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Abstract 

In the paper "Timing Analysis of Fixed Priority Self-Suspending Sporadic Tasks" published in ECRTS 2015, a MILP 
formulation is provided to compute an upper-bound on the worst-case response time (WCRT) of one self-
suspending task running concurrently with a set of higher priority non-self-suspending tasks. Section VI  of that 
paper extends the MILP formulation to the case where the higher priority tasks are also self-suspending. This 
generalisation is incorrect. We present the problem and its solution in this technical report. 
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I. INCORRECT STATEMENT

In [1], a MILP formulation is provided to compute an

upper bound on the worst-case response time (WCRT) of one

self-suspending task running concurently with a set of higher

priority non-self-suspending tasks. Section VI of [1] extends

the MILP formulation to the case where the higher priority

tasks are also self-suspending. It is stated that:

Claim 1 (in [1]). “[...] each higher priority self-suspending

task τk can safely be replaced by a non-self-suspending

task τ ′k
def
= 〈(Ck), Dk, Tk, Jk〉 in the response time anal-

ysis. The new parameter Jk is the jitter and is given by

Jk
def
= WCRTk −Ck. The worst-case execution time Ck of

the equivalent task τ ′k is defined as the sum of the worst-

case execution times of all τk’s execution regions, that is,

Ck
def
=

∑mk

j=1 Ck,j .”

This claim is supported by Theorem 2 repeated below.

Theorem 2 (in [1]). The interference caused by τk ∈ hp(τi)
on a self-suspending task τi is upper bounded by the interfer-

ence caused by the transformed task τ ′k
def
= 〈(Ck), Dk, Tk, Jk〉.

Although Theorem 2 is correct, Claim 1 is not. It is

demonstrated with a counter-example below.

Counter-Example 1. Assume the task set composed of three

tasks τ1 = 〈(1), 4, 4, 0〉, τ2 = 〈(1, 9, 1), 29, 29, 0〉 and τ3 =
〈(3, 5, 3), 100, 100, 0〉. τ1 has the highest priority and τ3 the

lowest. We are interested in computing the WCRT of τ3.

Since τ1 does not self-suspend we get τ ′1 = τ1 and using the

definition provided in Claim 1, we get τ ′2 = 〈(2), 29, 29, J2〉
where J2 = WCRT2 −C2 = WCRT2 −2. Since the minimum

inter-arrival time of τ1 is smaller than the suspension time of

τ2, task τ1 generates the worst-case interference when it is

released synchronously with each execution region of τ2 (see

Figure 1(b)). In which case, we get WCRT2 = 13 and thus

J2 = 13− 2 = 11.

Figure 1(a) depicts one of the release patterns that gen-

erates the WCRT of τ3 when executed concurrently with the

modified tasks τ ′1 and τ ′2. In that execution scenario, the WCRT

of τ3 is 16. Indeed, due to its large inter-arrival time, task τ ′2
can interfere at most once with τ3 since, even considering its

release jitter, the earliest possible release for its second job is

at time T2 − J2 = 18 (see Figure 1(a)).

Figure 1(b) shows the WCRT of τ3 when it executes con-

currently with the actual tasks τ1 and τ2. As it can be seen,
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Fig. 1: Counter-example to Claim 1.

the WCRT of τ3 is in fact 17, thus contradicting the claim that

τ2 can “safely be replaced by” τ ′2 in the WCRT analysis of

τ3.

Note that Counter-Example 1 does not invalidate Theo-

rem 2. Tasks τ2 and τ ′2 cause the same amount of interference

to τ3. In fact, Theorem 2 is correct. However, Theorem 2 does

not prove Claim 1. Theorem 2 defines an upper bound on

the worst-case interference generated by one self-suspending

task (i.e., either neglecting the impact of the other tasks or

assuming that the WCRT is already known). Claim 1 however

claims an upper bound on the interference generated by a set

of self-suspending tasks.

The main issue with Theorem 2 is that it does not tell us

how the interference of a task such as τ2 is distributed between

the execution regions of a lower priority task (in this case τ3).

However, as shown in Counter-Example 1, the interference

distribution is of prime importance to compute a valid upper

bound on the WCRT of τ3 since it directly impacts the number

of jobs of other tasks (τ1 in this case) that can interfere with

τ3.

