pd

CISTER

Research Centre in

Computing Systems

Journal Paper

Enabling Ada and Open MP Runtimes
Inter operability through Template -based
Execution

Pre-proof article

Sara Royuela
Luis Miguel Pinho*
Eduardo Quifiones

*CISTER Research Centre
CISTERTR-191218

2019/12/19

Journal Paper CISTERR191218 Enabling Ada and OpenMP Runtimes Interoperability through ...

Enabling Ada and OpenMP Runtimes Interoperability through Template-based
Execution

Sara Royuela, Luis Miguel Pinho*, Eduardo Quifiones

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)
Rua Dr. Antonio Bernardino de Almeida, 431
4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159
E-mail: Imp@isep.ipp.pt

https://lwww.cister-labs.pt

Abstract

The growing trend to support parallel computation to enable the performance gainstbé recent hardware
architectures is increasingly present in more conservative domains, such as safety-critigatams. Applications
such as autonomous driving require levels of performance only achievable by fully lagerg the potential

parallelism in these architectures. To address this requirement, the Ada language, designed fafety and

robustness, is considering to support parallel features in the next revision of theastlard (Ada 202X). Recent
works have motivated the use of OpenMP, a de facto standard in high-performance pating, to enable

parallelism in Ada, showing the compatibility of the two models, and proposing static analy® enhance

reliability. This paper summarizes these previous efforts towards the integration of Opéhivito Ada to exploit its
benefits in terms of portability, programmability and performance, while providing the sgfdtenefits of Ada in
terms of correctness. The paper extends those works proposing and evaluating an apfibcetransformation that

enables the OpenMP and the Ada runtimes to operate (under certain restrictions) as theyewiategrated. The
objective is to allow Ada programmers to (naturally) experiment and evaluate the besefif parallelizing

concurrent Ada tasks with OpenMP while ensuring the compliance with both specifications.

© 2019 CISTER Research Center 1
www.cister-labs.pt

Enabling Ada and OpenMP Runtimes Interoperability through Template-based Execution

Journal Pre-proof

Enabling Ada and OpenMP Runtimes Interoperability through
Template-based Execution

Sara Royuela, Luis Miguel Pinho, Eduardo Quifiones

PIl:
DOI:
Reference:

To appear in:

Received date:

Revised date:

Accepted date:

S1383-7621(19)30509-0
https://doi.org/10.1016/j.sysarc.2019.101702
SYSARC 101702

Journal of Systems Architecture

15 July 2019
9 November 2019
11 December 2019

UES

Please cite this article as: Sara Royuela, Luis Miguel Pinho, Eduardo Quifiones, Enabling Ada and
OpenMP Runtimes Interoperability through Template-based Execution, Journal of Systems Architec-
ture (2019), doi: https://doi.org/10.1016/j.sysarc.2019.101702

This is a PDF le of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the de nitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its nal form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier B.V.

Journal Pre-proof

Enabling Ada and OpenMP Runtimes Interoperability
through Template-based Execution

Sara Royueld, Luis Miguel Pinhd®, Eduardo Quinone$

aBarcelona Supercomputing Center
bISEP, Polytechnic Institute of Porto

Abstract

The growing trend to support parallel computation to enablethe perfor-
mance gains of the recent hardware architectures is increagy present in
more conservative domains, such as safety-critical systendgoplications such
as autonomous driving require levels of performance onlyreevable by fully
leveraging the potential parallelism in these architectws. To address this
requirement, the Ada language, designed for safety and robuosss, is consid-
ering to support parallel features in thie next revision of ta standard (Ada
202X). Recent works have motivated the use of OpenMP, a de facttandard
in high-performance computing, to enable parallelism in Adashowing the
compatibility of the two models, and proposing static analyis to enhance
reliability. This paper summarizes these previous e ortsdwards the inte-
gration of OpenMP . into Ada to exploit its bene ts in terms of patability,
programmability and performance, while providing the safg bene ts of Ada
in terms of correctness. The paper extends those works pr@otg and eval-
uating an application transformation that enables the OpelP and the Ada
runtimes to operate (under certain restrictions) as they werintegrated. The
objective is to allow Ada programmers to (naturally) experimet and eval-
uate the bene ts of parallelizing concurrent Ada tasks with @enMP while
ensuring the compliance with both speci cations.

Keywords: Concurrency, parallelism, Ada, OpenMP, safety, runtimes

1. Introduction

Safety-critical systems have evolved to such a degree thaiet use of par-
allel paradigms is crucial to deliver the levels of performae necessary to im-
plement the most advanced functionalities (e.g., autonomas driving). This

Preprint submitted to Advances in Reliable Software Technologies: Akda PerspectiveDecember 19, 2019

Journal Pre-proof

trend has arrived to Ada, a language designed for safe and secprogram-
ming which is widely used in safety-critical domains, suchsaavionics and
aerospace. In this regard, two complementary research line® tackling the
extension of Ada to support parallelism: a) the simple yet pasvful language-
based parallel model that, based on a fully strict fork-joirmodel, is able to
exploit structured parallelism on shared memory architeares; and b) the
incorporation of the OpenMP parallel programming model ird Ada, to e -
ciently exploit structured and unstructured parallelism. This work focuses in
the latter approach (although it is discussed its comparisowith the former,
and the use-cases where that restricted model can be exphoi}.

OpenMP is a parallel programming model extensively used in g¢h-
Performance Computing (HPC) domains, that o ers a tasking mdel very
suitable to cope with unstructured and highly dynamic pardélism. It de-
nes tasks as units of parallelism composed of the task's executable eod
and its data environment, as well as di erent synchronizatin mechanisms
(e.g., point-to-point synchronizations via data dependemes, and full syn-
chronizations via memory fences). This, coupled with the aelerator model,
allows targeting from simple SMP (Symmetric Multiprocessig) machines, to
complex and heterogeneous architectures, all using the samprogramming
model.

This paper presents the integration of the OpenMP parallel ppgram-
ming model into the Ada language to fully exploit the bene ts ofOpenMP,
in terms of portability, programmability and performance, while providing
the safety bene ts of the Ada language, in terms of correctnges We divide
our contribution in three main pillars: (1) the programming modeli.e., how
the OpenMP directives are integrated in Ada at a language leve{2) the
compiler, i.e., the static analysis and transformations needed to sare cor-
rectness, and (3) theruntime, i.e., the interoperability needed between the
Ada runtime and the OpenMP runtime. These three contributiondiave been
presented in [1], [2] and [3] respectively.

Concretely, regarding the programming model, we propose aw syntax
for OpenMP and Ada (OpenMP is only supported by C, C++ and For-
tran languages) that aims to maintain the clarity and certanty, a distinct
characteristic of Ada. Regarding the compiler, we propose arges of com-
piler analyzes that seek data races in Ada and Ada+OpenMP progms, and
provide the user with feedback to solve the errors. Finally,egarding the
runtime, we prove that OpenMP fully supports the Ada 202X parkel model
(and hence can be used to implement it), as well as analyze tildormation

2

Journal Pre-proof

that must be interchanged between the two runtimes (Ada and GgnMP) in
order to ensure a correct interoperability among then and guwantee safety
requirements (such as a priority driven scheduling).

This paper further extends the work done at the runtime level ah pro-
poses an source-code transformation that enables the Opdaind the Ada
runtimes to operate (under certain restrictions) as they we actually inte-
grated into a uni ed framework. The objective of our proposhis to allow
Ada programmers to naturally experiment and evaluate the bents of par-
allelizing concurrent Ada tasks with OpenMP, ensuring that bth, the Ada
and the OpenMP runtimes, are compliant with the respective gti cations.

The remainder of this paper is organized as follows: Secti@rintroduces
the programming models used in this work, which are the Ada 2B2arallel
model and OpenMP; Section 3 analyzes the bene ts that exptoig OpenMP
can provide to Ada users in terms of programmability and perfanance, and
hence motivates the use of this parallel model to boost Ada algations;
Section 4 compares the Ada 202X parallel model and the OpenMIiPogram-
ming model to prove that OpenMP: can be used to implement the Adpar-
allel model, and also exposes the syntax needed to use Opentifectly in
Ada applications; Section 5 presents a series of compiler aysa$ techniques
needed to ensure that Ada and Ada+OpenMP codes are data racedresec-
tion 6 introduces a new source-code template that allows Adaggrammers
to introduce OpenMP naturally in their codes while ensuringhe correct in-
teroperability between the two runtimes, and evaluates the &gal between
Ada and OpenMP at thread level; nally, Section 7 shows the carusions of
our work.

2. Programming Models

For this work we consider two programming models: the Ada langge-
based parallel model, which o ers extensions to the Ada langge to support
ne-grained parallelism, and OpenMP, which o ers a complet API for ex-
ploiting several forms of parallelism. This section rst mtvates the selection
of OpenMP. Then, it introduces the two parallel programming mdels, de-
scribing the execution and memory model, to ease the readinfthe rest of
the document.

Journal Pre-proof

2.1. Why OpenMP?

Programming multi-cores is di cult due to the multiple constraints it in-
volves. Hence, the success of a multi-core platform relies i productivity,
which combines performance, programmability and portabiy. With such a
goal, a multitude of programming models coexist. The di enat approaches
can be grouped in three paradigms: (Ihardware-centric models aim to re-
place the native platform programming with higher-level, usr-friendly solu-
tions, and focus on tuning an application to match a chosenatform, making
their use a neither scalable nor portable solution (e.g., NVIIB ® CUDA [4]);
(2) application-centric models deal with the application parallelization from
design to implementation, and o er less explicit parallel @enstructs, which,
although portable, may require a full rewriting process to@omplish produc-
tivity (e.g., OpenCL [5]); and (3) parallelism-centric models provide typical
parallelism constructs in a simple and e ective way, and atarious levels of
abstraction, bringing exibility and expressiveriess, whé decoupling design
from implementation (e.g., OpenMP [6]).

Given the vast amount of options available, there is a notiedle need to
unify programming models for many-cores [7]. In that sense,p@nMP has
proved many advantages over its competitors consideringl gderformance,
programmability and portability. On one hand, the OpenMP Apgication
Program Interface (API) o ers a simple yet complete and exilbe platform
for writing multi-threaded applications with C/C++ and Fort ran by means
of a number of compiler directives, runtime library routinesand environment
variables. It relies on compiler and runtime support to implaent its func-
tionalities. In essence, the language is built around systs where multiple
concurrent threads have access to a shared-memory space; ev@s, it has
evolved to target more complex and heterogeneous systemsn the other
hand, di erent evaluations demonstrate that OpenMP delives comparable
performance and e ciency compared to highly tunable modelsuch as TBB
[8], CUDA [9], OpenCL [10], and MPI [11]. Moreover, OpenMP hadi erent
advantages over low-level libraries such as Pthreads: a)dters robustness
without sacri cing performance [12], and b) OpenMP does ndbck the soft-
ware to a speci c number of threads. Another advantage is thathe code
can be compiled as a single-threaded application just didaty support for
OpenMP, thus easing debugging.

Overall, the use of OpenMP presents three main advantages:) @n ex-
pert community has constantly reviewed and augmented the lgnage for
more than twenty years, thus, less e ort is needed to introdte ne-grained

4

Journal Pre-proof

parallelism in Ada; (2) OpenMP is widely implemented by sevat chip and
compiler vendors (e.g., GNU [13], Intél [14], and IBM [15]), meaning that
less e ort is needed to manage parallelism as the OpenMP rumte will man-
age it; and (3) OpenMP provides greater expressiveness doeyears of expe-
rience in its development; in this regard, the language o srseveral directives
for parallelization and synchronization, along with a larg number of clauses
that allow to contextualize concurrency, providing a ner ontrol of the par-
allelism. In a nutshell, OpenMP is a good candidate to intragce ne-grained
parallelism to Ada by virtue of its bene ts.

