pd

CISTER

Research Centre in
Real-Time & Embedded
Computing Systems

Masters Thesis

Evaluating and Improving the Perform ance of
the Arrowhead Framework

Presidente do Juri: Nuno Flores (FEUP)
Arguente: Ricardo Severino (CISTER/ISEP) e Pedro Souto (CISTER/FEUP)

Rafael Rocha

CISTERTR-190709

Masters Thesis CISTERR 190709 Evaluating and Improving the Performance of the Arrowhead ...

Evaluating and Improving the Performance of the Arrowhead Framework

Rafael Rocha

CISTER Research Centre

Rua Dr. Antonio Bernardino de Almeida, 431
4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159
E-mail:

https:/lwww.cister-labs.pt

Abstract

Industry 4.0 is currently understood in general terms as the 1cdigitization 1d ofbaisiness 19 infrastructure.
Most industries recognize the greatest challenges posed by Industry 4.0 for the future,dnly a small portion of
them feel prepared. However, due to Industry 4.0 19s promising benefits intes of economic growth, world
governments are actively involved in projects attempting to improve industry digitization. Gapsently, this
dissertation analyzes a worka-progress softwareframework for Industry 4.0: the Arrowhead Framework. This
framework was the main result ofan European research project of the same name, and focuses on enabling
interoperability betweendifferent industrial systems. However, the goal of this dissertation evoldedughout the
courseof the work.At first, the objective was to evaluate and model the performanddlee Arrowhead Framework,
by testing its main use cases in certain stress scenarios. Indeed, by using stoci@m$tetrinets, the author was
able to propose a performance model of the framework 19s intracloud andintercloud orchedion process.
Through this model, it was possible to not only estimate the average response time for an orclaistn request in
both intra- and inter-cloud versions, but alsoto estimate the probability distribution dfet Petri net being in a
specific response state. For thelntracloud process, there was a 25% difference between the estimatiod the
actual result. Asfor the Intercloud process, there was a 37% difference.Through this penfance analysis, the
author was also able to identify that the framework,and by extension its systems, fsmie potential performance
setbacks, mostly related to howthese were handling HTTP requests. In fact, becausepttrdormance results were
so poor for oneof the framework 19s systems (i.e., the Event Handler), it waided to redesign it and change
itsimplementation accordingly to improve its performance, by using appropriate softeatonfigurations and
design patterns. The Event Handler (a message broker built over REST/HTTP), iwviasewhose performance is
very important in most Arrowhead deployments.Thus, by changing how the original Event Harufid its clients
handled HTTP requests andthread creation, the enhanced version of the Event Handleroiw able to achieve
much higherlevels of performance, evolving from an average latency of 666.3 ms to 8185. Actually, considering
the average latency of both versions for the same test scenario, the Event Handler hadaaral performance
boost of over 98%. Similar modifications can be applied to other components of the Arrowheaantawork to
improve their performance. As such, this reengineeringprocess served as a case gtirdorder to explore some
possible performance improvements forthe framework 19s other systems in the futuvoreover, the author also
proposed a Petri net model for the Event Handler in order to depict the performancepaut of different thread
pool configurations and CPU core availability. Byemploying a stochastic analysis on this Petri netgoal was to
then be able to predict the system 19s performance in order to guarantee thequired quality of service.
Regarding the model 19s estimations, there was a 5.16% difference between the average latency anel th
estimated latengy.

© 2019 CISTER Research Center 1
www.cister-labs.pt

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Evaluating and Improving the
Performance of the Arrowhead
Framework

Rafael Teles da Rocha

[BPORTO

FEU P FACULDADE DE ENGENHARIA
UNIVERSIDADE DO PORTO

Mestrado em Engenharia de Software

Supervisor: Pedro Souto

Second Supervisor: Luis Lino Ferreira

June 26, 2019

¢ Rafael Teles da Rocha, 2019

Evaluating and Improving the Performance of the
Arrowhead Framework

Rafael Teles da Rocha

Mestrado em Engenharia de Software

Approved in oral examination by the committee:

Chair: Prof. Nuno Flores
External Examiner: Prof. Ricardo Severino
Supervisor: Prof. Pedro Souto

June 26, 2019

Abstract

Industry 4.0 is currently understood in general terms as the “digitization” of a business' infrastruc-
ture. Most industries recognize the greatest challenges posed by Industry 4.0 for the future, but
only a small portion of them feel prepared. However, due to Industry 4.0's promising bene ts in
terms of economic growth, world governments are actively involved in projects attempting to im-
prove industry digitization. Consequently, this dissertation analyzes a work-in-progress software
framework for Industry 4.0: the Arrowhead Framework. This framework was the main result of

an European research project of the same name, and focuses on enabling interoperability between
different industrial systems. However, the goal of this dissertation evolved throughout the course
of the work.

At rst, the objective was to evaluate and model the performance of the Arrowhead Frame-
work, by testing its main use cases in certain stress scenarios. Indeed, by using stochastic Petri
nets, the author was able to propose a performance model of the framework'’s intracloud and
intercloud orchestration process. Through this model, it was possible to not only estimate the av-
erage response time for an orchestration request in both intra- and inter-cloud versions, but also
to estimate the probability distribution of the Petri net being in a speci ¢ response state. For the
Intracloud process, there was a 25% difference between the estimation and the actual result. As
for the Intercloud process, there was a 37% difference.

Through this performance analysis, the author was also able to identify that the framework,
and by extension its systems, had some potential performance setbacks, mostly related to how
these were handling HTTP requests. In fact, because the performance results were so poor for one
of the framework’s systems (i.e., the Event Handler), it was decided to redesign it and change its
implementation accordingly to improve its performance, by using appropriate software con gu-
rations and design patterns. The Event Handler (a message broker built over REST/HTTP), is a
service whose performance is very important in most Arrowhead deployments.

Thus, by changing how the original Event Handler and its clients handled HTTP requests and
thread creation, the enhanced version of the Event Handler is now able to achieve much higher
levels of performance, evolving from an average latency of 666.3 ms to 8.95 ms. Actually, con-
sidering the average latency of both versions for the same test scenario, the Event Handler had
an overall performance boost of over 98%. Similar modi cations can be applied to other com-
ponents of the Arrowhead Framework to improve their performance. As such, this reengineering
process served as a case study in order to explore some possible performance improvements for
the framework's other systems in the future.

Moreover, the author also proposed a Petri net model for the Event Handler in order to de-
pict the performance impact of different thread pool con gurations and CPU core availability. By
employing a stochastic analysis on this Petri net, the goal was to then be able to predict the sys-
tem's performance in order to guarantee the required quality of service. Regarding the model's

estimations, there was a 5.16% difference between the average latency and the estimated latency.

Keywords: Industry 4.0, Performance, Publish-Subscribe, HTTP, REST, Java, Petri Nets

Resumo

A Industria 4.0 é atualmente compreendida em termos gerais como a “digitalizacao” da infraestru-
tura de um negécio. A maioria das industrias reconhece os maiores desa os colocados pela Indus-
tria 4.0 para o futuro, mas apenas uma pequena parte delas se sente preparada para o mesmo. No
entanto, devido aos beneficios promissores da Industria 4.0 em termos de crescimento econémico,
0s governos mundiais encontram-se ativamente envolvidos em projetos que tentam melhorar a dig-
italizacdo da industria. Deste modo, esta dissertacdo analissaftware frameworkum trabalho

em progresso) para a Industria 4.0Amowhead FrameworkEstaframeworkfoi o principal resul-

tado de um projeto de investigacdo europeu com 0 mesmo nome e concentra-se em proporcionar
a interoperabilidade entre diferentes sistemas industriais. No entanto, o objetivo desta dissertacdo
evoluiu ao longo do curso do trabalho.

Inicialmente, o objetivo consistia em estabelecer um modelo de performance para a arquite-
tura doArrowhead Frameworktestando os seus principais casos de uso em certos cenarios de
grande carga de pedidos. De facto, usando redes de Petri estocasticas, o autor foi capaz de propor
um modelo de performance dos processos de orquestracao intracloud e interdi@umetzork
Através deste modelo, foi possivel estimar o tempo médio necessario para receber uma resposta
de orquestracdo de uncdoud Arrowheade também estimar a distribuicdo probabilistica para a
rede de Petri estar num estado especi co. Para o prodesaoloud houve uma diferenca de
25% entre a estimativa e o resultado real. Quanto ao proggsscdoud houve uma diferenca de
37%.

Através desta andlise de performance, o autor também foi capaz de identi carfrgueea
work, e consequentemente 0s seus sistemas, apresentavam alguns potenciais problemas de per-
formance, principalmente relacionados ao modo como estes lidavam com pedidos HTTP. Efetiva-
mente, dado que os resultados de performance foram tdo pobres para um dos sistemas da frame-
work (i.e., o sistema Event Handler), foi decidido reformula-lo e alterar a sua implementacéo de
modo a melhorar o seu desempenho, usando con guracossfiiearee design patternapro-
priados. O Event Handler (umessage brokeronstruido sobre REST/HTTP) é um servigo cuja
performance é muito importante na maioria das implementacdes do Arrowhead.

Assim, alterando a forma comdxvent Handleloriginal e os seus clientes manipulavam pedi-
dos HTTP e criavam threads, a versdo melhoradavdmt Handleé agora capaz de atingir niveis
muito mais altos de desempenho, evoluindo de uma laténcia média de 666,3 ms para 8,95 ms. De
facto, considerando a laténcia média de ambas as versfes para 0 mesmo cenario devietste, o
Handlerteve um aumento geral de performance acima de 98%. Modi ca¢des semelhantes podem
ser aplicadas a outros componentes do Arrowhead Framework para melhorar o seu desempenho.
Deste modo, este processo de reengenharia serviu como um caso de estudo para explorar algumas
futuras melhorias de performance possiveis para 0s outros sistemas da framework.

Além disso, o autor também propds um modelo de rede de Petri gatrend Handlera m de
descrever o impacto de diferentes con guraceshteadpoolse disponibilidade d€PU cores
na performance do sistema. Ao realizar uma analise estocéastica nesta rede de Petri, 0 objetivo €

prever a performance do sistema para garantir a qualidade de servico necessaria. Em relagéo as
estimativas do modelo, houve uma diferenca de 5,16% entre a laténcia média e a laténcia estimada.

Keywords: Industry 4.0, Performance, Publish-Subscribe, HTTP, REST, Java, Petri Nets

Acknowledgements

First, | would like to thank my family for always supporting me and turning me into the person |
am today. Without your help and love, | would not have reached this far into my journey.

| also want to thank my supervisor Prof. Pedro Souto, my co-supervisor Prof. Luis Lino
Ferreira, and CISTER colleague Prof. Claudio Maia for guiding and assisting me along this dis-
sertation's development. It was a wonderful learning experience that helped me become a more
professional and pragmatic engineer. Furthermore, | have to thank CISTER and everyone at FEUP
for giving me the tools and opportunity to pursue my goals.

And last, but certainly not least, | want to thank all my friends and colleagues at CISTER for
all the wonderful moments we shared together. Thank you for working with me, sharing your
knowledge with me, making me laugh or helping me out when | most needed it. | shall always
cherish those moments.

Rafael Rocha

vi

To my parents, for all the love and support they have given me.

Rafael Rocha

Vii

viii

Contents

1 Introduction 1
1.1 Motivation e e 2
1.2 ResearchGoals e 2
1.3 Dissertation Structure 2

2 Background 5
2.1 Demystifying Industry 4.0 e 5

211 Internetof Things. 6
2.1.2 Cyber-PhysicalSystems 7
2.1.3 BigDataAnalytics 8
214 CloudComputing i 8
2.2 Transitioning from Monoliths to Microservices, through REST 9
2.3 The Arrowhead Framework 10
2.3.1 Service Registry (Mandatory) 12
2.3.2 Authorization System (Mandatory) 12
2.3.3 Orchestration System (Mandatory) 13
234 EventHandler 13

3 Problem Statement 15

4 State of the Art 17
4.1 Message-Oriented protocols when REST isinadequate 17.

4.1.1 Advanced Message Queuing Protocol (AMQP) 18
4.1.2 Message Queuing Telemetry Transport (MQTT) 20
4.1.3 Simple Text Oriented Messaging Protocol (STOMP) 21
4.1.4 Extensible Messaging Presence Protocol (XMPP) 21
4.1.5 Data Distribution Service (DDS) 22
4.1.6 Summarizing all mentioned messaging protocols 22
4.2 Using Petri Nets for performance modeling 23

5 Performance Evaluation of the Arrowhead Framework 27
5.1 Implementation of an Arrowhead system 27
5.2 Intracloud Orchestration 30
5.3 Intercloud Orchestration 33

6 Modeling the performance of Arrowhead's Intracloud and Intercloud orchestration 37
6.1 |Intracloud Orchestration 41
6.1.1 Explaining the Petri net model for the Intracloud Orchestration 41

6.1.2 Stochastic analysis of the Petri net model for the Intracloud orchestratid

iX

B

C

CONTENTS

6.2 Intercloud Orchestration 45
6.2.1 Explaining the Petri net model for the Intercloud Orchestration 45
6.2.2 Stochastic analysis of the Petri net model for the Intercloud orchestratidi

Improving the performance of the Event Handler 51
7.1 TheEventHandler 51
7.2 Original Implementation 52
7.3 Enhancements 52

7.3.1 Reuse open connections between the Publisher and the Event Handleb3 .
7.3.2 Establish a persistent connection between the Event Handler and each

Subscriber ... 54

7.3.3 Reuse previously created threads in the Event Handler 58.

7.4 Experimentalsetup e 59
7.5 Performance evaluation of originalversion 59
7.6 Performance evaluation of enhanced version 60
7.6.1 Test Scenario A: 1 Publisher, 1 Subscriber, 2000 events 60.
7.6.2 Test Scenario B: 1 Publisher, 1-6 Subscribers, 9000 events 61.

7.6.3 Test Scenario C: 10 Publishers, 10 Subscribers, 10.000 events in total62 .
7.6.4 Test Scenario D: 1 Publisher and 7 Subscribers (on same machine), differ-

ent threadpool sizesin EventHandler 63

7.6.5 TestScenario E: 1 Publisher and 7 Subscribers (each on a Raspberry Pi 1),
different threadpool sizes in EventHandler 64
Modelling the Event Handler's performance 67
8.1 Explainingthe Petrinetmodel 69
8.2 ThePetrinetmodel 70
8.2.1 Comparing the model with the actual experiments. 72
8.2.2 Interpreting the analysisresults 73
Conclusions and Future Work 75
9.1 Results fromthe Dissertation 75
9.2 Additional Contributions 76
9.3 FurtherWork 76
Workshop Demo at ISORC 2019 77
Workshop Poster at ISORC 2019 83
Accepted paper for [IECON 2019 85

References 93

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7

4.1
4.2
4.3
4.4

4.5
4.6

5.1
5.2
5.3
5.4
5.5
5.6
5.7

6.1

6.2

6.3
6.4

6.5
6.6
6.7

6.8

7.1
7.2

The four industrial revolution®Q] 6
Monoliths vs. Microservice$p] o 10
Interconnected local collaborativeclou@8)[. 11
The Arrowhead Core Systents3] 11
Overview of the Arrowhead Framework's mandatory systeiig [. 12
Overview of the Orchestrationproces$s|[. 13
Overview of the EventHandle8(] 14
Topic Exchange between Publishers and Subscribers in AP [. 19
Topic Subscriptionin MQTTAZ2], 20
Examplesof PetriNetdf]. 24
Associating a probability density function of a delay which has an Erlang distri-

bution. 24
A transition carrying an enabling function. L. L. 25
An inhibitor arc from “Place 2" to “transition”. 25
Sequence diagram of the Intracloud orchestration 30
Testing environment for the intracloud orchestration 31
Intracloud orchestrationlatency 32
Frequency distribution of database query latency for Intracloud orchestration 33.
Sequence diagram of the Intercloud orchestration 34
Testing environment for the intercloud orchestration 35
Intercloud orchestration latency L. 36

Example of the decision process for choosing an Erlang probability distribution,

based on the data distribution, for a stochastic transition. 39
Example of the decision process for choosing an Exponential probability distribu-
tion, based on the data distribution, for a stochastic transition. 40
Stochastic Petri net model of Arrowhead's Intracloud Orchestration 41
Sequence diagram of the Intracloud orchestration with annotations identifying the
transitions used inthe Petrinetmodel 42
Transient analysis of the Petri net model for the Intracloud orchestration . . . 44.
Stochastic Petri net model of Arrowhead's Intercloud Orchestration 45
Sequence diagram of the Intercloud orchestration with annotations identifying the
transitions used in the Petrinetmodel, 46
Transient analysis of the Petri net model for the Intercloud orchestration . . . 49.
A simpli ed representation of the Event Handler system 52
Testing environment for the of cial EventHandler. 59

Xi

Xii

7.3

7.4
7.5

7.6

7.7

7.8

8.1
8.2
8.3

LIST OF FIGURES

End-to-end latency, for each of the two thousand messages sent, with the of cial

EventHandler 60
End-to-end latency comparison of the two versions of the Event Handler . . . 61.
End-to-end latency distribution of 9000 events for one subscriber and six sub-
scribers, with the enhanced EventHandler. 62
End-to-end latency distribution of 1000 events from 10 Publishers (each) to 10
Subscribers, with the enhanced EventHandler. 63

End-to-end latency of 3000 events from one publisher to seven subscribers (run-
ning on the same machine), with different thread pool sizes on the enhanced Event
Handler (running on a Raspberry Pi3ModelB). 64
End-to-end latency distribution from one publisher to 7 subscribers (each running
on a Raspberry Pi 1), with different thread pool sizes on the enhanced Event Han-
dler (running on a Raspberry Pi3ModelB). 65

Stochastic Petri net model of the Event Handler running on a quad-core CPU 68 .
Transient analysis of the Petrinetmodel 71
Average distribution of the estimated end-to-end latency, with four messages .72 .

List of Tables

4.1 A comparison between all mentioned message protocols 23.

7.1 Performance comparison between all tested threadpool sizes, for one publisher
and 7 subscribers running on the same machine and the Event Handler running on

aRaspberryPi3ModelB.o 64
7.2 Performance comparison between all tested threadpool sizes, for one publisher and
7 subscribers (each running on a Raspberry Pi 1) and the Event Handler running

onaRaspberryPi3ModelB 65

Xiii

Xiv LIST OF TABLES

Abbreviations

AMQP
API
CPS
CPU
DDS
HTTP
loT
loT
M2M
MQTT
QoS
REST
SOA
SOAP
SSE
SOAP
STOMP
VPN
XML
XMPP
WP

Advanced Message Queuing Protocol
Application Programming Interface
Cyber-Physical Systems

Central Processing Unit

Data Distribution Service

Hypertext Transfer Protocol

Industrial Internet of Things
Internet of Things
Machine-to-Machine

Message Queuing Telemetry Transport
Quiality of Service

REpresentational State Transfer
Service Oriented Architecture

Simple Object Access Protocol
Server-Sent Events

Simple Object Access Protocol

Simple (or Streaming) Text Orientated Messaging Protocol
Virtual Private Network
Extensible Markup Language
Extensible Messaging and Presence Protocol
Work Package

XV

Chapter 1

Introduction

Every manufacturing company, be it large or small, is under constant pressure from its customers
for its products to have better quality and lower cost. The fourth industrial revolution, Industry
4.0, aims to enable manufacturers to deliver these customer requirements by employing a digital,
software-based framework to their factories. Effectively, this initiative is based on the concept of
a fully-integrated industry, where the factory of the future is depicted as follows:

“Products and services are exibly connected via the internet or other network appli-
cations like the blockchain (consistent connectivity and computerization). The digital
connectivity enables an automated and self-optimized production of goods and ser-
vices including the delivering without human interventions ... The value networks
are controlled decentralized while system elements ... are making autonomous deci-
sions” [32]

Currently, Industry 4.0 is understood in general terms as the “digitization” of a business' in-
frastructure, however there are still no reliable standards or de nitions applied to what remains
an arguably vague concept for businesses worldwide. As a result, most industries recognize the
greatest challenges posed by Industry 4.0 for the future, but only a small portion of them feel pre-
pared [L5]. However, due to Industry 4.0's promising bene ts in terms of economic growth, world
governments are actively involved in projects attempting to improve industry digitiz&idn [

Consequently, this dissertation analyzes a work-in-progress software framework for Industry
4.0, the Arrowhead Framewor (], which was the main result of an European research project
of the same name, that focuses on enabling interoperability between different industrial systems.
However, the focus of this thesis evolved throughout the course of the work. While at rst the
goal was to establish a performance model for the framework's architecture (by testing it in cer-
tain stress situations), the opportunity arose to apply a reengineering process on the framework's

2 Introduction

message broker (by using appropriate software con gurations and optimal design patterns) to sig-
ni cantly improve its performance. Ultimately, this system refactoring served as a case study in
order to explore some possible performance improvements for the framework's other components.

1.1 Motivation

This dissertation's work is part of the European research project Productiid@4vhiich is cur-

rently developing the Arrowhead Framewodd]. At present, the framework had not yet been
subject of a performance evaluation and, as such, there was no perceived sense of how long the
framework would take to perform certain operations, i.e., orchestration response times, average
latency for message forwarding, which systems take longer to respond, and so forth. In fact, this
necessity proved to be an interesting challenge to be tackled by this dissertation. Originally, the
goal of the thesis was to evaluate and model the performance of the Arrowhead Framework (which
was still completed), but because the performance results were so poor for one of the framework's
systems, it was decided to redesign this system and change its implementation accordingly to
improve its performance, by using appropriate software con gurations and design patterns.

1.2 Research Goals

Given the already great amount of past and current smart manufacturing approaches and papers
about them, the purpose of this dissertation is not to introduce yet another new approach to de-
signing a software architecture for Industry 4.0. Instead, its goal is to break down a framework
for Industry 4.0, describe its components along with their activities, connections, and interactions,
while also analyzing how its architecture handles different stress situations, and to ultimately de-
velop a performance model for it. Additionally, this analysis is also meant to provide critical
feedback and enhancements, where design and implementation decisions that might lead to poten-
tial performance bottlenecks are detected and improved upon. In summary, this dissertation aims
at answering the following research questions:

1. How can the performance of a system or framework be modeled?

2. How can the correct use of design patterns and best practices affect a system's
performance?

1.3 Dissertation Structure

This dissertation is organized into nine main chapters. Ch&ptackground focuses on con-
textualizing the problem that this dissertation is trying to solve and its core technological pillars,
detailing the technologies that will be analyzed in detail in this dissertation, among other important
background information. Chapt8r Problem Statemengoes into detail about the problem that
this dissertation attempts to solve. ChapteBtate of the Artanalyzes other projects, approaches,

1.3 Dissertation Structure 3

technologies, or overall solutions that have tackled the same issue or were important/in uential for
this dissertation's development. ChapiePerformance Evaluation of the Arrowhead Framework
gives an overview of the implementation of an Arrowhead service, and evaluates the performance
of the Arrowhead Framework in two of its main use cases: intracloud and intercloud service or-
chestration. Chaptdd, Modeling the performance of Arrowhead's Intracloud and Intercloud or-
chestration explains the performance models of the Arrowhead framework for the two use cases
whose performance was evaluated in Chapter 5. Furthermore, it validates this model by compar-
ing its results with the results obtained in Chapter 5. Chaptenproving the performance of the
Event Handlerexplains which system from the Arrowhead framework (the Event Handler) served
as a case study to demonstrate possible performance improvements that could be applied to the
other systems in the framework. Afterwards, it identi es the several performance bottlenecks in
the Event Handler, explains the solutions for these problems and shows their implementation. Fur-
thermore, this chapter also employs a performance evaluation on the original version of the Event
Handler and also on its new implementation, for comparison. Ch&ptetodeling the Event
Handler's performancgsimilarly to Chapteb, presents and explains the performance model de-
veloped for the Event Handler, and validates it against the experimental results presented in the
previous chapter. Chapt&r Conclusions and Future Workummarizes and discusses the main
results/contributions of this thesis.

Introduction

Chapter 2

Background

In order to understand the problem statement, there rst needs to be a clear understanding of the
context. Therefore, this chapter explains the background context of the themes tackled in this
dissertation by describing what Industry 4.0 is (Secfol) and its core technologies (Sections
2.1.1 2.1.2 2.1.3 and2.1.4. Section2.2 focuses on the implications of transitioning from a
centralized system to a decentralized one, and what that means in terms of software architectures.
Finally, Sectior2.3gives an overview of the Arrowhead Framework — a framework meant to assist
the development of systems for Industry 4.0, and is also the main focus of this dissertation.

2.1 Demystifying Industry 4.0

The name “Industry 4.0” refers to the fourth industrial revolution — a new method to achieve
results that were impossible a decade ago, thanks to the evolution of techr@hgdy fact, each
revolution brought gargantuan changes to both the industry and society itself (see Zijure

in the 19" Century, the rst industrial revolution consisted in moving from farming to factory
production; from the 1850s to World War |, the second revolution introduced steel, which lead
to the early electri cation of factories and the launch of mass production; from the 1950s to the
1970s, the third industrial revolution brought the migration from analogue technology to digital
technology 68]. The fourth revolution, subsequently, is the move towards digitization.

Industry 4.0 can be often simply understood as the application of the generic concept of Cyber-
Physical Systems (CPS)§] [60] to industrial production systems, however, Industry 4.0 is in fact
a more complex evolution, or rather, revolution. &§]describes it, Industry 4.0 consists of an
“information-intensive transformation” of manufacturing and other industries, connecting data,
people, processes, services, systems and loT-enabled industrial assets, and generating, leverag-
ing and utilizing information in order to contribute to an ecosystem of industrial innovation and

5

6 Background

Mechanization Mass production
i 5 . ! Computer and Cyber Physical
water power, steam assembly line, :
il automation Systems
power electricity

Figure 2.1: The four industrial revolution8(]

collaboration. As such, promoters of this concept anticipate Industry 4.0 to bring vital advance-
ments to industrial manufacturing processes, engineering, supply chain management, among other
activities |43].

