

Enabling Ada and Open MP Runti mes
Inter operabi lity through Template -based
Execution
Pre-proof article

Journal Paper

*CISTER Research Centre

CISTER-TR-191218

2019/12/19

Sara Royuela

Luis Miguel Pinho*

Eduardo Quiñones

Journal Paper CISTER-TR-191218 Enabling Ada and OpenMP Runtimes Interoperability through ...

© 2019 CISTER Research Center
www.cister-labs.pt

1

Enabling Ada and OpenMP Runtimes Interoperability through Template-based
Execution

Sara Royuela, Luis Miguel Pinho*, Eduardo Quiñones

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: lmp@isep.ipp.pt

https://www.cister-labs.pt

Abstract
The growing trend to support parallel computation to enable the performance gains of the recent hardware
architectures is increasingly present in more conservative domains, such as safety-critical systems. Applications
such as autonomous driving require levels of performance only achievable by fully leveraging the potential
parallelism in these architectures. To address this requirement, the Ada language, designed for safety and
robustness, is considering to support parallel features in the next revision of the standard (Ada 202X). Recent
works have motivated the use of OpenMP, a de facto standard in high-performance computing, to enable
parallelism in Ada, showing the compatibility of the two models, and proposing static analysis to enhance
reliability. This paper summarizes these previous efforts towards the integration of OpenMP into Ada to exploit its
benefits in terms of portability, programmability and performance, while providing the safety benefits of Ada in
terms of correctness. The paper extends those works proposing and evaluating an application transformation that
enables the OpenMP and the Ada runtimes to operate (under certain restrictions) as they were integrated. The
objective is to allow Ada programmers to (naturally) experiment and evaluate the benefits of parallelizing
concurrent Ada tasks with OpenMP while ensuring the compliance with both specifications.

Enabling Ada and OpenMP Runtimes Interoperability through Template-based Execution

Journal Pre-proof

Enabling Ada and OpenMP Runtimes Interoperability through
Template-based Execution

Sara Royuela, Luis Miguel Pinho, Eduardo Quiñones

PII: S1383-7621(19)30509-0
DOI: https://doi.org/10.1016/j.sysarc.2019.101702
Reference: SYSARC 101702

To appear in: Journal of Systems Architecture

Received date: 15 July 2019
Revised date: 9 November 2019
Accepted date: 11 December 2019

Please cite this article as: Sara Royuela, Luis Miguel Pinho, Eduardo Quiñones, Enabling Ada and
OpenMP Runtimes Interoperability through Template-based Execution, Journal of Systems Architec-
ture (2019), doi: https://doi.org/10.1016/j.sysarc.2019.101702

This is a PDF �le of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the de�nitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its �nal form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier B.V.

Enabling Ada and OpenMP Runtimes Interoperability
through Template-based Execution

Sara Royuelaa, Luis Miguel Pinhob, Eduardo Qui~nonesa

aBarcelona Supercomputing Center
bISEP, Polytechnic Institute of Porto

Abstract

The growing trend to support parallel computation to enablethe perfor-
mance gains of the recent hardware architectures is increasingly present in
more conservative domains, such as safety-critical systems. Applications such
as autonomous driving require levels of performance only achievable by fully
leveraging the potential parallelism in these architectures. To address this
requirement, the Ada language, designed for safety and robustness, is consid-
ering to support parallel features in the next revision of the standard (Ada
202X). Recent works have motivated the use of OpenMP, a de facto standard
in high-performance computing, to enable parallelism in Ada,showing the
compatibility of the two models, and proposing static analysis to enhance
reliability. This paper summarizes these previous e�orts towards the inte-
gration of OpenMP into Ada to exploit its bene�ts in terms of portability,
programmability and performance, while providing the safety bene�ts of Ada
in terms of correctness. The paper extends those works proposing and eval-
uating an application transformation that enables the OpenMP and the Ada
runtimes to operate (under certain restrictions) as they were integrated. The
objective is to allow Ada programmers to (naturally) experiment and eval-
uate the bene�ts of parallelizing concurrent Ada tasks with OpenMP while
ensuring the compliance with both speci�cations.

Keywords: Concurrency, parallelism, Ada, OpenMP, safety, runtimes

1. Introduction

Safety-critical systems have evolved to such a degree that the use of par-
allel paradigms is crucial to deliver the levels of performance necessary to im-
plement the most advanced functionalities (e.g., autonomous driving). This

Preprint submitted to Advances in Reliable Software Technologies: AnAda PerspectiveDecember 19, 2019

������������������������������������

trend has arrived to Ada, a language designed for safe and secure program-
ming which is widely used in safety-critical domains, such as avionics and
aerospace. In this regard, two complementary research linesare tackling the
extension of Ada to support parallelism: a) the simple yet powerful language-
based parallel model that, based on a fully strict fork-joinmodel, is able to
exploit structured parallelism on shared memory architectures; and b) the
incorporation of the OpenMP parallel programming model into Ada, to e�-
ciently exploit structured and unstructured parallelism.This work focuses in
the latter approach (although it is discussed its comparison with the former,
and the use-cases where that restricted model can be exploited).

OpenMP is a parallel programming model extensively used in High-
Performance Computing (HPC) domains, that o�ers a tasking model very
suitable to cope with unstructured and highly dynamic parallelism. It de-
�nes tasks as units of parallelism composed of the task's executable code
and its data environment, as well as di�erent synchronization mechanisms
(e.g., point-to-point synchronizations via data dependencies, and full syn-
chronizations via memory fences). This, coupled with the accelerator model,
allows targeting from simple SMP (Symmetric Multiprocessing) machines, to
complex and heterogeneous architectures, all using the same programming
model.

