critic. The final

tanh unit and linear unit following the output of the policy

and critic, respectively.

D. LSTM Layer

The unknown network observation transitions resulting

from time-varying data size, channel gains, bandwidth, and

energy harvesting, which increase learning uncertainties

and reduce learning accuracy. The edge server running the

FL-DLT3 cannot observe the complete states of all the

IoT devices. It can only make the observation of a IoT
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Fig. 3: An illustration of the proposed FL-DLT3 framework, where a policy network, a policy target network, two critic

networks and two critic target networks are trained. Each of the networks consists of a feedforward branch and recurrent

branch. A training round of FL is performed by the selected IoT devices with the allocated transmit power. Then, the

edge server gets the reward Rα and the state update So
α

′ of the IoT devices. The transition {(Aα− , So
α, Aα, Rα, S

o
α

′ )}
is stored into the replay buffer B, and a mini-batch of transitions is randomly sampled from B to train the policy and

critic networks on the edge server.

device when the device is selected and uploads its state

information to the edge server. The learning efficiency and

accuracy of the TD3-based FL-DLT3 can be compromised

by the imperfect knowledge of the states of the IoT devices.

Motivated by this fact, we develop a state characterization

layer to predict the states of the IoT devices which are

not observable, and feed the predicted states into the every

neural network of FL-DLT3.

For every policy (target) network, two critic (target)

networks and memory replay, we use LSTM to predict their

respective hidden states. The LSTM-based neural network

is used to find out the hidden state in the environment, e.g.,

the state of a device that has not been selected previously.

Moreover, the LSTM based state characterization layer

helps to accelerate the convergence of the FL. At time

state i, the hidden states hhid
i is calculated by the following

composite function

hhid
i = oi tanh(Ci), (32)

oi = σ(W0 · [Ci, h
hid
i−1, Ai] + e0), (33)

Ci = FiCi−1 + pi tanh(Wc · [h
hid
i−1, Ai] + ec), (34)

Fi = σ(Wf · [h
hid
i−1, Ci−1, Ai] + ef ), (35)

pi = σ(Wp · [h
hid
i−1, Ci−1, Ai] + ep), (36)

where oi, Ci, Fi, and pi denote the output gate, cell acti-

vation vectors, forget gate, and input gate of the LSTM

layer, respectively. σ, and tanh refer to logistic sig-

moid function and the hyperbolic tangent function, re-

spectively. {W0,Wc,Wf ,Wp} are the weight matrix, and

{e0, ec, ef , ep} are the bias matrix.

VI. NUMERICAL EXPERIMENTS

In this section, we present the implementation of the

proposed FL-DLT3 on PyTorch, which is an open source

machine learning library based on the Torch library. We

compare FL-DLT3 with benchmarks in terms of network

size, data size, and communication bandwidth. Table II

specifies the configuration of simulation parameters.

A. Implementation and Training of FL-DLT3

We implement the proposed FL-DLT3 with Python 3.9.

PyTorch is set up on a Linux workstation with 64-bit

Ubuntu 18.04. FL-DLT3 trains the resource allocation with

FL on 2 Nvidia’s GPUs, one is GeForce GTX 1060 with

3 GB memory, the other is GeForce RTX 2060 with 6 GB

memory.

The experience replay memory can store 5×105 training

samples in terms of previous actions of the edge server,

current observation, actions of the edge server, AE gain,

next observations. The previous actions and current obser-

vation are combined to feed into policy network and critic

networks to infer the hidden state. Both state space and

action space are updated by using Adam optimizer, where
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Algorithm 1: The developed FL-DLT3 IoT device

selection and resource allocation policy

Initialize critic networks

{Qω1(S
o
α, Aα, Aα−), Qω2(S

o
α, Aα, Aα−)} and

policy network πθ(S
o
α, Aα−) with random

parameters ω1, ω2, θ.

Initialize target networks

ω
′

1 ← ω1, ω
′

2 ← ω2, θ
′

← θ.

Initialize environment So
α, previous actions

Aα− ← 0, replay buffer B.

for α = 1, · · · , T do

if α ≤ N then
Explore N steps with random policy, obtain

Rα and So
α

′ , and storage the transition

(Aα− , So
α, Aα, Rα, S

o
α

′ ) of the N steps

into B.
else

Select action with exploration noise

Aα ∼ πθ(S
o
α, Aα−) + ρ, ρ ∼ N (0, σ).

Server allocates the selected IoT devices

Pα,k.