Essentially, this fourth industrial revolution distinguishes itself from the other ones by shifting
from centrally controlled processes to decentralized production procésgesThis consists in
using large-scale Machine-to-Machine (M2M) and Internet of Things (IoT) deployments to help
support increased automation, improved communication and monitoring, including self-diagnosis
and more in-depth analysis, to provide a more productive industrial ecosy6&mAs a re-
sult, factories will become increasingly automated and self-monitoring as the machines inside
are enabled to analyze and communicate with each other and their human co-workers, granting
companies much smoother processes that free up workers for other@ésks [

One of the key promoters of Industry 4.0, the “Industrie 4.0 Working Group,” developed the
rst recommendations for its implementation, which were published in April 2643, [In this
publication, the authors name some key technologies for Industry 4.0: 10T, CPS, Big Data, and
Cloud Computing. These components are introduced subsequently.

2.1.1 Internet of Things

Internet of Things (l0T) is a computing concept that incites pervasive connection to the Internet,
transforming everyday objects into connected devi@3. [The focus behind the 10T concept

is to deploy multiple smart devices capable of sensing the surrounding environment, acquire en-
vironment data, send it (to the cloud) and analyze it (on the cloud), and nally construct useful
information about said environmer83]. The connection of unusual objects to the Internet shall
enhance the sustainability of both industry and society, allowing for ef cient interactions between
the physical world and its digital equivalerd.

2.1 Demystifying Industry 4.0 7

While 10T is usually portrayed as the groundbreaking technology for solving a vast majority of
current society issues like smart cities, autonomous driving, pollution monitoring, among others,
it also provides multiple solutions to problems in the industrial sector. As a subset of 10T, Indus-
trial 10T (110T) covers the domains of Machine-to-Machine (M2M) and industrial communication
technologies with automation applicatioras].

[loT leads to an improved comprehension of the manufacturing process, thus enabling ef cient
and sustainable productio3]. Communication in Il0T is machine-oriented and can run over a
substantial wide range of sectors and activities. Some IloT scenarios include legacy monitoring
applications (such as machine monitoring in production plants) and innovative approaches for self-
organizing systems (like autonomic industrial plants that require little to no human intervention)
[59].

Given that IloT derives from 10T, most general communication requirements of both do-
mains are naturally very similar: low-cost support for the Internet ecosystem, usage of resource-
constrained devices, and the need for network scalability and secB8ty tHowever, there are
also multiple communication requirements that are particular to each domain in regards to Quality
of Service (which evaluates determinism, latency, throughput, among other requirements), avail-
ability and reliability, and security and privac@3]. Effectively, 10T specializes on developing
new communication standards that can connect novel devices to the Internet in a exible and
user-friendly way. By contrast, the current design of lloT emphasizes on possible integration and
interconnection of once isolated plants and working islands (or even machines), thus contributing
to more ef cient production and new servicesd].

2.1.2 Cyber-Physical Systems

A cyber-physical system is de ned as transformative technologies for managing interconnected
systems between their computational capabilities and physical aS8gtdrj other words, it is

a system of collaborating IT elements, designed to control physical (mechanical, electronic) ob-
jects, where communication is done via the Internet (or other data infrastructures) in a closed
environment37]. Thus, a CPS generally consists of two main functional compon8f}s [

Advanced connectivity that ensures real-time data acquisition from the physical world and
information feedback from the cyber space;

Intelligent data management, computational and analytics capability that constructs the cy-
ber space.

Designing and deploying a cyber-physical production system can be done based on a ve-
level CPS structure proposed ig. It de nes how engineers construct a CPS from the initial
data acquisition, then analytics, and nally to the creation of real value for businesses. Among the
ve levels, the cognition and con guration levels are considered to be the most dif cult to achieve

[45].

8 Background

In manufacturing, CPSs can improve quality and productivity through smart prognostics and
diagnostics using data from different machines, networked sensors, and sy$&niddwever,
for more complex manufacturing systems, the integration of data from heterogeneous sources
(different suppliers, different time stamps, and different data formats) can be a big chafléhge [
Therefore, the role of Big Data analytics for cyber-physical production systems will reach into
design, manufacturing, maintenance, use, and reuse when engineers try to handle new types of
data and problem®9§].

2.1.3 Big Data Analytics

Big Data analytics consists on analyzing large data sets that contain a multitude of data types
[84] to uncover hidden patterns, unknown correlations, data trends, among other useful business
information j2]. By examining great amounts of data, an organization is capable of dealing with
considerable information that can affect a busin@4k [Thus, the main goal of big data analytics

is to assist businesses in order to improve data understanding, and thus, be able to reach ef cient
and well-informed decisions.

As such, this process is rapidly emerging as a key loT requirement to improve decision-making
[64]. Big data analytics in loT requires processing a large amount of data and storing it in various
storage technologies. Given that a signi cant part of the unstructured data is acquired directly
from web-enabled “things,” Big Data implementations have to perform quick analytics with large
queries to allow organizations to gain rapid insights, make fast decisions, and interact with people
and other devicestff]. The interconnection of sensing and actuating devices gives the ability to
share information across platforms through a uni ed architecture and develop a common operating
picture for enabling innovative applicatiord]. In the case of industrial manufacturing, Big Data
analytics will enhance manufacturing ef ciency by improving equipment service, reducing energy
costs, and improving production quality/1].

2.1.4 Cloud Computing

Cloud computing, also known as simply “cloud,” is the delivery of on-demand computing re-
sources — from applications to data centers — over the intesfetAn Oracle report from 2016

[75] revealed that of the 1200 technology decision-makers surveyed across Europe, Middle East,
and Africa in midsize and large companies, 60% believe an integrated approach to cloud will un-
lock the potential of disruptive technologies, particularly in areas such as robotics and arti cial
intelligence. Cloud computing is a big shift from the traditional way businesses think about IT
resources. As already mentioned in SecBoh], one of the major goals of 1loT is to connect all
machines and devices within the industry in order to produce valuable data that can be used for
analysis. However, given the large amount of data that is generated by all these systems, data size
often becomes too massive to handle and insight generation becomes complex in nature. Thus,
cloud computing can help mitigate these problems by providing industry speci ¢ solutions, such
as remote control and operation, predictive maintenance, and autongtion [

2.2 Transitioning from Monoliths to Microservices, through REST 9

2.2 Transitioning from Monoliths to Microservices, through REST

When looking at the characteristics of enterprise applications for the fourth Industrial Revolution,
special focus should rst be given to the most fundamental necessary changes along the entire
value chain, which in many cases are already taking place in the industrial W8}d [

Self-control: CPS will function and interact independently;

Self-organization: Different agents will cooperate with each other on the global IoT, leading
to a decentralization of decisions;

Complex algorithms for centralized supply chain planning must be swapped with less-
complex decentralized algorithms;

Customers, suppliers, and business partners must be strongly incorporated along the value
chain;

Responsiveness: Transparent decisions in decentralized control cycles enable fast reactions
to change and disruptions.

Considering these changes that await, it would be correct to say that monolithic enterprise
applications will become obsolete in Industry 493]f A monolithic architecture is developed on
a single programming stack, where each component is highly reliant on one a@thedit can
only scale in one dimensioB9]. As depicted in Fig2.2, it can scale with an increasing transaction
volume by running more copies of said application. However, this architecture cannot scale with
a rising data volume — since each copy of the application will access all data, making caching less
effective and increasing memory consumption and 1/O tra8€][Moreover, different application
components have different resource requirements, i.e., one might be CPU intensive while another
might be memory intensive8p]. Hence, developers cannot scale each component independently
in a monolithic architecture.

Thus, the most ef cient way of achieving scalability and decentralization is with microservices
and RESTful APIs 9]. The termmicroservicesdescribes an architectural approach in which
a developer builds an application as a set of frugal, comprehensible components that typically
communicate via RESTful APIs. RESTful APIs are a fundamental building block for an 0T
cloud-based integration platform because of their lightweight, asynchronous, and stateless nature
[9]. In addition, their uniform interface and the fact that they have become the standard for most
cloud-based services makes integration efforts simpler and more sustainable than proprietary data
exchange model$.

When deployed in an lloT scenario, this modern architectural approach allows organizations
to react based on small changes in data or state. The use of APIs and microservices enables the
system to orchestrate and combine discrete actions to achieve the intended result. The arrange-
ment between RESTful APIs and the microservice architecture is a vital piece of the ongoing
evolution of Industry 4.09]. As organizations recognize the increasing strategic importance of

10 Background

A monolithic application puts all its [) A microservices architecture puts '
functionality into @ single process... ® each element of functionality into a
v separate service...
-

... and scales by replicating the ... and scales by distributing these services
monolith on multiple servers across servers, replicating as needed.

| - v

@ @
oV oV ®|lle ®le®
‘:I__ ———
| | o |||
& &

Figure 2.2: Monoliths vs. Microservice6Z]

creating defensible, proprietary data and, as a result, continue to expand the data universe that they
must integrate, they will demand the exibility, scalability, and interoperability that the RESTful
APIl/microservices combination provided |

2.3 The Arrowhead Framework !

The Arrowhead project is a large European effort that aimed at normalizing the interaction between
IoT applications through a Service Oriented Architecture (SOA). This effort targeted many appli-
cation domains comprising industrial production, smart buildings, electro-mobility, and energy
production. Services are exposed and consumed by (software) systems, which are executed on
devices, which are physical or virtual platforms providing computational resources. The devices
are grouped into local automation clouds (see FiguBg which are self-contained, geographi-

cally co-located, independent from one another, and mostly protected from external access through
security measures.

Arrowhead services are considered either application services (when implementing a use case),
or core services (that provide support actions such as service discovery, security, service orchestra-
tion, and protocol translation). To facilitate application development, the core systems are included
into the common Arrowhead Framewoil]. The Arrowhead Framework is intended to be either
deployed at the industrial site, or accessed securely, for example through a Virtual Private Network

1 The following explanation was mostly based on the papers “The Arrowhead Framework applied to energy man-
agement” 85] (whose author is the same as this dissertation's), “Quality of Service on the Arrowhead Frames@prk” [
and “Making system of systems interoperable — The core components of the arrowhead fram8@jorkh{is, this
dissertation was given permission by the papers' respective authors to use the information and text available in these
documents, provided that the original works and authors were properly referenced.

2.3 The Arrowhead Framework 11

Figure 2.3: Interconnected local collaborative clousld [

(VPN). As per the Arrowhead approach, local clouds are governed through their own instances of
the core systems (see Figutdl). There are two main groups of the core systems:

The mandatory ones that need to be present in each local cloud (at ieEiure2.4);
The automation supporting ones that further enhance the core capabilities of a local cloud
(at levelsll andlll in Figure2.4).

Service Orchesdiration [MGBLEE Ty 1. | Application
Sl Regisiry System System
gy AR
, System Gateke
_ System eper
1. g WW“ System
po o S o o S o
Event _ﬁ‘l‘_ ' Translator Historian
L. Handler : : System (Logger)
- - []
. p & S b ¥

Figure 2.4: The Arrowhead Core Systeri§][

The core systems of Arrowhead focus on the maintenance of the local cloud itself and of
non-functional requirements of use cases, and are included into, and shipped in the form of, the
Arrowhead Frameworkq1]. Even in the most minimal local cloud, the core services take care
of registration and discovery of services, systems and devices (ServiceDiscovery service, or SD),
security (Authentication service, or AA), and orchestration of complex services (Orchestration
service, or O), as portrayed by Figue. The application systems are also consumers of the core

12 Background

services. The Orchestration service is used to assemble complex services, which may be com-
prised of several individual services. To this aim, services, systems and devices in an Arrowhead
local cloud have to be registered, and through their registries (ServiceRegistry) the Orchestrator
can access a global view of the local cloud.

Authorize

. Orchestrator Authorization

i Lookup
Service

Registry

[Core Systems and Services |

Publish Request
T | Application Systems and Services | _R
. Service .
Service) Service
Provider Consumer

Figure 2.5: Overview of the Arrowhead Framework's mandatory systéfjs [

For the sake of providing full context, the major Arrowhead systems that were used in this
dissertation are subsequently presented.

2.3.1 Service Registry (Mandatory)

The Service Registry System keeps track of all active producing services within the network. It is
used to ensure that all systems can nd each other — even if endpoints are dynamically changed.
To this ends, it supports a service registry functionality based on DNS and DNS-SD (using a DNS-
SD BIND server and a DNS-SD Java library); since the Arrowhead Framework is a domain-based
infrastructure. However, it also has a development-friendly version that relies on MySQL based
REST module to facilitate the bootstrapping process of the framework (using the Hibernate ORM
with a MySQL connector)18].

All Systems within the network that have services producing information to the network shall
publish its producing service within the Service Registry by using the Service Discovery service.
Within a system of systems, the Service Registry further supports system interoperability through
its capability of searching for speci ¢ service producer features, i.e. an application service pro-
ducer with a speci ¢ type of output. In short, it enables systems to publish their own application
services and lookup others'.

2.3.2 Authorization System (Mandatory)

The Authorization system controls that a service can only be accessed by an authorized consumer.
It consists of two service producers and one service consumer and it maintains a list of access
rules to system resources (i.e. services). The Authorization Management service provides the

2.3 The Arrowhead Framework 13

possibility to manage the access rules for speci ¢ resources. The Authorization Control service
provides the possibility of managing the access for an external service to a speci ¢ resource. The
system uses the Service Discovery service to publish all its producing services within the Service
Registry system.

2.3.3 Orchestration System (Mandatory)

The Orchestration system is a central component of the Arrowhead Framework and also in any
SOA-based architectur@6]. In industrial applications the use of SOA for massive distributed
system of systems requires Orchestration. It is utilized to dynamically allow the re-use of existing
services and systems in order to create new services and functiondi]edt[is the primary
decision-maker that is aware of the current conditions in the SoS. Its primary task is to allocate
Service Providers to the Service Requests sent in by Systems (seeZRJuiguring this orches-

tration process the Orchestrator consults with the other Core Systems and makes a decision based
on the responses.

/:'/
Application /;g
System &

o

Gateway
S,

Figure 2.6: Overview of the Orchestration procekd [

2.3.4 Event Handler

The Event Handler System facilitates communication and data sharing between Application Sys-
tems in an Arrowhead network through “event propagation,” following a Publish-Subscribe model
(as depicted in Figura.7).

14 Background

Event
Consumer 1

Event)_. Event E_O}L
Producer ._O Handler E_O)_E Event

Consumer 2

Figure 2.7: Overview of the Event HandI&(]

The Event Handler receives events from Event Producers and dispatches them to registered
Event Consumers. The Event Handler is also responsible for logging events to persistent storage,
registering event producers and consumers, and applying ltering rules (con gured by Event Con-
sumers) to incoming events. These rules can be, for example, based on message content or simply
based on the severity level of the message, which varies from Debugging to Critical. The Event
Handler can also be connected to an internal or external database system which is responsible
for the permanent storage of all events. Effectively, the Event Handler works similarly to typical
message broker, but implemented in REST-JSON, with the help of concurrency handling libraries.

Chapter 3

Problem Statement

This dissertation's work is part of the European research project Productivid4véhiich is cur-

rently developing the Arrowhead Framework. At present, the framework had not been analyzed
from a performance standpoint and, as such, there was no perceived sense of how long the frame-
work would take to perform certain operations, i.e., how long does it take to receive an orches-
tration response, which systems take longer to respond, what is the average latency for message
forwarding, and so forth. In fact, this necessity proved to be an interesting challenge to be tackled
by this dissertation.

Still, an exhaustive performance evaluation of the Arrowhead Framework would not be fea-
sible for the scope of this thesis, since it is a rather complex framework that can even support an
unbounded number of use-cases — after all, a framework can be built for implementing an in nite
number of systems. Thus, in an attempt to limit the analysis' scope, the performance modeling
was chosen to be use-case driven. As such, this dissertation's rst objective was to show how one
can develop a performance model, using two important use cases of the Arrowhead Framework.
Regarding the performance modeling process, assembling performance models that correctly cap-
ture the different facets of system behavior is said to be an overly challenging task when applied
to large and complex real-world systenis]. This thesis to followed the undermentioned mod-
eling methodology$8], which is based on existing work in software performance engineering by
Menasce et al.g8, 27):

1. Establish performance modeling objectives -Set concrete goals for the performance
modeling effort.

2. Characterize the system in its current state -Develop a speci cation that includes de-
tailed information on the system design and topology, the hardware and software compo-
nents that it consists of, the communication and network infrastructure, among other char-
acteristics.

15

16 Problem Statement

3. Characterize the workload —The workload of the system should be described in a quali-
tative and quantitative manner.

4. Develop a performance model -Develop a performance model which depicts the differ-
ent components of the system and its workload and captures the main factors affecting its
performance.

5. Validate, re ne, and/or calibrate the model — The model is considered valid if the perfor-
mance metrics predicted by the model match the measurements on the real system within
a certain acceptable margin of err@9]. If this does not happen, then the model must be
re ned or calibrated to more accurately re ect the modeled system and workload.

6. Use the model to predict system performance Fhe validated performance model is used
to predict the performance of the system for the deployment con gurations and workload
scenarios targeted for analysis.

7. Analyze results and address modeling objectivesFhe results from the model predictions
are analyzed and used to address the goals set in the beginning of the modeling study.

Furthermore, a major part in the development of a model consists in choosing the level of
abstraction. Unfortunately, there are no speci c rules for choosing this, so the decision is based
primarily on the performance analyst's expertise and ingenuity. Nevertheless, the level of abstrac-
tion is the main element that distinguishes a model from a prototype or an emulator. Simulation
is better suited to developing more thorough models, while analytical models are usually more
abstract §5].

Ultimately, this performance evaluation serves as a proof-of-concept for more in-depth perfor-
mance analysis that can be potentially done in the future by the Arrowhead community.

However, the focus of this dissertation evolved throughout the course of the work. Originally,
the goal of the thesis was to evaluate and model the performance of the Arrowhead Framework, but
because the performance results were so poor for one of the framework's systems (i.e., the Event
Handler), it was decided to redesign it and change its implementation accordingly to improve its
performance, by using appropriate software con gurations and design patterns. Given that some of
these bottlenecks were caused by design decisions that also permeate other Arrowhead systems,
this reengineering process would consequently serve as a case study for potential performance
improvements on the rest of the framework's components.

Chapter 4

State of the Art

Usually, a problem is never entirely unique. More often than not, similar challenges to any prob-
lem statement have already been tackled by other people with multiple solutions. Therefore, this
chapter analyzes other projects, approaches, technologies, or overall solutions that have tackled
the same issue or were important/in uential for this dissertation's development.

Given the thesis's subject matter, Sectii studies and compares different middleware ap-
proaches to messaging, which is often required for 0T systems and will be important for later
chapters. Afterwards, Secti@gh2 presents a mathematical modeling language used for modeling
the performance of distributed systems, and explains why it is a good t for this dissertation.

4.1 Message-Oriented protocols when REST is inadequate

Indeed, RESTful interactions have become essential to enterprise computing as it enables many
APIs on the web todaydp]. The reason behind this is because REST is considered to be much eas-
ier to learn and handle than other web service interface approaches such as SOAP (Simple Object
Access Protocaol), which is a mature protocol intended to expose individual operations as services
that use XML to describe the content of the messd@k Since REST is based on standard HTTP
operations rather than XML, it uses verbs with exact connotations such as “GET” or “DELETE”"
which prevents ambiguity. REST resources are also assigned individual URIs, adding exibility to

a web service's desigryBl. With REST, information that is produced and consumed is separated
from the technologies that enable production and consumption. Furthermore, since REST is not
constrained to XML like SOAP, it can return XML, JSON, YAML or any other format depending

on what the client requestg(]. In fact, REST is the predominant architectural style used in this
thesis' project, the Arrowhead Framework, where every Arrowhead system is a RESTful service,
even the Event Handler system — a message broker that forwards messages between systems, using
a publish-subscribe model.

17

18 State of the Art

However, a REST/HTTP architecture is mostly limited to the client-server model, where the
client system requests data/service to a server, the server system then responds to the request by
providing that data/service, closing the HTTP connection. In other words, the duration of the
contract between client and server is a one-time invocation. On the other hand, an event-driven
architecture (which is usually implemented using the publish-subscribe model), has the goal to
establish a long-term contract between the client and the server, by keeping the connection open
between the client and the message broker, using subscriptions. Thus, the client-server model,
and consequently REST, is not always the most suitable choice for every situation. For some
application domains, such as real-time systems that need to propagate real-time data to multiple
other systems (e.g. a temperature sensor providing sensor readings to maintenance systems), an
event-driven architecture is more appropriate.

Furthermore, while publish-subscribe can be implemented using HTTP, other messaging pro-
tocols that have a lower connection overhead, might be better suited for this purpose. Therefore,

s survey of the most relevant messaging protocols — along with message-oriented middleware
(MOM) that use them — is subsequently presented.

4.1.1 Advanced Message Queuing Protocol (AMQP)

AMOQP (standardized by the OASIS consortiur2]) was developed as an open standard with the
goal of replacing existing proprietary messaging middleware. OASIS states that three of the most
important reasons to use AMQP are security, reliability and interoperaldlity [

AMQP has two different speci cations: AMQP 0.9.1 and AMQP 1.0, where each version
has a completely different messaging paradigm. AMQP 0.9.1 implements the publish/subscribe
paradigm, relying on an AMQP broker that handles the “exchanges” and the messages queues. The
newer version of AMQP protocol, AMQP 1.0, is not tied to any particular messaging mechanism.
This dissertation will only focus on the 0.9.1 implementation, herein mentioned as AMQP.

Regarding its messaging features, AMQP provides a wide range, including reliable queu-
ing, topic-based publish/subscribe messaging, exible routing, and transactions (see4-ijure
AMQP exchanges route messages directly, either in fanout form (i.e. broadcasts all messages to
all queues), by topic, or based on head®&3.[Furthermore, it is possible to restrict access to
gueues and manage their depth. This protocol was designed for business messaging with the idea
of offering a non-proprietary solution that can manage a large amount of message exchanges that
could happen in a short time in a system.

Moreover, AMQP uses TCP for reliable transport and supports three different levels of QoS:

QoS 0: Delivers on a best effort assumption, with no con rmation on message acknowl-
edgment. This QoS level can be useful, for example, for a GPS tracker that sends data of
a location every few minutes, over a long period of time. Therefore, it is adequate if the
messages with GPS location are sometimes missing, because the general location is still
known since most of the message updates have been recgBled [

4.1 Message-Oriented protocols when REST is inadequate 19

Topic Exchange

Prﬂducar rating key
usa.news

Bindlmgs:

h|.-|;.‘..-|-_| ey brjmadhng Ky binding key =

#.News #.weather europe.x

Consumer ' N/
Message Message Message

Figure 4.1: Topic Exchange between Publishers and Subscribers in ABEDP [

QoS 1: Guarantees that messages will reach their destination, so a message con rmation
from subscribers is necessary. Thus, the subscriber must send an acknowledgement, and if
it does not arrive in a de ned period of time, the publisher will publish the message again

[52.

QoS 2: Assures that the message will be delivered exactly once, without message duplica-
tion [52).

Thus, for resource constrained systems where battery life is more important than reliable com-
munication, QoS 0 is a valid option. For data exchange between more powerful systems, QoS 1
and QoS 2 are naturally better options. Finally, the AMQP protocol offers complementary security
mechanisms for data protection through the TLS encryption protocol, and also for authentication
by using SASL (Simple Authentication and Security Lay&d][

Additionally, AMQP adoption has been remarkably strong: companies like VMWare use it in
their virtualization products and cloud services, NASA uses it for the control plane of their Nebula
Cloud Computing, and Google uses it for complex event processing to analyze user de ned metrics
[7]. In terms of available MOM for AMQP, the following brokers are some of the most popular
ones: RabbitMQ8g6], Apache ActiveMQ B8], and Apache Qpid39].

20 State of the Art

4.1.2 Message Queuing Telemetry Transport (MQTT)

The design principles and aims of MQTT (also standardized by OASIS) are much simpler and fo-
cused than those of AMQP: it provides publish/subscribe messaging, does not use queues (despite
its name), uses only topics instead of exchanges and bindings (see4Ruead was speci cally
designed for resource-constrained devices and non-ideal network connectivity conditions, such as
low bandwidth and high latency (e.qg., dial up lines and satellite lirk&)32].

Figure 4.2: Topic Subscription in MQTTLE]

Thus, one of the advantages MQTT has over more full-featured “enterprise messaging” bro-
kers is precisely its simplicity and its very small message header. Similarly to AMQP, MQTT runs
on top of the TCP transport protocol, which ensures its reliability. Additionally, because MQTT
has much lower power requirements than other reliable protocols like HTTP, it is considered one
of the most prominent protocol solutions in constrained environm@&2s5p]. As a matter of
fact, Facebook uses it for their mobile applicatiod4][

For QoS, MQTT has the same three QoS levels as AMQP: QoS 0, 1, &ifl Zhe higher the
QoS level, the bigger amount of necessary resources it is to process a MQTT packet. Therefore, it
is vital to adjust the QoS option to particular network conditions. Also, another important feature
MQTT offers is the possibility to store some messages for new subscribers by setting a “retain”
ag in published messages?)].

In conclusion, MQTT's strengths are simplicity and a compact binary packet payload (no
message properties, compressed headers, much less verbose than a text-based protocol like HTTP),
making it a preferable option for simple push messaging scenarios, e.g. temperature updates,
machine operation logs, and mobile noti catiol®2]. Moreover, there are multiple MQTT-based

4.1 Message-Oriented protocols when REST is inadequate 21

MOM that are open for use, which differ in their MQTT protocol implementation. Some of them
are Mosquitto §9], RabbitMQ [B6], Apache ActiveMQ B8], and HiveMQ R7].