This paper presents the integration of the OpenMP parallel program-
ming model into the Ada language to fully exploit the bene�ts ofOpenMP,
in terms of portability, programmability and performance,while providing
the safety bene�ts of the Ada language, in terms of correctness. We divide
our contribution in three main pillars: (1) the programming model, i.e., how
the OpenMP directives are integrated in Ada at a language level, (2) the
compiler, i.e., the static analysis and transformations needed to ensure cor-
rectness, and (3) theruntime, i.e., the interoperability needed between the
Ada runtime and the OpenMP runtime. These three contributionshave been
presented in [1], [2] and [3] respectively.

Concretely, regarding the programming model, we propose a new syntax
for OpenMP and Ada (OpenMP is only supported by C, C++ and For-
tran languages) that aims to maintain the clarity and certainty, a distinct
characteristic of Ada. Regarding the compiler, we propose a series of com-
piler analyzes that seek data races in Ada and Ada+OpenMP programs, and
provide the user with feedback to solve the errors. Finally, regarding the
runtime, we prove that OpenMP fully supports the Ada 202X parallel model
(and hence can be used to implement it), as well as analyze theinformation

2

������������������������������������

that must be interchanged between the two runtimes (Ada and OpenMP) in
order to ensure a correct interoperability among then and guarantee safety
requirements (such as a priority driven scheduling).

This paper further extends the work done at the runtime level and pro-
poses an source-code transformation that enables the OpenMP and the Ada
runtimes to operate (under certain restrictions) as they were actually inte-
grated into a uni�ed framework. The objective of our proposal is to allow
Ada programmers to naturally experiment and evaluate the bene�ts of par-
allelizing concurrent Ada tasks with OpenMP, ensuring that both, the Ada
and the OpenMP runtimes, are compliant with the respective speci�cations.

The remainder of this paper is organized as follows: Section2 introduces
the programming models used in this work, which are the Ada 202X parallel
model and OpenMP; Section 3 analyzes the bene�ts that exploiting OpenMP
can provide to Ada users in terms of programmability and performance, and
hence motivates the use of this parallel model to boost Ada applications;
Section 4 compares the Ada 202X parallel model and the OpenMP program-
ming model to prove that OpenMP can be used to implement the Adapar-
allel model, and also exposes the syntax needed to use OpenMPdirectly in
Ada applications; Section 5 presents a series of compiler analysis techniques
needed to ensure that Ada and Ada+OpenMP codes are data race free; Sec-
tion 6 introduces a new source-code template that allows Ada programmers
to introduce OpenMP naturally in their codes while ensuringthe correct in-
teroperability between the two runtimes, and evaluates the actual between
Ada and OpenMP at thread level; �nally, Section 7 shows the conclusions of
our work.

2. Programming Models

For this work we consider two programming models: the Ada language-
based parallel model, which o�ers extensions to the Ada language to support
�ne-grained parallelism, and OpenMP, which o�ers a complete API for ex-
ploiting several forms of parallelism. This section �rst motivates the selection
of OpenMP. Then, it introduces the two parallel programming models, de-
scribing the execution and memory model, to ease the readingof the rest of
the document.

3

������������������������������������

2.1. Why OpenMP?
Programming multi-cores is di�cult due to the multiple constraints it in-

volves. Hence, the success of a multi-core platform relies onits productivity,
which combines performance, programmability and portability. With such a
goal, a multitude of programming models coexist. The di�erent approaches
can be grouped in three paradigms: (1)hardware-centric models aim to re-
place the native platform programming with higher-level, user-friendly solu-
tions, and focus on tuning an application to match a chosen platform, making
their use a neither scalable nor portable solution (e.g., NVIDIA R
 CUDA [4]);
(2) application-centric models deal with the application parallelization from
design to implementation, and o�er less explicit parallel constructs, which,
although portable, may require a full rewriting process to accomplish produc-
tivity (e.g., OpenCL [5]); and (3) parallelism-centric models provide typical
parallelism constructs in a simple and e�ective way, and at various levels of
abstraction, bringing
exibility and expressiveness, while decoupling design
from implementation (e.g., OpenMP [6]).

Given the vast amount of options available, there is a noticeable need to
unify programming models for many-cores [7]. In that sense, OpenMP has
proved many advantages over its competitors considering all performance,
programmability and portability. On one hand, the OpenMP Application
Program Interface (API) o�ers a simple yet complete and
exible platform
for writing multi-threaded applications with C/C++ and Fort ran by means
of a number of compiler directives, runtime library routinesand environment
variables. It relies on compiler and runtime support to implement its func-
tionalities. In essence, the language is built around systems where multiple
concurrent threads have access to a shared-memory space; however, it has
evolved to target more complex and heterogeneous systems. On the other
hand, di�erent evaluations demonstrate that OpenMP delivers comparable
performance and e�ciency compared to highly tunable modelssuch as TBB
[8], CUDA [9], OpenCL [10], and MPI [11]. Moreover, OpenMP hasdi�erent
advantages over low-level libraries such as Pthreads: a) ito�ers robustness
without sacri�cing performance [12], and b) OpenMP does notlock the soft-
ware to a speci�c number of threads. Another advantage is thatthe code
can be compiled as a single-threaded application just disabling support for
OpenMP, thus easing debugging.

Overall, the use of OpenMP presents three main advantages: (1) an ex-
pert community has constantly reviewed and augmented the language for
more than twenty years, thus, less e�ort is needed to introduce �ne-grained

4

������������������������������������

parallelism in Ada; (2) OpenMP is widely implemented by several chip and
compiler vendors (e.g., GNU [13], IntelR
 [14], and IBM [15]), meaning that
less e�ort is needed to manage parallelism as the OpenMP runtime will man-
age it; and (3) OpenMP provides greater expressiveness due to years of expe-
rience in its development; in this regard, the language o�ers several directives
for parallelization and synchronization, along with a large number of clauses
that allow to contextualize concurrency, providing a �ner control of the par-
allelism. In a nutshell, OpenMP is a good candidate to introduce �ne-grained
parallelism to Ada by virtue of its bene�ts.