2.2. OpenMP

Initial versions of OpenMP, up to version 2.5 [16], implemeat athread-
centric model of parallelism that de nes a conceptual abstraction afser-level
threads exposing the management of the underlying resouraesthe user.
This model relies on theparallel and a series of worksharing constructs
(e.g.,for andsections), and enforces a rather structured parallelism. Next
releases, since version 3.0 [17], introduced support fotask-centric model
(a.k.a. tasking mode}, which is oblivious of the physical layout, and focuses
on exposing parallelism rather than mapping parallelism tthreads. As a re-
sult, this model allows de ring unstructured and highly dyramic parallelism
by means of thetask construct. Finally, since version 4.0 [18], OpenMP
includes support for accelerators, error handling, thread a ity and SIMD
extensions, as well as augments the tasking model (e.g., @adependen-
cies, thetaskloop ' construct), expanding the language beyond its traditional
boundaries.

2.2.1. Execution Model

OpenMP implements a fork-join model of parallelism. The pgram be-
gins as a single thread of execution, called theitial thread. The parallel
construct spawns ateam of threads at the beginning of the parallel region,
and joins the team at the implicit barrier at the end of the paallel region. The
amount of computing resources can be de ned by means of themthreads
clause (if none is de ned, then the number is implementationealned, al-
though the number of cores is commonly considered). Within ¢éhparallel
region, work can be distributed among threads by means of weskaring con-
structs or tasking constructs. The two models have equivaleperformance
[19]

Journal Pre-proof

The OpenMP tasking model de nes preemption points for tasks;alled
task scheduling points(TSPs). These points, de ned in the speci cation
(Section 2.10.6 [20]), are the moments at which a thread catop executing
a speci c task and start executing a di erent one. It is resposibility of the
runtime to decide whether a task is preempted (and potentigl migrated) or
not. Furthermore, OpenMP de nes two di erent approaches torelate tasks
to threads: (1)tied tasks are those that are tied to the thread that starts exe-
cuting them, and (2) untied tasks are those that can migrate among threads.
This connection between threads and tasks exists because tintroduction
of the tasking model in version 3.0 had to maintain the cohereyp with the
already existing thread-model and, for that reason, tasksatied by default.

Mutual exclusion is accomplished via thecritical =~ and atomic con-
structs (while the former allows an arbitrary block of codethe latter only
accepts speci ¢ simple operations such as assignments andaby opera-
tions). Furthermore, synchronization can be de ned depeng on the gran-
ularity: full synchronization is de ned by means of thebarrier and the
taskwait constructs (while a barrier synchronizes all threads in theur-
rent team, a taskwait only synchronizes child tasks of the biting task?),
and point-to-point synchronizationis accomplished by means of dependency
clauses. These can de ne three di erent ways of data- ow syhconization
among tasks, based on the particular dependency clause, gthtan be: (1)
in, a task with an I-value as input dependency is eligible to ruwhen all pre-
vious tasks with the same [-value as output dependency haveished their
execution; (2)out, a task with an I-value as output dependency is eligible to
run when all previous tasks with the same I-value as input or ¢put depen-
dency have nished their execution; and (3)nout , a task with an I-value as
inout dependency behaves as if it was an output dependency.

2.2.2. Memory Model

OpenMP is based on a relaxed-consistency, shared-memorydaio This
means there is a memory space shared for all threads, calledmory. Ad-
ditionally, each thread has a temporary view of the memory. taitively, the
temporary view is not always required to be consistent withhe memory.
Instead, each private view synchronizes with the main memoryy means

1The binding region is the enclosing region that determines the execution context and
limits the scope of the e ects of the bound region.

Journal Pre-proof

of the ush operation. Hence, memory operations can be freely reordered
except around ushes. This synchronization can be implicitig any, implicit

or explicit, synchronization operation causing a memory mee) or explicit
(using the flush directive). Data cannot be directly synchronized between
the temporary view of two di erent threads.

The view each thread has for a given variable is de ned usingth-sharing
clauses, which can determine the following sharing scop€$) private, a new
fresh variable is created within the scope; (2)stprivate , a new variable is
created in the scope and initialized with the value of the aginal variable;
(3) lastprivate, a new variable is created within the scope and the original
variable is updated at the end of the execution of the regionnd (4) shared
the original variable is used in the scope, opening the posilyi of race con-
ditions. Additionally, the data-sharing attributes for variables referenced in
a construct can be: (1)predetermined those that, regardless of their oc-
currences, have a data-sharing attribute determined by th@penMP model;
(2) explicitly determined those that are referenced in a given construct and
are listed in a data-sharing attribute clause on the constat; or (3) implic-
itly determined, those that are referenced in a given construct, do not have
predetermined data-sharing attributes and are not listedni a data-sharing
attribute clause on the construct.

2.3. Ada 202X Parallel Model

The Ada language includes support for concurrency as part ofaéhlan-
guage standard, by means of Taskswhich are entities that denote concur-
rent actions, and inter-task communication mechanisms su@as protected
objects or the rendezvousmechanism. This model is targeted to support
the concurrent functionalities that the software should spport, providing
coarse-grained parallelism. Hence, it is not suitable to spprt ne-grained
parallelization in the hardware platform, leading in this eses to higher over-
head [21].

To address the evolution for parallel support, a proposal wamade to ex-
tend Ada with a ne-grained parallel model, based on the notio of tasklets
[22], where parallelism is not fully controlled by the progtmmer: the pro-
grammer speci es the parallel nature of the algorithm, andrite compiler and

2Ada tasks are coarse-grained concurrent entities, not related to Open ne-grained
parallel tasks.

Journal Pre-proof

the runtime have the freedom to organize parallel computatns. Based on
this model, speci c language extensions have been proposeé8][to cover
two cases where parallelization is suitable: parallel bk and parallel loops,
including reductions and iterators. In fact, reductions a& more general than
their use in loops, but that is not necessary for the work in tlsi paper.

This proposal led to a set of proposed changes or the next r&@oen of
the Ada language (Ada 202X, currently in its nal working draft [24]). The
changes specify that an Ada task (a concurrent activity) canepresent mul-
tiple logical threads of control (Ada 202X, Section 9) which e¢aproceed in
parallel within the context of well speci ed parallel regims: parallel loops
and parallel blocks).

2.3.1. Execution Model

In the Ada parallel model, parallel execution follows a forfein model,
with clear (language-based) parallel regions. In both cas@oops and blocks),
the keyword parallel allows the compiler to split the work into logical
threads of control. In the case of parallel lcops, the loop mge is split into
non-overlapping chunks, each one being possible to procesparallel. For
the parallel blocks, separate sequences of statements caaceite in parallel,
each sequence being mapped to a logical thread of control.

The draft Ada 202X standard does not de ne how the logical thizds of
control are executed by the runtime. This provides freedonotthe compiler
and runtime, as long as the semantics of parallel construcése guaranteed.
In particular, the draft describes arun-to-completion model [25] where the
logical threads of control are executed by a unique runtimexecutor (e.g.,
an operating system thread) until it completes. Note that exedors do not
necessarily have to run uninterruptedly or to execute on theame core, since
they may be scheduled in a preemptive fashion.

2.3.2. Memory Model

As the Ada language supports concurrency in the language sint lbe-
ginnings (Ada 83), it already provides a memory model that caiders data
races, which is now updated to consider logical threads of ¢ai. The lan-
guage allows a relaxed-consistency memory model where tlahbility of the
variables may vary within parallel regions, but clearly spees the semantics
which allow for concurrent access to the shared variables (AQ02X, Section
9.10). For safety reasons, Ada delegates the responsibili§ de ning this
visibility to the compiler, which is in charge to ensure a safexecution.

8

Journal Pre-proof

3. Motivation: The Performance Bene ts of OpenMP

The idea of introducing OpenMP in Ada is quite appealing, but sl we
need some evidence that: (1) the Ada tasking model may not dedivcompet-
itive levels of performance when running ne-grained task$2) OpenMP can
e ciently exploit the parallelism introduced in the Ada parallel Model, and
(3) OpenMP o ers mechanisms, that do not exist neither in theAda model
nor in the Ada parallel model, to exploit further forms of pardelism. With
such a purpose, we have conducted a series of experimentd thaluate the
bene ts of OpenMP compared to other implementations that eploit paral-
lelism in Ada, i.e., native Ada tasks [26] and Para n [27]. The &perimental
setup used is the following:

Runtimes. We use three runtime implementations that support parallém:

- libgomp the GNU runtime library for OpenMP from GCC 7.2.
- GNAT [28], the GNU runtime library for Ada from GCC 7.2.
- Paran 5.0 [27], a suite for Ada.

Applications and Implementations.We consider three applications: an em-
barrassingly parallel mairix intensive computation, Matrix), the LU
factorization (LU), and the Cholesky decomposition Gholesky. We
use four di erent parallelization strategies: the Ada parallel model im-
plemented with OpenMP, OpenMP (including task dependencigsot
available in the Ada parallel model), Ada tasks, and Para n. Fdlowing
we detail the relevant aspects of each version:

- Matrix. This application, resembling image processing algorithms
iterates 50000 times over a 512x512 matrix, and performs &d
pendent arithmetical operations on each element. The OperiM
version divides the matrix into blocks, each processed by aet-
ent OpenMP task; the number of threads independent from the
number of tasks. The Ada tasks version creates an array of Ada
tasks, and assigns a set of rows to each task; the number ofdhds
is determined by the Ada runtime, which uses one thread for gac
task, and a thread for the main task. Finally, the Para n version

3The source codes of all implemented strategies of thelatrix , LU, and Choleskybench-
marks are publicly available at https://github.com/sroyuela/ada_omp_jsa_apps

9

Journal Pre-proof

splits the matrix into rows, and processes in parallel the @inents
of each row; the number of threads can be de ned by the user.

- LU. This application computes the LU factorization of a ma-
trix of 64x64 elements, where each element is a 32x32 matrix.
The OpenMP version adapts the SparseLU benchmark from the
Barcelona OpenMP Task Suite (BOTS) [29], to use a dense madri
instead of a sparse one. The kernel is divided in four phasés0,
fwd, bdiv and bmod, and there are three full synchronizations that
divide the execution in three stages: the rst containinduO, the
second containingfwd and bdiv, and the third containing bmod
These stages are traversed several times. The Ada tasks ane th
Para n implementations are based on the OpenMP version. In
both cases, the code is split in three stages and full barrseare
implemented in between the stages. In the Ada tasks implement
tion, for each phase, a di erent task executes a chunk of itations
(the number of tasks created is the number of threads availkd)
plus one task for the main function). In the Para n implementa-
tion, each phase is processed as a parallel loop.

- Cholesky.This application computes the Cholesky decomposition
of a matrix of 128x128 elements, where each element is a 32x32
matrix. The OpenMP version is based on the Cholesky imple-
mentation of Ayguact et. al for extending the OpenMP task-
ing model [30] to target heterogeneous architectures. As fhU,
the Ada tasks and the Para n implementations are based on the
OpenMP one and mimic the stages of that version.

Platform. We run our experiments in a computing node from the MareNos-
trum 1V [31] supercomputef. It consists of a 2 sockets Intel Xeon
Platinum 8160 CPU with 24 cores each, operating at 2.10GHz, @n
featuring a 33MB shared L3 cache. The L1 and L2 caches are pitier
to each socket: the former has 32KB, and the latter has 1MB. Eh
system runs a SUSE Linux Enterprise Server 12 SP2 operatingssm.