4.1.3 Simple Text Oriented Messaging Protocol (STOMP)

Unlike the prior mentioned protocols, STOMP is text-based, making it more similar to HTTP,
while also running over the TCP transport protocol. Like AMQP, STOMP provides a message
header with properties, and a message body. The design principles of STOMP were to provide easy
and widespread messaging interoperability among different programming languages, platforms
and brokers{6].

It should be mentioned that STOMP does not use queues or topics: it G&&¥@semantic
with a “destination” string. The broker itself must manually map onto something that it under-
stands internally such as a topic, queue, or exchange. Cons&td&SCRIBEo those destina-
tions [82]. Since both the semantics and the detailed syntax of the destination tag are not de ned
in the of cial speci cation, different brokers can actually interpret the destination in different
manners, which compromises the protocols interoperab8jty [

However, STOMP is simple and lightweight (even though it is considered somewhat verbose),
with a wide range of language bindings, and also provides some transactional sem3ahtiee{
garding available MOM with STOMP implementations, Apache ActiveN3g,[RabbitMQ [8€],

CoilMQ [61], and HornetQ 48] are some of the suggested brokers by the STOMP community

[95].

4.1.4 Extensible Messaging Presence Protocol (XMPP)

XMPP is an open standard messaging protocol, originally designed for instant messaging and
message exchange between applicati@0g][Like STOMP, XMPP is also a text-based protocol,
using Extensible Markup Language (XML), and implements both client/server and publish/sub-
scribe approaches, running over TARJ.

One of the most important characteristics of this protocol is security, making it one of the
more secure messaging protocols mentioned in this State of the Art. Unlike other protocols such
as MQTT, where TLS encryption is not built-in within the protocol speci cations, XMPP spec-

i cation already implements a TLS mechanistOf, which provides a reliable mechanism to
ensure con dentiality and data integrity. Beside TLS, XMPP also implements SAGE, [which
guarantees server validation through an XMPP-speci ¢ pro26]]

However, given its instant messaging origins, XMPP has some weaknesses that should be
considered. Namely, the XML structure used on every message makes their sizes inconveniently
large, especially when used in networks with bandwidth problems. Additionally, another downside
is the lack of QoS, in fact, because XMPP runs on top of a persistent TCP connection and lacks an
ef cient binary encoding, itis not suited for unstable, low-power wireless netw&®s However,
there has been an effort to make XMPP better suited for 1&] 3], for instance, a lightweight
publish/subscribe approach has been developed for resource constrained I0oT devices, in order to

22 State of the Art

optimize the existing XMPP implementatiod4]. In regards to available MOM for XMPP, the
following brokers are some of the recommended ones by the XMPP commui6ify Ejabberd
[83], AstraChat P9], Open re [24], and Tigase XMPP Servet (.

4.1.5 Data Distribution Service (DDS)

DDS is a real-time data-centric interoperability standard which uses a publish/subscribe approach.
However, unlike the other previously mentioned publish/subscribe protocols, DDS is decentral-
ized and based on peer-to-peer communication, and therefore does not rely on a message broker,
ultimately removing a potential single point of failure for the whole system. Both communication
sides are then decoupled from each other, and a publisher can publish data even if there are no
interested subscribers. The data consumption is essentially anonymous, since the publishers do
not inquire about who consumes their ded][

Additionally, one of the most prominent features of the DDS protocol is its scalability, which
comes from its support for dynamic discovery. The discovery process, achieved through a built-in
discovery protocaol, allows for subscribers to identify which publishers are present, and to specify
information they are interested in (through topics) with the desired QoS (which are included in
a very extensive set of policies), and for publishers to publish their @8}a The various QoS
policies manage a gargantuan amount of DDS features, such as data availability, data delivery, data
timeliness, and resource utilizatiohd1]. In order to communicate with each other, publishers and
subscribers must then use the same topic (same name, type and a compatibEXoS) [

Furthermore, DDS uses UDP/IP as its default transport protocol for interoperability purposes
and multicast for anonymous discovery, nonetheless it can also support TCP/IP. Regarding secu-
rity, DDS employs different solutions depending on the transport protocol that is being used. If
TCP is the transport protocol of choice, then TLS can be used. In the case of UDP, the DTLS
protocol is usedd2]. Regarding available MOM with DDS implementations, the following mid-
dleware are free to use: OpenDDRI] and Vortex DDS P].

4.1.6 Summarizing all mentioned messaging protocols

Given the multiple protocols mentioned in this chapter, the following table (Faljsummarizes
each protocol's characteristics for easy comparison.

4.2 Using Petri Nets for performance modeling 23
Table 4.1: A comparison between all mentioned message protocols
Messaging Service | Transport | Quality of . Available
Protocol Reg/Resp| Pub/Sub Discovery | Protocol Service Security implementations
. RabbitMQ,
AMQP (Ieé) (OYgsl) No Tcpnp | 3 T’e'?/“ecl’ga' (inII_t-Sin) Apache ActiveMQ,
' o Apache Qpid
Mosquitto,
3 optional TLS RabbitMQ,
MQTT No Yes No TCPAP levels (optional) Apache ActiveMQ,
HiveMQ
Apache ActiveMQ,
Application TLS RabbitMQ,
STOMP Yes Yes No TCPAP dependent| (optional) CoilMQ,
HornetQ
ejabberd,
XMPP Yes Yes Yes | TCP/P - TLS AstraChat,
(built-in) Openre,
Tigase XMPP Serve
. DTLS (UDP)
UDP/IP Multiple OpenDDS,
DDS No Yes Yes TCP/IP policies TLS .(TCP) Vortex DDS
(optional)

4.2 Using Petri Nets for performance modeling

One of this dissertation's goals was to develop a performance model, and while the modeling
methodology to be followed had been chosen back in Se&i@nquestion still remained: what
kind of analytical model is appropriate for this process?

Petri Network models (also known as Petri nets) are widely used for these situ&@pho3,

54]. Petri nets were proposed as an easy and convenient formality for the process of modeling sys-
tems that deal with concurrent activitieBf, such as communication networks, multiprocessor
systems, manufacturing systems and distributed databases. Their increasing popularity is due to
their simple representation of concurrency and synchronization — which are not easily expressed
in traditional formalisms — developed for analysis of systems with sequential beh&®pr The

risk, however, is that these models can become too detailed, and therefore intractable. Neverthe-
less, as explained in Secti@nthe level of abstraction is dependent on each particular case, and
its decision should be based primarily on the performance analyst's expertise and ingenuity.

Petri nets are bipartite directed graphs, in which the two types of vertices — named “places”
and “transitions” — represent conditions and events (see Fig@rePlaces may hold tokens (see
Figure4.39. The state of a Petri net consists in its assignment of tokens to plade#\h event
can only happen when all conditions associated with it (represented by arcs aimed at the event)
are satis ed. The occurrence of an event often leads to a new state (see #igjgrendicated
by arcs directed from the event. Essentially, the occurrence of one event causes another event to
occur, and so onl05.

24 State of the Art

(a) A simple net (b) Firing a transition

Figure 4.3: Examples of Petri Net&7]

Petri net models can then be extended with a temporal speci cation, by associating a ring
delay to a transition — these models are called Timed Petri nets. This temporal speci cation can
either be deterministic or probabilistic. When the speci cation of the ring delay is of proba-
bilistic nature, the transition is associated with the probability density function or the probability
distribution function of the delay (see Figuded). These models are known as Stochastic Petri
nets. Thus, when performing a stochastic analysis, the ring delays are randomly selected by the
probability distributions associated with the transitiof6]]

Figure 4.4: Associating a probability density function of a delay which has an Erlang distribution.

As such, Stochastic Petri nets seem to be a good t for this project, given that combining
stochastic and deterministic timings into one model is particularly signi cant for representing net-
work latency and, consequently, the performance analysis of networked systems. Moreover, the
probabilistic approach may be advantageous as it can provide decent accuracy, while compromis-
ing on more general results.

Another thing to notice in Stochastic Petri nets is that time enabled transitions re one atatime,

4.2 Using Petri Nets for performance modeling 25

according to a sequence that is determined by the probabilistic structure of the model. In the case
of immediate transitions, whenever multiple ones are enabled, the selection of the next transition
to re will be based on parameters other than the temporal ones. In fact, for immediate transitions,
the ring delay is deterministically equal to zero so that it cannot be used to discriminate against
the one that will actually re #1].

Furthermore, aside from these time speci cations, a transition is also able to carry an “enabling
function” (i.e. a boolean expression) that only allows a token to go from one place to the next if
a certain condition is satis ed — these conditions are related to the amount of tokens located in a
particular place(s). These special transitions are sometimes identi ed with the letter “e” next to
them (see Figurd.5), depending on the Petri net editor used.

Figure 4.5: A transition carrying an enabling function.

Finally, another Petri net component should be mentioned — the inhibitor arc (see #igure
An inhibitor arc —i.e. an arc with a black circle on its end — is used to mandate that the transition
must only re when its place has no tokens. This could be used to, for example, ensure that a place
must only carry one token at a time.

Figure 4.6: An inhibitor arc from “Place 2" to “transition”.

26

State of the Art

Chapter 5

Performance Evaluation of the
Arrowhead Framework

In order to evaluate the performance of the Arrowhead Framework, several tests were conducted
using different testing environments for each use case scenario. As such, the following sections
describe the purpose of each use case (among other details), their testing environment (i.e. what
types of machines were deployed, which Arrowhead clouds were set up, and what are the network
speci cations to which these machines are connected to), and the messaging workload that was
employed in order to stress different aspects of the software infrastructure.

Before going into detail about each use case, a slight code analysis of the common practices
of each Arrowhead system's implementation is subsequently presented, since this information is
important for later topics covered in this thesis.

5.1 Implementation of an Arrowhead system

Every Arrowhead system in the of cial Arrowhead reposito@y8] extends theArrowheadMain
abstract class, which is located in tere-commompackage. This class is responsible for the initial
setup of an Arrowhead system, e.g., con guring and starting the system's web server, creating a
database session (through iatabaseManagetlass, using the Hibernate ORM), registering the
core system services to the Service Registry, among other operations.

Regarding the web server setégrowheadMairuses a REST-based architecture implemented
on top of Grizzly R1] and Jersey{9]. Grizzly comprises: i) a core framework that facilitates the
development of scalable event-driven applications using Java Non-blocking 1/0O API, and ii) both
client-side and server-side HTTP services. Jersey is a framework that facilitates the development
of RESTful Web Services and its clients, by providing an implementation of the JAX-RS API and
some extensions.

27

© 00 N o o b~ W N PP

NN N NNDNRR R B B B B P B
g A W N P O O 0 N O O B W N P O

28 Performance Evaluation of the Arrowhead Framework

JAX-RS is the “standard” speci cation for developing REST services in Java. Some imple-
mentations of JAX-RS include Jersey, RESTeasy, WebSphere, and Jello-Framework. Since Jer-
sey's developers are the Oracle Corporation and the Eclipse Foundation, Jersey is considered to
be the of cial implementation of JAX-RS. A simple example of the implementation of a JAX-RS
resource using Jersey is shown in Listihd.

package com.example;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;

[**

* Root resource (exposed at "myresource” path)
*/

@Path("myresource")

public class MyResource {

| *x
* Method handling HTTP GET requests. The returned object will be sent
* to the client as "text/plain” media type.
*
* @return String that will be returned as a text/plain response.
*/
@GET
@Produces(MediaType. TEXT_PLAIN)
public String getlt() {
return "Got it!";

Listing 5.1: Example of the implementation of a JAX-RS resource using Jersgy [

The default use of Jersey (which uses servlets as its underlying mech&@i3mwi[l lead to
the creation of a new thread for each request that is destroyed after its work is completed. Thus,
RESTful services using standard Jersey will slow down when there are thousands of requests sent
at the same time or at a very fast pace (the consequences of creating multiple threads are later
explored in Sectiof7.3.3.

This thread policy with requests is usually enough for when a processing resource method
takes a relatively short time to execute. However, in cases where resource method execution
takes a long time to compute the result, JAX-RS's server-side asynchronous processing model
should be used (usingsyncResponsas a parameter for the resource method). Through this,
there is no association between a request processing thread and the client connection. The I/O
container which handles incoming requests will never assume that a client connection can be safely

~N O O A~ WN P

10
11
12
13
14

5.1 Implementation of an Arrowhead system 29

closed when a request processing thread returns. This methodology is able to increase throughput
signi cantly, however it will still create a new thread when it does the actual work [

In order to solve this problem, the optimal solution is to use a threadpool, which reuses pre-
viously created threads to execute current tasks and offers a solution to the problem of thread
creation overhead and resource consumption. However, while one could manually implement a
threadpool using JavaBxecutorServicéor each resource method, the optimal solution is to use
a web container that serves as an HTTP server for Jersey, and con gure it to have a threadpool.
While this accomplishes the same goal, it lowers the thread creation responsibility down a layer
below Jersey and to the web containdy}. [Grizzly is a popular implementation of these web
containers and it is used by therowheadMairclass.

Regarding the Arrowhead systems themselves, all systems follow a similar approach to list-
ing 5.1 for their JAX-RS resource (i.e. without usifgyncRespongewhich means they do not
reuse client connections and could thus suffer from connection overhead if multiple clients send
requests at the same time. Furthermore, becAnssvheadMainuses Grizzly for its web con-
tainer, these systems have the option to handle requests concurrently through a con gured thread
pool. However, the Grizzly HTTP server module AnrowheadMaindoes not currently have a
con gured thread pool (as can be seen in Listhg) and, by extension, none of the Arrowhead
systems will then be able to ef ciently handle multiple requests. These two factors will more than
likely have an effect on the performance of each system and, consequently, on the performance of
the orchestration process in its entirety.

public abstract class ArrowheadMain {
...

private void configureServer(HttpServer server) {

/IAdd swagger Ul to the server

final HttpHandler httpHandler = new CLStaticHttpHandler(HttpServer. class .
getClassLoader(), "/swagger/");

server.getServerConfiguration().addHttpHandler(httpHandler, "/api");

/IAllow message payload for GET and DELETE requests - ONLY to provide custom
error message for them

server.getServerConfiguration().setAllowPayloadForUndefinedHttpMethods(true);

...

Listing 5.2: Code snippet dhrrowheadMainclass where the HTTP server (the web container) is
con gured.

30 Performance Evaluation of the Arrowhead Framework

5.2 Intracloud Orchestration

For the case of intracloud communication, its orchestration process is fairly simple, as shown in
Figure5.1 Infact, it only uses the three mandatory core Arrowhead systems: Orchestrator, Service
Registry, and Authorization. Essentially, this type of communication is used when a consumer
requests service X to the Orchestrator from an Arrowhead cloud that has a service provider for that
request. The Orchestrator returns the provider's address to the consumer, as long as the consumer
is properly authorized. Thus, all operations are held inside the same Arrowhead cloud (hence the
name fntra’cloud).

Figure 5.1: Sequence diagram of the Intracloud orchestration

Regarding the testing environment, all parties — the Consumer, the Service Provider, and the
Arrowhead Cloud (which includes all core systems) — were deployed on different machines (see
Figure5.2). In terms of the messaging workload, 100 requests (whose contents can be seen in
Listing 5.3) were sent to the cloud's Orchestrator, with a one second delay between each message
sent. Each request is around 700 bytes long, sent on a 100 Mb/s Switched Ethernet LAN. To

5.2 Intracloud Orchestration 31

measure the latency between each system, each time one of these systems sends or receives an
HTTP request, it outputs a message describing the action and the current timestamp. Moreover,
all system clocks were synchronized using a local NTP server, which provides accuracies in the
range of 0.1 msqg#6.

Figure 5.2: Testing environment for the intracloud orchestration

"requesterSystem" : {
"systemName" : "clientl",
"address" : "192.168.60.108",
"port" : 8080,
"authenticationinfo" : "null"

© 00 N o g~ W N P

P e N o
© 00 N O 00k~ WN B O

12

"requestedService" : {

"serviceDefinition" : "IndoorTemperature”,

"interfaces" : ["json"],
"serviceMetadata" : {
"unit" : "celsius"

h

"orchestrationFlags" : {
"onlyPreferred" : false,
"overrideStore" : true,
"externalServiceRequest" : false,
"enablelnterCloud" : true,

20
21
22
23
24
25
26
27
28
29

32 Performance Evaluation of the Arrowhead Framework

"enableQoS" : false,
"matchmaking" : false,
"metadataSearch" : true,
"triggerinterCloud” : false,
"pingProviders" : false
h
"preferredProviders" : [],
"requestedQoS" : { },
"commands" : { }

Listing 5.3: Service request sent from the Consumer to the Orchestrator in JSON

After sending 100 requests to the Orchestrator, the average elapsed time until the Consumer
receives an orchestration response to its request was approximately 598.12 ms, with standard
deviation of 139.46 ms and with a maximum latency of 1530 ms. The corresponding latency for
each orchestration response can be seen in Figgre

Figure 5.3: Intracloud orchestration latency

Furthermore, Service Registry's database queries took an average of 62.16 ms (with a maxi-
mum of 159 ms), while Authorization's queries took an average of 63.11 ms (with a maximum of
152 ms). Figuré&.4shows the frequency distribution of these query latencies.

5.3 Intercloud Orchestration 33

(a) Service Registry's database query latency (b) Authorization's database query latency

Figure 5.4: Frequency distribution of database query latency for Intracloud orchestration

An average orchestration latency of 598 ms does appear to be somewhat lengthy, given that
this process consists of a simple service query and authorization validation on a private network
with 0.597 ms of round-trip delay time (RTT). Furthermore, considering that all core Arrowhead
systems are located inside the same machine, all requests between these systems are sent to lo-
calhost, so it would be expected for this to be a less prolonged process. As such, this amount of
latency could be acceptable for some time-critical systems, however, the fact that some orchestra-
tion responses have a latency of more than one second could compromise the system's quality of
service.

5.3 Intercloud Orchestration

With respect to the intercloud communication, the orchestration process starts the same way as in
the intracloud process, however in this scenario the Arrowhead cloud (hereinafter identi ed, along
with its systems, with the letter “A") does not have the requested service in Service Registry A.
Thus, Orchestrator A will turn to the cloud's Gatekeeper system (Gatekeeper A) and start a Global
Service Discovery (GSD).

In a GSD, Gatekeeper A will contact other registered neighbor clouds' Gatekeepers and re-
guest for service X. If any of these clouds send a positive con rmation, then Gatekeeper A saves
the cloud's address in a list. After a GSD, Gatekeeper A will thus send to Orchestrator A a list of
Arrowhead clouds that provide the requested service. In case the consumer speci ed a preferred
provider, the Orchestrator returns its address if its in the list. Otherwise, if the preferred provider
is not on the list or if the consumer did not specify a preferred provider, the Orchestrator returns
the rst one in the list. Either way, the consumer is then able to connect to a service provider from
a different cloud (in other words, Cloud B's services).

The full orchestration process is displayed on Figbfe In addition, a demonstration of this
scenario was created and hosted on a Git repository for future reférence

1URL of the Git Repositoryhttps://github.com/Rafa-Rocha/arrowhead-intercloud-rest-demo

34

Performance Evaluation of the Arrowhead Framework

Figure 5.5: Sequence diagram of the Intercloud orchestration

5.3 Intercloud Orchestration 35

In relation to the testing environment, similarly to intracloud's testing environment, all parties
— including the neighbor clouds — were deployed on different machines (see Bigurin terms
of the messaging workload, 100 requests (with the same contents as Bifingere sent to the
cloud's Orchestrator, with a one second delay between each message sent. Since the requests have
the same content as before, each is around 700 bytes long, sent on a 100 Mb/s Switched Ethernet
LAN. All system clocks were also synchronized using a local NTP server.

Figure 5.6: Testing environment for the intercloud orchestration

After sending 100 requests to Cloud As Orchestrator, the average elapsed time until the Con-
sumer receives an orchestration response to its request was approximately 4566.6 ms, with stan-
dard deviation of 933.6 ms and with a maximum latency of 10103 ms. The corresponding latency
for each service request can be seen in Fi§ureMoreover, Service Registry As database queries
took an average of 225.3 ms (with a maximum of 4165 ms), while Service Registry B and Autho-
rization B's queries took an average of 55.2 ms (with a maximum of 114 ms) and 59.42 ms (with
a maximum of 187 ms), respectively.

36 Performance Evaluation of the Arrowhead Framework

Figure 5.7: Intercloud orchestration latency

Given that these tests were employed on a private network and with databases that only have
around 60 entries each, for the full orchestration process to take more than 1500 ms and averaging
the 4000 ms is telling that there is a bottleneck in the request chain, and it is more than likely
related to how these Arrowhead systems deal with incoming requests and their execution (as was
pointed out in Sectiob.1).

Chapter 6

Modeling the performance of
Arrowhead's Intracloud and Intercloud
orchestration

An important goal of this work consisted in modeling the performance of Arrowhead's two types

of cloud orchestration: intracloud and intercloud. This, in return, would be highly valuable for
the Arrowhead community since it would then be possible to visualize potential bottlenecks in
any of the framework’s core systems and to of cially have a representation of the framework's
performance. In regard to what kind of models should be chosen for this process, as &&ction

has shown, Petri net models are indicated for representing stochastic network scenarios. Thus, it
was decided that Arrowhead's performance should be modeled through Petri nets.

Petri nets are usually utilized to model small and speci c situations, however for this case the
goal is to represent the performance of the whole orchestration process of a system of systems,
thus the same type of granularity applied to typical Petri net examples cannot be replicated to this
project's scenario. As such, the places used in the following Petri nets represent a full Arrowhead
system, while the transitions between each system represent request/response latency or database
guery execution times.

For the stochastic analysis of the model, it was decided to use Oris tjosihce it was
one of the only software tools that was found which provided analysis tools for stochastic Petri
nets. GreatSPN3H] was also another possible tool that was experimented with, however, Oris's
tools were preferred to GreatSPN's, because of its user-friendly interface and easier to understand
analysis results, and also because of its more varied stochastic transitions (i.e. Erlang distribution
transitions, instead of only exponential and xed time transitions).

While on the subject of transitions, the following Petri nets use two different types of stochas-
tic transitions, namely transitions that follow an Erlang probability distribution (named “Erlang
transitions” or “Erl transitions”) and transitions that follow an exponential probability distribution

37

© 00 N o o b~ W N PP

e e =
g b W N B O

16
17
18
19
20
21
22

38 Modeling the performance of Arrowhead's Intracloud and Intercloud orchestration

(named “Exponential transitions” or “Exp transitions”). However, there are some cases where la-
tency or execution times follow a Gamma distribution instead. Unfortunately, for these types of
distributions, Oris only provides Erlang transitions — whose distribution is already based on the
Gamma distribution, with the main difference being that Erlang's shipparameter has to be

an integer value, instead of a real number. Thus, considering this limitation for cases where a
Gamma distribution is present, there was no other way than to use the Erlang transition and round
the shape parameter to an integer.

Moreover, in order to identify the type of probability distribution (and its parameter values)
that t the latency distribution of each request/response/database query, an R packagetealled “
distrplus’ was used. This package contains a function namdist”, which attempts to t a
probability distribution to a series of data (in other words, probability distribution tting). Unfor-
tunately, tdist does not support Erlang or Exponential distributions, however it does support the
Gamma distribution. Thus, given that both Erlang and Exponential distributions are derived from
the Gamma distributiontdist was used to calculate the optimal parameters that t a Gamma
distribution to the latency data (see ListiBdl). After checking the calculated distribution, the
transition is then chosen based on the distribution's shape (see Fylisend6.29. We found
that this approximation with either Exponential or Erlang distributions was very close to the orig-
inal Gamma distribution, as seen in Figue$band6.2h

library (fitdistrplus)
library (logspline)

consumer.orchestrator.request <- ¢ (15,17,20,17,17,18,17,16,20,16,15,
17,16,15,18,17,17,16,15,91,16,14,
14,16,15,14,15,12,15,14,12,15,14,
13,14,15,15,14,13,10,15,15,13,13,
14,15,13,13,13,14,14,14,14,14,14,
16,21,14,13,13,13,16,23,13,13,12,
15,13,12,13,13,12,12,13,13,12,13,
12,13,13,10,11,12,14,13,13,11,11,
12,12,11,13,11,12,12,13,11,9,29)

using the option "lower" to impose limits on the parameter search space
see link for further details: https: /I stats.stackexchange.com / questions /158163 /
why-does-this-data-throw-an-error-in-r-fitdistr

fit. gamma <- fitdist(consumer.orchestrator.request, distr = "gamma",
method = "mle", lower = c(0, 0), start = list (scale = 1, shape = 1))

summary (fit. gammag
plot (fit. ~gamma
coef (fit. gamma

Listing 6.1. Code snippet in R demonstrating the use of tdist for distribution tting on the
Consumer-Orchestrator request latency data.

Modeling the performance of Arrowhead's Intracloud and Intercloud orchestration 39

(a) Consumer-Orchestrator request latency distribution with an Erlang-like shape. Therefore, for the Petri
net model, this type of data is represented by using an Erlang transitionteitis estimated parameter,
while rounding the shape parameter to an integer (in this case, 10).

(b) A comparison between the Gamma and Erlang distributions. Gammadisgs estimated parameters,
while Erlang roundstdist's shape parameter to an integer (in this case, 10 instead of 10.0646).

Figure 6.1: Example of the decision process for choosing an Erlang probability distribution, based
on the data distribution, for a stochastic transition.

40 Modeling the performance of Arrowhead's Intracloud and Intercloud orchestration

(a) Consumer-Orchestrator response latency distribution with an exponential-like shape. Thus, for the Petri
net model, this type of data is represented by using an Exponential transitiomndigtts estimated values.