2.2. OpenMP

Initial versions of OpenMP, up to version 2.5 [16], implemented athread-
centric model of parallelism that de�nes a conceptual abstraction ofuser-level
threads exposing the management of the underlying resourcesto the user.
This model relies on theparallel and a series of worksharing constructs
(e.g., for and sections), and enforces a rather structured parallelism. Next
releases, since version 3.0 [17], introduced support for atask-centric model
(a.k.a. tasking model), which is oblivious of the physical layout, and focuses
on exposing parallelism rather than mapping parallelism tothreads. As a re-
sult, this model allows de�ning unstructured and highly dynamic parallelism
by means of thetask construct. Finally, since version 4.0 [18], OpenMP
includes support for accelerators, error handling, thread a�nity and SIMD
extensions, as well as augments the tasking model (e.g., data dependen-
cies, thetaskloop construct), expanding the language beyond its traditional
boundaries.

2.2.1. Execution Model
OpenMP implements a fork-join model of parallelism. The program be-

gins as a single thread of execution, called theinitial thread. The parallel
construct spawns ateam of threads at the beginning of the parallel region,
and joins the team at the implicit barrier at the end of the parallel region. The
amount of computing resources can be de�ned by means of thenumthreads
clause (if none is de�ned, then the number is implementation de�ned, al-
though the number of cores is commonly considered). Within the parallel
region, work can be distributed among threads by means of work-sharing con-
structs or tasking constructs. The two models have equivalent performance
[19]

5

������������������������������������

The OpenMP tasking model de�nes preemption points for tasks,called
task scheduling points(TSPs). These points, de�ned in the speci�cation
(Section 2.10.6 [20]), are the moments at which a thread can stop executing
a speci�c task and start executing a di�erent one. It is responsibility of the
runtime to decide whether a task is preempted (and potentially migrated) or
not. Furthermore, OpenMP de�nes two di�erent approaches torelate tasks
to threads: (1) tied tasks are those that are tied to the thread that starts exe-
cuting them, and (2) untied tasks are those that can migrate among threads.
This connection between threads and tasks exists because the introduction
of the tasking model in version 3.0 had to maintain the coherency with the
already existing thread-model and, for that reason, tasks are tied by default.

Mutual exclusion is accomplished via thecritical and atomic con-
structs (while the former allows an arbitrary block of code,the latter only
accepts speci�c simple operations such as assignments and binary opera-
tions). Furthermore, synchronization can be de�ned depending on the gran-
ularity: full synchronization is de�ned by means of thebarrier and the
taskwait constructs (while a barrier synchronizes all threads in thecur-
rent team, a taskwait only synchronizes child tasks of the binding task1),
and point-to-point synchronization is accomplished by means of dependency
clauses. These can de�ne three di�erent ways of data-
ow synchronization
among tasks, based on the particular dependency clause, which can be: (1)
in , a task with an l-value as input dependency is eligible to runwhen all pre-
vious tasks with the same l-value as output dependency have �nished their
execution; (2)out , a task with an l-value as output dependency is eligible to
run when all previous tasks with the same l-value as input or output depen-
dency have �nished their execution; and (3)inout , a task with an l-value as
inout dependency behaves as if it was an output dependency.

2.2.2. Memory Model
OpenMP is based on a relaxed-consistency, shared-memory model. This

means there is a memory space shared for all threads, calledmemory. Ad-
ditionally, each thread has a temporary view of the memory. Intuitively, the
temporary view is not always required to be consistent with the memory.
Instead, each private view synchronizes with the main memoryby means

1The binding region is the enclosing region that determines the execution context and
limits the scope of the e�ects of the bound region.

6

������������������������������������

of the
ush operation. Hence, memory operations can be freely reordered
except around
ushes. This synchronization can be implicit (in any, implicit
or explicit, synchronization operation causing a memory fence) or explicit
(using the flush directive). Data cannot be directly synchronized between
the temporary view of two di�erent threads.

The view each thread has for a given variable is de�ned using data-sharing
clauses, which can determine the following sharing scopes:(1) private, a new
fresh variable is created within the scope; (2)�rstprivate , a new variable is
created in the scope and initialized with the value of the original variable;
(3) lastprivate, a new variable is created within the scope and the original
variable is updated at the end of the execution of the region, and (4) shared,
the original variable is used in the scope, opening the possibility of race con-
ditions. Additionally, the data-sharing attributes for variables referenced in
a construct can be: (1)predetermined, those that, regardless of their oc-
currences, have a data-sharing attribute determined by theOpenMP model;
(2) explicitly determined, those that are referenced in a given construct and
are listed in a data-sharing attribute clause on the construct; or (3) implic-
itly determined, those that are referenced in a given construct, do not have
predetermined data-sharing attributes and are not listed in a data-sharing
attribute clause on the construct.

2.3. Ada 202X Parallel Model

The Ada language includes support for concurrency as part of the lan-
guage standard, by means of Tasks2, which are entities that denote concur-
rent actions, and inter-task communication mechanisms such as protected
objects or the rendezvousmechanism. This model is targeted to support
the concurrent functionalities that the software should support, providing
coarse-grained parallelism. Hence, it is not suitable to support �ne-grained
parallelization in the hardware platform, leading in this cases to higher over-
head [21].

To address the evolution for parallel support, a proposal was made to ex-
tend Ada with a �ne-grained parallel model, based on the notion of tasklets
[22], where parallelism is not fully controlled by the programmer: the pro-
grammer speci�es the parallel nature of the algorithm, and the compiler and

2Ada tasks are coarse-grained concurrent entities, not related to OpenMP �ne-grained
parallel tasks.

7

������������������������������������

the runtime have the freedom to organize parallel computations. Based on
this model, speci�c language extensions have been proposed [23] to cover
two cases where parallelization is suitable: parallel blocks and parallel loops,
including reductions and iterators. In fact, reductions are more general than
their use in loops, but that is not necessary for the work in this paper.