“We evaluate the performance of OpenMP on a chip from the HPC domain because
it 0 ers more computational capabilities than typical embedded systems However, tests
conducted in embedded platforms show similar trends regarding péormance and scala-
bility with OpenMP [32, 33].

10

Journal Pre-proof

‘\i\A\L’*_'_r

—=— — — —x= — —

(a) Matrix (b) LU

Figure 1: Scalability analysis of the Ada parallel model implemented wih OpenMP, Ada
tasks and Paran.

First, we analyze the need for ne-grained parallelizationrad synchro-
nization mechanisms in Ada. With such a purpose, we evaluatedtlscalabil-
ity of the Matrix and theLU benchmarks implemented with three strategies:
the Ada 202X parallel model, Ada tasks and Para n. Since the Ada @2X
parallel model is not supported by any Ada runtime yet, we use [@nMP
directives, i.e., thetask construct to create units of concurrency, and the
taskwait construct to synchronize tasks, to implement the proposed A&d
operations for parallel loops and parallel blocks Interestingly, this shows
how OpenMP can be used tc implement the Ada parallel model (SeEn 4
analyzes the equivalence of the two parallel models).

Figure 1 depicts the mentioned scalability analysis for théatrix and
the LU benchmarks. Particularly, each plot shows the executionrtie (in
seconds) of the three versions when modifying the number of #ads, and
the time of the sequential version, only for one thread. In #Matrix ex-
ample, in Figure la, all implementations show a good explottan of the
resources: up to 24 threads, all have a ideal speedup; afteathonly Ada
tasks and OpenMP have linear speedup, while Para n requiresore time for
synchronizatior?. The structured and embarrassingly parallel nature of the
algorithm allows the three techniques to extract bene ts fom the parallel ex-
ecution. However, it is important to note that the granularity of the OpenMP
tasks is much ner than the other two versions. With this examfe, we show
how OpenMP can be used to e ciently implement the Ada paralleimodel.

5A new version of the Para n suite is to be released soon. This new verion reduces
synchronization costs and, possibly, enhances the results shown this article.

11

Journal Pre-proof

For the LU example, in Figure 1b, the Ada parallel model implemeet with
OpenMP clearly outperforms the other implementations. Paicularly, the
Ada parallel model shows ideal speedup up to 24 threads; afténat, the
synchronization costs limit the performance gain of the pallel execution.
This is so because the architecture used is a NUMA machine and &ad L2
caches are private to each socket; hence, each time a taskwsaencountered,
and so a memory ush occurs (enforced by the OpenMP speci dah), the
di erent cache levels have to be updated for cache coherencgompared to
the other versions, the ne-grained synchronization mech&ms provided by
OpenMP show much better e ciency than those of Ada tasks and Ra n.
To further analyze the use of OpenMP on top of Ada, we have uselbe
point-to-point synchronizations provided by OpenMP in the érm of task
dependencies. This mechanism allows to extract paralletisout of highly
unstructured applications. Figure 2 shows the results obtaed with the
Cholesky benchmark parallelized with two versions of Operf one imple-
menting structured parallelism using thetaskwait construct, and the other
implementing unstructured parallelism using task dependeres. The version
with dependencies outperforms when then number of cores iglter than 4,
because it takes pro t of all the parallelism existing in theapplication, while
taskwaits are coarse-grained synchronizations that limitgrallelism. Further-
more, the cost of synchronizing threads (noticeable in theskwaits version)
is higher when the number of cores used is bigger than 24 besawf the
NUMA architecture of the platform, as explained for theLU benchmark.

— —

y \

Figure 2: Speedup of Cholesky using structured (Ada parallel modeland unstructured
(OpenMP task dependencies) parallelism.

12

Journal Pre-proof

4. OpenMP for Fine-grained Parallelism in Ada

The OpenMP tasking model follows the same principle as the Agbearallel
model, where the compiler and the runtime system are the onessponsible
for generating and executing the OpenMP tasks. We take advayge of that
with the aim of introducing OpenMP into Ada. This section analyges the
compatibility of the Ada 202X parallel model and OpenMP, and pves that
OpenMP can be used to implement the Ada parallel model as wellufher-
more, this section shows the language extensions we propagserider to use
OpenMP on top of Ada to further exploit unstructured and highyy dynamic
parallelism. The work summarized in this Section has beengmented in [1]
and [3].

4.1. Supporting the Ada Parallel Model with OpenMP

This section provides insight about the OpenMP features nessary to
implement the Ada parallel model based on their execution mets. It focuses
in three main aspects: the preemption model, the progressimodel and the
fork-join model. The next paragraphs dig into each aspect.

Preemption. The limited form of run-to-completion that was proposed in
the tasklet model can be mapped to the OpenMP tasking modelratghtfor-
wardly: the logical threads of control are mapped to OpenMPatsks, and are
executed by OpenMP threads. Furthermore, untied tasks are are suitable
to implement this, because tasks can migrate between thread Moreover,
untied tasks have better time predictability than tied tasks, due to their
work-conserving nature [34]. On the other hand, although #hwork-sharing
constructs provided by the thread-centric model can impleant the same se-
mantics as Ada parallel blocks and parallel loops do, work-siag entities
cannot be preempted by the runtime, and therefore this mode not suitable
to support the Ada completion model.

Progression Model. The OpenMP speci cation does not impose any model
of progression; the same is being prescribed in the Ada 202Xafir Both
models rely on the implementation to guarantee safe exeaurti.

Fork-join Model. The fully strict fork-join model required by the Ada parallel
model is fully supported by OpenMP. Since OpenMP does not fo the
distribution of work to be done at the same point as the spawrf parallelism,
OpenMP constructs are more exible. For example, when implemgng

13

Journal Pre-proof

parallel nested blocks with the OpenMP tasking model two psiilities are
valid: (1) use a unigue parallel region (hence a unique teamtbfeads) with
nested tasks, or (2) spawn parallelism twice by nesting palal regions. The
rst option may reduce the overhead of creating and destrogg extra teams of
threads (the nested ones). However, it is interesting to havke possibility of
exploiting two di erent levels of parallelism for di erent reasons: parallelism
is not exposed at the same level, or the application is not l@aced, among
others.

4.2. Supporting OpenMP in Ada

Besides the feasibility of using OpenMP to implement the Adagrallel
model, as shown in Section 4.1, OpenMP can be used on top of Adakploit
its bene ts, as demonstrated in Section 3. This section shewhe language
extensions required to use OpenMP in Ada, and analyzes the egpsiveness
of OpenMP against that of Ada.

4.2.1. Language Extensions

The current OpenMP speci cation Is de ned for C, C++ and Fortran.
In this regard, the syntax of Ada is closer to that of Fortran tha the one for
C/C++, because Ada does not group a sequence of statements bgabketing
the group (as in C), but uses a more structured approach with dasing state-
ment to match the beginning of the group (as in Fortran). Since Aal already
de nes pragmasof the form pragma Name (Parametekist) , our proposal
introduces a new kind of pragmapragma OMRogether with the directive
name (e.g.,task, barrier , etc.), and the clauses that go with the direc-
tive (e.g., dependencies), included as parameters of the pmaay (although
we propose the use of pragmas, a similar approach can be useth vda
aspects). The snippet in Listing 1 shows an example of the prosed syntax
when an OpenMP construct {askloop in this case) applies to one statement
(the loop associated to the construct), and the snippet in Lisig 2 shows an
example where the constructtask) applies to more than one statement (the
structured block associated to the task).

OpenMP de nes the argument of a data-sharing clause as a list items.
This does not match directly with the syntax allowed in Ada for pagmas,
as shown in Listing 3. To simplify the syntax needed to de ne da-sharing
clauses, we propose to extend the de nition gdragmaargument identifier
with a list of expressions. We use this proposed syntax foretrest of the
document.

14

Journal Pre-proof

Listing 1: OpenMP proposed syntax for Listing 2: OpenMP proposed syntax for

pragmas applying to one statement pragmas applying to several statements
1 pragma OMP (taskloop , num_tasks=>N); 1 pragma OMP (task , shared =>var);
2for i in range 0..I loop 2 begin
3 -- statements here 3 -- statements here
4end loop ; 4end;

Listing 3: Ada syntax for pragmas

1 pragma ::=

2 pragma identifier [(pragma_argument_association {,
3 pragma_argument_association})];

4 pragma_argument_association ::=

5 [pragma_argument_identifier =>] name

6 | [pragma_argument_identifier =>] expression

With these extensions, OpenMP can be used to express the sameris
of parallelism as the Ada parallel model (i.e., parallel bl&s and parallel
loops, including a limited form of reduction), and further exfoit other forms
of parallelism (unstructured and highly dynamic applicatios). The next
paragraphs show snippets of how the Ada tasklet model can bepeassed
using the OpenMP tasking model.

Parallel Blocks. A paraliel block denotes two or more concurrent sections.
The Ada extensions proposed for such a purpose are shown in ingt4. In
OpenMP, a paraliel block can be written using the thread-ceric model (us-
ing the sections and section constructs) or the task-centric model (using
the single and task constructs), depicted in Listing 5. In this code, the
parallel. construct spawns parallelism, thesingle construct indicates that
only one thread in the team executes the associated regiomdathe task
constructs distributes parallelism among threads of the &em.

Parallel Loop. A parallel loop de nes a loop where iterations may be executed
in parallel. The Ada syntax for such a structure is depicted irListing 6.
OpenMP o ers two di erent constructs this purpose: (1) thefor construct,
from the thread-centric model, and (2) thetaskloop construct, from the
tasking model, shown in Listing 7. In both cases, we illustta the directives
using the well-known matrix multiplication benchmark, tha considers two
matricesMland M2 and the matrix RESwhere their multiplication is stored.

15

Journal Pre-proof

Listing 5: Parallel Fibonacci sequence with
OpenMP tasks

Listing 4: Parallel Fibonacci se- 1 if Nt< 2 “;len

: : 2 return ;
quence with Ada extensions s pragma OMP garallel , shared =>X,Y,
1 if N < 2then 4 firstprivate =>N);
2 return N; 5 pragma OMP dingle , nowait);
3 parallel do 6 begin
4 X:= Fibonacci(N - 2); 7 pragma OMP task , shared =>X,
5 and 8 firstprivate =>N);
6 Y:= Fibonacci(N - 2); 9 X:= Fibonacci(N - 2);
7 end do; 10 pragma OMP task , shared =>Y,
8 return X + Y; 11 firstprivate =>N)

12 Y:= Fibonacci(N - 2);

end;
return X +Y;

B
bW

Listing 7: Parallel matrix multiplication with
OpenMP taskloop

1 pragma OMP (parallel);
2 pragma OMP (taskloop

Listing 6: Parallel matrix multiplication = ;* “private =>i, j, k,
with Ada extensions 4 firstprivate =>MAX_I, MAX_J, MAX_K,
1 parallel for i in 0..MAX_I loop Z S'r];rnesc:z;>R:E>Sc’hul\¢1}<’ s'\i/lzze'
2 for j in range 0..MAX_J loop 7 ?lowait); - '
3 for k in range 0..MAX_K loop 8 begin '
: RES(i.)):= +RI'E\ASl(('i’JZ() * M2(K.): o for i in range 0..MAX_I| loop
o end loop ' 1) 10 for j in range 0..MAX_J loop
7 end loop ; ' 11 for k in range 0..MAX_K loop
gend loop : ’ 12 RES(i,j):= RES(i,j)
’ 13 + M1(i,k) * M2(k,j);
14 end loop ;
15 end loop ;
16 end loop ;

17 end

Parallel Reduction. The Ada parallel model de nes a reduction as an opera-
tion which transforms a collection of values into a single \e result, allowing
builtin operations to be used (e.g., +, -, *, etc.), as well asised-de ned re-
ducers and combiners. This is achieved bgduction expressionswhich can
be made parallel. Similarly, OpenMP de nes a reduction as a pallel opera-
tion which result is stored in a variable, supporting builth and used-de ned
reductions. The reduction itself is implemented in OpenMP yomeans of a
clause that can be added to multiple constructs likparallel and taskloop
among others. Listing 9 shows the syntax adapted to our propalsfor Ada.