(b) A comparison between the Gamma and Exponential distributions. Gammadises estimated pa-
rameters, while Exponential only usédist's rate parameter (in this case, 0.27, since the rate is the recip-
rocal of the scale parameter).

Figure 6.2: Example of the decision process for choosing an Exponential probability distribution,
based on the data distribution, for a stochastic transition.

6.1 Intracloud Orchestration 41

Admittedly, this is not the most correct way of representing a distribution, given that there
might exist some discrepancies between the observed values and the values expected under the
model in question (which can be observed using the “goodness of t” &&).[Thus, the pre-
dicted latency simulated through the Petri net's stochastic analysis will never be completely rep-
resentative of the actual latency. However, given Oris's limitations and the fact that no other Petri
net tool supports other distribution transitions and are not able to perform a transient stochastic
analysis (which will be further explained in Sectiérl.? like Oris, this decision was deemed
acceptable for the purposes of this thesis.

6.1 Intracloud Orchestration

For the intracloud orchestration process, the developed Petri net is displayed in6:RBjuvaile
a detailed explanation of its logic is further explained in Sec@idhl, and nally its stochastic
analysis is presented in Sectiéri.2

Figure 6.3: Stochastic Petri net model of Arrowhead's Intracloud Orchestration

6.1.1 Explaining the Petri net model for the Intracloud Orchestration

Starting with the Consumer system, this system is represented in the Petri net by two different
places:Consumer_BegiandConsumer_EndThis decision was made in order to easily identify
the two Consumer states for the Petri net's stochastic analysis. In fact, this same state logic was

42 Modeling the performance of Arrowhead's Intracloud and Intercloud orchestration

used for the other Arrowhead systems as well. As such, the Orchestrator was divided into three

places: Pre-SR (i.e. before sending a request to Service Registry), Post-SR (i.e. after sending a
request to Service Registry and before sending a request to Authorization), and Post-Auth (i.e.

after sending a request to Authorization and before sending a response to Consumer). Similarly,

both the Service Registry and Authorization have a pre- and post-query place (i.e. before and after
executing a database query). Figérd shows the same sequence diagram as in Figutebut

with some annotations identifying the transitions used in the Petri net model.

Figure 6.4. Sequence diagram of the Intracloud orchestration with annotations identifying the
transitions used in the Petri net model

Regarding the transitions used in the model, the ones in black are Erlang transitions, while
the ones in white are Exponential transitions. Thus, when the Consumer sends a service request
to the Orchestrator, the time it takes for a request to reach the Orchestrator has an exponential
distribution with a ratel() equal to 0.0582. Next, the Orchestrator sends a request to the Service
Registry, where the request's latency has an Erlang distribution with shape 5 and rate 0.0884. The
Service Registry then executes a database query to look for the requested service. This query's
execution time has an Erlang distribution with shape 9 and rate 0.1443. The Service Registry

6.1 Intracloud Orchestration 43

then sends its response to the Orchestrator, which has an Erlang distribution with shape 6 and
rate 2.5021. The Orchestrator then sends a request to Authorization to validate if Consumer can
have access to the service. This request's latency has an Erlang distribution with shape 10 and
rate 0.172. The Authorization executes a database query, whose execution time has an Erlang
distribution with shape 13 and rate 0.2042. Next, the Authorization responds to the Orchestrator.
This authorization response's latency has an Erlang distribution with shape 6 and rate 3.1838.
Finally, the Orchestrator then sends a service response to the Consumer, where the network latency
has an Erlang distribution with shape 17 and rate 3.5809.

6.1.2 Stochastic analysis of the Petri net model for the Intracloud orchestration

Regarding the stochastic analysis, Oris provides a tool for transient analysis which consists in
analyzing the probabilities of a process transitioning from one place to the other at a specic
instant in time. Thus, the analysis creates a matrix — in which the “time” variable is the row
and the “possible arrival state” variable is the column, where each row represents a probability
distribution for that instant in time, which means that the sum of all values in each row must equal
1. A chart was then created via the matrix’'s analysis data — with “time” as the X-axis and “place
probability” as the Y-axis — and is displayed in Figx&.

In relation to the analysis results, rst, tli@onsumer_Begiplace starts with a probability of
1, since it is the only place that contains a token at that initial instant. However, as time goes on,
its probability starts to decrease non-linearly until it reaches 0. WZnlesumer_Begls proba-
bility decreasesQrchestrator_Pre-SR probability begins to rise, because it is the next place in
the sequence. This pattern then repeats itself for the other places in the Petri net. Furthermore,
another pattern can also be observed: right after a place probability peaks at a certain instant
(e.g. Orchestrator_Pre-SReaks at the 35.10 ms instant) the probability curves of its previous
place and its next place cross each other, respectively decreasing and increasing non-linearly (e.g.
around 3.9 ms afte@rchestrator_Pre-SReaks,Consumer_Begistarts having fewer probabili-
ties of still holding a token thaBervice Registy Pre-QuéryMoreover, it should also be noted
thatService_Registy Post-Queapd Orchestrator_Post-Authave very low overall probabilities
because these two are surrounded by faster transitions than the rest of the other places. Thus, the
token will spend less time inside these places, which consequently lowers the probability of these
places to hold a token for a long time. Finally, as the token transitions from one place to the next,
the Consumer_End probability becomes the highest of all (i.e. 0.443) at the 258 ms instant, and
it increases until it ultimately reaches approximately 1 (at the 448.60 ms instant), i.e. once there is
almost 0% probability of any other system to still be holding the token.

If comparing these results to the actual data, there is a 25% difference between the estimated
time to 100% receive an orchestration response (i.e. approximately 448.60 ms) and the actual
average time (i.e. 598.12 ms). In other words, the estimation misses the actual data by 149.52 ms.

Modeling the performance of Arrowhead's Intracloud and Intercloud orchestration

44

Figure 6.5: Transient analysis of the Petri net model for the Intracloud orchestration

6.2 Intercloud Orchestration 45

6.2 Intercloud Orchestration

Regarding the intercloud orchestration process, the developed Petri net is displayed i6Fgure
In Section6.2.1we explain this model and the results of its stochastic analysis are presented in
Section6.2.2

Figure 6.6: Stochastic Petri net model of Arrowhead's Intercloud Orchestration

6.2.1 Explaining the Petri net model for the Intercloud Orchestration

Given the nature of the orchestration process, the Petri net for the Intercloud orchestration shares
many similarities to the Intracloud's Petri net. As such, the same logic of dividing Arrowhead
systems by their states was used. The only real difference is that the number of required system
interactions for intercloud orchestration is more than triple the ones for intracloud orchestration,

46 Modeling the performance of Arrowhead's Intracloud and Intercloud orchestration

thus more places are necessary. Similar to Sediaril, Figure6.7 shows the same sequence
diagram as in Figur&.5, however with some annotations identifying the transitions used in the
Petri net model.

Figure 6.7: Sequence diagram of the Intercloud orchestration with annotations identifying the
transitions used in the Petri net model

Initially, the process is similar to the intracloud orchestration: Consumer sends a service re-
quest to the Orchestrator A (Erlang distribution with shape 10 and rate 0.67) and Orchestrator
A sends a request to the Service Registry A (Erlang distribution with shape 3 and rate 0.014).
However, Service Registry A then executes a database query which fails to nd the required ser-
vice (Erlang distribution with shape 2 and rate 0.0077) and sends its response to Orchestrator A

6.2 Intercloud Orchestration 47

(exponential distribution with rate 0.108). Orchestrator A sends a GSD request to Gatekeeper A
(Erlang distribution with shape 5 and rate 0.03), and thus Gatekeeper A sends a GSD request to
Gatekeeper B (Erlang distribution with shape 5 and rate 0.035).

Gatekeeper B then executes the usual authorization and service registry queries. First, Gate-
keeper B sends a authorization query to Authorization B (Erlang distribution with shape 14 and
rate 0.275) to check if Cloud A is authorized, Authorization B executes its database query (Erlang
distribution with shape 19 and rate 0.315) and then returns the response to Gatekeeper B (Erlang
distribution with shape 7 and rate 5.5254). Gatekeeper B then sends a service query to Service
Registry B (Erlang distribution with shape 29 and rate 0.4825), Service Registry B executes its
query (Erlang distribution with shape 22 and rate 0.396) and sends its response to Gatekeeper B
(Erlang distribution with shape 11 and rate 5.45).

Gatekeeper B then sends its GSD response to Gatekeeper A (exponential distribution with rate
10.909). Gatekeeper A sends the GSD response to Orchestrator A (exponential distribution rate
0.1375). Orchestrator sends it ICN proposal to Gatekeeper A (Erlang distribution with shape 5
and rate 0.03), and Gatekeeper A sends it to Gatekeeper B (Erlang distribution with shape 5 and
rate 0.035). Next, Gatekeeper B and Authorization B execute the same authorization process,
with the same probability distributions. Once Gatekeeper B receives the authorization response, it
sends a orchestration request to Orchestrator B (Erlang distribution with shape 36 and rate 0.586).
Orchestrator B then sends a service query to Service Registry B (Erlang distribution with shape
16 and rate 0.3). Service Registry executes the same database query as before (with the same
probability distribution), and sends its response to Orchestrator B (Erlang distribution with shape
10 and rate 4.516). Orchestrator B then sends the orchestration response to Gatekeeper B (Erlang
distribution with shape 20 and rate 9.015).

Afterwards, Gatekeeper B sends the ICN response to Gatekeeper A (exponential distribution
with rate 10.909), who then sends it to Orchestrator A (exponential distribution with rate 0.1375).
Finally, Orchestrator A sends a service response to Consumer (exponential distribution with rate
0.27).

6.2.2 Stochastic analysis of the Petri net model for the Intercloud orchestration

Regarding the stochastic analysis results (which are displayed in Fid)ya few initial patterns

are similar to Intracloud's. However, because the latency is much higher for some of the request-
s/responses, the probability curves for some of the Petri net's places are also much wider. Since
there is a whole slew of different curves (which some are even hard to discern in the chart), not
all states will be heavily described here, seeing that a detailed analysis on each probability curve
would not bring much value to these observations. Nonetheless, this overview will still describe
the major points of the analysis results.

First, just like before, th&€€onsumer_Begiplace starts with a probability of 1, and as time
goes on, its probability starts to decrease non-linearly until it reaches 0. Ghilsumer_Begis
probability decrease§rchestrator_Cloud-A_Pre-SRprobability begins to rise, because it is the
next place in the sequenc®©rchestrator_Cloud-A_Pre-Skeeps hold of the token for around

48 Modeling the performance of Arrowhead's Intracloud and Intercloud orchestration

202 ms, until its probability curve starts to get lower than the one from the next place in the
sequenceService_Registy Cloud-A_Pre-Queryhe place afterwardsService_Registy Cloud-
A_Post-Queryhas a very low probability curve because it is surrounded by faster transitions than
the rest of the other places. Subsequently, the place probabiliti€@rdébestrator Cloud-A_Pre-
GSD Gatekeeper_Cloud-A_Pre-GSDrchestrator_Cloud-A_Post-GSBndGatekeeper_Cloud-
A_Pre-ICNstand out from the rest, since these have more signi cant latency distributions. Finally,
after the 1422 ms instanfonsumer_End probability becomes the highest one in the group and
continues to rise non-linearly until it reaches 1, at around the 2867 ms instant.

If comparing these results to the actual data, there is a 37% difference between the estimated
time to 100% receive an orchestration response (i.e. approximately 2867 ms) and the actual aver-
age time (i.e. 4566.6 ms). In other words, the estimation misses the actual data by 1699.6 ms.

Figure 6.8: Transient analysis of the Petri net model for the Intercloud orchestration

uonel1saydlQ pPNojaI[lul 2°9

6V

50 Modeling the performance of Arrowhead's Intracloud and Intercloud orchestration

Chapter 7

Improving the performance of the
Event Handler

For systems that require low response times, the type of latency that was experienced in the or-
chestration tests may not be acceptable in an industrial context. Nonetheless, this can be improved,
however it would be necessary to change each Arrowhead system's speci ¢ implementation since
each system was developed for a particular use case. As such, since the Arrowhead Framework
is a very large project, it would not be realistically feasible to change the entire framework, given
that the rest of the Productive4.0 teams are also working on their own Arrowhead systems.

However, another Arrowhead system (i.e. the Event Handler) was also the target of this thesis'
performance evaluation. However, because its performance results were so poor (as will be shown
in this chapter), we decided to redesign it and change its implementation accordingly to improve
its performance, by using appropriate software con gurations and design patterns. Given that
some of these bottlenecks were caused by design decisions that also permeate other Arrowhead
systems, this reengineering process served as a case study for this dissertation to explore potential
performance improvements for the rest of the framework's components.

7.1 The Event Handler

The Arrowhead core systems are accompanied by automation supporting services that further im-
prove the core capabilities of a local cloud, from measuring quality of service to enabling message
propagation between multiple systems. The Event Handler is one of these optional supporting
systems. The Event Handler, is used to propagate updates from a producer service to one or more
consumer applications. In this sense, the Event Handler serves as a REST/HTTP(S) implementa-
tion of a publish-subscribe message broker, handling the distribution of messages (or events) from
publishers to multiple subscribers (as shown in Figuf.

51

52 Improving the performance of the Event Handler

For an Arrowhead publisher service to continuously notify its subscribers within its perfor-
mance requirements, the Event Handler's performance is obviously of extreme importance. There
are two important performance parameters to take into account in a publish-subscribe setting: i)
the end-to-end delay for a message to go from a producer to a consumer; and ii) the message
throughput. i.e., the number of messages which can be sent per time unit and processed by the
Event Handler. These two performance parameters are evaluated in this work.

Figure 7.1: A simpli ed representation of the Event Handler system

7.2 Original Implementation

The Event Handler's implementation in the of cial Arrowhead repositdi§] uses the same Jer-
sey/Grizzly setup as the other Arrowhead systems. Once again, the Grizzly HTTP server module
in the Event Handler does not currently have a con gured thread pool. Thus, as explained in
Section5.1, the system will most likely not be able to ef ciently handle multiple requests. More-
over, for the client applications that are meant to use the Event Handler, i.e. the publishers and
subscribers, the Arrowhead Consortia provides client skeletons to be extended with the develop-
ers' own application codelP]. These client skeletons also use the same Jersey/Grizzly setup and
server con guration as the Arrowhead systems, since these are also web applications.

7.3 Enhancements

This Section rst describes the reengineering process that was performed on the Event Handler,
explaining each problem, the design change required to solve the issue, and nally its implemen-
tation. The nal result is available in a Git repositdry

Motivated by the poor performance of the original Event Handler, we analyzed the code of
the Publisher, the Event Handler and the Subscriber, and detected two major problems. The rst
problem was that none of the three components reused HTTP connections. This has a major
performance impact on communications, since establishing a connection from one system to an-
other consists of multiple packet exchanges between two endpoints (i.e. connection handshaking),

1URL for the Git repositoryhttps://github.com/Rafa- Rocha/arrowhead-improved-event-handler

7.3 Enhancements 53

which can cause major overhead, especially if each connection is used to exchange a single small
HTTP messaged]. In fact, a much higher data throughput is achievable if open connections
are reused to execute multiple requests. This problem required a different solution for the three
systems:

The Publisher had to use a connection pool so that it could reuse its connections to the Event
Handler (see Section3.J);

The Event Handler had to use Jersey's own Server-Sent Events mechanism to establish a
persistent connection to each of its Subscribers (see Set8d.

The second problem was the thread policy used by the Event Handler, which created a new
thread for every incoming request, which would then greatly impact the machine's available RAM
and response times. Thus, the Event Handler required a thread pool to manage incoming requests
in a less wasteful manner, as threads can be reused among different requests (se&.3etion

7.3.1 Reuse open connections between the Publisher and the Event Handler

In order to reuse open connections between the Publisher and the Event Handler, the best choice
was to implement a connection pool on the Publisher, via the Apache HTTP Client on Jersey's
transport layer (see Listing.1). On an Apache HTTP Client4], the client can maintain a
maximum number of connections on a per endpoint basis (which can be con gured), so a request
for an endpoint for which the client already has a persistent connection available in the pool will
be handled by reusing a connection from the pool rather than creating a brand-new connection.

In the new version of the Publisher, we con gured the connection pool to a single connection
per destination. Only one connection per route was set in order to maintain message order, since
using multiple parallel connections might lead to the processing of messages out of sequential
order. Additionally, in a typical Arrowhead deployment, published events are very small messages,
therefore using more connections per destination would most likely not improve performance.

if (CONNECTION_POOL_SIZE > 0) {
/I Connection Pooling
PoolingHttpClientConnectionManager connectionManager =
new PoolingHttpClientConnectionManager();

connectionManager.setDefaultMaxPerRoute(CONNECTION_POOL_SIZE);

configuration.property(
ApacheClientProperties. CONNECTION_MANAGER,connectionManager);

11 configuration.connectorProvider(new ApacheConnectorProvider());
12}

Listing 7.1: Con guring the connection pool on the Publisher's HTTP client.

© 0 N o 0o b~ W N -

I e e T i i
0 N O U~ WN BB O

1
2

54 Improving the performance of the Event Handler

7.3.2 Establish a persistent connection between the Event Handler and each Sub-
scriber

The Event Handler also did not reuse previously created HTTP connections to its subscribers, con-
sequently adding a large overhead on each message's end-to-end delay, due to the establishment
of one connection per forwarded message. Thus, to avoid creating a connection to each subscriber
on every request, the solution was to use Jersey's Server-Sent Events (8§3&g¢hanism in the

Event Handler.

The SSE mechanism can be used to handle a one-way publish-subscribe model. When the
Subscriber sends a request to the Event Handler, the Event Handler holds a connection between
itself and the Subscriber until a new event is published. When an event is published, the Event
Handler sends the event to the Subscriber, while keeping the connection open so that it can be
reused for the next events. The Subscriber processes the events sent from the Event Handler
individually and asynchronously without closing the connection (see ListiBlg Therefore, the
Event Handler can reuse one connection per Subscriber.

EventListener listener = new EventListener() {
public void onEvent(InboundEvent inboundEvent) {
System.out.printin(
inboundEvent.readData(String. class) + " at "
+ ZonedDateTime.now().tolnstant().toEpochMilli());

for (String eventType : EVENT_TYPES) {
EventSource eventSource =
EventSource.target(new CustomWebTarget(target, eventType)).build();
eventSource.register(listener, eventType);

eventSource.open();

subscribedEvents.put(eventType, eventSource);

Listing 7.2: Subscriber's event listener for incoming events.

Subscribers that wish to listen to SSE events have to send a GET request to Event Handler's
URI "/subscription”, which is handled by ttsibscribe(HttpHeaderskesource method (see List-
ing 7.3). The method creates a ndawentOutputrepresenting the connection to the requesting
subscriber.

@GET
@Path("subscription")

7.3 Enhancements 55

@Produces(SseFeature. SERVER_SENT_EVENTS)

public EventOutput subscribe(@Context HttpHeaders httpheaders) {
String eventType = httpheaders.getHeaderString("eventtype");
final EventOutput eventOutput = new EventOutput();

EventHandlerService.addSubscription(eventType, eventOutput);

return eventOutput;

Listing 7.3: Event Handler's endpoint for subscribers to subscribe themselves on a type of event.

Afterwards,addSubscription(eventType, eventOutpetjisters thigventOutpuinstance with
a broadcaster instance, using its add(eventOutput) method. NaturaBgedroadcastes not
bound to any message topic, because it sends all messages to all subscribers, which in this case is
not ideal because the Event Handler has to deal with different message topics (in this case, event
types) that some systems might be subscribed to, but others might not. Thus, it was necessary to
create aviap object to store alSseBroadcastersy their corresponding topic (see Listigd).
Since the time complexity d¥lap's get() and put() operations is O(1), this decision will (theo-
retically) have a minimal overhead in the Event Handler's performance. Furthermoriglathe
implementation used for this case isCancurrentHashMapwhich provides thread-safety and
memory-consistent atomic operations.

private static final Map<String, SseBroadcaster> SSE_BROADCASTERS =
new ConcurrentHashMap<>();

(..

public static void addSubscription(String eventType, EventOutput eventOutput) {
/I register event type if new
if (ISSE_BROADCASTERS.containsKey(eventType)) {
SSE_BROADCASTERS.put(eventType, new SseBroadcaster());

/I add subscription
SSE_BROADCASTERS.get(eventType).add(eventOutput);

private static void publishEvent(PublishEvent eventPublished) {
OutboundEvent event = buildEvent(eventPublished);

if (SSE_BROADCASTERS.containsKey(eventPublished.getEvent().getType())) {
System.out.printin(

"Going to send message " + eventPublished.getEvent().getPayload()
+ " at " + ZonedDateTime.now().tolnstant().toEpochMilli());

23
24
25
26

1
2
3
4

~N o o

©

10
11
12
13
14
15
16
17
18
19

56 Improving the performance of the Event Handler

SSE_BROADCASTERS.get(eventPublished.getEvent().getType()).broadcast(event);

Listing 7.4: Event Handler's service class which handles subscriptions and published events.

Finally, thesubscribe(yesource method method then returns elientOutputwhich causes
Jersey to bind theventOutpuinstance with the requesting subscriber and send the response HTTP
headers to the subscriber. The subscriber's client connection remains open and the subscriber is
now waiting, ready to receive new SSE events. All events are written teviyetOutpuby the
corresponding broadcaster later on.

When a publisher wants to broadcast a new event to subscribers listening on a speci ¢ event
type, it sends a POST request to Event Handler's URI "/publish" with the message content (see
Listing 7.5). A new SSE outbound event is built in the standard way and passed to the correspond-
ing broadcaster in thpublishEvent(eventPublished)ethod (see Listing.4). The broadcaster
internally invokes write(OutboundEvent) on all registered EventOutputs. After that the resource
method returns a standard text response to the publisher to inform that the message was success-
fully broadcast.

@POST

@Path("publish™)

public Response publishEvent(@Valid PublishEvent eventPublished,
@Context ContainerRequestContext requestContext) {

System.out.printIn(

"Received message " + eventPublished.getEvent().getPayload() + " at " +
ZonedDateTime.now().tolnstant().toEpochMilli()

if (eventPublished.getEvent().getTimestamp() == null) {
eventPublished.getEvent().setTimestamp(ZonedDateTime.now());

1n(.)

EventHandlerService.publishEvent(eventPublished);

return Response.status(Status.OK).build();

Listing 7.5: Event Handler's service class which handles subscriptions and published events.

The advantage of usin§seBroadcastés that it internally identi es and also handles client
disconnections. When a subscriber closes the connection, the broadcaster detects this and removes
the stale connection from the internal collection of the registeérezhtOutputsas well as freeing

1
2
3
4
5
6
7
8
9

10
11
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

7.3 Enhancements 57

all the server-side resources associated with the stale connection. AdditionaigefRmadcaster

is thread-safe, so that clients can connect and disconnect at any tinteseBdoadcastewill

always broadcast messages to the most recent collection of registered and active set of subscribers.
For a subscriber to subscribe itself to an SSE event, it needs to crdaweratSourcénstance,

using aWebTargebbject. HoweverEventSourcéy itself does not provide a way to pass query

parameters, consequently prohibiting the subscriber of sending the event type it is interested in.

Thus, it was necessary to creat€astomWebTargefass, which implements thilebTargetlass,

and pass the event type in the request's headers (see Lis@ing

public class CustomWebTarget implements WebTarget {
private WebTarget base;
private String eventType;
public CustomWebTarget(WebTarget base, String eventType) {
this .base = base;
this .eventType = eventType;
}
/I Injecting the header whenever someone requests a Builder (like EventSource
does):
@0Override
public Builder request() {
return base.request().header("eventtype", eventType);
}
@0Override
public Builder request(String... paramArrayOfString) {
return base.request(paramArrayOfString).header("eventtype", eventType);
}
@0Override
public Builder request(MediaType... paramArrayOfMediaType) {
return base.request(paramArrayOfMediaType).header("eventtype”, eventType);
}
@Override
public Configuration getConfiguration() {
return base.getConfiguration();
}
/I All other methods from WebTarget are delegated as-is
i (.)
}

Listing 7.6: Subscriber's custom web target for sending event types in a request's header.

© 00 N o o~ W N P

e ol e N o =
© 0o N o o b~ W N BB O

20

58 Improving the performance of the Event Handler

7.3.3 Reuse previously created threads in the Event Handler

As explained in Sectiob.1, if the Grizzly HTTP server's threadpool is not con gured, Grizzly
follows Jersey's model of generating a new thread for each request, by default. In other words,
with every wave of X number of requests sent to the Event Handler, Jersey will allocate the same X
number of server threads almost simultaneously and closes them soon afted@artiafurally,

this leads to overhead (thread creation and teardown and context switching between thousands of
threads) and a large consumption of system memory (host OS must dedicate a memory block for
each thread stack; with default settings, just four threads consume 1 Mb of metdryhich
becomes largely inef cient.

The solution for this is to con gure a thread pool on the Grizzly HTTP server module, which
will reuse threads instead of destroying them. The key question is, what should be the optimal
thread pool size for this scenario? While there is no clear-cut answer for this, it is usually suggested
that if the HTTP request are CPU bound (as in this case), the amount of threads should be (at
maximum) equal to the number of CPU cores in the host macBiZje Qtherwise, if the requests
are 1/0 bound then more threads can successfully run in parallel.