This proposal led to a set of proposed changes or the next revision of
the Ada language (Ada 202X, currently in its �nal working draft [24]). The
changes specify that an Ada task (a concurrent activity) can represent mul-
tiple logical threads of control (Ada 202X, Section 9) which can proceed in
parallel within the context of well speci�ed parallel regions: parallel loops
and parallel blocks).

2.3.1. Execution Model
In the Ada parallel model, parallel execution follows a fork-join model,

with clear (language-based) parallel regions. In both cases (loops and blocks),
the keyword parallel allows the compiler to split the work into logical
threads of control. In the case of parallel loops, the loop range is split into
non-overlapping chunks, each one being possible to processin parallel. For
the parallel blocks, separate sequences of statements can execute in parallel,
each sequence being mapped to a logical thread of control.

The draft Ada 202X standard does not de�ne how the logical threads of
control are executed by the runtime. This provides freedom to the compiler
and runtime, as long as the semantics of parallel constructsare guaranteed.
In particular, the draft describes arun-to-completion model [25] where the
logical threads of control are executed by a unique runtime executor (e.g.,
an operating system thread) until it completes. Note that executors do not
necessarily have to run uninterruptedly or to execute on thesame core, since
they may be scheduled in a preemptive fashion.

2.3.2. Memory Model
As the Ada language supports concurrency in the language since its be-

ginnings (Ada 83), it already provides a memory model that considers data
races, which is now updated to consider logical threads of control. The lan-
guage allows a relaxed-consistency memory model where the visibility of the
variables may vary within parallel regions, but clearly speci�es the semantics
which allow for concurrent access to the shared variables (Ada 202X, Section
9.10). For safety reasons, Ada delegates the responsibilityof de�ning this
visibility to the compiler, which is in charge to ensure a safe execution.

8

������������������������������������

3. Motivation: The Performance Bene�ts of OpenMP

The idea of introducing OpenMP in Ada is quite appealing, but still we
need some evidence that: (1) the Ada tasking model may not deliver compet-
itive levels of performance when running �ne-grained tasks,(2) OpenMP can
e�ciently exploit the parallelism introduced in the Ada parallel Model, and
(3) OpenMP o�ers mechanisms, that do not exist neither in theAda model
nor in the Ada parallel model, to exploit further forms of parallelism. With
such a purpose, we have conducted a series of experiments that evaluate the
bene�ts of OpenMP compared to other implementations that exploit paral-
lelism in Ada, i.e., native Ada tasks [26] and Para�n [27]. The experimental
setup used is the following:

Runtimes. We use three runtime implementations that support parallelism:

- libgomp, the GNU runtime library for OpenMP from GCC 7.2.

- GNAT [28], the GNU runtime library for Ada from GCC 7.2.

- Para�n 5.0 [27], a suite for Ada.

Applications and Implementations.We consider three applications: an em-
barrassingly parallel matrix intensive computation, (Matrix), the LU
factorization (LU), and the Cholesky decomposition (Cholesky). We
use four di�erent parallelization strategies3: the Ada parallel model im-
plemented with OpenMP, OpenMP (including task dependencies, not
available in the Ada parallel model), Ada tasks, and Para�n. Following
we detail the relevant aspects of each version:

- Matrix. This application, resembling image processing algorithms,
iterates 50000 times over a 512x512 matrix, and performs inde-
pendent arithmetical operations on each element. The OpenMP
version divides the matrix into blocks, each processed by a di�er-
ent OpenMP task; the number of threads independent from the
number of tasks. The Ada tasks version creates an array of Ada
tasks, and assigns a set of rows to each task; the number of threads
is determined by the Ada runtime, which uses one thread for each
task, and a thread for the main task. Finally, the Para�n version

3The source codes of all implemented strategies of theMatrix , LU, and Choleskybench-
marks are publicly available at https://github.com/sroyuela/ada_omp_jsa_apps .

9

������������������������������������

splits the matrix into rows, and processes in parallel the elements
of each row; the number of threads can be de�ned by the user.

- LU. This application computes the LU factorization of a ma-
trix of 64x64 elements, where each element is a 32x32 matrix.
The OpenMP version adapts the SparseLU benchmark from the
Barcelona OpenMP Task Suite (BOTS) [29], to use a dense matrix
instead of a sparse one. The kernel is divided in four phases:lu0,
fwd, bdiv and bmod; and there are three full synchronizations that
divide the execution in three stages: the �rst containinglu0, the
second containingfwd and bdiv, and the third containing bmod.
These stages are traversed several times. The Ada tasks and the
Para�n implementations are based on the OpenMP version. In
both cases, the code is split in three stages and full barriers are
implemented in between the stages. In the Ada tasks implementa-
tion, for each phase, a di�erent task executes a chunk of iterations
(the number of tasks created is the number of threads available,
plus one task for the main function). In the Para�n implementa-
tion, each phase is processed as a parallel loop.

- Cholesky.This application computes the Cholesky decomposition
of a matrix of 128x128 elements, where each element is a 32x32
matrix. The OpenMP version is based on the Cholesky imple-
mentation of Ayguad�e et. al for extending the OpenMP task-
ing model [30] to target heterogeneous architectures. As forLU,
the Ada tasks and the Para�n implementations are based on the
OpenMP one and mimic the stages of that version.

Platform. We run our experiments in a computing node from the MareNos-
trum IV [31] supercomputer4. It consists of a 2 sockets Intel Xeon
Platinum 8160 CPU with 24 cores each, operating at 2.10GHz, and
featuring a 33MB shared L3 cache. The L1 and L2 caches are private
to each socket: the former has 32KB, and the latter has 1MB. The
system runs a SUSE Linux Enterprise Server 12 SP2 operating system.

4We evaluate the performance of OpenMP on a chip from the HPC domain because
it o�ers more computational capabilities than typical embedded systems. However, tests
conducted in embedded platforms show similar trends regarding performance and scala-
bility with OpenMP [32, 33].