16

Journal Pre-proof

Listing 8: Parallel reduction with Ada extensions

parallel (Chunk in Partial_Sum' Range)
for | in Arr' Range loop
Partial_Sum(Chunk) := Partial_Sum(Chunk) + Arr(l);
end loop ;
Sum := Partial_Sum'Reduce("+",0.0);

g oA~ W N R

Listing 9: Parallel reduction with OpenMP taskloop

1 pragma OMP parallel (taskloop , in _reduction =>+,Sum);
2 begin

3 for | in Arr' Range loop

4 Sum := Arr(l);

5 end loop ;

6 end;

4.2.2. Expressiveness

The Ada 202X parallel model is a simple yet powerful model to phoit
structured parallelism in shared memory architectures. Haaver, fully strict
fork-join models limit the exploitation of unstructured paallelism. In that
respect, OpenMP supports point-to-point synchronizatiorby means of the
depend clause, which de nes the input and/or output data dependenes
existing between tasks. Theask dependency grapthat honors these depen-
dencies is then used at runtime to drive the execution. The usd# depen-
dencies can signi cantly improve performance of parallel Adprograms, as
shown in Section 3.

Additional to data dependencies, OpenMP allows programmetse man-
ually de ne the data access model of the variables in a congtt by means
of data-sharing clauses. The examples shown before spettifyaccess to the
data within the OpenMP constructs. For example, in Listing 5Xand Y are
marked as shared because their value has to be visible outstte parallel
region, after the implicit barrier, and there is no data-raceondition in these
accesses, anblis marked as rstprivate because the value is just read within
the parallel region. In the Ada parallel model, the philosophis di erent:
data-sharing accesses which are not protected are expectede agged by
the compiler, hence no data-sharing attributes are specide For example,
in Listing 4, the compiler can detect that no unsafe access isade to N
X or Y in the parallel block, thus conclude no synchronization isequired,

17

Journal Pre-proof

except for the one at the end of the parallel block. Moreovet, ¢an privatize
X and Y, copying out their value after the parallel computation cormletes.
This however, may harm performance due to the extra copies flemains
as a compiler decision). The logic behind the choice to maketdaharing
transparent to the user is based on simplicity and readal whilst safe.

Furthermore, OpenMP o ers di erent mechanisms to tune the sheduling
of parallel work. For example, thefor worksharing construct allows to de ne
how iterations are mapped to threads by means of trechedule, order and
ordered clauses, and theaskloop construct allows de ning how many tasks
are created and hence their granularity, using either thaumtasks or the
grainsize clauses (these are mutually exclusive). In opposition, thada
parallel model is limited to de ning the maximum number of clinks of a
parallel loop.

Finally, OpenMP supports an accelerator model seamlesslytegrated
with the tasking model that features the e cient distributi on of parallelism
in heterogeneous systems, which widens the spectrum of arettures that
can be targeted by Ada applications.

Overall, the possibilities with OpenMP underscore their wsatility in the
face of the proposed Ada exiensions. However, despite the clbane ts of
OpenMP to boost performance in Ada applications, there is $itwork to do
to ful Il the safety-critical domain requirements. Firstly, OpenMP does not
impose the compiler to identify errors that may a ect the corectness of the
application, e.g., data-races or deadlocks. Moreover, Qp@P is not reliable
because it does not de ne any recovery mechanism, with the aption of
the cancellation model, for Ada exception handling. In thategard, di erent
approaches have been proposed and some of them have beendyradopted
(see further details in Section 5.1). Finally, both programmrs and compil-
ers must satistfy some requirements to make possible wholegram analysis
(such as programmers adding information in headers libras, and compilers
implementing techniques like IPO [35]). The next section stlies compiler
analyses techniques that, applied to OpenMP and Ada compikercan signif-
icantly improve the safety of Ada programs parallelized wittOpenMP, and
so enabling safety-critical systems to e ciently exploit hghly parallel and
heterogeneous architectures.

18

Journal Pre-proof

5. Compiler Support for Functional Safety

A fundamental requirement of Ada systems is safety, which cére certi-
ed at di erent levels by means of particular standards (e.g the 1SO26262
[36] for automotive, the DO178C [37] for avionics or the IECGDS8 [38] for
industry). Problems with certi cation might be due to error-prone features
(compromising reliability) or features with complex sematics (complicating
analyzability). For this reason, the nature of Ada is to prevet users from
making errors, providing a series of mechanisms for data symonization and
mutual exclusion, among others. Furthermore, the language designed such
that the compiler can detect the maximum number of risky sitations, like
race conditions and deadlocks. And the recent additions to Ad202X in this
domain augment the capability to detect the unprotected usef shared vari-
ables and potentially blocking operations [23]. Still, it3 the responsibility of
the programmers to use Ada mechanisms correctly in order to@d errors.

OpenMP also provides mechanisms for data synchronizationdamutual
exclusion. As for Ada, the correct use of these mechanisms relan the pro-
grammer. This is stated in the speci cation, when it says tha\application
developers are responsible for correctly using the OpenMP API to produce a
conforming progrant”. Thus, frameworks do not need to check for issues
such as data dependencies, race conditions or deadlocks. Aesult, the
implementation of the standard is quite easy and light, andhat boosts the
spreading of the language even in architectures with few resoes.

In this context, it is fundamental to consider correctness @tking mech-
anisms to ensure programs are free from errors, to increageductivity in
parallel programming. This section, summarizing the worknesented in [39]
and [2], includes an analysis on the safety of both OpenMP anlde Ada par-
allel model, and provides an algorithm that allows detectigp race conditions
in pure Ada programs and in mixed Ada/OpenMP programs as well.

5.1. Saiety

Considering the Ada Parallel model, safety can be guarante¢drough
the use of atomic variables and protected objects to accedsased data.
Moreover, the compiler shall be able to complain if di erent prallel regions
might have con icting side-e ects. In that respect, due to he hardship of

6An OpenMP conforming program is one that follows all rules and restrictions of the
OpenMP speci cation.

19

Journal Pre-proof

accessing the complete source code to perform a full anadyshe proposed
Ada extensions suggests a two-fold solution [23]: a) elimbearace condi-
tions by adding an extended version of the SPARIGIobal aspect to the
language (this will help the compiler to identify those menmy locations that
are read and written without requiring access to the completeode); and
b) address deadlocks by the de ned execution model, togethesith a new
aspect calledPotentially _Blocking that indicates whether a subprogram
contains statements that are potentially blocking.

On the other hand, considering OpenMP, safety can be jeopéazdd due
to the use of di erent features. The most relevant ones are ¢éhfollowing:

{ Data-sharing. Users can explicitly modify the data-sharing attributed
de ned in the speci cation (concretely, in Section 2.15.140]) for the
variables appearing in a speci ¢ construct. But manually dening data-
sharing clauses is a cumbersome and error-prone processabse pro-
grammers have to be aware of the memory model and analyze the
usage of the variables. Fortunately, there are compiler anais tech-
niques that allow automatically de ning data-sharing clases [41] and
statically catch incoherences in the user-de ned attribuds [42].

{ Data Races and SynchronizationDetecting exact data races at compile
time is an open challenge. Still, current mechanisms have Inegroved
to work on specic subsets of OpenMP [43, 44]. Additionally, tatic
analysis techniques have proved to be able to detect wrongnsiro-
nizations causing non-deterministic results and runtimeaflures [42].

{ Deadlocks.The di erent mechanism o ered in OpenMP to synchronize
threads (directives such agritical and barrier , and runtime rou-
tines, such asompset lock) can cause deadlocks. There is only one
sound approach, to the best of our knowledge, which detecteatllocks
in C programs using Pthreads [45]. This technique can easiig applied
to OpenMP because Pthreads mutexes (e.gathread _mutex lock) are
comparable to OpenMP locking routines (e.gompset _lock).

{ Error Handling. In the critical domain, software is required to be re-
silient, hence behavior upon failures must be understood éspeci ed.
The technique to enable such property is error handling. Alibugh
only some minor mechanisms have been included in the speation
(i.e., cancellation constructs), there are di erent propeals to improve

20

Journal Pre-proof

OpenMP reliability by adopting error handling mechanismsi OpenMP
[46, 47].

In this sense, OpenMP has been shown to provide the safety seg@ments
imposed by critical systems [1] if the language incorporate

{ Limits in the speci cation that may vary depending on the level of
criticality (e.g., task priorities and explicit ushes).

{ Extensions to the speci cation (the two new directivesglobals and
usage) to enable whole program analysis when third-party componén
are used, hence detect race conditions and illegal nesfingncluding
nested regions that can cause deadlocks).

{ Extensions to include error-handling techniques.
{ Compiler implementation guidelines to check correctness.

{ Runtime implementation guidelines to avoid faulty results

5.2. Static Data Race Detection for Ada/OpenMP

As introduced previously, parallel computation gives risect two main
problems: race-conditions and deadlocks. In this sectiorewocus on the
former, and we propose a compiler mechanism to detect racenditions in
programs using Ada, OpenMP and both of them. This mechanism i®m-
posed of two steps: rst the representation of the parallelesnantics of the
code in a Parallel Control Flow Graph (PCFG), and second an adgithm
that allows automatically synchronizing both tasks and da to avoid race
conditions.

The remaining of this section is organized as follows: rstevintroduce
the PCFG, then we describe the algorithm to avoid race condlns, and
nally we use a use-case to illustrate the application of outechnique.

5.2.1. Representing Parallel Semantics: the PCFG

To represent the behavior of an Ada/OpenMP program we use théassic
control ow graph (CFG) representation extended to supportAda concur-
rency and OpenMP parallelism. Our graph draws from the parial control

"Section 2.17 of the speci cation [40] de nes a series of rules that deterine which
constructs cannot be nested within each other.

21

Journal Pre-proof

ow graph for C/C++ and OpenMP/OmpSs [48] developed by Royuéa et
al. [42], and the control ow graph for Ada developed by Fechetand Kienes-
berger [49]. We have included in the PCFG the concept dlock of concur-
rency, or concurrent block which de nes a set of portions of code that may
execute in parallel.

The PCFG is a meta-graph composed of a set of nodes and a set of
edges. Nodes can bsimple resenting sequential execution of one or more
statements, orstructured, representing control ow (i.e., selection and itera-
tion statements) or parallel semantics (e.g., OpenMP task)Structured nodes
are PCFGs. Edges can represent synchronous ow (e.g., jumfatment),
asynchronous ow (e.g., OpenMP task creation) or synchromation (e.g.,
precedence relation between OpenMP tasks due to dependectyuses).

Currently, the PCFG represents the semantics of OpenMP, analso the
Ada Ravenscar prole. The latter is easily supported becausa this re-
stricted model all tasks are created at library level, meangnthat they start
executing at the beginning of the program (after elaboratignand terminate
when the program ends (task allocators, task termination ahabortion, and
task hierarchies, among others, are not allowed). As a resulhere are only
two blocks of concurrency, which correspond to the code ex#sd during
elaboration, and the rest of the code.