Thus, we decided to determine the pool size by an empirical process, which consisted in
starting with the same number of threads as the number of CPU cores and increasing them until
there was no discernible improvement in throughput. Through this process, 10 ms average latency
was achieved with a thread pool of 64 threads. Sectiéishows the effect of the thread pool size
on the Event Handler's performance.

private static Client createClient(SSLContext context) {
ClientConfig configuration = new ClientConfig();
configuration.property(ClientProperties. CONNECT_TIMEOUT, 30000);
configuration.property(ClientProperties. READ_TIMEOUT, 30000);

/I Configuring the thread pool
configuration.property(ClientProperties. ASYNC_THREADPOOL_SIZE, THREAD_POOL_SIZE);

Client client;
if (context != null) {
client = ClientBuilder.newBuilder().sslContext(context)
.withConfig(configuration).hostnameVerifier(allHostsValid).build();
} else {
client = ClientBuilder.newClient(configuration);

client.register(JacksonJsonProviderAtRest. class);

return client;

Listing 7.7: Con guring the Event Handler's thread pool

7.4 Experimental setup 59

7.4 Experimental setup

In order to evaluate the Event Handler's performance, we conducted a test on the system, with one
Publisher sending 2000 events (sequentially, with no delay) to the Event Handler, which connects
to just one Subscriber. Each request is 71 bytes long, on a 100 Mb/s Switched Ethernet LAN.
To measure the latency between Publisher, Event Handler, and Subscriber, each time one of these
components sends or receives an HTTP request, it outputs a message describing the action and the
current timestamp. The Event Handler and the Subscriber were deployed on Raspberry Pis. There
are two main reasons for choosing this platform:

1. When testing software in a resource-constrained platform, bottlenecks become more obvi-
ous and easier to identify;

2. Raspberry Pi hardware is well documented and its usage is widespread for industrial and
IoT applications.

The testing environment is displayed in Figute, basically constituted by a publisher, a
subscriber and the Event Handler, with all clocks synchronized using a local NTP server.

Figure 7.2: Testing environment for the of cial Event Handler

7.5 Performance evaluation of original version

After sending 2000 events to the original Event Handler, 41.9% of these events had an end-to-end

latency greater than 100 ms, and 20.3% of these had a latency greater than 1s, with an average
of approximately 666.3 ms. Moreover, the maximum latency reaches the 4.9 s, as can be seen in

Figure7.3 This type of performance is a symptom of a bottleneck in the system.

60 Improving the performance of the Event Handler

Figure 7.3: End-to-end latency, for each of the two thousand messages sent, with the of cial Event
Handler

7.6 Performance evaluation of enhanced version

After the major refactoring on the original Event Handler, the “enhanced” version was put to the
test on multiple different workload scenarios.

7.6.1 Test Scenario A: 1 Publisher, 1 Subscriber, 2000 events

The rst test was with the same environment and workload as the original version. After repeating
the same testing process, the test results were exceedingly better than the previous version's (see
Figure7.4), with an average end-to-end latency of approximately 8.95 ms and a maximum latency
of 32.00 ms.

7.6 Performance evaluation of enhanced version 61

Figure 7.4: End-to-end latency comparison of the two versions of the Event Handler

7.6.2 Test Scenario B: 1 Publisher, 1-6 Subscribers, 9000 events
Afterwards, two other scenarios were tested:

1. Instead of 2000 events, the Publisher shall send 9000 events, in order to detect potential
bottlenecks;

2. The same scenario as scenario 1, however, instead of using a single Subscriber, six different
Subscribers were used.

The test results of these experiments showed a similar performance increase. For scenario 1,
the average end-to-end latency was 8.98 ms, with a maximum latency of 52.00 ms. As for scenario
2, the average end-to-end latency was 10.68 ms, with a maximum latency of 45.67 ms, measured
between all six subscribers. A histogram with the end-to-end latency distribution for these two
scenarios is displayed in Figureb.

62 Improving the performance of the Event Handler

Figure 7.5: End-to-end latency distribution of 9000 events for one subscriber and six subscribers,
with the enhanced Event Handler.

7.6.3 Test Scenario C: 10 Publishers, 10 Subscribers, 10.000 events in total

To further analyze how scalable the new Event Handler is, another test was carried out using
10 publishers and 10 subscribers, with each publisher sending 1000 events to the Event Handler
(i.e. 10,000 messages in total) with no delay between each message sent, and every subscriber
system subscribing to the same “event type” (i.e. message topic). The test results are displayed in
Figure7.6.

While more than half of the latency values were below 30 ms (with an average latency of 24.95
ms, and the most frequent interval being between 9 to 13 ms), there was a higher number of cases
where the end-to-end latency got above the 90 ms, with the maximum latency being 319 ms. This
can indicate that the Event Handler might still not be completely capable of easily scaling with a
large and frequent number of messages between multiple publishers and subscribers. Nevertheless,
it is still a gargantuan improvement over the original version's performance.

7.6 Performance evaluation of enhanced version 63

Figure 7.6: End-to-end latency distribution of 1000 events from 10 Publishers (each) to 10 Sub-
scribers, with the enhanced Event Handler.

7.6.4 Test Scenario D: 1 Publisher and 7 Subscribers (on same machine), different
threadpool sizes in Event Handler

Additional tests were carried out on the Event Handler to evaluate the effect of the threadpool size

on its performance, while running on a Raspberry Pi 3. As previously mentioned in Sé&ign

64 threads were enough to achieve a satisfactory performance for multiple use scenarios. The
decision process for the threadpool size consisted in using all powers of 2 between the number of
Raspberry Pi 3's CPU cores (i.e. 4 cores) and 64. In other words: 4, 8, 16, 32 and 64.

These tests were initially done with one publisher and 7 subscribers running on the same ma-
chine, while the Event Handler ran on a Raspberry Pi 3 Model B. In this scenario, the performance
differences between threadpool sizes were as in Figutand Table7.1 The threadpool size of
64 was the one with lower latency. However, in this test case, 64 might not always be the best
choice: we get an improvement of the average latency of less than 0.25 ms with respect to 4
threads, but the maximum latency increases from 52 to 82.

64 Improving the performance of the Event Handler

Figure 7.7: End-to-end latency of 3000 events from one publisher to seven subscribers (running
on the same machine), with different thread pool sizes on the enhanced Event Handler (running
on a Raspberry Pi 3 Model B).

Table 7.1: Performance comparison between all tested threadpool sizes, for one publisher and
7 subscribers running on the same machine and the Event Handler running on a Raspberry Pi 3
Model B

Threadpool Size | Average Latency (ms)| Standard Deviation (ms) | Maximum Latency (ms)
No threadpool 6.803 3.152 69
4 6.433 2.794 52
8 6.370 2.978 52
16 6.930 3.076 63
32 7.179 2.899 57
64 6.199 2.617 82

7.6.5 Test Scenario E: 1 Publisher and 7 Subscribers (each on a Raspberry Pi 1),
different threadpool sizes in Event Handler

Another similar test scenario was carried out, but this time each one of the 7 subscribers ran on a
Raspberry Pi 1. Unfortunately, due to time constraints, it was not possible to test all threadpool
sizes (8 and 16 were left out). However, based on the ones that did get tested, the performance
difference between each threadpool size was substantially more signi cant than in the previous
scenario, with a signi cant difference between the average latency, as seen in Fi§ued

Table 7.2 Similar to the prior scenario, the threadpool size of 64 was the one with the lowest
average latency between all tested sizes. Although, it appears that there also a signi cant difference

7.6 Performance evaluation of enhanced version 65

in the maximum latency, with the pool with 32 threads having a maximum latency that is almost
one order of magnitude smaller than that for 64 threads.

Figure 7.8: End-to-end latency distribution from one publisher to 7 subscribers (each running on
a Raspberry Pi 1), with different thread pool sizes on the enhanced Event Handler (running on a
Raspberry Pi 3 Model B).

Table 7.2: Performance comparison between all tested threadpool sizes, for one publisher and 7

subscribers (each running on a Raspberry Pi 1) and the Event Handler running on a Raspberry Pi
3 Model B

Threadpool Size

Average Latency (ms)

Standard Deviation (ms)

Maximum Latency (ms)

4 59.996 3.461 96
32 17.832 3.467 49
64 9.584 5.483 450

66

Improving the performance of the Event Handler

Chapter 8

Modelling the Event Handler's
performance

In order to estimate the performance of different host machines running the improved Event Han-
dler system, it is necessary to take into account speci c thread pool con gurations, number of CPU
cores, and network latency. As such, it was decided that a performance model should be developed
in order to depict these variables. Thus, similar to the Intracloud and Intercloud orchestrations'
performance modeling, the Event Handler's performance was also modeled through Petri nets.

To develop such a model, Lu & Gokhale's methodolog§][seemed to be a clear t for this
work’s purpose, since it was used to model the performance of a Web server with a thread pool
architecture. Thus, the resulting Petri net — which is displayed in Figure followed a few of
the paper's guidelines, however with some clear distinctions which will be further explained in
this chapter.

In relation to the stochastic transitions chosen for the model, the same process from 6€hapter
was used to determine the probability distribution that best t the latency distribution of each
request/response. At the time of developing the Petri net model, the distribution tting process
was applied on the latency data acquired from the tests with 1 and 6 Subscribers {Fijyure

67

Modelling the Event Handler's performance

68

Figure 8.1: Stochastic Petri net model of the Event Handler running on a quad-core CPU

8.1 Explaining the Petri net model 69

8.1 Explaining the Petri net model

The underlying logic in the developed Petri net is similar $6]F proposed model, however
while Lu & Gokhale's model is speci ¢ to single-core CPUs, our model characterizes the Event
Handler's execution in a quad-core CPU (given that it is running in a Raspberry Pi 3 Model B).
Regarding the model itself, the Publisher place (the circle on the left) represents the Publisher,
and the publish transition (the black vertical wide bar) represents the time it takes for a published
event to be transmitted and reach the Event HandlerREtpiest Queydace holds unprocessed
requests, while thassign_request_to_threahnsition represents the Event Handler's thread pool
limit — only assigning requests to a thread if the total number of active threads (represented by the
token sum in théActive_Threadplace andExecuting_Thread_Coreglaces) has not exceeded

the speci ed limit. In the Petri net, this condition is executed through an enabling function in
the assign_request_to_threadansition. Once a request is assigned to a thread, the thread is
executed by one of the host machine's CPU cores.Btexuting_Thread Coreplace ¥ should

be replaced by the corresponding core) signi es the thread's execution, whaaelsating_CoreX
transition represents the amount of time it takes to execute. An inhibitor arc, i.e. the arc with a
black circle on its end, is used froExecuting_Thread_Core the respectivéX transition to

avoid the ring of transitiontX when Executing_Thread_Core&lready has a token, therefore
guaranteeing that only one request is being executed on that speci c CPU core.

Once a thread nishes a CPU run, Lu & Gokhale's model contemplated the probability of the
request either getting a successive CPU run, needing to access /O, or getting ful lled and exiting
the system. This is because their model is for a Web Service, where many times one needs to
access the disk, and going back to the CPU queue is a way to model preemption. Since these
situations do not make much sense for the Event Handler, it was decided to tone down the model's
complexity and assume that each request gets ful lled the rsttime it nishes a CPU run. As such,
once theexecuting_CoreXransition nishes, it sends a token Ready_to Sendavhere the event
is ready to be sent to its subscribers.

Several real experiments have been performed in order to ne tune the model with real data
extracted from several test runs from where the values for each request type were derived (i.e.,
considering requests sent from Publisher to Event Handler, requests sent from Event Handler to
each Subscriber), and the CPU execution time for each request, and determine their most appro-
priate probability distribution function to be applied in the Petri net model. In fact, as mentioned
back in the beginning of this section, the probability distributions were based on the latency data
acquired from the tests with 1 and 6 Subscribers, which was the data available at the time. We de-
termined that the requests sent from the Publisher to the Event Handler had a Gamma distribution
with shape = 13.235 and rate = 2.088. However, given Oris's limitations (explained back in Sec-
tion 6), the shape parameter was then rounded to an integer value (i.e. 13). Similarly, the requests
sent from the Event Handler to its Subscribers also had a Gamma distribution with shape = 6.235
and rate = 2.683, where shape was then rounded to 6, to likewise satisfy the Erlang distribution
requirements. Finally, the CPU execution times in the Event Handler (i.e. executing_CoreX) were

70 Modelling the Event Handler's performance

decided to be represented as transitions with a uniform distribution, where the early nish time is
0 ms and the late nishtime is 1 ms (considering that in the test results 75% of the execution times
took 0 ms, while the other 25% took 1 ms).

8.2 The Petri net model

Regarding the stochastic analysis, similarly to the intracloud and intercloud orchestrations, a chart
was created via the Oris Tools' estimations — with “time” as the X-axis and “place probability” as
the Y-axis — and is displayed in Figude2

Figure 8.2: Transient analysis of the Petri net model

[@pow 18U led 8yl ¢'8

T.

72 Modelling the Event Handler's performance

8.2.1 Comparing the model with the actual experiments

Overall, the values collected from the model match the results obtained in the experiments of the
enhanced Event Handler. In the Petri Net model, the probability distributioSdbscriber #

to receive the published message is only higher than PubliBxecuting_Thread_CoreXand

Ready to_Senafter the 8.5 ms instant. One can see that this value is matched with the experiment
results for one Subscriber reported in Figtg, where it is possible to see that around 60% of

the events were delivered with an 8 ms latency. Whereas for the six Subscribers tests, where the
average end-to-end latency is approximately 10.68 ms, the corresponding probability distribution
is 80.4%.

In addition to the initial stochastic analysis with one token, another stochastic analysis was per-
formed with four tokens (i.e. four messages) to examine how the model scales with the processing
of multiple messages. The same transient analysis matrix was calculated, and the distribution of
the estimated end-to-end latencies for four messages is depicted in Bi§upextaposed with
the real test results from Figureb. Unfortunately, due to some processing limitations of the Oris
tool, the author was unable to assess the performance for more than four tokens.

Nevertheless, this stochastic analysis with four tokens is able to capture the latency interval
for most messages, i.e. from 8 to 16 ms, which mostly goes in hand with the event latency dis-
tributions of the test results. However, the author feels that these latency estimations must still
be further improved in order to ne tune the probability for each latency and also to capture a
wider range of latencies, since the more extreme latencies (i.e. below 8 ms and above 17 ms) are
not represented. In terms of improving these estimations, this could be done by: i) changing the
probability distributions and the parameters chosen for each transition; or ii) changing the Petri
net model itself.

Figure 8.3: Average distribution of the estimated end-to-end latency, with four messages

8.2 The Petri net model 73

8.2.2 Interpreting the analysis results

First, the only places that are present in the transient analysis chart (Bigur@re Publisher
Ready to_Sendubscriber_#ndExecuting_Thread_CoreX he reason for this is because the
other places (aside frorRequest_Quedeonly depend on immediate transitions, thus the to-
ken will not spend any time in these places, meaning that these do not have an impact in the
overall processing time. AlthougRequest_Queus linked to an immediate transition (i.@s-
sign_request_to_thredghis transition is restricted to the Event Handler's thread pool size, which
(as explained previously) is represented by the token sum iA¢tige_Threadplace, theExe-
cuting_Thread_CoreXlaces, andReady_to_Senglace. Since only one token is sent in this
particular analysisRequest_Queuwill not be storing any tokens, thus it will not be present in
this chart.

Until time 2.1, the probability of a token being ublisheris approximately 1, whereas
the other places are still 0, because the Publisher takes at least 2 ms to send an event to the
Event Handler. Between time 2 and 13.6 ms, the probability of the Publisher sending a message
decreases nonlinearly to 0, while the exact opposite happens to the Subscriber, i.e. the probability
that Subscriber_#has received the token rises nonlinearly to 1. In fact, at time 7.6 ms, the two
curves cross each other, which means that, beyond this point, there is a higher probability of
an event having reached the respective Subscriber, than it still being published by the Publisher.
Furthermore, from 2.1 to 13.5 ms, the probability of the token beirigxiecuting_Thread_CoreX
has an almost Gaussian distribution, which means that once the message is sent from the Publisher,
it is processed by the Event Handler for a maximum of 1 second. After this process, the message
is then ready to be sent. Indeed, from 2.5 to 17 ms, simild&Executing_Thread_CoreXhe
probability of the token being ilReady_to_Sendlso has a Gaussian distribution, meaning that
once the Event Handler is ready to send the published event, the Publisher has already sent the
message, and the Subscriber is about to receive it — hence the probability decrease in Publisher
and the increase i8ubscriber_#ight after the probability peak iReady to_Send

According to the analysis's time estimations, the “maximum?” time it takes to send an event
(i.e. with a 99% chance) from the Publisher to the Event Handler (i.e., when the probability for
the Publisher place reaches approximately 0) is around 13.6 ms, while the estimated “latest” time
for a Subscriber to receive an event (i.e., when the probability fosthescriber_#places reaches
approximately 1) is around 17.1 ms. Nevertheless, there is a 99% chance that Subscribers will
receive the published event around 14.3 ms. Furthermore, the probability feettdy To_Send
place to hold a token peaks (47%) at the 7.6 ms, which means that the Event Handler is ready to
send the published event to its subscribers at this instant, 47% of the times.

74

Modelling the Event Handler's performance

Chapter 9

Conclusions and Future Work

This chapter recaps the most relevant points of this dissertation and describes the results obtained
from the project, mentions additional work and contributions done throughout the thesis's devel-
opment, and nally explains the project's limitations and future improvements.

9.1 Results from the Dissertation

By using stochastic Petri nets, we were able to propose a performance model of the Intracloud
and Intercloud orchestration process of the Arrowhead framework. Through this model, it was
possible to not only estimate the average response time for an orchestration request in both intra-
and inter-cloud versions, but also to estimate the probability distribution of the Petri net being
in a speci c response state. For the Intracloud process, there was a 25% difference between the
estimation and the actual result. As for the Intercloud process, there was a 37% difference.

Through these performance evaluations, it was also possible to identify that the framework,
and by extension its systems, had some potential performance setbacks, mostly it handles HTTP
requests. Thus, we have decided to improve the performance of the Event Handler (a message
broker built over REST/HTTP), a service whose performance is very important in most Arrowhead
deployments, by using appropriate software con gurations and design patterns.

By changing how the original Event Handler and its clients handled HTTP requests and thread
creation, the enhanced version of the Event Handler is now able to achieve the initial goal of an
average end-to-end latency of 10 ms. In fact, considering the average latency of both versions for
the same test scenario (one publisher sending 2000 events to one subscriber), the Event Handler
had an overall performance boost of over 98%. Moreover, we also proposed a Petri net model for
the Event Handler in order to estimate the overall end-to-end latency probability of each compo-
nent (Publisher, Event Handler, and Subscribers). The model estimates that the subscriber has a
high probability of getting the published event around the 8.5 ms. These estimations stand mostly

75

76 Conclusions and Future Work

true to the actual values, where the percentage difference between the average latency (8.95 ms)
and the estimated latency (8.5 ms) is around 5.16%.
Similar modi cations can be applied to other components of the Arrowhead Framework to

improve their performance.

9.2 Additional Contributions

Throughout the development of this dissertation, additional work was done to disseminate this
project's results.

Improving the performance of a Publish-Subscribe message broker
— Authors: Rafael Rocha, Claudio Maia, Luis Lino Ferreira, Pedro Souto, Pal Varga

— Conference:Demo in 22nd IEEE International Symposium on Real-Time Comput-
ing (ISORC 2019)

— Dissemination Items:AppendixA and Appendix8 [87]

Improving and modelling the performance of a Publish-Subscribe message broker
— Authors: Rafael Rocha, Claudio Maia, Luis Lino Ferreira, Pal Varga

— Conference:Accepted for 45th Annual Conference of the IEEE Industrial Electron-
ics Society (IECON 2019)

— Dissemination Items: AppendixC

9.3 Further Work

Regarding the Event Handler, the system's performance might still be able to improve even fur-
ther than its current state by optimizing the Event Handler's thread pool size and the Publisher's
connection pool. However, the gains to be had are most likely marginal.

In relation to the Petri net models developed in this dissertation, they could certainly be further
improved, either by changing the probability distributions and their parameters chosen for each
transition or by changing the Petri net model itself. For example, as mentioned in S2&ihn
for the Event Handler's Petri net, the probability for each latency should be better ne tuned
and should be able to capture a wider range of latencies, since the more extreme latencies (i.e.
below 8 ms and above 17 ms) are not represented. As for the Intracloud and Intercloud Petri nets,
their estimations were also not completely applicable to the actual values, with a 25% and 37%
difference, respectively. These issues are expected to be the focus for future research work.

Appendix A

Workshop Demo at ISORC 2019

77

pd

CISTER

Research Centre in

Computing Systems

Demo

Improving the performance of a Publish-
Subscri be message broker

Rafael Rocha
Claudio Maia
Luis Lino Ferreira
Pedro Souto

Pal Varga

CISTERTR-190403

Demo CISTERR190403 Improving the performance of a Publish-Subscribe message ...

Improving the performance of a Publish-Subscribe message broker

Rafael Rocha, Claudio Maia, Luis Lino Ferreira, Pedro Souto, Pal Varga

CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)
Rua Dr. Anténio Bernardino de Almeida, 431
4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159
E-mail:

https://lwww.cister-labs.pt

Abstract

The Arrowhead Framework, a SOA-basedframework for 10T applications, provides the Hdandlersystem: a
publish/subscribe broker implemented withREST/HTTP(S). However, the existimplementation of theEvent
Handler suffers from message latency problems that arenot acceptable for industrial dpgtions. Thus, this
paperdescribes the refactoring process of this system that enabled itto reach acceptableclevof latency.

© 2019 CISTER Research Center 1
www.cister-labs.pt

,PSURYLQJ WKH SHUIRUPDQFH R
PHVVDJH EURNHU

5DIDHO 5RFKD &OiXGLR 0DLD 3HGUR 6RXWR 3DO 9DUJD
/XLV /LQR JHUUHLUD)DFXOGDGH GH (QJHQKDULDHSEW RI 7HOHFRPP DQG OHGL
&,67(5 SHVHDUFK &HQWHU ,6(BQLYHUVLGDGH GR 3RUWRIRUPDWLFV %XGDSHVW 8QLY}
3RO\WHFKQLF ,QVWLWXWH RI 3BRRWRR 3RUWXJDO 7HFKQRORJ\ DQG (FRQRPLFV
3RUWR 3RUWXJDO SIV#IH XS SW %XGDSHVW +XQJDU\
AUWGUK FUU OOI'#LVHS LSS SW SYDUJD#WPLW EPH KX
$EVWURAWSUURZKHDG)UDPHZRUN 76218 BOMHG L Q J HQYLURQPHQW
IUDPHZRUN IRU ,R7 DSSOLFDWLRQGOBURY G
VIVWHP D SXEOLVK VXEVFULEH EUR 7 \ﬁ\é/*v DY %HH\V/VV'&HR((Q\:ENQKVY_' +VD\8
5(67 +773 6 +RZHYHU WKH H[LVWLQJ R g G UHTXRVWY SHU
(YHQW +DQGOHU VXIIHUV IURP PHVVDHH |9 W \Hv WR MYVW RO H
QRW DFFHSWDEOH IRU LQGXVWULIIIDS)HLID LIJ_R 7 X\ék Q
GHVFULEHV WKH UHIDFWRULQJ I-SC[)JERBF(BIN’ LV VY N W G ZLWK :LUHVKC
WR UHDFK DFFHSWDEOH OHYHOV RI OD E $1 VSHHG 7R FDOFXODWH Wi

3x OLVKHU (HQW +DQGOHU DB 6XEVFUL

.H\ZRUGV23HUIRUPDQFH 3XEOLVK 6XBEWHQGAH RU7ABHEKdYHY DQ +773 UHTXHVW L
62% -DYD GHVFULELQJ WKH DFWLRQ DQG WKH FXUUHC
WKH (YHQW +DQGOHU RQ D 5DVSEHUU\ 3L

1752'8&7,21 6XEVFULEHU RQ D 5DVSEHUU\ 3L ORGHO ¢

(

7KH $UURZKHDG)UDPHZRUN > @ DIRAAGHY WRLGLOLXYH UWKDPYW HQG WR HQG
RULHQWHG DSSURDFK IRU ,R7 DSSORRE®W{ RIHOWH Gw W Ibht G o&EN BQVR@WORRDFKLQF
&RUH 6HUYLFHV > @ H J VHUYL(}GH @MMQV3R\/WI1KYWWNLZESWE_|@§@YWGHV DFF
DXWKHQWLFDWLRQ WKDW VXSSRUWPQAQWKR! LCWHUDFWLRQ EHWZHHQ
$SSOLFDWLRQ 6HUYLFHV VXFK.®WVMQY %)(éljgﬁ @& EOH RI SURY

VHQVRU UHDGLQJV 2QH RI WKH DYD SQL U HDG VA\VWHPY WKH

(YHQW +DQGOHU LV XVHG IRU VHQGL 'j’V§HU RREEISWE R WKRIRP @G HYHQWYV
SURGXFHU VHUYLFH WR VHYHUDO R RovxpHR! *‘s'b\q’_*lkDLWt'%VN\&DG DQ
WKLV VHQVH WKH (YHQW +DQGOHUJW#1%WH\V W OR 5 d7V+ DR S HVH KI
LPSOHPHQWDWLRQ RI D SXEOLVKWXEKRQ 2)R W iy H WKD'SSUR['-PDV
WKH (YHQW +DQGOHU GRHV QRW S v P \QH‘.V\P'F&%’E)K WD!? yDWXUD
WKHLU GLVWULEXWLRQ IURP SXBBU QUPR @k \M{i%jhwv EE/’I‘-‘@P P 'RU LQ
DQ $UURZKHDG VHUYLFH WR FRHUWLRYKRXYV oW hf WkE%@ULE‘ VWLRQ RI
WLPH WKH (YHQW +DQGOHUfTV sSHYNRL¥BEBFH LV RI