10

������������������������������������

�

�

��

��

��

��

��

� � � � �� �� �� �� �� ��

���
���

��	

��

��

�
�

������
��
������

	
��

���� �������
 ��

�� ��������

(a) Matrix

�

�

��

��

��

��

��

� � � � �� �� �� �� �� ��

���
���

��	

��

��

�
�

������
��
������

	
��

���� �������
 ��

�� �������

(b) LU

Figure 1: Scalability analysis of the Ada parallel model implemented with OpenMP, Ada
tasks and Para�n.

First, we analyze the need for �ne-grained parallelization and synchro-
nization mechanisms in Ada. With such a purpose, we evaluate the scalabil-
ity of the Matrix and theLU benchmarks implemented with three strategies:
the Ada 202X parallel model, Ada tasks and Para�n. Since the Ada 202X
parallel model is not supported by any Ada runtime yet, we use OpenMP
directives, i.e., thetask construct to create units of concurrency, and the
taskwait construct to synchronize tasks, to implement the proposed Ada
operations for parallel loops and parallel blocks. Interestingly, this shows
how OpenMP can be used to implement the Ada parallel model (Section 4
analyzes the equivalence of the two parallel models).

Figure 1 depicts the mentioned scalability analysis for theMatrix and
the LU benchmarks. Particularly, each plot shows the execution time (in
seconds) of the three versions when modifying the number of threads, and
the time of the sequential version, only for one thread. In the Matrix ex-
ample, in Figure 1a, all implementations show a good exploitation of the
resources: up to 24 threads, all have a ideal speedup; after that, only Ada
tasks and OpenMP have linear speedup, while Para�n requiresmore time for
synchronization5. The structured and embarrassingly parallel nature of the
algorithm allows the three techniques to extract bene�ts from the parallel ex-
ecution. However, it is important to note that the granularity of the OpenMP
tasks is much �ner than the other two versions. With this example, we show
how OpenMP can be used to e�ciently implement the Ada parallelmodel.

5A new version of the Para�n suite is to be released soon. This new version reduces
synchronization costs and, possibly, enhances the results shown inthis article.

11

������������������������������������

For the LU example, in Figure 1b, the Ada parallel model implemented with
OpenMP clearly outperforms the other implementations. Particularly, the
Ada parallel model shows ideal speedup up to 24 threads; afterthat, the
synchronization costs limit the performance gain of the parallel execution.
This is so because the architecture used is a NUMA machine and L1and L2
caches are private to each socket; hence, each time a taskwait is encountered,
and so a memory
ush occurs (enforced by the OpenMP speci�cation), the
di�erent cache levels have to be updated for cache coherence. Compared to
the other versions, the �ne-grained synchronization mechanisms provided by
OpenMP show much better e�ciency than those of Ada tasks and Para�n.

To further analyze the use of OpenMP on top of Ada, we have used the
point-to-point synchronizations provided by OpenMP in the form of task
dependencies. This mechanism allows to extract parallelism out of highly
unstructured applications. Figure 2 shows the results obtained with the
Cholesky benchmark parallelized with two versions of OpenMP: one imple-
menting structured parallelism using thetaskwait construct, and the other
implementing unstructured parallelism using task dependencies. The version
with dependencies outperforms when then number of cores is higher than 4,
because it takes pro�t of all the parallelism existing in theapplication, while
taskwaits are coarse-grained synchronizations that limit parallelism. Further-
more, the cost of synchronizing threads (noticeable in the taskwaits version)
is higher when the number of cores used is bigger than 24 because of the
NUMA architecture of the platform, as explained for theLU benchmark.

�

�

�

�

�

��

��

� � � � �� �� �� �� ��

���
���

���
	�

���
�
�

�

������
��
�����
�

�	
��
������������ �	
��
�����
	
��
���
�

Figure 2: Speedup of Cholesky using structured (Ada parallel model)and unstructured
(OpenMP task dependencies) parallelism.

12

������������������������������������

4. OpenMP for Fine-grained Parallelism in Ada

The OpenMP tasking model follows the same principle as the Adaparallel
model, where the compiler and the runtime system are the onesresponsible
for generating and executing the OpenMP tasks. We take advantage of that
with the aim of introducing OpenMP into Ada. This section analyzes the
compatibility of the Ada 202X parallel model and OpenMP, and proves that
OpenMP can be used to implement the Ada parallel model as well. Further-
more, this section shows the language extensions we propose in order to use
OpenMP on top of Ada to further exploit unstructured and highly dynamic
parallelism. The work summarized in this Section has been presented in [1]
and [3].

4.1. Supporting the Ada Parallel Model with OpenMP

This section provides insight about the OpenMP features necessary to
implement the Ada parallel model based on their execution models. It focuses
in three main aspects: the preemption model, the progression model and the
fork-join model. The next paragraphs dig into each aspect.

Preemption. The limited form of run-to-completion that was proposed in
the tasklet model can be mapped to the OpenMP tasking model straightfor-
wardly: the logical threads of control are mapped to OpenMP tasks, and are
executed by OpenMP threads. Furthermore, untied tasks are more suitable
to implement this, because tasks can migrate between threads. Moreover,
untied tasks have better time predictability than tied tasks, due to their
work-conserving nature [34]. On the other hand, although the work-sharing
constructs provided by the thread-centric model can implement the same se-
mantics as Ada parallel blocks and parallel loops do, work-sharing entities
cannot be preempted by the runtime, and therefore this modelis not suitable
to support the Ada completion model.

Progression Model.The OpenMP speci�cation does not impose any model
of progression; the same is being prescribed in the Ada 202X draft. Both
models rely on the implementation to guarantee safe execution.