Server performs model aggregation to obtain

updated global model and distributes it to

all selected devices in the next round.

Server observes new observation So
α

′ ,

calculates Rα, and stores the experience

(Aα− , So
α, Aα, Rα, S

o
α

′ ) into B.

Sample mini-batch of N experiences

{(Aα− , So
α, Aα, Rα, S

o
α

′ )i}
N
i=1 from B.

Obtain target action

Âα
′ ← πθ

′ (So
α

′ , Aα) + ρ̂, ρ̂ ∼
Clip(N (0, σ̂),−c, c).

ŷ ← Rα + γ min
m=1,2

Qωm
(So

α
′ , Âα

′ , Aα).

Update critics

ωm ← argmin
ωm

E(ŷ −Qωm
(So

α, Aα−))2.

if α mod d = 0 then
Update θ by the deterministic policy

gradient using equation (29).

Update target networks:

ωm
′ ← ϕωm + (1− ϕ)ωm

′ .

θ
′

← ϕθ + (1− ϕ)θ
′

.
end

end

end

the learning rate is 3 × 10−4. At one training step, the

policy and critic networks are trained with a mini-batch of

45 transitions, sampled from the experience replay memory.

The policy target network is implemented by adding

ρ ∼ N (0, 0.5) to the actions chosen by the policy target

network, clipped to (0, 60). The delayed policy updates the

policy and critic target networks every d intervals, where

d = 10.

TABLE II: Simulation parameters

Parameters Values

Number of rounds (T ) 1000
Number of local iterations (L) 4
For training one data sample
CPU cycles per bit (ck)

20 cycles / bit

Computation capacity of IoT
device k (fk)

[2, 4] GHZ

Transmit power of IoT device k (Pt,k) [0.1, 60] W
Transmit power of the edge server (P s

t ) [100,1000] W

Uplink channel gain (Gt,k ) [10−3, 10−1] dB

Downlink channel gain (Ht,k ) [10−1, 10] dB
Power spectral density of
the Gaussian noise (N0)

1.0× 10−8

Parameter size of the global model (Sd) 1× 104 bit

Upload data size of IoT device (Su) 5× 104 bit
Binary indicator of device
selection (βt,k )

{0, 1}

System parameter (µk) 4.2× 10−9

Effective capacitance coefficient (εk) 1.2× 10−28

The amount of harvested energy (∆Et,k) [50, 200] J
The constant value (ν) 1.0

Critic network learning rate 3× 10−4

Policy network learning rate 3× 10−4

Neural network weight coefficient (φ) 5× 10−3

Interval of policy target
network update (d)

10

Discount factor (γ) 0.99
Batch size (N ) 45

Replay buffer size (|B|) 5× 105

Exploration noise (σ) 0.5
Clipped normal noise (c) 0.5

B. AE Gain Performance

For performance validation, we compare FL-DLT3 with

existing state-of-the-art FL-based device scheduling ap-

proaches, i.e., FedAECS [30], FedCS [18] and FedAvg [12].

• FedAECS: The edge server selects the IoT devices

to fulfill a predetermined ratio of FL accuracy to

energy consumption, while meeting the requirement

of accuracy and bandwidth.

• FedCS: Given the bandwidth limit, the edge server

selects the maximum number of IoT devices for FL.

• FedAvg: Given the limit of the bandwidth, the edge

server determines the number of IoT devices for FL

training, and randomly selects the IoT devices.

Fig. 4 shows the AE gains, where the t-th round is

from 1 to 1000 and K = 40. The data size Dt,k and

bandwidth bt,k of the K devices vary in [2, 10] MB

and [10, 50] KHz, respectively. In general, the proposed

FL-DLT3 achieves the highest AE gain, as compared to

the existing FedAECS, FedCS, and FedAvg, improved by

51.8%, 82.4% and 85.0% respectively. The reason is that

FL-DLT3 leverages experience replay and predict the states

of the IoT devices which are not observable, however,

FedAECS, FedCS, and FedAvg are unable to predict the

states of the IoT devices.

FL-DLT3 outperforms FL-DLT3 without the LSTM layer

with a gain of 39.8%. This is because the LSTM layer

efficiently predicts the unknown network observation tran-



IEEE INTERNET OF THINGS JOURNAL, 2022. 10

Fig. 4: Comparison of the AE gains, where T = 1000 and

K = 40.

sitions, which enriches the training environment for FL and

TD3.