LPSRUWDQFH +RZHYHU WKH H[LVWLQJ LPS E; Q\{l_\{g
(YHQW +DQGOHU VXIIHUV IURP VHYHUDO H W Eﬁ
ODWHQF\ SUREOHPV OHDGLQJ XS WR' B IpDIURX®
VHFRQGVY WR GHOLYHU VRPH PHMM@Q}PHQGSFRFL\Q\M/O\+GWHWV
FUHDWLRQ RI WKUHDGYV DQG +773 FROXEMEWLRIDY +7KD 6K GBBHYRHG 7KX
XQQHFHVVDULO\ KLJK &38 DQG PWRBRRWIPDMKYSUVRERHPY ZH GHWKDWHG 7K
SDUWLFXODUO\ DIIHFWV UHVRXUFHRRO VR UK B HEK UWHRH/ WR PPRQHQ WY UHXVHG
7KHUHIRUH D UHIDFWRULQJ LV QRPNWWDHKU AT UiH VRS IRV WRIQHVAVWHP F

SHUIRUPDQFH ZRHV LQ RUGHU WR DFKWREQ LV/KIDYHBOTRRRYGEWER @ SHRP RQH V
ODWHQF\ RI PV FRPSOH[DQG FRQVLVWVY RI PXOWLSOH SDF

WZR HQGSRLQWV FRQQHFWLRQ KDQGVKDN
, 1/<6,1% 7+(25,18/ 9(56,AD@)7+$1'/(5 PDMRU RYHUKHDG HVSHFLDOOWIRWVYPDOO

(YHQW +DQGOHUYTV LPSOHPHQW D W LdDV\ﬂéﬁ-F'ﬁuH_LFJLKd*d’ PROWRPKWHERXIKSXW
UHSRVLWRU\ > @ XVHV D FRPE LRUDNAL RFW Bﬁé’\ lﬁb‘%%i’“ WR H[HFXWH
GHVLJQHG WR WDNH DGYDQWDJH RI WKREDHD Y Q%Z‘JGLb”igHQW VROXW
IRU LWV +773 VHUYHU DQG -HUVH\VYWHHYH é 'é'ﬂg DG WR XVH D
VXSSRUW -$; 56 $3,V IRU LWV 5(671XVsBRXQ¢ gRRQ HFWLHRQV WR V
WKUHDG SRRO FRQILIXUDWLRQ ZDV(YF*Q")@ "R kIY 4‘tPl_m RiX¥4 -HUVH\TV RZ
VHUYHU PRGXOH ORUHRYHU KW Wi F %k%\w s H Vv 9%%\%\!9 RH WWLW W H QW
PHDQW WR XVH WKH (YHQW +DQGOHEVELY 4 KRR |§%850HP FRQ
VXEVFULEHUV WKH S$UURZKHDG &RHYROWH U QA HDG IRU H
VNHOHWRQV WR EH HIWHQGHG ZLWK EBSPIFRNG WK

k L
FRGH > @ 7KHVH FOLHQW VNHWOHYORPY R Y« KXV WKH(YHQ
VHWXS DQG VHUYHU FRQILIJXUDWLR IDB(%‘HAP@%%%@%M%DD@QWWHWRMQJ UHTX

WKH

W +DQGOHUﬂV S
HLYBYW WKH (YHQ

3
o

w)
'
L

$ &RQQHFWLRQ 3RRO LQ WKH 3XEOLXIKWK DQ DYHUDJH RI DSSUR[LPDWHO\

,Q RUGHU WR UH XVH RSHQ FRQQHPRAVREV \EFHWZHHOXWNW 3RRELN @HPYLPXP OD
DQG WKH (YHOQW +DQGOHU WKH EHVW¥KRLFH ZDV WR LPSOHPHQW D
FRQQHFWLRQ SRRO YLD WKH $SDFKH +773 &OLHQW RQ -HUVH\{V
WUDQVSRUW OD\HU $FFRUGLQJ WR WKH $SDFKH 6RIWZDUH
JRXQGDWLRQ > @ WKH FOLHQW PDLQWDLQV D PD[LPXP OLPLW RI
FRQQHFWLRQV RQ D SHU URXWH EDVLV ZKLFK FDQ EH FRQILIJXUHG
VR D UHTXHVW IRU D URXWH IRUDZKLFK WKH FOLHQW DOUHDG\ KDV
SHUVLVWHQW FRQQHFWLRQ DYDLODEOH LQ WKH SRRO ZLOO EH KDQGOHG E
UHQWLQJ D FRQQHFWLRQ IURP WKH SRRO UDWKHU WKDQ FUHDWLQJ D
EUDQG QHZ FRQQHFWLRQ)RU WKH ILQDO WHVW RQO\ RQH FRQQHFWLR
SHU URXWH ZDV VHW

% 6HUYHU 6HQW (YHQWYV LQ WKH (YHQW +DQGOHU DQG 6XEVFULEHU

7KH (YHQW +DQGOHU DOVR GLG QRW UH XVH SUHYLRXVO\ FUHDWHG
FRQQHFWLRQV WR LWV VXEVFULBHUV FRQVHTXHQWO\ DGGLQJ D ODUJ
RYHUKHDG WR WKH HQG WR HQ& D)WHQF3 Wt HPFKpmKEB RV Kk Wik YHUVLRQV RI v
&RQWUDU\ WR WKH SUHYLRXV SUREOHPTfY VROXWLRQ WKRXJK LQ WKLV
FDVH -HUVH\ LWVHOI|I DOUHDG\ORHIBUHG [P PEFKOQUY B1WR746D Q6.

RQH ZD\ SXEOLVK VXEVFULEH PRGHO ghK U, §t' W K% H QUi G@ULJLQDO (YHQW
$FFRUGLQJ WR WKH -HUVH\ GRF XP HQJY ¥ GENEVARrE BEHTXHVWY DQG
ZKHQ WKH 6XEVFULEHU VHQGV D UHTpeHM\ ,_/\%V\m rFR/(RﬁqlgiH W_M-bQGOH
(YHQW +DQGOHU KROGV D FRQQHFWRQ t'\WErb'b’QJRLd"b RO U PR | J DQ DYHUI
6XEVFULEHU XQWLO D QHZ HYHQW LVpGXEQL\MyEME EKRR W@ HQYY MYk B DY H U L
SXEOLVKHG WKH (YHQW +DQGOHUYMU*\QLG%$\)N'EW WY ERW Wik vi KDWOW)KH(\
6XEVFULEHU ZKLOH NHHSLQJ WKH FRAQHKH 5§QHR§HQV\(,\RFW P, § LaYHUW
3

EH XVHG IRU WKH QH[W HYHQWYV 7%@@@ M p 6HSN\LRRUPD(
HYHQWVY VHQW IURP WKH (YHQW I'-@\H HYROL MUPRERIPY W REE MKW F XU UH ¢
DVIQFKURQRXVO\ ZLWKRXW FORVLQ(] F+RD RQ wiRHBE RYRRO VLIH I
WKH (YHQW +DQGOHU FDQ UHXVH RQHRHBRRWE QUU 6XEVFULEHU

& 7TKUHDG 3RRO LQ WKH (YHQW +DQGOHU 120 0(17

%\ GHIDXOW LI WKH WKUHDG SRRO]
+773 VHUYHU PRGXOH LV OHIW XQW ?E—K %ﬁ%%}%{%@é F}g\gHGGFLEQQlF[
QHZ WKUHDG IRU HDFK UHTXHVW QZ UVERD @ Ve 75 W 4 8(&

RI WZR WKRXVDQG UHTXHVWYV VHQWgW®R W Kl N b QW H+D Q Gibs 1z H N%bmuopm
ZLOO DOORFDWH DURXQG WKDW VDPH DSRIRER MMV RV H V H S Y RIWH MWK UDIDES E\ WKH 31
VLPXOWDQHRXVO\ RQO\ IRU WKHP,QWRYEWLGH BOHORFDVEHG X@RHU WKH (XUFR
DIWHUZDUGY > @ 1DWXUDOO\ WKLV YORBGRHQWMR DXQ® HDWS5DPRKQRXIKI WKH 33
RYHUKHDG WKUHDG FUHDWLRQ DQG37WHDl§5@FlW HLF\R%WH{ZWW\KZQWV#WEQQ’DPHZRU'
EHWZHHQ WKRXVDQGV Rl WKUHDGV: Qﬁd 3 2 UHS‘PKQFROURJZFRDF
VIVWHP PHPRU\ KRVW 26 PXVW GHG tﬁ%a

HDFK WKUHDG VWDFN ZLWK Grml@\x%goﬁ*\gj W ﬁ%%$%ﬂ (ER%?L? wiKGKLQ SURM
FRQVXPH OE RI PHPRU\ > @ ZKLER"EHFRPHV ODUJHO\

LQHIILFLHQW 1RQHWKHOHVV W®&H VROXWLRQ IRkt LV UHODWLYH
VLPSOH FRQILJXUH D WKUHDG SRRQ &Q Wl L H&\: 0*D7N7|_333V\'/'W\/V|11‘|F4~kFH| FRUNHPY L O\
PRGXOH ZKLFK ZLOO UHXVH WKUHDG VFROIREHOG RI &K WILRVIK® D QVIKBI®H ZRUN " -
7KH SURFHVV WR LGHQWLI\ W KHVRBLWLKEB BS SWRHUIOS §$ Q HF Z\BAR QVR ARRILP H 3DIHY.
WKH VDPH QXPEHU RI WKUHDGV DV WKH DYDLODEOH OXPEHU RI &38

FEUMY D9 LoruHDYN Wi xowt S MIILIE G ST e o i
LPSURYHPHQW LQ WKURXJKSXW 7KUY V\égmzwg QRWHRF R0 akpswH
JRDO ZDV DFKLHYHG RQ D WKUHDG s @QB HpH\y\MUHDﬁNSDFKH RUJ >200LQH
KWWSV ELW O\ 74S%M. >$FFHVVHG oDU @
9 3(5)25081&(98/887,21 2) 7+((1+31&(" 9(56,231 @3URMHFW -HUVH\ &KDSWHU 6EERHW 6HQW (Y
$IWHU WKH PDMRU UHIDFWRULQJ RQ WR bbFEBD YHQ QPpH YT BYPLRWREPH KW
SHQKDQFHG YHUVLRQ ZDV SXW\N\NQJW v BYo RUNHG |
HQYLURQPHQW DQG ZRUNORDG DV W z\,wVYRI% VIR W & 5200
RI MXVW RQH 6XEVFULEHU LW ZDV G(M/I\'NLSGH@LWV@\ WWHeKW W IKAH V(I Q W ob U @
+DQGOHU ZLWK VHYHQ GLIIHUHQW 6XBVEULEWWYWY VFR®V WRUHQMXUHQWKDWD LV
DOO FKDQJHV ZRXOG KDYH D PDMRU HIZHQIWHNV%KSDHVWIR:ELDWD@PQH W R ERBIOFIR P
UHSHDWLQJ WKH VDPH WHVWLQS# SuURFHA RHO\WHY WP (R U WAP zH BPY @
H[FHHGLQJO\ EHWWHU WKDQ WKH SUHYLRXV YHUVLRQYV VHH)LJ

82

Workshop Demo at ISORC 2019

Appendix B

Workshop Poster at ISORC 2019

83

Appendix C

Accepted paper for IECON 2019

85

PSURYLQJ DQG PRGHOOLQJ WK
3XEOLVK 6 XEVFULEH PHVVD.,

5DIDHO 5RFKD &OiXGLR ODLD 3DO 9DUJD
/IXLV /LQR)HUUHLUD '"HSW RI 7THOHFRPP DQG OHGL
&,67(5 5SHVHDUFK &8HQWHU ,6(3 ,QIRUPDWLFV %XGDSHVW 8QLYl
SRO\WHFKQLF ,QVWLWXWH RI 3BRUWR 7THFKQRORJ\ DQG (FRQRPLFYV
3RUWR 3RUWXJDO %XGDSHVW +XQJDU\
"UWGUK FUU OOI #LVHS LSS sw SYDUJD#WPLW EPH KX

$EVWWURHAWYHQW +DQGOHU + D SXEOLVK VXEVFULEH EURNHU
LPSOHPHQWHG RYHU 5(67 +773 6 + LV DQ DX[LOLDU\ V\VWHP RI
WKH $UURZKHDG IUDPHZRUN IRU ,QGXVWULDO ,R7 DSSOLFDWLRQV
+RZHYHU GXULQJ WKH FRXUVH RI KMKLV ZRUN ZH IRXQG WKDW W
H[LVWLQJ LPSOHPHQWDWLRQ RI WKRP (YHQW +DQGOHU VXIIHUV |
VHULRXYV SHUIRUPDQFH LVVXHV 7KLY SDSHU GHVFULEHV WKH
UHHQJLQHHULQJ SURFHVV WK NWDFKWLPBKWHO\ HQDEOHG LW WR
PRUH DFFHSWDEOH OHYHOV RI SHWDWHPDQFH E\ XVLQJ DSSURSUL
VRIWZDUH FRQILIJXUDWLRQV DQG GHWLJQ SDWWHUQV $GGLWLRQDOO\
DOVR LOOXVWUDWH KRZ WKLV HQKBQEHE, YHUYEEBS R LW H WA r @ riumke (vHQw

FDQ EH PRGHOHG XVLQJ 3HWUL QHMHV VW@VF@U’@\R\%WWWLKL 1S HY4BUPIAL RHG SKE IZARKHY G D!
LPSDFW RI GLITHUHQW WKUHD G 3R K& URR QIR WGRQV YLD (YHQW +DQGOHU

DYDLODELOLW\ :KHUH WKH PDLQ HREMEHFAMVLYH RI WKLY PRGHO LV WR
WKH SUHGLFWLRQ RI WKH VA\VWHP SHUIRUKRIDWBH SNMHRU MAWWDDQWHALWKHD EULHI GHVEFL
UHTXLUHG TXDOLW\ RI VHUYLFH)UDPHZRUN DQG LWV (+ VI\VWHP ZKLFK
SHUIRUPDOFH LVVXHV DQG KRZORE\EDQ EH
.H\ZRUGV23HUIRUPDQFH 3XEOLVK GXEE/\FVkﬁzl'kLQ 17T¥RZ(BWR PRGHO WKHL[HVXVLQJ 3
62% -DYD 3HWUL 1HWV S5HDO 7LPH ZLWK VRPH FRQFOXVLRQV DERXW WKH ZRUN

v 21752'88&7,21 vy 1+H((9(17+8$1'/(5
7KH $UURZKHDG)UDPHZRUN > @ DLRV,D V. H F

RULHQWHG DSSURDFK 62% IRU ,R7 §S%W#VH\QE{|;8%[PE\)§E’$’$‘L%?LU&J D

VHW Rl VHUYLFHV > @ WKDW VXSSRUWHWRH RDWDGED FWRRIOZ RGNV AYH®Y KH UH
DSSOLFDWLRQV VXFK DV VHUYLFHVXHRSHIDGHSRERMMY RWIVGLQ X KAHFEVEFEA$ SULQFL:
UHDGLQJV 2QH Rl WKH DYDLOD HQWWRURZKRQG VY Q/&GMXYWAWU WPIOHD(¥YS O WBMWLRQV

+DQGOHU (+ LV XVHG WR SURSDJDWN RZSGIDWEHYURMIPFY SWREBXEPBHZRUN FRQ
VHUYLFH WR RQH RU PRUH FRQVXPHWQ ®GRYSBHOEHWY WD VD QG WK LYRYHEMNIHJI XVHG
WKH (+ VHUYHV DV D 5(67 +773 6 LRYWHRO{ODPWIWRONVQDREG DXUWKHIUP8HDWHORSH |
SXEOLVK VXEVFULEH PHVVDJH EURNHQDED®GO QO LRQ GV KMVELHRWU MERKVERRION RUQ D |
PHVVDJHV RU HYHQWV IURP SXBOLPRASURDWFR BXOMOLGIOH WXRYPUGHWHKLIK OHY!
DV LV SRUWUD\HG RQ)LJ 7KH VRIWZDUH IUDPHZRUN LQFOXGHV D VH

HUYLFH FRY HU\ %KFKHVWUDWLRQ D

Y GLY
)RU DQ $UURZKHDG SXEOLVKHU VHYY4ER MR W pge,Q\{yQ >§1Fg,>b\4: ,_Q{\% hWZHHQ $5S¢
LWV VXEVFULEHUYV ZLWKLQ LWV(SHUTRUPDQFH UHTXLCUHPHQWV

SHUIRUPDQFH LV Rl H[WUHPH LPSRUWDBQ¥UURZKHDHE DWHMHP HZARR N EXLOGV XSR
LPSRUWDQW SHUIRUPDQFH SDURPBIWRQVZHS8R WZIXKNHW H @W RDEOFPXWERWDEB' LRQ WDV
SXEOLVK VXEVFULEH VHWWLQJ L ®BKG SHERE WRWHGEGG!I URKORX WMRIUGH LOQWHUIHU
PHVVDJH WR JR IURP D SURGXFHU WRHDQRRQ VXRHUWB R LR X VLD WBIOZLWK VH
PHVVDJH WKURXJKSXW L H WKBQ¥PRXE RILFEIWYD AORXELFRUFKHVWUDWLRQ
EH VHQW SHU WLPH XQLW DQG SURSHWRHAKHEGCWRRSOLDFRWVAHRWZALRQRXGV LQ
SHUIRUPDQFH SDUDPHWHUYV DUH HYQOOXD WRIEGD DQFWRK G PRYW Fr®RQ WRAHY DW OH
PRGHOOHG XVLQJ 3HWUL QHWV VYRVEFROHU WW WIDDE O H6 RUINOLIH DEDBIOYW U\ $X
IRU HDFK VFHQDULR 2UFKHVWUDWLRQ 7KXV HQDEOLQJ WKH F
$UURZKHDG DSSOLFDWLRQ VHUYWLKHEY 7KHYV

*RZHYHU WKH H[LVWLQJ LPSOHPHQWRPWIRQ R VEKHHh Xt KB HWYKQ VXSSRUWLC
IURP VHYHUDO HQG WR HQG PHVVDJL%@@WWLkﬁ%HENSM%QWJQV RI D OR
XS WR D PD[LPXP RI DOPRVW — VHIRGVWWR| GHOYYRY WRPHODEOHQJ PHVVD.
PHVVDJHV PRVWO\ GXH WR WKFQZDyW@M%CEMHRWWB'QVRI7Vp(ﬁu&:y_4(b\(ND+DQGOHU

+773 FRQQHFWLRQV ZKLFK DOVRK OWibds Ry @DQUWWNP\L/LO\
&38 DQG PHPRU\ XVDJH ZKLFK §BHWLFXODUO\ DII U

FRQVWUDLQHG KRVW PDFKLQHV VKHUAKRUK HQ WREH GRHUFEWRIULLIQRZO YHUVLRC
QHFHVVDU\ LQ RUGHU WR DFKLAHMHRD Q 7k¥¢H UPRIRIZ R GDWERVH QS QWPMH D 5(67 EDVH
PV LPSOHPHQWHG RQ WRS RI *UL]]O\ > @ DQG
FRPSULVHVY L D FRUH IUDPHZRUN WKD

GHYHORSPHQW RI VFDODEOH HYBIQW GURNHIR DSBS Q E F DIYWLIRMXVD YALIRYY

1RQ EORFNLQJ, 2 $3, DQG LL ERWEHFOLHQW VLGH DQG VHUYH

+773 VHUYLFHV -HUVH\ LV D IUDPHZBUNH W KR\ I DL OLWRWHYWWKWR WKH RUL
GHYHORSPHQW RI 5(671X0O :HE 6HUYWEKHVHD QRGHDOWY KOIGHQWHQE WRVHQG ODWHF
SURYLGLQJ DQ LPSOHPHQWDWLRQ RIQWKH VWP QKMHYE 3D G6DSEDWHQF\ JUHDW
ZKLFK LV WKH 3VWDQGDUG" VSHFLIbFPIWbDBR RR@WQRIﬁW@le(G PV ORUHR
VHUYLFHV LQ -DYD DQG VRPH H[WH@WOLWRIQYF\ UHDFKHV WKH 7HOLV W\SH |

7KH VWDQGDUG XVH RI -HUVH\ iz (F M \V KWKH Vivwi
XQGHUO\LQJ PHFKDQLVP ZLOO OHD\"% &d—%ﬁ gb g\%\/ Vglr%y\% KH (+ ZDV
WKUHDG IRU HDFK UHTXHVW DQGVWgHﬁs@PRWWQB\WWNWWWD@QQ;]W}H@J LW
ZRUN LV FRPSOHWHG 7KXV 5(671X0 YHIEY VE % Q/Q GUPHG WR WK

-HUVH\ ZLOO VORZ GRZQ ZKHQ W
VHQW DW WKH VDPH WLPH RIJSDW UH '\éﬁHRISL\JNRKEHOFV'\
VHFWLRQ ,, & ,Q RUGHU WR VR

LPSOHPHQWDWLRQV RI VHUYOHW F] RUKSL"('QLj”l
FRQWDLQHUV FDQ SURYLGH D WKUH % \(PSOH[
FUHDWHG WKUHDGV WR H[HF XR\CHX WX \‘;(1 WZR HOG:
WR WKH SUREOHP RI WKUHDG FUH , DMRU R
FRQVXPSWLRQ 7KLV LQ WXUQ OR : IDFW D p
UHVSRQVLELOLW\ GRZQ D OD\HU E RSHQ FRO
FRQWDLQHU > @ *UL]]O\ LV D SRSX[\ % LV SURE

ZHE FRQWDLQHUYV VROXWLRQ IRU WKH WKUHH V\\XWHPD/ D WI

+RZHYHU WKH *UL]]O\ +773 VHUYHBRERGHMOMHL RQ WRRQ+VERRWKDW IWR ARKIDG Ut
QRW FXUUHQWO\ KDYH D FRQILPRWVMG+WKUHDGHERRBQ7KXY LW MBWHZ@ KDG WR
OLNHO\ QRW EH DEOH WR HIILFLHQAMMOY KD GEQMW RXE QWSO R HFKDXHWYWVWR HV
ORUHRYHU IRU WKH FOLHQW DS &L FRWQRIGEW WRD W R UIB i B Q WWR R6 XE-AFW LEH U
(+ LH WKH SXEOLVKHUV DQG VXEMFBQBHYWREWKI® BRQRZKWHG LQ WKH (+ FL
&RQVRUWLD SURYLGHV FOLHQW KWNHOMHWROQQRFRRLEH HHTMEEWG ZKLWRWKKBRRXOG W
GHYHORSHUVY RZQ DSSOLFDWLR®\FRBFK:@H VKB YBILODOERDHWS $N DQIBWUHVSRQV F
XVH WKH VDPH -HUVH\ *UL]]O\ VHWX S HhTDA VHG YOH W KRIQDIG) BRRWLWE PUQDJIH LQF
WKH $UURZKHDG V\VWHPYV ZDVWHIXO PDQQHU DV WKUHDGV FDQ EH L

UHTXHVWV VHH VHFWLRQ ,, &
7KH WHVWLQJ HQYLURQPHQW
5HXVH RSHQ FRQQHFWLRQV EHWZHHQ W
,Q RUGHU WR HYDOXDWH WKH (+TWBRQW RDRB®F ZH FRQGXFWHG
D WHVW RQ WKH VIVWHP ZLWK R@W 3XEOLVKHU VHQGLQJ HYHQ
VHTXHQWLDOO\ ZLWK QR GHOWR WRWK R -6 HAK WK FIROVDH REMQ FRQQHFWLRQV
RQH 6XEVFULEHU (DFK UHTXHVWVLVDQ&\WHM ORQVKREPRPVW BERLFHRZDV WR LP
6ZLWFKHG (WKHUQHW /$1 7R PHDVSHHOWKQ QKW HOQFE AENWWEBHY LD WKH $SDF
3XEOLVKHU (+ DQG 6XEVFULEHU _HDRK \%(/\(L DReHs FRUWWAKHIWH) 20 DQ $SDFK
TRPSRQHQWY VHQCY RU UNPHLYIDY BEL Wi BB W\bvuﬁwb PIPWVO X PERD R
PHVVDJH GHVFULELQJ WKH DFWLRQ WLPRVWBBPSH FRQILIXU
GHSOR\HG WKH (+ DQG WKH 6XEVFU é’s'?z@ \vauzl‘k\L%"K WKH FOLHQW DOUHL

7KHUH DUH WZR PDLQ UHDVRQV WRRQOWHRMWKLFQSDDYPIWUARDEOH LAXKMEH SRRO ZL(¢
WHVWLQJ VRIWZDUH LQ D UHVR¥XRERHQHERQYURQIURRGWKHOBWRROURDWKHU WKI
ERWWOHQHFNV EHFRPH PRUH RELYLFPRQOBBWHRWLHU WR LGHQWLI\ L
5DVSEHUU\ 3L KDUGZDUH LV KHDYLO\ GRFRRH QMWMX D QRN VROUWDBRQAYHFWLRQ
ZLGHVSUHDG IRU LQGXVWULDO DQGRIRFHDSER IPOWMRIIVNQ FHHVW HYWO@®U VLQ

HQYLURQPHQW LV GLVSOD\HG LQDLFRQERANWERQY\ FIRIAVWWVO WX® MR WV RH SURFH
SXEOLVKHU D VXEVFULEHU DQG WHKHH(+ ZLWK DOO FORFNV

VIQFKURQL]JHG XVLQJ D ORFDO 173 VHUYHU ZKLFK SURYLGHV

DFFXUDFLHV LQ WKH UDQJH RI PV > @QvWDEOLVK D SHUVLVWHQW FRQQHFWL
+DQGOHU DQG HDFK 6XEVFULEHU

7KH (+ DOVR GLG QRW UHXVH BQWMYLRXVO
WR LWV VXEVFULEHUV FRQVHTXHQWO\ DG
HDFK PHVVDJH HQG WR HQG GHOM GXH WR
FRQQHFWLRQ 7KXV WR DYRLG FUHDWLQJ
VXEVFULEHU RQ HYHU\ UHTXHVW ZH XVHC
(YHQWYV 66(> @ PHFKDQLVP LQ WKH QHZ
WKH (+
7KH 66(PHFKDQLVP FDQ EH XVHG WR KD
)LI 7HVWLQJ HQYLURQPHQW IRU WKH RIILFLEX EXHIQWK+ VXEMRULEH PRGHO KHQ WKH 6