II. SOLUTION

The error in Claim 1 is to model the whole self-suspending

task τk as a single non-self-suspending task τ ′k. In fact, each



execution region τk,j of τk should be modelled by a different

non-self-suspending task τ ′k,j with jitter Jk,j . Such solution

was already proposed in [2]. In [2], the jitter Jk,j is given by

the difference between the WCRT and the best-case response

time (BCRT) of the partial self-suspending task composed of

the j−1 first execution and suspension regions of τk. Formally,

Lemma 4. Let τk,j be the jth execution region of τk, and

let τ
j
k be a self-suspending task composed of the j − 1

first execution and suspension regions of τk, that is, τ
j
k

def
=

〈(Ck,1, Sk,1, . . . , Ck,j−1, Sk,j−1), Dk, Tk〉. The release jitter

of τk,j is upper bounded by Jk,j
def
= WCRTj

k −BCRTj
k,

where WCRTj
k and BCRTj

k are the worst-case and best-case

response time of τ
j
k , respectively.

Proof. The minimum inter-arrival time of the execution region

τk,j of task τk is inherited from the minimum inter-arrival time

of τk. However, the execution region τk,j can start to execute

only when the (j − 1)th suspension region of τk completes,

that is, when the partial self-suspending task τ
j
k completes its

execution. Since the response time of τ
j
k may vary between

different jobs released by τk, the release of τk,j experiences a

jitter. This jitter is upper bounded by the difference between

the longest and the shortest response time of τ
j
k , i.e., it is upper

bounded by the difference between WCRTj
k and BCRTj

k. �

Let hp(τss) be a set of self-suspending tasks with higher

priorities than τss. And let hp(τss)
′ be a set of non-self-

supending tasks where for each task τk ∈ hp(τss), the

set hp(τss)
′ contains mk non-self-suspending tasks τ ′k,j

def
=

〈(Ck,j), Dk, Tk, Jk,j〉 with 1 ≤ j ≤ mk, where Jk,j is defined

as in Lemma 4 and each task τ ′k,j (1 ≤ j ≤ mk) has the same

priority than τk. We prove below that replacing hp(τss) with

hp(τss)
′ in the WCRT analysis of τss provides a response time

upper bound which is at least as large as the WCRT when

using hp(τss). Therefore, replacing hp(τss) with hp(τss)
′ is

safe.

We first define what is a legal release pattern for a task set.

Definition 1 (Legal release pattern for a task set τ ). A release

pattern R defines all the instants at which each execution

region of the tasks in τ releases jobs. A release pattern

R is legal if all the constraints defined by the tasks in τ

(i.e., minimum inter-arrival time, precedence constraints and

release jitter) are respected in R.

Now, we prove that the release pattern of the task set

hp(τss) that generates the WCRT of τss can be transformed

in a legal release pattern for the tasks in hp(τss)
′.

Lemma 5. Let R be any legal release pattern of the execution

regions of the tasks in hp(τss) such that the tasks in hp(τss)

generate the worst-case interference on τss. Let R
′

be a

release pattern for the tasks in hp(τss)
′ such that whenever

an execution region τk,j ∈ hp(τss) releases a job in R, the

corresponding task τ ′k,j releases a job at the same instant in

R
′

. The release pattern R
′

is a legal release pattern for the

tasks in hp(τss)
′.

Proof. We have to prove that the minimum inter-arrival times,

release jitters and precedence constraints defined for the task

in hp(τss)
′ are all respected in R

′

.

1) The minimum inter-arrival time of τk,j is Tk and its

release jitter is smaller than or equal to Jk,j (from

Lemma 4). Let τ ℓk,j be the ℓth instance (job) released by

τk,j . Since R is legal, the time between any two jobs

τ ℓk,j and τ
ℓ+p
k,j released by τk,j is at least (p×Tk)−Jk,j .

Therefore, the time between any two jobs τ ℓ
′

k,j and τ
ℓ+p′

k,j

released by τ ′k,j is at least (p × Tk) − Jk,j in the

release pattern R
′

. Since by definition, the minimum

inter-arrival time and the release jitter of τ ′k,j are Tk

and Jk,j respectively, the release pattern R
′

respects

the minimum inter-arrival time and the release jitter

constraints on τ ′k,j .

2) Since the tasks in hp(τss)
′ do not have any precedence

constraints, the release pattern R
′

trivially respects those

constraints.

By 1. and 2., the release pattern R
′

is legal for hp(τss)
′. �

We finally prove that replacing hp(τss) by hp(τss)
′ in the

WCRT analysis of τss is safe.

Theorem 3. The worst-case interference generated by the

tasks in hp(τss)
′ is lower bounded by the worst-case inter-

ference generated by the tasks in hp(τss).