Fork-join Model. The fully strict fork-join model required by the Ada parallel
model is fully supported by OpenMP. Since OpenMP does not force the
distribution of work to be done at the same point as the spawn of parallelism,
OpenMP constructs are more
exible. For example, when implementing

13

������������������������������������

parallel nested blocks with the OpenMP tasking model two possibilities are
valid: (1) use a unique parallel region (hence a unique team ofthreads) with
nested tasks, or (2) spawn parallelism twice by nesting parallel regions. The
�rst option may reduce the overhead of creating and destroying extra teams of
threads (the nested ones). However, it is interesting to havethe possibility of
exploiting two di�erent levels of parallelism for di�erent reasons: parallelism
is not exposed at the same level, or the application is not balanced, among
others.

4.2. Supporting OpenMP in Ada

Besides the feasibility of using OpenMP to implement the Ada parallel
model, as shown in Section 4.1, OpenMP can be used on top of Ada to exploit
its bene�ts, as demonstrated in Section 3. This section shows the language
extensions required to use OpenMP in Ada, and analyzes the expressiveness
of OpenMP against that of Ada.

4.2.1. Language Extensions
The current OpenMP speci�cation is de�ned for C, C++ and Fortran.

In this regard, the syntax of Ada is closer to that of Fortran than the one for
C/C++, because Ada does not group a sequence of statements by bracketing
the group (as in C), but uses a more structured approach with a closing state-
ment to match the beginning of the group (as in Fortran). Since Ada already
de�nes pragmasof the form pragma Name (ParameterList) , our proposal
introduces a new kind of pragma,pragma OMP, together with the directive
name (e.g.,task , barrier , etc.), and the clauses that go with the direc-
tive (e.g., dependencies), included as parameters of the pragma (although
we propose the use of pragmas, a similar approach can be used with Ada
aspects). The snippet in Listing 1 shows an example of the proposed syntax
when an OpenMP construct (taskloop in this case) applies to one statement
(the loop associated to the construct), and the snippet in Listing 2 shows an
example where the construct (task) applies to more than one statement (the
structured block associated to the task).

OpenMP de�nes the argument of a data-sharing clause as a listof items.
This does not match directly with the syntax allowed in Ada for pragmas,
as shown in Listing 3. To simplify the syntax needed to de�ne data-sharing
clauses, we propose to extend the de�nition ofpragmaargument identifier
with a list of expressions. We use this proposed syntax for the rest of the
document.

14

������������������������������������

Listing 1: OpenMP proposed syntax for
pragmas applying to one statement

1 pragma OMP (taskloop , num_tasks =>N);
2 for i in range 0.. I loop
3 ... -- statements here
4 end loop ;

Listing 2: OpenMP proposed syntax for
pragmas applying to several statements

1 pragma OMP (task , shared =>var);
2 begin
3 ... -- statements here
4 end ;

Listing 3: Ada syntax for pragmas
1 pragma ::=
2 pragma ident i f ier [(pragma_argument_associat ion { ,
3 pragma_argument_associat ion })];
4 pragma_argument_associat ion ::=
5 [pragma_argument_ident i f ier =>] name
6 | [pragma_argument_ident i f ier =>] expression

With these extensions, OpenMP can be used to express the same forms
of parallelism as the Ada parallel model (i.e., parallel blocks and parallel
loops, including a limited form of reduction), and further exploit other forms
of parallelism (unstructured and highly dynamic applications). The next
paragraphs show snippets of how the Ada tasklet model can be expressed
using the OpenMP tasking model.

Parallel Blocks. A parallel block denotes two or more concurrent sections.
The Ada extensions proposed for such a purpose are shown in Listing 4. In
OpenMP, a parallel block can be written using the thread-centric model (us-
ing the sections and section constructs) or the task-centric model (using
the single and task constructs), depicted in Listing 5. In this code, the
parallel construct spawns parallelism, thesingle construct indicates that
only one thread in the team executes the associated region, and the task
constructs distributes parallelism among threads of the team.

Parallel Loop. A parallel loop de�nes a loop where iterations may be executed
in parallel. The Ada syntax for such a structure is depicted inListing 6.
OpenMP o�ers two di�erent constructs this purpose: (1) thefor construct,
from the thread-centric model, and (2) thetaskloop construct, from the
tasking model, shown in Listing 7. In both cases, we illustrate the directives
using the well-known matrix multiplication benchmark, that considers two
matricesM1and M2, and the matrix RES, where their multiplication is stored.

15

������������������������������������

Listing 4: Parallel Fibonacci se-
quence with Ada extensions

1 if N < 2 then
2 return N;
3 parallel do
4 X:= Fibonacci (N - 2);
5 and
6 Y:= Fibonacci (N - 2);
7 end do ;
8 return X + Y;

Listing 5: Parallel Fibonacci sequence with
OpenMP tasks

1 if N < 2 then
2 return N;
3 pragma OMP (parallel , shared =>X,Y,
4 firstprivate =>N);
5 pragma OMP (single , nowait);
6 begin
7 pragma OMP (task , shared =>X,
8 firstprivate =>N);
9 X:= Fibonacci (N - 2);

10 pragma OMP (task , shared =>Y,
11 firstprivate =>N)
12 Y:= Fibonacci (N - 2);
13 end ;
14 return X + Y;

Listing 6: Parallel matrix multiplication
with Ada extensions

1 parallel for i in 0.. MAX_I loop
2 for j in range 0.. MAX_J loop
3 for k in range 0.. MAX_K loop
4 RES(i , j):= RES(i , j)
5 + M1(i ,k) * M2(k , j);
6 end loop ;
7 end loop ;
8 end loop ;

Listing 7: Parallel matrix multiplication with
OpenMP taskloop

1 pragma OMP (parallel);
2 pragma OMP (taskloop ,
3 private =>i , j , k ,
4 firstprivate =>MAX_I , MAX_J , MAX_K ,
5 shared =>RES , M1 , M2 ,
6 grainsize => chunk_size ,
7 nowait);
8 begin
9 for i in range 0.. MAX_I loop

10 for j in range 0.. MAX_J loop
11 for k in range 0.. MAX_K loop
12 RES(i , j):= RES(i , j)
13 + M1(i ,k) * M2(k , j);
14 end loop ;
15 end loop ;
16 end loop ;
17 end

Parallel Reduction. The Ada parallel model de�nes a reduction as an opera-
tion which transforms a collection of values into a single value result, allowing
builtin operations to be used (e.g., +, -, *, etc.), as well asused-de�ned re-
ducers and combiners. This is achieved byreduction expressions, which can
be made parallel. Similarly, OpenMP de�nes a reduction as a parallel opera-
tion which result is stored in a variable, supporting builtin and used-de�ned
reductions. The reduction itself is implemented in OpenMP by means of a
clause that can be added to multiple constructs likeparallel and taskloop
among others. Listing 9 shows the syntax adapted to our proposal for Ada.