The use of the full Ada concurrency model, however, complics the
representation. In this sense, the PCFG should be extended include fur-
ther edges between tasks (e.g., master dependencies, tasknination, ren-
dezvous, etc.). These edges must be taken into account whegtetmining
the concurrency blocks (considering when tasks come to ldad terminate),
and also to tune the accuracy of the results of the race conidih algorithm
proposed in the following section (considering when dataastually accessed,
if possible). A detailed analysis and construction of the PEGS for the full
Ada concurrency model remains as future work. For this reasoand al-
though the analysis described in the following section apes to the whole
Ada model, for this work we consider the Ada Ravenscar pro le.

5.2.2. Correctness Analysis for Ada/OpenMP data-race detection

Inspired by the algorithms presented in the scope of OpenMB tutomat-
ically determine the data-scoping attributes [41] and the@pendency clauses
[50] of an OpenMP task, we present an algorithm able to nd dataace con-
ditions in Ada concurrent programs, containing or not OpenMP dsks. The
high-level description of the algorithm is outlined in Lising 1.

22

Journal Pre-proof

Our approach is based on the fact that Ada protected objects aeerobust
and lightweight mechanism for mutual exclusion and data symronization.
For this reason, protected objects are to be preferred to OpEIP mechanisms
whenever possible to solve race conditions, i.e., when ramnditions occur
between Ada tasks, between Ada and OpenMP tasks, and betweenedMP
tasks that belong to di erent binding region$. The last case is particularly
interesting because in C/C++/Fortran OpenMP programs, tass in such a
situation cannot be synchronized, and only data synchroration is available
via the ush operation, a highly unrecommended mechanism whesafety is
essential due to the di culty of analyzing its behavior. The extra layer of
concurrency introduced by Ada comprises the need for such anskroniza-
tion, hence only protected objects are safe enough for thatipose. Finally,
to exploit the exibility of OpenMP, race conditions between OpenMP tasks
that belong to the same binding region are to be solved usingp@nMP mech-
anisms: mutual exclusion constructs (i.eatomic and critical ~ constructs),
synchronization constructs (e.g.taskwait and barrier), synchronization
clauses (i.e.depend and data-sharing clauses (e.gprivate , firstprivate
and lastprivate).

8In OpenMP, a binding region is the enclosing region that determines the execution
context. The binding region of a task is the innermost enclosing para#l region.

23

Journal Pre-proof

Algorithm 1. Rules to detect race conditions in Ada/OpenMP.

Data : source := An Ada/OpenMP program.

Result : target := A race-free version of the source program.
target := source;

pcfg := build _interprocedural CFG(target);
concurrencyblocks := compute concurrencyblocks(pcfg);

foreach c 2 concurrencyblocksdo
shareddata := collect_shareddata(c);

foreach s 2 shareddata do
all_accesses := collecaccesses(s);

if within_openmpsamebinding region(all accesses}hen

if commutative(alLaccesses)[51then

| target:= protect all _accesses wittatomic or critical

else
target:= (full sync) insert taskwait or barrier
between accesseg) (point-to-point sync) use
auto-dependencies mechanism [50]

else
| target := wrap the shared data in a protected object

end
end

5.2.3. Use Case: Raverniscar

We use the AdaRavenscarexample application, de ned in Section 7 of
the Ada Ravenscar Pro le Guide [52], as test case because itlndes several
features of Ada that are of our interest: protected objects ter shared data,
synchronous and asynchronous synchronizations, etc. The teys modeled
in this application includes a periodic processRegular Producer) that han-
dles o ers for a variable amount of workload $mall Whetstong. When the
requested workload exceeds a given thresholBue Activation), the excess
load is processed by a sporadic proces9n_Call_Producer). Additionally,
interrupts may appear at any point External Event Server), and di erent
priorities are used to ensure precedence among the di eretatsks. Figure 3
shows the HRT-HOOUD representation of theRavenscarapplication. There,

9Hard Real-Time Hierarchical Object-Oriented Design (HRT-HOOD) is an object-
based structured design method for hard real-time systems [53].

24

Journal Pre-proof

red dashed boxes represent tasks, blue dotted boxes repnegmckages with
functions and procedures, and yellow double-lined boxegresent protected
objects with entries and procedures.

ACTIVATION MANAGER

> Synchronize_Activation_Cyclic
emsersssrsssressresnnasnes, . Pr REQUEST BUFFER e - - _
P ON CALL PRODUCER . Synchronize_/ _Sporadic :
= F— » Deposit L ;
------------------ » Start H rm———————————————
: E i 11
.......................... » Extract : EXTERNAL EVENT SERVER-
e
. 51 Pr EVENT_QUEUE
=+ ON CALL PRODUCEF} Handler
1 1

s I T 72> 18
AUXILIARY H EVENT_QUEUE
‘ 1 Interrupt_Simulator 1

Check_Due

‘P ACTIVATION LOG READER P ACTIVATION LOG

Due_Activation

ed Write

P Passive object

Pr Protected object
S Sporadic object
C Cyclic object
| Interrupt sporadic objedt

¢ packace NaME™] 1= 2 !
Subprogramname) Protected Object
1.2 Function/Procedurg

Figure 3: HRT-HOOD representation of the Ravenscar application.

To exemplify how the analysis handles Ada concurrency and OpdRr
parallelism, we have turned the procedur&mall Whetstone into the entry
point of a sensor fusion operation implemented with OpenMHMAhis new func-
tionality, described in Figure 4, uses an argument to indicatthe parallel op-
eration to carry out: 1 for reading sensor A, 2 for reading semsB, and 3 for
fusing the two sensors by adding up their values. Sensor A &ad periodically
from Regular Producer, sensor B is read sporadically fror®n_Call_Producer,
and the fusion is performed sporadically fromctivation Log Readet

The PCFGs of the originalRavenscarapplication and the new OpenMP
code are shown in Figure 5 and Figure 6 respectively. Both gureshow
the code executed at elaboration time (on the top), the codein during the
execution of the program (in the middle), and the most signcant shared
data in turquoise square boxes (on the bottom) connected witthe nodes
that access the data by di erent edge styles depending on thegg of access:
read (dotted dark red), write (solid yellow) and read/write (dashed green).

25

Journal Pre-proof

27
1 package body Production_Workload is 28 procedure Fuse_Sensors is

2 type Sis range 1 .. 512; 20 begin

3 type Mis array (S, S) of Float; 30 pragma OMP (parallel);

4 M_A, M_B, M_C: M; a1 pragma OMP (single);

5)) 32 pragma OMP (taskloop);

6 procedure Read_Sensor_Ais begin 33 for 1 in S loop

7 pragma OMP (parallel); 34 for J in S loop

8 pragma OMP (single); 35 M_C(I,J) = M_A(,J)

9 pragma OMP (taskloop); 36 - + M_B(1,J);

10 for | in S loop 37 end loop ; a

11 for J in S loop 38 end loop ;

12 M_A(l,J) := sensor(l, I, J); 39 end Fuse_Sensors;

13 end loop ; 20 -

14 end loop ; . 41 procedure Small_Whetstone

15 end Read_Sensor_A; 42 (Workload: Positive) is
16 .) 43 begin

17 procedure Read_Sensor_Bis begin 24 case Workload is

18 pragma OMP (parallel); 45 when 1 => Read_Sensor_A;
19 pragma OMP (single); 46 when 2 => Read_Sensor_B;
20 pragma_OMP (taskloop); 47 when 3 => Fuse_Sensors;
21 for I in S loop 48 when others => null

22 for J in S loop 49 end case

23 M_B(I,J) := sensor(2, I, J); 50 end Small_Whetstone;

24 end loop ; 51 -

25 end loop ; s2end Production_Workload;

N
o

end Read_Sensor_B;

Figure 4: OpenMP code inserted in theProduction_Workload package of theRavenscar
application.

In the former gure, each partial PCFG represents a taskRegular Producer,
On_Call_Producer and Activation _Log Reader); the special node€n and Ex
express the entry and the exit points of each task; and the Opki code
is pointed with dashed-dotted purple lines. In the latter gure, the di erent
procedures are concurrent because they are called from vitldi erent Ada
tasks, which are in turn concurrent.

As an illustration, we apply Algorithm 1 to the modi ed Ravenscarap-
plication, and the result is described as follows:

1. The PCFG of the application is the one shown in Section 52. Fig-
ures 5 and 6.

2. All Ada and OpenMP tasks correspond to the same block of coneu
rency, hence potential race conditions may occur among all Adcand
OpenMP tasks. However, since OpenMP and Ada tasks manage dif-
ferent shared data, we can treat them separately. As a result:

26

Elaboration

time
Regular_Producer
l l Program
executior

En En En

Activation_Manager.
Synchronize_Activation_
Sporadic

‘Activation_Manager.
Synchronize_Activation_
Sporadic

Activation_Manager:
Synchronize_Activation_
Cyclic

"Activation_Log

Reader.Wai

Production_Workloac
Small_Whetstone

Auxiliary.
Due_Activation
../~ On_Call_Producer:
Start

Auxiliary.
Check_Due
Activation_Log

Reader.Signal

Request_Buffer:
Deposit Ex

| My_Request_Buffer(Insen_lndeH

Request_Buffer.
Extract

Production_Workload
Small_Whetstone

Production_Workload

Small_Whetstone

/
. Activation_Log.
Read

5 ../.

OPENMP CODE

Figure 5: Simpli ed PCFG of the Ravenscar application.

On_Call_Producer. Activation_Log_Reader. Ada
Small_Whetstone(2) Small_Whetstone(3) concurrency

Read_fSensor_B Fuéle_Sensors
12 2
En

«==> Read
Write
~=» Read/Write

1

OpenMP
parallelism

1
1
1
]
1
]
1
N
3
i

Figure 6: CFG of the OpenMP code introduced in the Small. Whetstone procedure.

27

Journal Pre-proof

(a) Forthe Ada part, the algorithm decides that: (a)Activation _Time
is not in a race condition because the read and the write acses
are in di erent concurrent blocks, (b) Local SuspensionObiject is
not in a race condition because the operations performed on i
are atomic with respect to each other, as the standard says)ch
(c) My_RequestBu er(Insert _Index) is not in a race condition be-
cause this object is part of the protected objedRequestBu er .

) The algorithm con rms that the original Ravenscarapplication
contains no race conditions.

(b) For the OpenMP part (note that the OpenMP data-sharing rues
dictate a private copy of the induction variable of the taskdop
for each thread) the algorithm reveals that accesses toand J
are not in a race condition, but accesses to the matricés A and
M _B are in a race condition because the write accesskb A and
M _B from Read SensorA and Read SensorB respectively collide
with the read access to both variables frorfuse Sensor
) The algorithm suggests the use of partial synchronizatioria
the form of task dependency clauses:

- Read SensorA: depend=>in, MA(0:Dim,0:Dim) .

- Read SensorB: depend=>in, MB(0:Dim,0:Dim) .
- Fuse Sensors depend=>in, MA(0:Dim,0:Dim)
MB(0:Dim,0:Dim),

depend=>out, MC(0:Dim,0:Dim) .

6. Ada and OpenMP Runtimes Interoperability

Ada supports a concurrency model that allows interleaved exgtion on
single-core architectures, and parallel execution of cameent work on multi-
core architectures. To do so, Ada includes a set of features &chieve
concurrency, including Ada tasks, protected objects and mities. More-
over, the Annex D (Real-Time Systems) [54] of the Ada speci cain de-
nes additional characteristics of Ada implementations inénded for real-
time systems, that limits how these features can be safely use Among
these, priorities and scheduling policies are crucial asppe. For example,
the Ravenscar pro le forces a priority-based preemptive Beduling. This
means that tasks with higher priority can preempt tasks with dwer prior-
ity, and the latter will later be resumed depending on the s&duling policy

28

Journal Pre-proof

(e.g., FIFO_Within _Priorities, Round_Robin_Within _Priorities). In this re-
gard, OpenMP o ers the priority clause that can be attached to theask
construct to allow the scheduler execute task in a prioritypased fashion. Fur-
thermore, OpenMP allows a limited preemptive scheduling whe tasks can
be preempted at task scheduling points (see Section 2.2.1 fiorther details).