Proof. The proof is based on the following facts:

F1. If a job of τk,j or τ ′k,j interferes with the execution region

τss,p of τss than it does not interfere with any other

execution region of τss. This statement is true because

(i) both τk,j and τ ′k,j have a higher priority than τss,

and (ii) they do not self-suspend. Therefore, when they

start to interfere with one execution region of τss, that

execution region cannot resume its execution before τk,j
or τ ′k,j complete their own execution.

F2. When they execute for their WCET, one job of τk,j
generates as much interference as one job of τ ′k,j . It is

simply due to the fact that τk,j and τ ′k,j have the same

WCET.

Let R be any legal release pattern of the execution regions

of the tasks in hp(τss) such that the tasks in hp(τss) gen-

erates the worst-case interference on τss. And let R
′

be the

corresponding release pattern for the tasks in hp(τss)
′ such

that whenever an execution region τk,j of a task τk ∈ hp(τss)
releases a job in R, the corresponding task τ ′k,j releases a job

at the same instant in R
′

. By Lemma 5, R
′

is a legal release

pattern for the tasks in hp(τss)
′. Since by Fact F2., each

job released by each task τ ′k,j generates as much interference

than each job released by the corresponding execution region

τk,j , and because by Fact F1., this interference is generated

in the same execution region of τss, the total interference

generated by the set of tasks in hp(τss)
′ under the release

pattern R
′

is equal to the worst-case interference generated

by the corresponding self-suspending tasks in hp(τss) under

R.



Therefore, because we proved that there exists at least one

legal release pattern of the tasks in hp(τss)
′ generating as

much interference as the worst-case interference generated by

hp(τss), the worst-case interference generated by the tasks

in hp(τss)
′ is lower bounded by the worst-case interference

generated by the tasks in hp(τss). �

Theorem 4. The WCRT of τss running concurrently with

hp(τss)
′ is no smaller than its WCRT when it runs concur-

rently with hp(τss).

Proof. Theorem 3 proves that hp(τss)
′ generates at least as

much interference on τss than hp(τss). Therefore, the WCRT

of τss when its runs concurrently with hp(τss)
′ is no smaller

than its WCRT when it runs concurrently with hp(τss). �

A. Upper Bounding Jk,j

The solution presented above requires an upper bound on

the jitter Jk,j experienced by each execution region τk,j . In

this section, we provide three different upper bounds (stated

in Lemmas 6, 7 and 8) on the jitter Jk,j .

Lemma 6. The release jitter Jk,j of τk,j is upper bounded by

WCRTk −
∑mk

p=j Ck,p −
∑mk−1

p=j Sk,p.

Proof. Let ak and fk be the release time and the com-

pletion time of any job of τk, and let ak,j be the release

time of the execution region τk,j in that job. Instant ak,j
also corresponds to the completion time of the partial self-

suspending task τ
j
k . We prove that ak,j is no later than

ak +WCRTk −
∑mk

p=j Ck,p −
∑mk−1

p=j Sk,p.

The proof is by contradiction. Let us assume that the

completion of τ
j
k , and hence the release of τk,j , happens after

ak +WCRTk −
∑mk

p=j Ck,p −
∑mk−1

p=j Sk,p, that is,

ak,j > ak +WCRTk −

mk
∑

p=j

Ck,p −

mk−1
∑

p=j

Sk,p (1)

If every execution region executes for its worst-case execution

time and every suspension region suspends for its worst-case

suspension time, then τk must still execute for
∑mk

p=j Ck,p

time units and suspend for
∑mk−1

p=j Sk,p time units after

ak,j . Therefore, even without interference from higher priority

tasks, task τk completes its execution at time

fk ≥ ak,j +

mk
∑

p=j

Ck,p +

mk−1
∑

p=j

Sk,p

Replacing ak,j with Eq. (1), we get

fk > ak+WCRTk −

mk
∑

p=j

Ck,p−

mk−1
∑

p=j

Sk,p+

mk
∑

p=j

Ck,p+

mk−1
∑

p=j

Sk,p

Simplifying and passing ak from the right hand side to the

left-hand side, we obtain

fk − ak > WCRTk

which is a clear contradiction with the fact that WCRTk is

an upper bound on the response time of τk. It results that for

any job of τk, the partial self-suspending task τ
j
k completes at

time ak,j ≤ ak +WCRTk −
∑mk

p=j Ck,p −
∑mk−1

p=j Sk,p. The

worst-case response time WCRTj
k of τ

j
k is therefore upper

bounded by WCRTk −
∑mk

p=j Ck,p −
∑mk−1

p=j Sk,p.