UHTXHVW WR WKH (+ WKH (+ KROGV D FRQQHFWLRQ EHWZHHQ LWVHOI
DQG WKH 6XEVFULEHU XQWLO D QHZ HYHQW LV SXEOLVKHG :KHQ DQ
HYHQW LV SXEOLVKHG WKH (+ VHQGYV WKH HYHQW WR WKH 6XEVFULEH
ZKLOH NHHSLQJ WKH FRQQHFWLRQ RSHQ VR WKDW LW FDQ EH UHXVHG IRU
WKH QH[W HYHQWV 7KH 6XEVFULEHU SURFHVVHV WKH HYHQWV VHQW
IURP WKH (+ LQGLYLGXDOO\ DQG DV\QFKURQRXVO\ ZLWKRXW FORVLQJ
WKH FRQQHFWLRQ 7KHUHIRUH RMXH (+ FDQ UHXVH RQH FRQQHFWL

SHU 6XEVFULEHU

5HXVH SUHYLRXVO\ FUHDWHG WKUHDGYV LQ WKH (YHQW +DQGOHU

$V H[SODLQHG LQ VHFWLRQ ,, % LI WKH *UL]]O\ +773 VHUYHUTV
WKUHDGSRRO LV QRW FRQILIJXUHG *UL]]JO\ IROORZV -HUVH\{V PRGHO
Rl JHOQHUDWLQJ D QHZ WKUHDG IRU HDFK UHTXHVW E\ GHIDXOW ,Q
RWKHU ZRUGV ZLWK HYHU\ ZDYH RI WZR WKRXVDQG UHTXHVWV VHQW
WR WKH (+ -HUVH\ ZLOO DOORFDWH VHUYHU WKUHDGV DOPRVW
VLPXOWDQHRXVO\ DQG FORVHV WKHP VRRQ DIWHUZDUGV > @
1DWXUDOO\ WKLV OHDGV WR D JUHDW DPRXQW RI RYHUKHDG WKUHDG
FUHDWLRQ DQG WHDUGRZQ DQG FRQWH[W VZLWFKLQJ EHWZHHOQ
WKRXVDQGV RI WKUHDGV DQG D ODUJH FRQVXPSWLRQ RI V\VWHP
PHPRU\ KRVW 26 PXVW GHGLFDWH B’pHERIA BRERENHRU H ok WZR YHUVLRQV RI A
WKUHDG VWDFN ZLWK GHIDXOWPWHWWLQJV MXVW IRXU WKUHDGV FRQVX

0E RI PHPRU\ > @ ZKLFK EHFRPHV ODUJHO\ LQHIILFLHQW

7KH VROXWLRQ IRU WKLV LV WR FRQILJXUH D WKUHDG SRRO RQ WKH
*UL]]O\ +773 VHUYHU PRGXOH ZKLFK ZLOO UHXVH WKUHDGYV
LOQVWHDG RI GHVWUR\LQJ WKHP GKH NH\ TXHVWLRQ LV ZKDW VKRXO
EH WKH RSWLPDO WKUHDG SRRO VL]H IRU WKLV VFHQDULR" :KLOH WKHUH
LV QR FOHDU FXW DQVZHU IRUMKBUWLILW LV XVXDOO\ VXJIHVWHG
WKH +773 UHTXHVW LV &38 ERXQG DV LQ WKLV FDVH WKH DPRXQW
RI WKUHDGV VKRXOG EH DW PD[LPXP HTXDO WR WKH QXPEHU RI
&38 FRUHV LQ WKH KRVW PDFKLQH > @ 2WKHUZLVH LI WKH UHTXHVW
LV PRUH , 2 ERXQG WKHQ PRUH WKUHDGV FDQ VXFFHVVIXOO\ UXQ LQ
SDUDOOHO 7KHUHIRUH WKH HPSLULFDO SURFHVV RI LGHQWLI\LQJ WKH
RSWLPDO SRRO VL]H FRQVLVWHG LQ VWDUWLQJ ZLWK WKH VDPH QXPEHU
RI WKUHDGV DV WKH QXPEHU RI &38 FRUHV DQG LQFUHDVLQJ WKHP
XQWLO WKHUH ZDV QR GLVFHUQLEOH LPSURYHPHQW LQ WKURXJKSXW
7KURXJK WKLV SURFHVV DQ LQWHUHVWLQJ PV DYHUDJH ODWHQF\
ZDV DFKLHYHG ZLWK D WKUHDG SRRO RI WKUHDGYV

Ly, 3(5)250$1&((9$/8$7,21

$IWHU WKH PDMRU UHIDFWRULQJ RQ WKH RULJLQDO (+ WKH
SHQKDQFHG” YHUVLRQ ZDV SXW WR WKH WHVW RQ D VLPLODU
HQYLURQPHQW DQG ZRUNORDG MKWKH RULJLQDO $IWHU UHSHDWLQJ
VDPH WHVWLQJ SURFHVY WKH WHHWW UHVXOWYV ZHUH H[FHHGLQJO\ EHWW
WKDQ WKH SUHYLRXV YHUVLRQYV VHH)LJ ZLWK DQ DYHUDJH HQG
WR HQG ODWHQF\ RI DSSUR[LPDWHQ®\J (QGPWR B Q& ODWRR FL BXPWULEXME\RRURREHU HYF
ODWHQF\ RI PV DQG VL[VXEVFULEHUV ZLWK WKH HQKDQFHG (YHQW +

$GGLWLRQDOO\ WZR RWKHU VFHQDULRY ZHUH WHVWHG LQVWHDG
RI HYHQWV WKH 3XEOLVKHU WKD oD AHB& 7*“?{@‘7—#@%’\9“‘%.6%%%%4&(
WR GHWHFW SRWHQWLDO ERWWOHQHRBNVUGHUNWR & MHE OH MERDSWRGDFW WKH
VFHQDULR KRZHYHU LQVWHDG RI X¥$QUFDWLEQQVHVEOSES\RFUM H B UE \VBIIRH (+ V\V
GLIIHUHQW 6XEVFULEHUV ZHUH XDAH GV D/NH WQUAHR/ 06 WR/X\DRAR X/1$ & FOL MIFPWHUHD G SR
SHUIRUPDQFH LQFUHDVH)RU VFHQDRUL&R38 WRUHNYBQDJHARPPX WEB\WGRQ ODWH
ODWHQF\ ZDV PV ZLWK D PD[LPXRKD W HRHRO ZDV BHYHORSHG XVLQJ 3HW
$V IRU VFHQDULR WKH DYHUDJH HI@GOW RVHRRGE DWEIDV\\VABNPY WKBIW GHDO Z
PV ZLWK D PD[LPXP ODWHQF\ RI >PV RBIDVXBK ®¥EHRPPXQLFDWLRQ QHWZRL
DOO VL[VXEVFULEHUV $ KLVWRJUDWP\\ZWW RW R G @6 QKR DHFQX OIDQWHQFW H P V
GLVWULEXWLRQ IRU WKHVH WZR VFHQDRI LKW YIHNO B 5VWEDVH G HWQU)LJQHW PRGHO
*RNKDOHYIV PHWKRGRORJ\ > @ ZKLFK KDV E
WR PRGHO WKH SHUIRUPDQFH RI D :HE VHU
DUFKLWHFWXUH 7KH UHVXOWLQYRIHWUL QF
WKH VWRFKDVWLF DQDO\VLV RI WKH PRGHC

yLJ 6WRFKDVWLF 3HWUL QHW RRIGRI@ RITWEGE FREUGW3IDQGOHU UXQQL

7RRO > @ VLQFH LW ZDV RQH Rl WKPRREM® RS$HGHRHUPHOQMBR @K ZWWWKH UHT;
VWRFKDVWLF 3HWUL QHWYV DQDO\VLYXEDIWVKIHULWRHWKH (+ KDG DVKDSIND GLVWU
D QUD W H +RZHYHU 2ULV RQO\ SUR
UDQVLWLRQV ZLWK DQ (UODQJ BLVWULEX
VH Rl WKH *DPPD GNVWRX8BWILHR Q Q ZIKHW H
YDOXH 6LPLODUO\ WKH UHTXHVWV VHQMW
2XU PRGHO FKDUDFWHUL]JHV WKH dx &V FUIHEFXWME RO R D EXDGNDPPD GLVWULE
FRUH &38 VLQFH UHDO UHVXOWV K EHH@KR@Z%Q/L@/PKQ?XUpQ(b@HG WR W
SDVSEHUU\ 3L ORGHO % 5HJDUGLWWVKH WREHQopHWYHOTV WIKIHEXWLRQ UHTX
3XEOL\SKOHOFH WKH FLUFOH RQ WK HERIWL RYH®YUHM RNKAHHQ 3 Bz SARIBHH
SXEOLVKHWBXEQBWOIQWLWLRQ WKH E@#PFFLNGMGUWRFBQ 4 HVHQWHG DV WUDQ

EDU UHSUHVHQWYV WKH WLPH RWEW @8 Ny U R W ISRE O£ HI1G WKH%%\ ILQLVK
WUDQVPLWWHG DQG SHIDEKY WEAXIIRGHH @ K 1 K WLPH LV PV

KROGYV XQSURFHVVHG UHTXHVWYV LOH
DVVLJQBUHTXHWWBW‘RLB\ANLKRQ—IDGSUH\/‘]—!@M\RFW@(WW(LPFV\H@J%\G’LV RI' WKH 3HWUL QF
SRRO OLPLW + RQO\ DVVLJQLQJ UHTXMWYM/NSWR YR GHUB DAGR RO WRH W& V@\OL HQ W
QXPEHU RI DFWLYH WKUHDGV UHSUMVBQWGGLBU WKH VRREQELORWQRI D SUR
$FWLYHB7KUKMHEXWLQJIB7KUHD ®BERRBH SODFH WR WKH RWKHU DW WRMHFLILF
5HDG\BW FSEBBHRHGE/ KDV QRW H[FHHG H® VK\W MWS ABHIDLWE VORPAKD UW +\L @\VAKEFK W
,Q WKH 3HWUL QHW WKLV FRQDE QILEEY MVKH[H DX MH B QEKW R K JS B \QVIHE@ @MW RHU LY D
IXQFWLRQ L H D ERROHDQ H[SUHVYRRGVLQ MK OWFMHQBURERBLXIHVQ\FHLV XVH
WKH OHH W W[NUBRARY WIGB U H T X HWW B & RIBMLRREHDIGPH LQVWDQW UHSUHVHQWYV D SURE
2QFH D UHTXHVW LV DVVLJQHG WG®R [P MIXQW MCK DMK M/ KK W B GR L \D & [HIOWMK HV L Q
E\ RQH RI WKH &3§[HRXWVQJBCHKUHBGBRRUH7KLY FKDUW LV GLVSOD\HG LQ)LJ
SODFHVKRXOG EH UHSODFHG E\ WKH FRUUHVSRQGLQJ FRUH
UHSUHVHQWY WKH WKUHJEFXWMLBOBRWRBWIKLDHIWKBI WKH DQDO\VLYV UHVXOW
WUDQVLWLRQ UHSUHVHQWY WKH DPRXQW RI WLPH LW WDNHV WR H[HFXWH
$Q LQKLELWRU DUF ZKLFK LV XVYRG WR. BDWG IWKH VRIQDW SWKXDHIFWW DLW DUH S
PXVW RQO\ ILUH ZKHQ WKH SODFH KRFOQR5KRIN B WWREEHRWHGE BURPBQRGB&RUH;
([HFXWLQJB7KUWRGW & R UGH; WSHRQWILYBIXEY PR EKHBUHDVRQ IRU WKLV LV EHFDXVE
DYRLG WKH ILULQJ RW; DHIDDRBNVWERGIHWRPHVWBRQQOXHGHSHQG RQ LPPHG
([HFXWLQJB7KUBOGBRRBAUHHD, WRNHQ WWDHOMUWURQV WKXV WKH WRNI® ZLOO QI
JXDUDQWHHLQJ WKDW RQO\ RQH U HSTOXHAVIW L W HEDHILLQQ)) HITHKKDXW MK HRVQH DGR QRW
VSHFLILF &38 FRUHHRXQWHQWHEHR QN IRWHRI®Q OO0 SURFHV V I5GI X\H\PW B 20RNKIBIRIXIK
ILQLVKHV LW V5QIeA BVWRRKEHQEBWRK HWRYBIQW PP HGLDW H WWW D QB UWT RIQV VLB R BW
LV UHDG\ WR EH VHQW WR LWV VXEWFKLEHMUID QVLWLRQ LV UHVWULEKLH® WR WK
6HYHUDO UHDO H[SHULPHQWYV KDY) \E HH ROPH QIHRE BHIG YIORRYOGHU WRHSUHVHQ
ILQH WXQH WKH PRGXOH ZLWK U /DO WGGW\E LH[MVBU7EOWR 1B @ | BARKRHV IHY HBL7IK@ FVOHG B & R U
UXQV IURP ZKHUH ZH GHULYH WKH SIDDXHW BBIQ G BRHBSEEFRHEVOL Q¥ VS IRQO\ RQH V
LH FRQVLGHULQJ UHTXHVWV VNQW H QR/P LIX BADKLLIK IS DBWRK X/ QUTEUL XOMXOOR WL ¥ H
VHQW IURP (+ WR HDFK 6XEVFULEHWYW MW@ WHKE\ &B8R NHOVFEXWKRQ LW ZLOO QRW
WLPH IRU HDFK UHTXHVW DQG GHWHEPDMWIHD WKHIHI PRFW DK BYIREDWHOLW)\ |
SUREDELOLW\ GLVWULEXWLRQ IXQW\WKRQLWRHLS SUKIOR B ® HQ\ W K B KHMWDL QV K H

$ ([SODLQLQJ WKH 3HWUL QHW PRG

)LJ 7UDQVLHQW DQDO\VLVY RIRWKE 3HWUL QHW PRGHO ZLWK RQH W

VWLOO EHFDXVH WKH 3XEOLN®E US® DS HMBWRBEBGHONWH PWWRQVWDQW 2QH F
HYHQW WR WKH (+ %HWZHHQ WLPH YDQEBH LW WDWHKBGREDWKOUWKH H[SHULPF
Rl WKH 3XEOLVKHU VHQGLQJ D PHV\6XEN FAHFAHUD VHE RURMHG. Q D) WO WWRWHUH L\
ZKLOH WKH H[DFW RSSRVLWH KBS PHEX QR W K IR 16 WEVF UHHLYBHHUW Y. HHUMK GHOLY +
SUREDEL®XWEYV FWKHBIWU B HFHLYHG WKODWRIQFQ UKNBINDV IRU WKH VL[6XEVFULE
QRQOLQHDUO\ WR ,Q IDFW DVVRWWLPWHUDRY RWKG WR R G&UYBIWHQ@F\ LV DSSUR]
HDFK RWKHU ZKLFK PHDQV WKDW ERURMY SRQG/L G R ISQWR E BVEKLHILHWV L \G LDV W U L E X W
KLJKHU SUREDELOLW\ RI DQ HYHQW K H HV S H
6XEVFULEHU WKDQ LW VWLOO EHLéJBéQE%'éWLfég@'%%?H“%%gt@éﬁﬁe'*o
YXUWKHUPRUH IURP WR RW HQK H & UREDLIEW bR @\ VRR WKKHWLQLWLDO VWRFK]
EHLQJ[HMBEXWLQJB7KUKDG B&R DI®;PRVW RHXIRY I HDQRWKHU VWRFKDVWLRRQDO\VLV
GLVWULEXWLRQ ZKLFK PHDQV WKDW R®FRVUVWR BHRAPQH KR 2y WEW PREH O VFDC
WKH 3XEOLVKHU LW LV SURFHWJIHGR\PHKRWEKSQRUPHWHRIBYXpP7KH VIV WUDQVL
VHFRQG $IWHU WKLV SURFHVV WK ADEHFXOPIWHG, WREQVKHDGEGY WWH IBFXWLRQ R
VHQW ,QGHHG IURP WR ORYHQFLHVoIRY IRRU PHVVDIHV LV GHSLFV
([HFXWLQJB7KUMWKGBRWRREDELOLW\ RZLMKH WIRN YO EH VWHVW UHVXOWYV IURP)LJ
LGHDG\BWMBBHRQ &DV D *DXVVLDQ GMARPULEXRERYY IF{IDOLBOUWDWLRQV RI WKH 2
WKDW RQFH WKH (+ LV UHDG\ WR VW®&GDW KH Va/x N KRiibU HRUWRPR FYW KIRU - PRUH
3XEOLVKHU KDV DOUHDG\ VHQW WKH.PYUNYW K Otiyd wWKHIL ¥ X\EWR B KB MWDIHy DQD O\
DERXW WR UHFHLYH LW * KHQFH WRH BIWXDE WKW ORBWHREDYRWMHUYDO IRU
3XEOLDIQHUWKH L QFENHDUHEHIGBN DIWHU wWRY ZKLFK PRVWO\ JRHV LQIKDQG ZLV
SUREDELOI5WMDSKHEDWRLBBHQ G GLVWULEXWLRQV RI WKH WHWVIWHIHWXDWY +
$FFRUGLQJ WR WKH DQDO\VLVYT{WKHVEHORWWRED W VARGV DWLARY PXVW VWL
SPD[LPXP° WLPH LW WDNHV WR VHQ®ULH ¥ WHR W QH WV XAQ iy v HH SURERELOLW\ IF
FKDQFH IURP WKH 3XEOLVKHU WRFOWNXYH D 44 GHAK W& QYRR ODWHQFLHYV
SUREDELOBWEORBQBIBH UHDFKHV DSSDWH@bWHo\L H EHORZ PV DQG DERY#
LV DURXQG PV ZKLOH WKHRHMVMPHWHIME Q@&OVINWEH v @ WU (R LPSURYLQJ 'V
6XEVFULEHU WR UHFHLYH DQ HYHQWRK®G ERHORWKRHESUREDERQIMAI AM(KH SUR
WIBKKEVFULEGDBHY UHDFKHV DSSUR[PERBEWMON SOWDRH RMHYY FKRVHQ IRU HDFK W
PV 1HYHUWKHOHVV WKHUH LV DWKHRHWHL W R BWP BN U WE/HAP |
ZLOO UHFHLYH WKH SXEOLVKHG HYHQ XQG. ... Vo
)XUWKHUPRUH WKHSS-LD?G':\IBIZRGGJW(E(ERWRNK\Q 2145835 1)e785(25,
KROG D WRNHQ SHDNV DW WKH PVFERORAKk PHBBRY WKBWRWKIHQDO (+ DQG
(+ LV UHDG\ WR VHQG WKH SXEODWKHG 3HYHON W\ VL WQ Gy ¥WekWHAE HFWWHDWLRQ v
WKLV LQVWDQW RI WKH WLPHY WKH (+ LV QRZ DEOH WR DFKLHYYHDWKH LQL
DYHUDJH HQG WR HQG ODWHQF\ RI PV ,Q

&RPSDULQJ WKH PRGHO ZLWK W R¥KB FBWxid® H SHRUW HR{ WHN R1 WRW W YWKUHV L R

(+ KDG DQ RYHUDOO SHUIRUPDQFH ERR\

2YHUDOO WKH YDOXHV FROOHFWHRQHRMIEHE KN VP REKHD DPOVWRU WRFIUHH WKDW
UHVXOWV REWDLQHG LQ WKH H[SHURPHWWVWRLORKRHHHRK® K PR RSURYH HYHQ
WKH 3HWUL 1HW PRGHO WKH SUR¥BWHO EW\RSWERILEAWWVEKY (RTV WKUHDC
6XEVFULMERWEHFHLYH WKH SXEOLVKHEXEQ¥VBHY 1W RROGAKEWKRQ SRRO ORUHRY
WKDQXEOLVKHHFXWLQJIB7KUHDGR&RHM, PRGHO IRU WKH (+ LQ RUGHU WR HVWL

50)(5(1&(6

@3 9DUJD HW DO ODNLQJ VA\VWHP RHKH \WRWHHPV LQW
FRPSRQHQWYV RI WKH DUURZKHDGRUN PHQAZRUN -R?

\%

&RPSXWHU $SSOLFDWLRQV 9ROXPH 3DJHV
> @3URMHFW *UL]]O\ -DYDHH JLWKXE E@®H >20Q
KWWSV MDYDHH JLWKXE LR JUL]]JO\ >$FFHVVHG
> @HUVH)\ -HUVH\ JLWKXE LR >2QO0LQH@

KWWSV MHUVH\ JLWKXE LR >$FFHVVHG obuU

> @-HUVH\ #0DQDJHG$V\QF DQG FRSWRUHDBNDQEBHW ZH

:RUNHU WKUHDG 6WDFN 2YHUIORZ >2QO0l

KWWSV VWDFNRYHUIORZ FRP TXHGWVR®A M

DQG FRS\LQJ GDWD EHWZHHQ KWW$SFWHWWHHDEG DQG :
oDU @

> @UURZKHDG &RQVRUWLD *LW+XE >2QO0LC
KWWSV JLWKXE FRP DUURZKHDG | >$FFHVVHG (

> @ oOLOOV IHWZRUN 7LPH 6\QFKURQL]JDWLRQ 5t
(HFLV XGHO HGX >2QO0LQH@ $
KWWSV ZZZ HHFLV XGHO HGX aPUlWDOV@WS KWPO

@ KH $SDFKH 6RIWZDUH)RXQGDWLRQ &KDSWH!
PDQDJHPHQW +F DSDFKH RUJ >2QO0LQH
KWWS KF DSDFKH RUJ KWWSFRPSRQHQWYVY FOLHQV
JD WXWRULDO KWPO FRQQPJPW KWPO >$FFHVVHG

\%

> @3URMHFW -HUVH\ &KDSWHU 6MESRUWHQW (Y
'RFV KXLKRR FRP >2Q0LQH@ $MDULODEOH
@
)LJ (VWLPDWHG HQG WR HQG ODWHRIQW\ SURE>D@LOL/W\D\E|IF2RJFI\RXLQB@ VY 7TKUHDGSRRO $:RUNHG (
RSZL]DUG lEVRIWVR OXWLRQV FRFOH >2Q0
HQG ODWHQF\ SUREDELOLW\ Rl HDFK E ngzkp‘gquwf@@%@vlo%gﬁfé Er\?\f‘,jGNQROZDUWK“’Cﬁ
DQG 6XEVFULEHUV 5HVXOWV VKRZ H PRENG SURYLG YD Ly

JRRG HVWLPDWLRQ RI UHVXOWX{UWREI tbtbuh KR DWFLFQ,@HE\,HXPEMDHRP
LPSURYHG HLWKHU E\ FKDQJLQJ W KHK\BWR ELXE Q QLW W KDIWWR EDVEIRW LRIQNXPEOU FRI
DQG WKHLU SDUDPHWHUV FKRVHiQJlRUXwaKPWM’QWLEW&/R@ RR)Y It BHEPGW>SFFHVVHG

WKH 3HWUL QHW PRGHO LWVHODUHY@UWME‘@SHV/L\)]O MH*EWHVW@R]Q‘%WLOR;SOFI
H[SHFWHG WR EH WKH IRFXV IRU IXWX YW VB WK E LR JWHMYG\GE HVODSW D F W LF
@
$&.12:/("*0(176 > @ RXQHY 3HUIRUPDQFH PRGHoquzExmqm HYDOX
7KLY ZRUN ZDV SDUWLDOO\ VXS SKUW HERESRRH@ %) % XMRRJI TXHXHLQJ
)&7 0(& B3RUWXJXHVH)RXQGDWLRQ |WV%F|5’Y_H4R8¥|—R|Q R 250N (G36aUnurQy srOXs

7HFKQRORJ\ ZLWKLQ WKH &, <37(5L%5|(—)|VH>pEL|1| Sk BRWGE sHwoL QWO FRGH.
&(& DOVR E\ (8 (&6(/ -8 XQGHWDPWXIDFWXULQJ VIVWHPV (PH UDIQE) &RIGWQYRORJL H
JUDPHZRUN 3URJUDPPH -8 JUDQW QU 6\WWHP8URGXFHW LY H

SURMHFW DQG E\ WKH 3RUWXJXHVH 18 W4 R6Q DN KQQHR 3B W R RRD GRH @EDWKVLY RI D
$1, XQGHU WKH (XURSHDQ 5HJLRQD SPH PRWR KLWHFWXUH ~ 3URFHH
)('(5 ~ WKURXJK WKH 33RUWXJDO %QWEbH% RQD% ;%?2*\',3?1 FH RQ eRAWZDUH (QJ
SDUWQHUVKLS ZLWKLQ WKH IUDP;'Z@?%HROR“U%VI%MI DQD\V%E\P7R%I‘WRF$IQDO/\YVEV3RWWH_F
,QFHQWLYHY WR 5HVHDUFK DQG 7HFKHQWORUL¥FWAROHRUBHORSPHXQWLQW@ $YDLODE
6,,'7 DQG WKH 2SHUDWLRQDO 3URJUWRRIRRU & RFSE HHV VWA Y HQ\H V \@

DQG ,QWHUQDWLRQDOL]DWLRQ 32&, ZLWKLQ SURMHFW)/(;,*< Q%

$$& QzZ 6,

92

Accepted paper for IECON 2019

References

[1]

[2]

[3]

Productive 4.0. Productive 4.0 - a european co-funded innovation and lighthouse project on
digital industry. Productive 4.0. Available https://productive40.eu/ , Accessed
last time in 31 October 2018, 201Gited on pageg and15.

Adlink. Vortex dds. Adlink. Available ahttp://www.prismtech.com/vortex , Ac-
cessed last time in 20 December 20&8ed on page2.