Including OpenMP in an Ada program forces the concurrent modedf
Ada to coexist with the parallel model of OpenMP. To that end, he two
runtimes require some kind of interaction so the schedulingolicy of the
whole system holds, while each scheduler complies with itsrezsponding
speci cation. As an illustration, Figure 7a shows a program coposed of
two Ada tasks, a high priority one, HPT, and a low priority one, LPT,
both parallelized using the OpenMP tasking model. Figures 7dnd 7c show
di erent preemption strategies depending on the communi¢ian available
between the Ada and the OpenMP runtimes.

1task body LPT is begin

1task body HPTis begin 2 pragma OMP (parallel);
2 pragma OMP (parallel); 3 pragma OMP (single);
3 pragma OMP (single); 4 begin
4 begin 5 pragma OMP (task); -- OMPT2
5 pragma OMP (task); -- OMPI1 6 ... -- body
6 - body 7 pragma OMP (task); -- OMPT3
7 end; 8 . -- body
send HPT; 9 end;
10end LPT;

(a) Hybrid Ada/OpenMP system with concurrency and parallelism

Ada runtime Ada runtime Ada runtime
LPT release LPT resumes LPT release
Core 1 OMPTL f----------------3 OMPT1 I i Core 1 OMPT1 I OMPT2 I i
time time
Core 2 OMPT2 OMPT1 I OMPT2 i Core 2 OMPT2 OMPT1 I .
time time
OMPT1/ HPT executes OMPT1/ HPT executes
OMPTtarts LPT suspends OMPTtarts OMPT Istarts
OpenMP OMPTistarts OpenMP | Adaand OpenMP
runtime Ada anc! OpenMP runtime runtimes
runtimes
HPT releases| HPT releases
Ada runtime Ada runtime
(b) Preemption of all inner tasks (c) Preemption of necessary tasks

Figure 7: Interoperability between the Ada and the OpenMP runtimes: preemption

29

Journal Pre-proof

A rst approach that minimizes the interaction between the tvo runtimes
is to completely suspend the execution environment of the @aMP runtime
derived from the lower priority Ada task, when the higher prioty Ada task
is released. This behavior is shown in Figure 7b, where the Adaogram
in Figure 7a is executed on two cores and, whedP T is released and a
preemption point is reacheé’, both OMPT2 andOMP T3 from LP T stop.
Then, whenOMPT1 nishes, both OMPT2 and OMPT 3 can resume. As
shown, this approach may force a non-work-conserving schiédg as the
Core 1is idle whileHP T executes, and hence introduce unnecessary delays.
Moreover, a signi cant overhead may occur due to the suspeos of the
complete OpenMP runtime execution.

A second possible approach is to let the two runtimes commuate so
just the necessary resources are released when a high pryoAida task is
encountered. This behavior is shown in Figure 7c. There, the Aqaogram
depicted in Figure 7a is executed on two cores, but this time gnOMP T 2
from LPT is stopped to executecOMP T 1 from HPT when the preemption
point is reached. This is because just one core is needed te@xe the
high priority Ada task, and hence the other Ada task, although &aving lower
priority, can continue running.

Clearly, the desired behavior is that shown in the second apgach, where
only the computing resources that are needed by higher prityr tasks are
preempted. The reason is that this is the only behavior thatresures a work-
conserving execution while it honors the priorities in the stem as a whole,
including the Ada and the OpenMP realms. This strategy, howey, implies
interoperability at two levels: (1) between the Ada and the OpeMP run-
times, to handle task priorities and scheduling policies,na (2) within the
OpenMP runtime, to communicate di erent parallel regions.

The remainder of the section is organized as follows: Secti6.1 in-
troduces a theoretical study of how the two runtimes could be fegrated.
Section 6.2 presents a novel source-code transformatiochrique based on
template-based execution that allows Ada programmers to exp@ent with
OpenMP without requiring the runtimes to be actually integraed. Finally,
Section 6.3 presents an evaluation of the use of the sourcale transforma-
tion templates regarding the interaction of the runtimes ad the resources.

10A limited preemption strategy is being considered in the example.

30

Journal Pre-proof

6.1. Integration between OpenMP and Ada runtimes: the Theory

To support OpenMP in Ada, or simply to implement the Ada parallé
model on top of OpenMP, a level of interoperability betweenhie OpenMP
and the Ada runtimes is required so compliance with the resp@ee speci -
cations is not compromised. There are three aspects to takednaccount:
(1) Ada tasks scheduling, 2) Ada tasks synchronization, and 3da and
OpenMP control structures. These are analyzed as follows.

Ada Task Scheduling.The Ada runtime is in charge of scheduling Ada tasks.
When the scheduling conditions change, e.g., a high prioritask arrives, a
running Ada task can be preempted in favor of lower priority oes. This
scenario is shown in Figure 7c. When this occurs, the Ada runtimaust
inform the OpenMP runtime so parallel execution derived frm lower priority
Ada task can be stopped, in case the high-priority Ada task nesdt. The
preempted portion of the parallel execution must be safelyapped because
OpenMP does not allow dynamically changing the number of teads of a
team. A possible solution is the Ada runtime informing the opating system
(OS) to release the corresponding cores from the selected Adak, and the
OpenMP runtime informing the OS when the OpenMP tasks execel in the
cores to be stopped reach task scheduling point Preempted tasks are put
back into the task ready queudo resume its execution when an OpenMP
thread becomes available for the low priority Ada task.

Ada Task Synchronization: Protected ObjectsAda incorporates a deadlock-
free mutual exclusion mechanism, nameprotected objectsthat can be ap-
plied at both Ada task and tasklet levels. Protected objectsra commonly
implemented with conditional locks When applying protected objects to
tasklets from the same Ada task (synchronizing tasklets fromi erent Ada
tasks is not allowed), the OpenMP runtime has access to allréads spawned
by the Ada task, so OpenMP synchronization mechanisms can bsad to im-
plement protected objects. However, when synchronizing twah erent Ada
tasks, the corresponding OpenMP data structures are not sket among Ada
tasks, hence they cannot access their respective team ofdhads. As a re-
sult the synchronization must be managed by the Ada runtime, ldoough
initiated within the OpenMP runtime. That said, when an OpenMP task
accesses a protected object, the Ada runtime is invoked to detene the
value of the associated conditional lock. If it is availablehe corresponding
Ada task acquires it. If not, the OpenMP task is preempted andlpced in

31

Journal Pre-proof

the waiting queue, and the OpenMP thread executing that tasks assigned
to a di erent OpenMP task. When the conditional lock becomes\ailable,
the Ada runtime must inform the OpenMP runtime, which is in char@ of
putting the OpenMP tasks associated to that conditional loic back to the
ready queue to acquire the lock and continue the execution.

Ada Task Attributes. When executing an OpenMP parallel region (corre-
sponding to either the lowering of an Ada parallel code or a@MP parallel
pragma call), threads must have access to some informatiohtbe Ada task
(e.g., taskid). To do so, OpenMP control structures must ilade information
about the Ada task, so any thread in the parallel region can havaccess to it.
Similarly, Ada control structures must include informationabout OpenMP
execution (e.g., the team of threads that is being executed lan Ada task
at any point).

6.2. A First Step Towards an Integration between OpenMP and Ada Run-
times: Source-code Templates

The previous sections show how OpenMP can be used to e cientiyn-
plement the Ada tasklet model, as well as the bene ts of usingg@nMP on
top of Ada to exploit forms of parallelism that cannot be expresed with Ada
tasklets. Furthermore, we analyze what is the interplay neled between the
runtime of Ada and that of OpenMP to ful Il compliance with the respective
speci cations. However, there is not yet an implementationhat allows the
exchange of information between the two runtimes.

The e ort of providing a full integration of OpenMP and Ada may be
signi cant, and remains as a future work. However, the OpenMRnNd the
Ada runtimes still can play together under certain restrictons to deliver
valid applications. In this regard, this section presents aavel source-code
template that allows Ada programmers to naturally integrateOpenMP into
Ada and experiment with the bene ts of parallelizing Ada concurent ap-
plications. This template ensures that both, the Ada and the OgnMP
schedulers, are compliant with the respective speci catignwhile it enables
the OpenMP runtime to ful Il work-conserving priority-dri ven policies that
match the timing analysis performed at analysis time. Thissi, in our opinion,
a fundamental step towards the full integration of both runtmes.

The next sections (1) present the di culties of using the Ada oncur-
rent model and the OpenMP parallel model together, (2) introdce the pro-
posed source-code transformation based on a prede ned axemn template,

32

Journal Pre-proof

Journal Pre-proof

region [55]. This approach, depicted in Figure 8b, togetheritln a particular

way to instantiate OpenMP tasks from the Ada code (the sourceede tem-
plate presented in the next Section), a uni ed view of the OpeviP scheduler
can be achieved, and the Ada and the OpenMP runtimes can work aghky
were integrated.

6.2.2. Source-code Template

The objective of the source-code template is to provide an exgion en-
vironment in which the OpenMP and the Ada runtimes operate asiey were
integrated to experiment with the OpenMP tasking ruadel.

The principle behind our proposed source-codestansfornian is depicted
in Figure 9. The OpenMP parallel code included "n tie di erentAda tasks
is centralized into a unique parallel region, sc a sngle teaaf threads is in
charge of managing the complete OpenMP“)araiiel executiorb]5 To do so,
all OpenMP code is moved to a new Auaitask, in which a single pde
region is created, and the OpenMP code 2.t1e original Ada tasks replaced
by a call to an entry of this new tasis, “rhis ctrategy allows to Ave a single
OpenMP runtime in charge of scheculing all the OpenMP tasks apned by
the di erent Ada tasks. Morcever, with the objective of guarateeing that
the priorities of the Ada tcsks are ful lled, the OpenMP tasksinherit the
same priority of the Ada taskhat created it (by using thepriority clause
of the task construct).

"#S%HE' "5 D0H#&' "#S%H&' 0*$!"#$ %H&'
call \L@I |\ call |\ e i Eﬂ';le)l)
! begin
_ 1
+)-/ —

]
%8+

"#$%&'($)#$*

Figure 9: Schema of the source-code template.

Concretely, our proposed source-code transformation toperiment with
the OpenMP tasking model considers a set of Ada tasks paraikeld using:
(1) the parallel andsingle constructs to create a parallel region and allow
only one thread to execute the inner code, and (2) the&ask construct to

34

Journal Pre-proof

distribute work within the parallel region. Note that with this environment,
the scheduler will not have a uni ed view of the system, as mufile OpenMP
parallel regions (and so OpenMP runtimes) will exist.

The process to generate the templated program applies the léling
transformations:

1. Create a new Ada task that implements an entry for each of thgarallel
regions of the original code. This Ada task creates an OpenMRuallel
region with asingle construct inside (see Figure 9). Within the single
region, a loop accepts calls to the de ned entias until no tdaexists.
Each entry implements an OpenMP task that encloses askgroup
construct containing the code inside the OpeaME parallel gion of the
original Ada task that is now calling the efitry,, 1netaskgroup ensures
that all inner OpenMP tasks nish befirestbe OpenMP task nishes
(i.e., it sequentializes di erent calls 2othe, same entry).This new Ada
task is to have the lowest priority irnwthe whole Ada system, so itloes
not interfere with the original Ad& tasrs. However, each entryn this
task inherits the priority of th» £a'ler Ada task.