Since the best-case response time BCRTj
k of τ

j
k is triv-

ially lower bounded by 0, the jitter Jk,j , which by defini-

tion is equal to WCRTj
k −BCRTj

k, is upper bounded by

WCRTk −
∑mk

p=j Ck,p −
∑mk−1

p=j Sk,p. �

Lemma 7. The release jitter Jk,j of τk,j is upper bounded

by
∑j−1

p=1 (UBk,p +Sk,p) where UBk,p is an upper bound on

the WCRT of each execution region τk,p given by the smallest

positive t such that

t = Ck,p +
∑

τℓ∈hp(τk)

⌈

t+ Jℓ

Tℓ

⌉

Cℓ

Proof. It was proven in [3] that the WCRT of a self-

suspending task τ
j
k is upper bounded by

∑j−1
p=1 (UBk,p +Sk,p).

Since Jk,j
def
= WCRTj

k −BCRTj
k, and because BCRTj

k is

lower bounded by 0, we get that Jk,j ≤
∑j−1

p=1 (UBk,p +Sk,p).
�

Lemma 8. The release jitter Jk,j of τk,j is upper bounded by

UBj
k +Sk,j−1 where UBj

k is given by the smallest positive t

such that

t =

j−1
∑

p=1

Ck,p +

j−2
∑

p=1

Sk,p +
∑

τℓ∈hp(τk)

⌈

t+ Jℓ

Tℓ

⌉

Cℓ

Proof. It was proven in [3] that the WCRT of a self-

suspending task 〈(Ck,1, Sk,1, . . . , Ck,j−1), Dk, Tk〉 is upper

bounded by UBj
k. Because the last suspension region Sk,j−1

of τ
j
k cannot be preempted, the WCRT of τ

j
k is given by

UBj
k +Sk,j−1. Since Jk,j

def
= WCRTj

k −BCRTj
k, and because

BCRTj
k is lower bounded by 0, we get that Jk,j is upper

bounded by UBj
k +Sk,j−1. �

III. DISCUSSION

Using Theorem 4, each higher priority self-suspending task

can be transformed in a set of non-self-suspending tasks with

jitter. One can therefore use the MILP formulation proposed

in [1], which computes an upper bound on the WCRT a self-

suspending task τss running concurrently with a set of non-

self-suspending tasks with jitter.

For the convenience of the reader, we reproduce below the

MILP formulation.



Maximize:

mss
∑

j=1

Rss,j (2)

Subject to:

mss
∑

j=1

Rss,j +

mss−1
∑

j=1

Sss,j ≤ UBss (3)

∀τss,j ∈ τss : Rss,j = Css,j +
∑

τp∈hp(τss)′

NIp,j ×Cp (4)

Rss,j ≤ UBss,j (5)

∀τk ∈ hp(τss)
′
, ∀τss,j ∈ τss :

Ok,j ≥ −Jk (6)

Ok,j+1 ≥ Ok,j +NIk,j ×Tk − (Rss,j + Sss,j)− Jk (7)

NIk,j ≥ 0 (8)

NIk,j ≤

⌈

Rss,j −Ok,j

Tk

⌉

(9)

Rss,j > relk,j +
∑

τp∈hp(τss)′

max{0,

⌊

dp,j − relk,j
Tp

⌋

Cp}

(10)

where

relk,j
def
= Ok,j + (NIk,j −1)× Tk

dp,j
def
= Op,j +NIp,j ×Tp

and where UBss is an upper bound on the WCRT of τss given

by the smallest positive t such that

t =

mss
∑

j=1

Css,j +

mss−1
∑

j=1

Sss,j +
∑

τp∈hp(τss)′

⌈

t+ Jp

Tp

⌉

Cp

and UBss,j is an upper bound on the WCRT of each execution

region τss,j given by the smallest positive t such that

t = Css,j +
∑

τp∈hp(τss)′

⌈

t+ Jp

Tp

⌉

Cp

Finally, an upper bound on the WCRT of τss is given by

mss
∑

j=1

Rss,j +

mss−1
∑

j=1

Sss,j

where
∑mss

j=1 Rss,j is the solution to the MILP formulation.

A. Impact on Other Results in [1]

At the exception of Claim 1, none of the other results pre-

sented in [1], including the experimental section, are impacted

by the error reported in this errata.

B. Impact on Related Work

To the best of the authors’ knowledge, three papers [4]–[6]

building on top of [1] were published recently. As far as the

authors can tell, the results in those papers were not affected

by the error reported in this technical report.
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