Fig. 5 studies the AE gain of the proposed FL-DLT3,

where K increases from 10 to 80. In general, the proposed

FL-DLT3 achieves the highest AE gain 11.4557, as com-

pared to the existing FedAECS (2.7212), FedCS (1.3952),

and FedAvg (1.3498) given K = 10.

Fig. 5: Comparison of the AE gain obtained by using FL-

DLT3, FL-DLT3 without LSTM, FedAECS, FedCs and

FedAvg with different number of IoT devices

In Fig. 6, it can be observed that the energy consumption

of FL-DLT3 dominates the performance when K increase

from 10 to 50. When K > 60, the FL accuracy dominates

the performance. This confirms that the AE gain’s fluctua-

tion in Fig. 5 when K increase from 10 to 50. The reasons

is that FL-DLT3 can select more IoT devices, hence the FL

accuracy and energy consumption increase monotonically

with the number of devices.

Fig. 7 shows the AE gain given 1000 rounds. With an

increase of K, the AE gain achieved by FL-DLT3 decreases

from 5.3411 to 3.7066. This also validates the performance

in Fig. 5.

Fig. 6: Compare the FL accuracy and energy consumption

of FL-DLT3 and FL-DLT3 without LSTM as the number

of devices changes

Fig. 7: The AE gain achieved by the proposed FL-DLT3

given K = 20, 40, or 80.

Fig. 8 depicts the AE gain of FL-DLT3 with regards to

the average data size. In general, the AE gain increases with

the growth of the data size. This is because the FL accuracy

rises in a high rate while the energy consumption of the

IoT devices on the training of FL-DLT3 slightly increases.

Moreover, the AE gain obtained by FL-DLT3 is about twice

that obtained by FedAECS, thanks to the transmit power

allocation in FL-DLT3.

Fig. 9 describes the AE gain of FL-DLT3 with regards

to the average bandwidth. Overall, the AE gain raises

with an increase of the average bandwidth since the en-

ergy consumption of the IoT devices on the local models

transmission is reduced, in other words, a better channel

quality leads to smaller packet retransmission and energy

consumption. In addition, FL-DLT3 achieves the highest

AE gain given different bandwidths. This is achieved by

the LSTM layer is integrated into the FL-DLT3 to predict

the time-varying bandwidth.

Fig. 10 shows the FL accuracy and energy consumption

of FL-DLT3 and FL-DLT3 without LSTM in regard to the



IEEE INTERNET OF THINGS JOURNAL, 2022. 11

Fig. 8: AE gain varying with data size following normal

distribution while keeping the same variance (0.2 MB)

Fig. 9: AE gain varying with bandwidth following normal

distribution while keeping the same variance (4 KHz)

average bandwidth size of IoT devices changes. Generally,

the energy consumption of FL-DLT3 decreases with an

increase of the bandwidth since the retransmission of the

local models is reduced.

Fig. 11 shows the runtime of FL-DLT3, where K is set

to 10, 40, 60, or 80. In the first 45 rounds, the runtime of

FL-DLT3 is about 0.018 s. This is because the experience

replay buffer is initialized in which the training of FL-

DLT3 is not conducted yet. Once the learning experience is

sufficient and FL-DLT3 carries out the training, the runtime

raises to 0.74 s given K = 10. When K increases to 80,

the training of FL-DLT3 takes 1.3286 seconds. The reason

is that an increase of the IoT devices results in a large

state and action space, hence the learning time of FL-DLT3

increases. In addition, the runtime of FL-DLT3 randomly

fluctuates. This is due to random interruptions from other

program executions that are concurrently operated on the

server.

Fig. 10: Compare the FL accuracy and energy consumption

of FL-DLT3 and FL-DLT3 without LSTM as the average

channel size of IoT devices changes

Fig. 11: Runtime with t-th round

VII. CONCLUSION

In this paper, we proposed FL-DLT3, which is a new

deep reinforcement learning based resource allocation with

FL for EdgeIoT. Given the large state and action space, FL-

DLT3 learns the network state dynamics while maximizing

the ratio of the learning accuracy of FL to the energy

consumption of the IoT devices in a continuous domain.

To improve the learning accuracy, a new state character-

ization layer based on LSTM is developed in FL-DLT3

to predict the time-varying data size, bandwidth, channel

gain, and remaining energy of the IoT devices. FL-DLT3

is implemented in PyTorch. The effectiveness of FL-DLT3

is validated with the experimental data.
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