2. For each entry in thediew Ada task, propagate the priority ofach Ada
task generating an enuis to the OpenMP tasks created withinite code
of the respective uatry.

3. Replace each vrigiral parallel region with a call to the o@sponding
entry of the_ fievi, Aua task, and include the Ada synchronization etha-
nism (i.e,'a protected object) that allows simulating the implicit barrier
at the end uf the original parallel region. This means synchmn@ing the
end_onthé "OpenMP task implementing an entry of the new Ada task
wi h tie end of the original parallel region generating that stry.

For i ustration purposes, we have designed the hybrid Ada/@enMP sys-
tem depicted in Figure 10. The system is composed of: (1) a pmtic Ada
task with priority 3, adachol, that generates calls to a Cholesky decompo-
sition implemented using OpenMP tasks, and (2) a periodic Adtask with
priority 2, adapps that generates calls to an image processing sampling
application also parallelized using OpenMP tasks. In orddp describe the
transformations needed in the application to achieve the meplated source
code, we show only theada.chol Ada task and the new created Ada task.
The original code of this task is shown in Listing 10. The codafter the

35

Journal Pre-proof

Listing 11: Ada task implementing the
entry point of OpenMP in the templated

Listing 10: Periodic Ada task implementinga source code
Cholesky factorization using OpenMP tasks 1task OpenMP_Parallel_Task

1task Cholesky_Periodic is
2 pragma Priority (2);
3end Cholesky_Periodic;

4task body Cholesky_Periodic is begin
s for i in 1..24 loop

6 pragma OMP (parallel);

7 pragma OMP (single);

8 begin - OpenMP Cholesky
9 for loop

10 pragma OMP (task);

11 potrf;

12 for loop

13 pragma OMP (task);
14 trsm;

15 for loop

16 for loop

17 pragma OMP (task);
18 gemm;

19 end loop ;

20 pragma OMP (task);
21 syrk;

22 end loop ;

23 end loop ;

24 end;

25 end loop ;
26 end Cholesky_Periodic;

Listing 12:_Treasfermed periodic Ada task
implemer ting'a Cholesky factorization

1task bocy “2liolesky_Periodic is begin
2 for i in) 1..24 loop

3 OplniP_Parallel_Task.Cholesky;

4 Cholesky_Sync.Wait;

5 end loop ;

6 end Cholesky_Periodic;

6.3.1. Experimental Setup

2 pragma Priority (1);

3end OpenMP_Parallel_Task;

4task body OpenMP_Parallel_Task is
5 begin

6 pragma OMP (parallel)

7 pragma OMP (single)

8 begin

9 loop

10 select

11 accept,. Ciolesky do

12 priagme, OMP (task);

13 be tin

14 ofayma OMP (taskgroup);
15 Jjegin -- OpenMP Cholesky
16

17 end;

18 Cholesky_Sync.Release;
19 end;

20 end Cholesky;

p or

22 accept ImageProcessing do
24 end ImageProcessing;

25 or

26 exit

27 end select ;

28 end loop ;

29 end

30 end OpenMP_Parallel_Task;

Listing 13: Ada protected object to syn-
chronize di erent releases of a periodic task

1 protected body Cholesky_Sync is

2 entry Wait when Open is begin
3 Open := False;

4 end Wait;

5 procedure Release is begin

6 Open := True;

7 end Release;

gend Cholesky_Sync;

Application. The use case used for this evaluation is the hybrid Ada/OpenMP
application introduced in Section 6.2.2. This applicatiortomprises two Ada

37

Journal Pre-proof

periodic tasks that instantiate two benchmarks, a Cholesky etompaosition
and an image processing algorithm based on a Histogram of ited Gra-
dients (HoG), respectively. An illustration of the applicaton after applying
the template is shown in Listings 11 and 12.

Runtimes. We use two runtime implementations that support parallelisn:

1) GNU libgomp for OpenMP from GCC 7.2 [56], and 2) GNAT Ada from
GCC 7.2 [28]. We use the OMENUM _THREADS environment variable to
de ne the number of OpenMP threads to be used.

Tools. To analyze the execution of the Ada/OpenMryapplication we hay
used two performance tools: (1) Extrae [57], a dyrarnic instmentation
package to trace programs compiled and run wita,ue‘shared mery model
(e.g., OpenMP, Pthreads and OmpSs), the messaije passing (Mprogram-
ming model or combinations of these two.naradigms; and (2) Raver [58], a
exible parallel program visualization an¢ anc lysis tool Bsed on an easy-to-
use wxWidgets GUI that uses the tracipg irormation collectewith Extrae.
These two tools combined are commonly used in HPC studies to dywe the
performance of applications_guiitetively, thanks to the lpbal perception
provided of the applicatior, aid guantitatively, by allowirg a microscopic
analysis of the speci ¢ poinu of interest.

Platform. The execution“takes place on an Intél Core" i7-5600U CPU
at 2.60GHz with 2 proCessors, and 2 hardware threads per proams The
system runs a 64/oirs Countu 18.04 LTS.

6.4. Executien Analysis

To obtamn the information we need about the interoperabiliy between
Ada.ani CoenMP, we exploit the fact that both Ada and OpenMP use
Pthreads«z implement parallelism. In this sense, we use thexttae library
to instru nent Pthreads, libpttrace.

The trace extracted from the Ada/OpenMP application using tke setup
introduced in the previous subsection is shown in Figure 11.h€&re, blueish
colors relate to the Cholesky benchmark, and reddish colaedate to the im-
age processing benchmark. There are seven rows, each cpoeding to one
thread created by a call to pthreadcreate. Threads from 1 to 4 are created
by the Ada runtime, and they are: thread 1 is created for the Ada &in task;
thread 2 is created for the Ada task generated by the templateelxecution
to create and manage the OpenMP environment; thread 3 is creat for the

38

Journal Pre-proof

There are two important aspects to highlight regarding theriteroperabil-
ity accomplished by means of the templated execution:

1. The Ada and the OpenMP runtimes share the Pthread correspdimg
to thread 2 This thread is rst used by the Ada runtime until it reaches
the implicit barrier at the end of the parallel region. Then i is used
by the OpenMP runtime to nish work, so all OpenMP threads getto
the barrier, and the thread returns to the Ada runtime to nish some
work after the OpenMP batrrier.

2. The priorities of the Ada tasks are passed to" v:e OpenMP taskoy
means of the template, and so the Cholesky tasks, which are the
OpenMP tasks with higher priority, run beiare<tne image proessing
tasks to the extent possible (i.e., wheneyer an entry is acded and
the dependencies are ful lled).

6.5. Limitations of the Source-code Tempitie

The objective of the proposecd source-code template is to pide Ada
programmers with a way to exp«rin.a#t with OpenMP without the red for
an actual integration of the’Ad:. arid the OpenMP runtimes. Thiss a major
task that remains as futurewvork at this point. As a result, a nmber of
limitations and considerations must be acknowledged:

1. The proposed uansformation does not support OpenMP woigharing
constructs (=.gnfui and sections) because the programming model
does not< onsider assigning priorities to threads. Regandithe OpenMP
tasking model, it currently only supports thetask construct because
it accents ‘the priority clause, which allows assigning a priority to
th2 ta.k; on the other hand, the tasks created with théaskloop con-
struel cannot be assigned with priorities. This, however, rpiires a
miiimal implementation, e.g., the compiler could accept @riority
clause together with thetaskloop construct, and the runtime could use
this information to manage the associated tasks in the cosponding
priority queues.

2. The transformation performed by the template might slighy change
the order in which OpenMP creates tasks. This is so becausethe
original supported code, calls to di erent OpenMP environrants can be
made concurrently (in the example, the parallel region of th€holesky

40

Journal Pre-proof

benchmark and that of the image processing benchmark are con-
rent). After the transformation, calls to the OpenMP environnent are
sequentialized due to the way task entries are managed (inetlexample,
only one entry of the Cholesky or the image processing benchrks will
be processed at a time). However, since each entry actuallyates an
OpenMP task with the code within the original OpenMP enviroment,
then several of these can run concurrently as well.

7. Conclusions

This paper tackles the challenge of allowing thesase of the OpdR ne-
grained parallel model with the Ada language, b;: aodressindneé safety of
the code in the presence of parallel computation, ‘and the Etoperability of
the OpenMP and Ada runtimes. For this, the pager is built upon hiree main
pillars: the programming models syntax and,semantics (codgiring all Ada,
the Ada 202X parallel model and OpenMR)/the compilers suppiprand the
runtimes implementation and interozarabilityr Regardingthe rst, we intro-
duce a new syntax to use OpenM24n/Ada based on a series of expents
that prove the bene ts of Opci\i2 considering performance,rpgrammabil-
ity and portability, hence poadactivity. Particularly, we show that OpenMP
can be used to implement theyAda 202X parallel model, and also bsed on
top of Ada to exploit furiaer forms of parallelism. Regarding he compiler
support, we present (1 series of compiler analysis technigubat can identify
potential race coriuticns in Ada, both considering Ada tasksral parallel
OpenMP code.sTais contribution, together with the limitations and modi -
cations that this work identi es as necessary to be done in hOpenMP spec-
i cation to \ae pertable to critical real-time systems, bring OpenMP closer
to its adopion in safety-critical systems. Finally, regarthg the runtimes,
this paoar.extends previous work that analyze the requiremts of the in-
tegratior of the Ada and the OpenMP runtimes, with a novel sowe-code
transformation that enables the OpenMP and the Ada runtimesd operate
(under certain restrictions) as they were actually integried into a uni ed
framework. Furthermore, we use instrumentation and visuedation tools to
show the accomplished interoperability between the runtingeby virtue of
templated execution. Together with previous work, this pagr provides a
further step to enable the use of the OpenMP ne-grained taskg model,
together with, or supporting, the proposed parallel modelat be included in
the forthcoming revision of the Ada standard.

41

Journal Pre-proof

Acknowledgments

This work was supported by the Spanish Ministry of Science drinnova-
tion under contract TIN2015-65316-P, by the European Unions Hiaon 2020
Research and Innovation Programme under grant agreements Nbl®16 and
No 780622, and by the FCT (Portuguese Foundation for SciencadTech-
nology) within the CISTER Research Unit (CEC/04234).

References

[1] S. Royuela, X. Martorell, E. Quinones, L. M. Piriao, OpenMRasking
model for Ada: safety and correctness, in: (Ada-Europe Intertianal
Conference on Reliable Software Technoldyes;"Springed12, pp. 184{
200.

[2] S. Royuela, X. Martorell, E. Quincies, L. M. Pinho, Safegpallelism:
compiler analysis techniques for Aadand OpenMP, in: Ada-Eurep
International Conference on FKerable Software TechnologjeSpringer,
2018, pp. 141{157.

[38] S. Royuela, L. M. Pixhg, E. Quinones, Converging safety drhigh-
performance domains: litegrating OpenMP into Ada, in: 2018 &ign,
Automation & Test irnFurope Conference & Exhibition (DATE), IEEE,
2018, pp. 1021{.0z¢

[4] NVIDIA ® ,Corpcration, NVIDIA® CUDA C Programming Guide,
https://doco.nvidia.com/cuda/cuda-c-programming-gui de/
index.htmiy,. [Online; accessed January-2017] (2016).

[5]41. i=. Sione, D. Gohara, G. Shi, OpenCL.: A parallel programimg stan-
dasaior heterogeneous computing systems, CS&E 12 (3) (20B&{73.