K. Ahmad. Why cloud computing is mandatory for indus-
trial iot? Available at https://www.linkedin.com/pulse/
why-cloud-computing-mandatory-industrial-iot-kabir-ahmad/ , Ac-

cessed last time in 11 July 2018, 20Lfted on pags.

[4] Alden. Jersey @managedasync and copying data between http thread and worker

[5]

[6]

thread. Available athttps://stackoverflow.com/questions/31137134/
jersey-managedasync-and-copying-data-between-http-thread-and-worker-thread
Accessed last time in March 2019, 2018ted on page9.

P. G. Alves. A Distributed Security Event Correlation Platform for SCADRND thesis,
Faculdade de Ciéncias e Tecnologia da Universidade de Coimbra, Rua Silvio Lima, Pélo I
da Universidade de Coimbra, 3030-790 Coimbra, 2@itéd on pagel

AMQP. Amqp is the internet protocol for business messaging. AMQP. Availallgmat
Ilwww.amgp.org/about/what , Accessed last time in 14 December 2018, 20di&d
on pagels.

[7] AMQP. Products and success stories. AMQP. Availablatit//www.amgp.org/

[8]

[9]

[10]

[11]

about/examples , Accessed last time in 14 December 2018, 20di&d on pagd 9.

O. Ansari. Micro services pipeline for an industrial internet of things (iiot) framework...
towards data engineering. Medium. Availablé&ps://bit.ly/2CBbVPz , [Accessed
31 October 2018], July 201&ited on pagé.

C. Araujo. A software-de ned industrial world: Using apis and microservices to enable
industry 4.0 (white paper). Intellyx. Available kittps://bit.ly/2BRcdQL , [Accessed
31 October 2018], March 201 Tited on page8 and10.

Arrowhead. Arrowhead | ahead of the future. Arrowhead. Availabletps://www.
arrowhead.eu/arrowheadframework , Accessed last time in 05 December 2018,
2013. Cited on pagesi, 1, 2, and12.

Inc. Audio-Tech Business Book Summaries. Industry 4.0 and the u.s. manufacturing re-
naissanceTrends E-Magazine, Issue 14tages 4-10, jun 201%Rited on page.

93

94 REFERENCES

[12] Axway. Api builder and mqtt for iot — part 1. Axway Amplify Blog. Avail-
able athttps://s3.amazonaws.com/www.appcelerator.com.images/MQTT_
1.png , Accessed last time in 17 December 2018, 20di#d on pagesi and20.

[13] Nick Babcock. Know thy threadpool: A worked example with drop-
wizard. Available at https://nbsoftsolutions.com/blog/
know-thy-threadpool-a-worked-example-with-dropwizard , Accessed

last time in March 2019, 201ited on pag&s.

[14] | Will Get That Job At Google blog. Why using many threads in java is
bad. Available at http://iwillgetthatjobatgoogle.tumblr.com/post/
38381478148/why-using-many-threads-in-java-is-bad , Accessed last time
in March 2019, 2019cCited on pagé&s.

[15] D. Buhr. Social innovation policy for industry 4.0. Friedrich-Ebert-Stiftung. Available at
https://library.fes.de/pdf-files/wiso/11479.pdf , [Accessed 31 October
2018], 2017 Cited on pagd.

[16] X. Che and S. Maag. A passive testing approach for protocols in internet of tr2048.
IEEE International Conference on Green Computing and Communications and IEEE Inter-
net of Things and IEEE Cyber, Physical and Social Computiages 678—684, 2018ited
on page2l.

[17] Ming Chen. Petri nets. Universitat Bielefeld. Availabletatps://www.techfak.
uni-bielefeld.de/~mchen/BioPNML/Intro/pnfag.html , Accessed last time in
26 December 2018&ited on pagesi, 23, and24.

[18] Arrowhead Consortia. Arrowhead framework 4.1. GitHub, Inc. Availablbttats://
github.com/arrowhead-f/core-java , Accessed last time in 05 December 2018,
2013. Cited on pagesi, 11, 12, 13, 27, and52.

[19] Arrowhead Consortia. Arrowhead framework client skeletons in java. GitHub, Inc. Avail-
able athttps://github.com/arrowhead-f/client-java , Accessed last time in
May 2019, 2019Cited on pagé&2.

[20] Oracle Corporation. Interface serviet. Available haiips://docs.oracle.com/
javaee/6/api/javax/serviet/Serviet.html , Accessed last time in March 2019,
2019. Cited on pages.

[21] Oracle Corporation. Project grizzly. Available htips://javaee.github.io/
grizzly/ , Accessed last time in March 2019, 201$%ted on page?.

[22] Oracle Corporation. Project grizzly - best practices. Availablatis://javaee.
github.io/grizzly/bestpractices.html , Accessed last time in March 2019,
2019. Cited on pag&s.

[23] A. Corsaro. The data distribution service tutorial. PrismTech. Available at
https://www.researchgate.net/publication/273136749_The Data_
Distribution_Service_Tutorial , Accessed last time in 20 December 2018, 2014.

Cited on page2.

[24] Dave Cridland. Openre. ignite realtime. Available abttps://www.
igniterealtime.org/projects/openfire/ , Accessed last time in 17 December
2018. Cited on page2.

REFERENCES 95

[25] Curious. How do i check if my data ts an exponential distribution?
Available at https://stats.stackexchange.com/questions/76994/
how-do-i-check-if-my-data-fits-an-exponential-distribution ,
Accessed last time in March 2019, 2018Sted on page1.

[26] P.Brizzi A. Lotito R. Tomasi D. Conzon, T. Bolognesi and M. A. Spirito. The virtus middle-
ware: An xmpp based architecture for secure iot communicat@ds2 21st International
Conference on Computer Communications and Networks (ICO&@ges 1-6, 201 Zited
on page2l.

[27] R. Fonseca D. Menasce, V. Almeida and M. Mendesr. A methodology for workload char-
acterization of e-commerce sitd3roc. First ACM Conf. Electronic Commergeages 119-
128, 1999 Cited on pagd5.

[28] V. Almeida D. Menasce and L. Dowdy.Capacity Planning and Performance Model-
ing—From Mainframes to Client-Server Systefeentice Hall, 1994cCited on pagd5.

[29] V. Almeida D. Menasce and L. Dowderformance by Design: Computer Capacity Plan-
ning by ExamplePrentice Hall, First edition, 2004ited on page.6.

[30] D. Renzel I. Koren R. Klauck D. Schuster, P. Grubitzsch and M. Kirsche. Global-scale
federated access to smart objects using xng@14 IEEE International Conference on In-
ternet of Things (iThings), and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCeayes 185-192, 2014&ited
on page2l.

[31] R. Davies. Industry 4.0 - digitalisation for productivity and growth. European Parliamentary
Research Service. Available https://bit.ly/IMs6C1N , Accessed last time in 16
November 2018, September 2015ted on page.

[32] M. Risch E. Hofmann. Industry 4.0 and the current status as well as future prospects on
logistics. Computers in Industrypages 23—34, August 201ited on pagd.

[33] S. Han U. Jennehag E. Sisinni, A. Saifullah and M. Gidlund. Industrial internet of things:
Challenges, opportunities, and directiond&EEE Transactions on Industrial Informatics
November 2018cCited on page$ and?.

[34] Susanna Donatelli Elvio G. Amparore. The home of the new greatspn graphical ed-
itor. Available at http://www.di.unito.it/~amparore/mc4cslta/editor.
html , Accessed last time in May 2019, 2018ted on pagé&7.

[35] Red Hat Enterprise. Topic exchange. Siguniang's Blog. Availabléntis://
siguniang.files.wordpress.com/2012/05/topic-exchange.png , Accessed
last time in 17 December 2018ited on pagesi and19.

[36] T. Erl. SOA Principles of Service Design (The Prentice Hall Service-Oriented Computing
Series from Thomas Erl)Prentice Hall PTR Service-Oriented Computing Series. Upper
Saddle River, NJ 07458, USA: Prentice Hall, Pearson Education, Inc., First edition, 2007.
Cited on pagd 3.

[37] D. Augenstein F. Schoenthaler and T. Karle. Design and governance of collaborative busi-
ness processes in industry 4Rroceedings of the Workshop on Cross-organizational and
Cross-company BPM (XOC-BPM) co-located with the 17th IEEE Conference on Business
Informatics (CBI 2015)August 2015 Cited on pagé.

96 REFERENCES

[38] The Apache Software Foundation. Apache activemq. The Apache Software Foundation.
Available athttp://activemg.apache.org/ , Accessed last time in 17 December
2018. Cited on paged9and21.

[39] The Apache Software Foundation. Apache gpid. The Apache Software Foundation. Avail-
able athttps://qpid.apache.org/ , Accessed last time in 17 December 20T&ed
on pagelo.

[40] The Apache Software Foundation. Chapter 2. connection management. Available at
http://hc.apache.org/httpcomponents-client-ga/tutorial/html/
connmgmt.html , Accessed last time in March 2019, 20X$ted on pag&3.

[41] Gianfranco Balbo Gianni Conte Giovanni Chiola, Marco Ajmone Marsan. Generalized
stochastic petri nets: A de nition at the net level and its implicationdEIBE Transactions
on Software Engineerindrebruary 1993Cited on page5s.

[42] N. Golchha. Big data-the information revolutiorinternational Journal of Applied Re-
search, vol. 1, no. 1ages 791-794, sep 201&ted on page.

[43] W. Wahlster H. Kagermann and J. Helbig. Recommendations for implementing the strategic
initiative industrie 4.0: Final report of the industrie 4.0 working group. acatech. Available
at https://bit.ly/2PuOZ8h , Accessed last time in 03 July 2018, April 2013ted on
pages6.

[44] P. Wang H. Wang, D. Xiong and Y. Liu. A lightweight xmpp publish/subscribe scheme for
resourceconstrained iot devicdEEE Access 5 (2017pages 16393—16405, 201Tited

on page22.

[45] D. Siegel H.A. Kao, W. Jin and J. Lee. A cyber physical interface for automation systems-
methodology and exampleblachines pages 96—106, May 2018ited on pageg and8.

[46] Serge Haddad. Stochastic petri net. ENS Paris-Saclay & CNRS & Inria. Available at
http://www.lsv.fr/~haddad/PNcourse-part2.pdf , Accessed last time in 15
June 2018cited on page4.

[47] HiveMQ. Hivemq. HiveMQ. Available abttps://www.hivemqg.com/ , Accessed last
time in 17 December 201&ited on pagel

[48] HornetQ. Hornetq. HornetQ. Available Bitp://hornetq.jboss.org/ , Accessed
last time in 17 December 2018ited on page1.

[49] C. Hunsaker. Rest vs soap: When is rest better? Stormpath. Availablktpst
/Istormpath.com/blog/rest-vs-soap , Accessed last time in 11 December 2018,
2018. Cited on pagd 7.

[50] IBM. What is cloud computing? Available https://www.ibm.com/cloud/learn/
what-is-cloud-computing , Accessed last time in 25 Oct 2018ited on pags.

[51] L. L. Ferreira M. Albano P. P. Pereira O. Carlsson H. Derhamy J. Delsing, P. Vaiuya.
Arrowhead Framework architecture, Chapter 3 of loT Automation: Arrowhead Framework
CRC Press, 201 Cited on pagegOand1l

REFERENCES 97

[52] A. Jukan X. Masip-Bruin J. Dizdarewj F. Carpio. A survey of communication protocols
for internet-of-things and related challenges of fog and cloud computing integra&t@iv.
Computing Surveys, Vol, apr 2018.Cited on page48, 19, 20, 21, and22.

[53] B. Bagheri J. Lee and H.-A. Kao. A cyber-physical systems architecture for industry 4.0-
based manufacturing systemBroceedings of the Third Conference on Object-Oriented
Technologies and Systenpages 18-23, January 20X5ted on pagd.

[54] J. Ding J. Lyu and H. Luh. Petri nets for performance modelling study of client-server
systemslinternational Journal Of Systems Scienpages 565-571, 1998ited on page3.

[55] Swapna S. Gokhale Jijun Lu. Performance analysis of a web server with dynamic thread
pool architecture. IrProceedings of the 22nd International Conference on Software En-
gineering & Knowledge Engineering (SEKE'201@pges 99-105, January 201@ted on
pages7 and69.

[56] A.Colombo G. Kreutz K. Nagorny, R. Harrison. A formal engineering approach for control
and monitoring systems in a service-oriented environm&tEE International Conference
on Industrial Informatics (INDIN)page 480-487, 201&:ited on page 3.

[57] H. Kagermann. Change through digitization — value creation in the age of industry 4.0. In
A. Pinkwart H. Albach, H. Meffert and R. Reichwald, editokdanagement of Permanent
Change Springer Fachmedien Wiesbaden, 20¢#ed on pagé.

[58] S. Kounev. Performance modeling and evaluation of distributed component-based systems
using queueing petri net$EEE Transactions on Software Engineering, Volume 32, Issue
7, pages 486-502, 2006ited on paged5and?23.

[59] W. He L. D. Xu and S. Li. Internet of things in industries: A survégEE Transactions on
Industrial Informatics November 2014cCited on pagé.

[60] X. Liu L. Sha, S. Gopalakrishnan and Q. Wang. Cyber-physical systems: A new frontier.
Machine Learning in Cyber Trus2009. Cited on page.

[61] H. Lellelid. Coilmg. GitHub. Available ahttps://github.com/hozn/coilmq , Ac-
cessed last time in 17 December 20&8ed on pagel

[62] J. Lewis and M. Fowler. Microservices. Martin Fowler. Available fatps:
/Imartinfowler.com/articles/microservices.html , [Accessed 31 October
2018], March 2014cited on pagesi and10.

[63] J. Silva R. Duarte L. L. Ferreira M. Albano, P. M. Barbosa and J. Delsing. Quality of
service on the arrowhead framewoi017 IEEE 13th International Workshop on Factory
Communication Systems (WFCages 1-8, jun 201 Cited on pagd0.

[64] A. Gani A. Karim I. Abaker Targio Hashem A. Siddiga I. Yagoob M. Marjani, F. Nasarud-
din. Big iot data analytics: Architecture, opportunities, and open research challéBgEs.
Access bmar 2017 Cited on pageé.

[65] M. Ajmone Marsan. Stochastic petri nets: An elementary introduction. In Grzegorz Rozen-
berg, editorAdvances in Petri Nets 1988pringer Berlin Heidelberg, 199CCited on page
16.

98 REFERENCES

[66] David Mills. Network time synchronization research project. Availabletits://www.
eecis.udel.edu/~mills/ntp.html , Accessed last time in March 2019, 20XSted
on page3l.

[67] Mike Moore. Industry 4.0: the fourth industrial revolution — guide to industrie 4.0.
i-SCOOP. Available ahttps://www.i-scoop.eu/industry-4-0/ , Accessed last
time in 03 July 2018cCited on pagé.

[68] Mike Moore. What is industry 4.0? everything you need to
know. TechRadar. Available at https://www.techradar.com/news/
what-is-industry-40-everything-you-need-to-know , Accessed last time in

03 July 2018, April 2018cited on pages and6.

[69] Mosquitto. Mosquitto. Mosquitto. Available attps://mosquitto.org/ , Accessed
last time in 17 December 2018ited on page1.

[70] MuleSoft. What is a restful api? MuleSoft. Available fatps://www.mulesoft.
com/resources/api/restful-api , Accessed last time in 11 December 2018, 2018.
Cited on pagd.7.

[71] OASIS. Mqtt version 3.1.1 - oasis standard. @ OASIS. Available hap:/
docs.oasis-open.org/mqgtt/mqtt/v3.1.1/os/mqtt-v3.1.1-0s.html , Ac-
cessed last time in 17 December 2018, 20ditd on page0.

[72] OASIS. Oasis. OASIS. Available attps://www.oasis-open.org/ , Accessed last
time in 14 December 2018, 2018ited on pagd 8.

[73] Service Objects. Why rest is so popular. Service Objects. Available at
https://www.serviceobjects.com/resources/articles-whitepapers/
why-rest-popular , Accessed last time in 11 December 2018, 2Qdi&d on pagd7.

[74] OpenDDS. Opendds. OpenDDS. Availablengtp://opendds.org/ , Accessed last

time in 20 December 201&ited on page2.

[75] Oracle. Compute services: How an integrated approach to cloud will pave the way for
innovation. Available ahttps://go.oracle.com/LP=38751?elqgCampaignid=
45117/? , Accessed last time in 11 July 2018, 20Xf&ed on pags.

[76] Eclipse Foundation Oracle Corporation. Chapter 1. getting started. Availabigpsit
lljersey.github.io/documentation/latest/getting-started.html , Ac-
cessed last time in March 2019, 20XSted on pages.

[77] Eclipse Foundation Oracle Corporation. Chapter 11. asynchronous services and
clients. Available athttps://jersey.github.io/documentation/latest/
async.html , Accessed last time in March 2019, 20X$ed on page9.

[78] Eclipse Foundation Oracle Corporation. Chapter 15. server-sent events (sse) support.
Available athttps://jersey.github.io/documentation/latest/sse.html ,
Accessed last time in March 2019, 20XSted on pag&4.

[79] Eclipse Foundation Oracle Corporation. Jersey. Availablentgds:/jersey.
github.io/ , Accessed last time in March 2019, 2018ed on page?7.

REFERENCES 99

[80] L. L. Ferreira J. Eliasson M. Johansson J. Delsing |. Martinez de Soria P. Varga, F. Blom-
stedt. Making system of systems interoperable - the core components of the arrowhead
framework.Journal of Network and Computer Applicatioqmemges 85-95, mar 201Tited
on pagei, 10, 11, and14.

[81] Marco Paolieri. Oris tool - analysis of timed and stochastic petri nets. Availahtégat
/Iww.oris-tool.org/ , Accessed last time in May 2019, 2018ted on pagé?.

[82] A. Piper. Choosing your messaging protocol: Amgp, mqtt, or stomp. VMware
Blogs. Available at https://blogs.vmware.com/vfabric/2013/02/
choosing-your-messaging-protocol-amqgp-mqtt-or-stomp.html , Ac-
cessed last time in 14 December 2018, 20di®d on page48, 20, and21.

[83] ProcessOne. ejabberd. ProcessOne. Availablet@ag://www.process-one.net/
en/ejabberd , Accessed last time in 17 December 20&8ed on page2.

[84] J. Coughlin R. Mital and M. Canaday. Using big data technologies and analytics to pre-
dict sensor anomaliefroceedings of the Advanced Maui Optical and Space Surveillance
Technologies Conferencpage 84, sep 2014ited on pags.

[85] L. L. Ferreira F. Relvas R. Rocha, M. Albano and L. Matos. The arrowhead framework
applied to energy management. 2018 14th IEEE International Workshop on Factory
Communication Systems (WFCBages 1-10, June 2018ited on pagéd.0.

[86] RabbitMQ. Rabbitmg. RabbitMQ. Available attps://www.rabbitmg.com/ , Ac-
cessed last time in 17 December 20&8ed on paged9 and21.

[87] Luis Lino Ferreira Pedro Souto Pal Varga Rafael Rocha, Claudio Maia. Improving the
performance of a publish-subscribe message broker. Availablevatcister.isep.
pt/docs/1500 , Accessed last time in May 2019, 2018ted on pagé&s.

[88] Lui Sha John Stankovic Ragunathan Rajkumar, Insup Lee. Cyber-physical systems: The
next computing revolutionProceedings of the 47th Design Automation Conference, DAC
10, pages 731-736, June 20Xfted on pagé.

[89] C. Richardson. Pattern: Monolithic architecture. Microservice Architecture. Available at
https://microservices.io/patterns/monolithic.html , [Accessed 31 Octo-
ber 2018], 2017Cited on page.

[90] Christoph Roser. Industrial revolutions and future view. AllAboutLean.com. Available at
AllAboutLean.com , Accessed last time in 03 July 2018, 20fed on pagesi and6.

[91] Philip RussomBig Data Analytics TDWI Research, 2011Cited on pags.

[92] J. Schabowsky. Rest vs messaging for microservices — which one is
best? Solace. Available abttps://solace.com/blog/products-tech/
experience-awesomeness-event-driven-microservices , Accessed last time

in 11 December 2018, 201 Tited on pagd7.

[93] PROMATIS software GmbH. Smart factory, smart supply chain ... are oracle applications
smart enough? PROMATIS software GmbH. Availablentips://www.promatis.
ch/wp-content/uploads/sites/13/2015/04/WP_Smart-Factory _e.pdf ,
Accessed last time in 31 October 2018, 20¢ked on pag®.

100 REFERENCES

[94] J. Speed. Rest is for sleeping. mqtt is for mobile. Mobilebit.
Available at https://mobilebit.wordpress.com/2013/05/03/
rest-is-for-sleeping-mqtt-is-for-mobile/ , Accessed last time in 17

December 2018, 201&ited on page0.

[95] STOMP. Implementations. STOMP. Available https://stomp.github.io/
implementations.html , Accessed last time in 17 December 20&8ed on pagel

[96] STOMP. Stomp. STOMP. Available hattps://stomp.github.io , Accessed last time
in 17 December 2018&ited on pagel

[97] STOMP. Stomp protocol speci cation, version 1.2. STOMP. Availableh@ps:
//stomp.github.io/stomp-specification-1.2.html , Accessed lasttime in 17
December 2018cited on page1.

[98] A. Stork. Visual computing challenges of advanced manufacturing and industrik-&B.
Computer Graphics and Applications, vol. 35, nppages 21-25, 201%ited on pageé.

[99] Rockliffe Systems. Astrachat. Rockliffe Systems. Available heitp://www.
astrachat.com/HostedForBusiness.aspx , Accessed last time in 17 December
2018. Cited on page2.

[100] Tigase. Tigase xmpp server. Tigase. Availablétgis://tigase.net/content/
tigase-xmpp-server , Accessed last time in 17 December 20&8ed on page2.

[101] Vortex. Quality of service. PrismTech. Availablehdtp://download.prismtech.
com/docs/Vortex/html/ospl/DDSTutorial/qos.html , Accessed last time in 20
December 2018cited on page2.

[102] XMPP. History of xmpp. XMPP. Available ahttps://xmpp.org/about/
technology-overview.html , Accessed last time in 17 December 20X8ed on page
21

[103] XMPP. An overview of xmpp. XMPP. Available dtttps://xmpp.org/about/
technology-overview.html , Accessed last time in 17 December 20X8ed on page
21

[104] XMPP. Xmpp servers. XMPP. Available dtitps://xmpp.org/software/
servers.html |, Accessed last time in 17 December 20&8ed on page2.

[105] W. M. Zuberek. Timed petri nets in modeling and analysis of manufacturing systems.
Emerging Technologies, Robotics and Control Systems, VoluBBHXT. Cited on page3.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Research Goals
	1.3 Dissertation Structure

	2 Background
	2.1 Demystifying Industry 4.0
	2.1.1 Internet of Things
	2.1.2 Cyber-Physical Systems
	2.1.3 Big Data Analytics
	2.1.4 Cloud Computing

	2.2 Transitioning from Monoliths to Microservices, through REST
	2.3 The Arrowhead Framework
	2.3.1 Service Registry (Mandatory)
	2.3.2 Authorization System (Mandatory)
	2.3.3 Orchestration System (Mandatory)
	2.3.4 Event Handler

	3 Problem Statement
	4 State of the Art
	4.1 Message-Oriented protocols when REST is inadequate
	4.1.1 Advanced Message Queuing Protocol (AMQP)
	4.1.2 Message Queuing Telemetry Transport (MQTT)
	4.1.3 Simple Text Oriented Messaging Protocol (STOMP)
	4.1.4 Extensible Messaging Presence Protocol (XMPP)
	4.1.5 Data Distribution Service (DDS)
	4.1.6 Summarizing all mentioned messaging protocols

	4.2 Using Petri Nets for performance modeling

	5 Performance Evaluation of the Arrowhead Framework
	5.1 Implementation of an Arrowhead system
	5.2 Intracloud Orchestration
	5.3 Intercloud Orchestration

	6 Modeling the performance of Arrowhead's Intracloud and Intercloud orchestration
	6.1 Intracloud Orchestration
	6.1.1 Explaining the Petri net model for the Intracloud Orchestration
	6.1.2 Stochastic analysis of the Petri net model for the Intracloud orchestration

	6.2 Intercloud Orchestration
	6.2.1 Explaining the Petri net model for the Intercloud Orchestration
	6.2.2 Stochastic analysis of the Petri net model for the Intercloud orchestration

	7 Improving the performance of the Event Handler
	7.1 The Event Handler
	7.2 Original Implementation
	7.3 Enhancements
	7.3.1 Reuse open connections between the Publisher and the Event Handler
	7.3.2 Establish a persistent connection between the Event Handler and each Subscriber
	7.3.3 Reuse previously created threads in the Event Handler

	7.4 Experimental setup
	7.5 Performance evaluation of original version
	7.6 Performance evaluation of enhanced version
	7.6.1 Test Scenario A: 1 Publisher, 1 Subscriber, 2000 events
	7.6.2 Test Scenario B: 1 Publisher, 1-6 Subscribers, 9000 events
	7.6.3 Test Scenario C: 10 Publishers, 10 Subscribers, 10.000 events in total
	7.6.4 Test Scenario D: 1 Publisher and 7 Subscribers (on same machine), different threadpool sizes in Event Handler
	7.6.5 Test Scenario E: 1 Publisher and 7 Subscribers (each on a Raspberry Pi 1), different threadpool sizes in Event Handler

	8 Modelling the Event Handler's performance
	8.1 Explaining the Petri net model
	8.2 The Petri net model
	8.2.1 Comparing the model with the actual experiments
	8.2.2 Interpreting the analysis results

	9 Conclusions and Future Work
	9.1 Results from the Dissertation
	9.2 Additional Contributions
	9.3 Further Work

	A Workshop Demo at ISORC 2019
	B Workshop Poster at ISORC 2019
	C Accepted paper for IECON 2019