16

������������������������������������

Listing 8: Parallel reduction with Ada extensions
1 parallel (Chunk in Part ial_Sum ' Range)
2 for I in Arr ' Range loop
3 Part ial_Sum (Chunk) := Part ia l_Sum (Chunk) + Arr (I);
4 end loop ;
5 Sum := Part ial_Sum ' Reduce (` `+ ' ' ,0.0);

Listing 9: Parallel reduction with OpenMP taskloop
1 pragma OMP parallel (taskloop , in reduction =>+, Sum);
2 begin
3 for I in Arr ' Range loop
4 Sum := Arr (I);
5 end loop ;
6 end ;

4.2.2. Expressiveness
The Ada 202X parallel model is a simple yet powerful model to exploit

structured parallelism in shared memory architectures. However, fully strict
fork-join models limit the exploitation of unstructured parallelism. In that
respect, OpenMP supports point-to-point synchronizationby means of the
depend clause, which de�nes the input and/or output data dependencies
existing between tasks. Thetask dependency graphthat honors these depen-
dencies is then used at runtime to drive the execution. The useof depen-
dencies can signi�cantly improve performance of parallel Adaprograms, as
shown in Section 3.

Additional to data dependencies, OpenMP allows programmersto man-
ually de�ne the data access model of the variables in a construct by means
of data-sharing clauses. The examples shown before specifythe access to the
data within the OpenMP constructs. For example, in Listing 5, X and Y are
marked as shared because their value has to be visible outsidethe parallel
region, after the implicit barrier, and there is no data-racecondition in these
accesses, andNis marked as �rstprivate because the value is just read within
the parallel region. In the Ada parallel model, the philosophy is di�erent:
data-sharing accesses which are not protected are expectedto be
agged by
the compiler, hence no data-sharing attributes are speci�ed. For example,
in Listing 4, the compiler can detect that no unsafe access ismade to N,
X or Y in the parallel block, thus conclude no synchronization is required,

17

������������������������������������

except for the one at the end of the parallel block. Moreover, it can privatize
X and Y, copying out their value after the parallel computation completes.
This however, may harm performance due to the extra copies (it remains
as a compiler decision). The logic behind the choice to make data-sharing
transparent to the user is based on simplicity and readability, whilst safe.

Furthermore, OpenMP o�ers di�erent mechanisms to tune the scheduling
of parallel work. For example, thefor worksharing construct allows to de�ne
how iterations are mapped to threads by means of theschedule, order and
ordered clauses, and thetaskloop construct allows de�ning how many tasks
are created and hence their granularity, using either thenumtasks or the
grainsize clauses (these are mutually exclusive). In opposition, theAda
parallel model is limited to de�ning the maximum number of chunks of a
parallel loop.

Finally, OpenMP supports an accelerator model seamlessly integrated
with the tasking model that features the e�cient distributi on of parallelism
in heterogeneous systems, which widens the spectrum of architectures that
can be targeted by Ada applications.

Overall, the possibilities with OpenMP underscore their versatility in the
face of the proposed Ada extensions. However, despite the clear bene�ts of
OpenMP to boost performance in Ada applications, there is still work to do
to ful�ll the safety-critical domain requirements. Firstly, OpenMP does not
impose the compiler to identify errors that may a�ect the correctness of the
application, e.g., data-races or deadlocks. Moreover, OpenMP is not reliable
because it does not de�ne any recovery mechanism, with the exception of
the cancellation model, for Ada exception handling. In that regard, di�erent
approaches have been proposed and some of them have been already adopted
(see further details in Section 5.1). Finally, both programmers and compil-
ers must satisfy some requirements to make possible whole program analysis
(such as programmers adding information in headers libraries, and compilers
implementing techniques like IPO [35]). The next section studies compiler
analyses techniques that, applied to OpenMP and Ada compilers, can signif-
icantly improve the safety of Ada programs parallelized withOpenMP, and
so enabling safety-critical systems to e�ciently exploit highly parallel and
heterogeneous architectures.

18

������������������������������������

5. Compiler Support for Functional Safety

A fundamental requirement of Ada systems is safety, which canbe certi-
�ed at di�erent levels by means of particular standards (e.g., the ISO26262
[36] for automotive, the DO178C [37] for avionics or the IEC61508 [38] for
industry). Problems with certi�cation might be due to error-prone features
(compromising reliability) or features with complex semantics (complicating
analyzability). For this reason, the nature of Ada is to prevent users from
making errors, providing a series of mechanisms for data synchronization and
mutual exclusion, among others. Furthermore, the languageis designed such
that the compiler can detect the maximum number of risky situations, like
race conditions and deadlocks. And the recent additions to Ada202X in this
domain augment the capability to detect the unprotected useof shared vari-
ables and potentially blocking operations [23]. Still, it is the responsibility of
the programmers to use Ada mechanisms correctly in order to avoid errors.

OpenMP also provides mechanisms for data synchronization and mutual
exclusion. As for Ada, the correct use of these mechanisms relies on the pro-
grammer. This is stated in the speci�cation, when it says that \application
developers are responsible for correctly using the OpenMP API to produce a
conforming program6" . Thus, frameworks do not need to check for issues
such as data dependencies, race conditions or deadlocks. As aresult, the
implementation of the standard is quite easy and light, and that boosts the
spreading of the language even in architectures with few resources.