[6] B. Chapman, G. Jost, R. Van Der Pas, Using OpenMP: portable ahed
memory parallel programming, Vol. 10, MIT press, 2008.

[7] A. L. Varbanescu, P. Hijma, R. Van Nieuwpoort, H. Bal, Towardsan
e ective uni ed programming model for many-cores, in: IPDF5, IEEE,
2011, pp. 681{692.

42

Journal Pre-proof

[8] P. Kegel, M. Schellmann, S. Gorlatch, Using OpenMP vs. Thae-
ing Building Blocks for Medical Imaging on Multi-Cores, in: Europar,
Springer, 2009, pp. 654{665.

[9] S. Lee, S.-J. Min, R. Eigenmann, OpenMP to GPGPU: A Compiler
Framework for Automatic Translation and Optimization, SIGPLAN
Not. 44 (4) (2009) 101{110.

[10] J. Shen, J. Fang, H. Sips, A. L. Varbanescu, Performance gdpstween
OpenMP and OpenCL for multi-core CPUs, init ICPPW, IEEE, 2012,
pp. 116{125.

[11] G. Krawezik, F. Cappello, Performance cemparison of MPInd three
OpenMP programming styles on shared memory multiprocesspris:
SPAA, ACM, 2003, pp. 118{127.

[12] B. Kuhn, P. Petersen, E. O'Toole, Op=2nt1P versus threadinn C/C++,
Concurrency - Practice and Exreriencer12 (12) (2000) 1165{76.

[13] GCC team, GOMP, https://gcc.g=u.org/projects/gomp/ (2016).

[14] Intel® Corporation, Intel™ OpenMP* Runtime Library, https://www.
openmprtl.org (2816).

[15] IBMF | IBM Par&ile. =nvironment, http://www-03.ibm.com/systems/
power/softwerenerallel/ (2016).

[16] OpenMP \RB; OpenMP Application Program Interface, versin 2.5,
http:/Mwwyopenmp.org/wp-content/uploads/spec25.pdf (2005).

[17]4OrenN P ARB, OpenMP Application Program Interface, versin 3.0,
huaiwww.openmp.org/wp-content/uploads/spec30.pdf (2008).

[18] OpenMP ARB, OpenMP Application Program Interface, ver-
sion 4.0, http://www.openmp.org/wp-content/uploads/OpenMP4.0.
0.pdf (2013).

[19] A. Podobas, S. Karlsson, Towards Unifying OpenMP Under théask-
Parallel Paradigm, in: IWOMP, 2016, pp. 116{129.

43

Journal Pre-proof

[20] OpenMP Architecture Review Board, OpenMP Application Po-
gram Interface, version 5.0,https://www.openmp.org/wp-content/
uploads/OpenMP-API-Specification-5.0.pdf (2018).

[21] K. L. Sielski, Implementing Ada 83 and Ada 9X Using SolarishAreads,
Ada: Towards Maturity 6 (1993) 5.

[22] S. Michell, B. Moore, L. M. Pinho, Tasklettes{a ne graned parallelism
for Ada on multicores, in: International Conference on Rellde Software
Technologies - Ada-Europe, Springer, 2013, ppr 17{34.

[23] S.T. Taft, B. Moore, L. M. Pinho, S. Michell, Sazia . paradll programming
in Ada with language extensions, ACM SICAds Ada Letters 34 (3)
(2014) 87{96.

[24] A. R. Group, Ada 202x Language~R€iarence Manuahttp://www.
ada-auth.org/standards/ada2x.htmi™, (12019).

[25] L. M. Pinho, B. Moore, S. Migiiei, S. T. Taft, An ExecutionModel for
Fine-Grained Parallelism in. Ac®_ih: Ada-Europe InternationaConfer-
ence on Reliable Softwiare: Technologies, 2015.

[26] IEC, 8652: 2012 Progiamming Languages and their Envimoents{
Programming Langeage Ada, International Standards Orgaragion
(2012).

[27] B. J. Moore Pasallelism generics for Ada 2005 and beyond,; iAda
Letters, ACM, 2010, pp. 41{52.

[28] AdaCcoie, \SNAT Users Guide for Native Platformhttps://gcc.gnu.
org’/oninedocs/gnat_ugn.pdf (2017).

[29] P. . . B. S. Center, Barcelona openmp task suite (botshttps://
ginub.com/bsc-pm/bots (2019).

[30] E. Ayguack, R. M. Badia, P. Bellens, D. Cabrera, A. DuranR. Ferrer,
M. Gonalez, F. Igual, D. Jinenez-Gonalez, J. Labarta, et &, Extend-
ing openmp to survive the heterogeneous multi-core era, arhational
Journal of Parallel Programming 38 (5-6) (2010) 440{459.

[31] BSC, Marenostrum v, https://www.bsc.es/support/
MareNostrum4-ug.pdf (2017).

44

Journal Pre-proof

[32] G. Tagliavini, D. Cesarini, A. Marongiu, Unleashing ne-gained par-
allelism on embedded many-core accelerators with lightwéit openmp
tasking, IEEE Transactions on Parallel and Distributed Systeis 29 (9)
(2018) 2150{2163.

[33] R. E. Vargas, S. Royuela, M. A. Serrano, X. Martorell, E. Qoones, A
lightweight openmp4 run-time for embedded systems, in: 2621st Asia
and South Paci ¢ Design Automation Conference (ASP-DAC), IEE,
2016, pp. 43{49.

[34] M. A. Serrano, A. Melani, R. Vargas, A. Marangiu, M. Bertoga,
E. Quinones, Timing characterization of OpenM?4 tasking maa, in:
CASES, IEEE Press, 2015, pp. 157{166.

[35] Intel Interprocedural Optimization, ht.as://software.intel.com/
en-us/node/522666 (2017).

[36] International Organization for Stadidardization, 1IS@DIS 26262. Road
Vehicles { Functional Safety,(. CO9).

[37] RTCA, DO-178C, Ssaitw:zre considerations in airborne ggsns and
equipment certi cation (Z011).

[38] International Electrotachnical Comission, IEC 615Q8-unctional Safety
of Electrical/Electoivic/Programmable Electronic Safey-related Sys-
tems, Edition 2.3, (2009).

[39] S. Royuesley, A. Duran, M. A. Serrano, E. Quifnones, X. Martell, A
Functivnal Safety OpenMP for Critical Real-Time Embedded Systems,
in: Anternational Workshop on OpenMP, Springer, 2017, pp.32L{245.

[40] Op=enMP ARB, OpenMP Application Program Interface, versin
4.3, http://lwww.openmp.org/wp-content/uploads/openmp-4.5 .pdf
(2015).

[41] S. Royuela, A. Duran, C. Liao, D. J. Quinlan, Auto-scopingf OpenMP
tasks, in: International Workshop on OpenMP, Springer, 2@, pp. 29{
43.

[42] S. Royuela, R. Ferrer, D. Caballero, X. Martorell, Comper analysis for
OpenMP tasks correctness, in: Computing Frontiers, ACM, A®, p. 7.

45

Journal Pre-proof

[43] H. Ma, S. R. Diersen, L. Wang, C. Liao, D. Quinlan, Z. YangSymbolic
analysis of concurrency errors in OpenMP programs, in: ICRREEE,
2013, pp. 510{516.

[44] V. Basupalli, T. Yuki, S. Rajopadhye, A. Morvan, S. DerrienP. Quin-
ton, D. Wonnacott, ompVerify: polyhedral analysis for the @enMP
programmer, in: International Workshop on OpenMP, Springer2011,
pp. 37{53.

[45] D. Kroening, D. Poetzl, P. Schrammel, B. Wac!iter, Sounstatic dead-
lock analysis for C/Pthreads, in: 31st Internatioilc! Confeence on Au-
tomated Software Engineering, IEEE, 2016, |'p. <79{390.

[46] A.Duran, R. Ferrer, J. J. Costa, M. Gonal >z, , .. Martorell,E. Ayguace,
J. Labarta, A proposal for error handling n GpenMP, IJPP 35 (4)2007)
393{416.

[47] M. Wong, M. Klemm, A. Duran.T Matwson, G. Haab, B. R. de Sum-
ski, A. Churbanov, Towards Aa).crior model for OpenMP, in: IWOMP
Springer, 2010, pp. 70{22

[48] A. Duran, E. Ayguade, 7. M. Badia, J. Labarta, L. Martinell, X. Mar-
torell, J. Planas, CmpSs: a proposal for programming heteregeous
multi-core architeCuowres, Parallel Processing Letters 2D2) (2011) 173{
193.

[49] R. Fechets, Gy Kienesberger, A Framework for CFG-Basetific Pro-
gram Analydis of Ada Programs, in: 13th Ada-Europe Internatioal
Confereac2 on Reliable Software Technologies, Springed08, pp. 130{
14¢.

[50] S. Royuela, A. Duran, X. Martorell, Compiler automatic dscovery of
OmpSs task dependencies, in: International Workshop on Lamages
and Compilers for Parallel Computing, Springer, 2012, pp. 2848.

[51] E. Lippe, N. van Oosterom, Operation-based Merging, iProceedings
of the Fifth ACM SIGSOFT Symposium on Software Development En-
vironments, SDE 5, ACM, 1992, pp. 78{87.

46

Journal Pre-proof

[52] A. Burns, B. Dobbing, T. Vardanega, Guide for the use of th Ada
Ravenscar Pro le in high integrity systems, ACM SIGAda Ada Leters
24 (2) (2004) 1{74.

[53] A. Burns, A. J. Wellings, HRT-HOOD: A structured design methodor
hard real-time systems, Real-Time Systems 6 (1) (1994) 734.

[54] Ada Conformity Assessment Authority, Annex D: Real-Time Sgtems
(2012).

[55] M. A. Serrano, S. Royuela, E. Quinones, Towa:{s an OpeRMspeci -
cation for Critical Real-Time Systems, in: Intcrnatonal Workshop on
OpenMP, Springer, 2018, pp. 143{159.

[56] GNU, The GOMP project, https://ge:.gawiorg/projects/gomp

(2017).
[57] BSC, Extrae,https://tools.bsc.es/exirac (2017).
[58] BSC, Paraver https://tools.bic.as/paraver (2017).

a7

Journal Pre-proof

Declaration of Competing Interest

The authors declare that they have no known competing nanal inter-
ests or personal relationships that could have appeared touence the work
reported in this paper.

48

Journal Pre-proof

Dr. Sara Royuela gt Fer FnD in Computer Architecture in 2018.
She has been working at E3C for the last 9 years, rst in the Pgram-
ming Models department and the in the Parallel Predictable Gmputing
department. She is & comuiler expert, particularly in compér analysis tech-
niques for correctress and safety, with deep knowledge ongdMP. Sara has
participated as /53C riember in several European Projects:ENDRE (FP7,
'"10-'13), PSCCRATES (FP7,'13-'16), CLASS (H2020,'18-'20) athELASTIC
(H2020, '12-'21), providing key contributions on compiler malysis techniques
for para‘ierarcgramming models in the context of critical mbedded systems
and »'PZ. _She has co-led the e orts to introduce OpenMP into Adacol-
laborati g with reasearch institutions (CISTER), companise (AdaCore) and
organizations (OpenMP ARB and Ada ARG members). She has particped
in bilateral projects with the ESA and Denso, and is currenyl involved in
a project with Airbus Defense and Space. Her work has been pubied in
international well-recognized conferences. She has beamtf the program
committee and participated in the organization of a number foconferences.
Additionally, she mentors di erent PhD and Master students fom the UPC
which research involves functional safety and parallel pgpamming for em-
bedded systems.

49