In this context, it is fundamental to consider correctness checking mech-
anisms to ensure programs are free from errors, to increase productivity in
parallel programming. This section, summarizing the work presented in [39]
and [2], includes an analysis on the safety of both OpenMP and the Ada par-
allel model, and provides an algorithm that allows detecting race conditions
in pure Ada programs and in mixed Ada/OpenMP programs as well.

5.1. Safety

Considering the Ada Parallel model, safety can be guaranteedthrough
the use of atomic variables and protected objects to access shared data.
Moreover, the compiler shall be able to complain if di�erent parallel regions
might have con
icting side-e�ects. In that respect, due to the hardship of

6An OpenMP conforming program is one that follows all rules and restrictions of the
OpenMP speci�cation.

19

������������������������������������

accessing the complete source code to perform a full analysis, the proposed
Ada extensions suggests a two-fold solution [23]: a) eliminate race condi-
tions by adding an extended version of the SPARKGlobal aspect to the
language (this will help the compiler to identify those memory locations that
are read and written without requiring access to the completecode); and
b) address deadlocks by the de�ned execution model, togetherwith a new
aspect calledPotentially Blocking that indicates whether a subprogram
contains statements that are potentially blocking.

On the other hand, considering OpenMP, safety can be jeopardized due
to the use of di�erent features. The most relevant ones are the following:

{ Data-sharing. Users can explicitly modify the data-sharing attributed
de�ned in the speci�cation (concretely, in Section 2.15.1 [40]) for the
variables appearing in a speci�c construct. But manually de�ning data-
sharing clauses is a cumbersome and error-prone process because pro-
grammers have to be aware of the memory model and analyze the
usage of the variables. Fortunately, there are compiler analysis tech-
niques that allow automatically de�ning data-sharing clauses [41] and
statically catch incoherences in the user-de�ned attributes [42].

{ Data Races and Synchronization.Detecting exact data races at compile
time is an open challenge. Still, current mechanisms have been proved
to work on speci�c subsets of OpenMP [43, 44]. Additionally, static
analysis techniques have proved to be able to detect wrong synchro-
nizations causing non-deterministic results and runtime failures [42].

{ Deadlocks.The di�erent mechanism o�ered in OpenMP to synchronize
threads (directives such ascritical and barrier , and runtime rou-
tines, such asompset lock) can cause deadlocks. There is only one
sound approach, to the best of our knowledge, which detects deadlocks
in C programs using Pthreads [45]. This technique can easilybe applied
to OpenMP because Pthreads mutexes (e.g.,pthread mutex lock) are
comparable to OpenMP locking routines (e.g.,ompset lock).

{ Error Handling. In the critical domain, software is required to be re-
silient, hence behavior upon failures must be understood and speci�ed.
The technique to enable such property is error handling. Although
only some minor mechanisms have been included in the speci�cation
(i.e., cancellation constructs), there are di�erent proposals to improve

20

������������������������������������

OpenMP reliability by adopting error handling mechanisms in OpenMP
[46, 47].

In this sense, OpenMP has been shown to provide the safety requirements
imposed by critical systems [1] if the language incorporates:

{ Limits in the speci�cation that may vary depending on the level of
criticality (e.g., task priorities and explicit
ushes).

{ Extensions to the speci�cation (the two new directivesglobals and
usage) to enable whole program analysis when third-party components
are used, hence detect race conditions and illegal nesting7 (including
nested regions that can cause deadlocks).

{ Extensions to include error-handling techniques.

{ Compiler implementation guidelines to check correctness.

{ Runtime implementation guidelines to avoid faulty results.

5.2. Static Data Race Detection for Ada/OpenMP
As introduced previously, parallel computation gives rise to two main

problems: race-conditions and deadlocks. In this section we focus on the
former, and we propose a compiler mechanism to detect race conditions in
programs using Ada, OpenMP and both of them. This mechanism is com-
posed of two steps: �rst the representation of the parallel semantics of the
code in a Parallel Control Flow Graph (PCFG), and second an algorithm
that allows automatically synchronizing both tasks and data to avoid race
conditions.

The remaining of this section is organized as follows: �rst we introduce
the PCFG, then we describe the algorithm to avoid race conditions, and
�nally we use a use-case to illustrate the application of ourtechnique.

5.2.1. Representing Parallel Semantics: the PCFG
To represent the behavior of an Ada/OpenMP program we use the classic

control
ow graph (CFG) representation extended to supportAda concur-
rency and OpenMP parallelism. Our graph draws from the parallel control

7Section 2.17 of the speci�cation [40] de�nes a series of rules that determine which
constructs cannot be nested within each other.

21

������������������������������������

ow graph for C/C++ and OpenMP/OmpSs [48] developed by Royuela et
al. [42], and the control
ow graph for Ada developed by Fechete and Kienes-
berger [49]. We have included in the PCFG the concept ofblock of concur-
rency, or concurrent block, which de�nes a set of portions of code that may
execute in parallel.

The PCFG is a meta-graph composed of a set of nodes and a set of
edges. Nodes can besimple, resenting sequential execution of one or more
statements, orstructured, representing control
ow (i.e., selection and itera-
tion statements) or parallel semantics (e.g., OpenMP task). Structured nodes
are PCFGs. Edges can represent synchronous
ow (e.g., jump statement),
asynchronous
ow (e.g., OpenMP task creation) or synchronization (e.g.,
precedence relation between OpenMP tasks due to dependencyclauses).

Currently, the PCFG represents the semantics of OpenMP, andalso the
Ada Ravenscar pro�le. The latter is easily supported becausein this re-
stricted model all tasks are created at library level, meaning that they start
executing at the beginning of the program (after elaboration) and terminate
when the program ends (task allocators, task termination and abortion, and
task hierarchies, among others, are not allowed). As a result,there are only
two blocks of concurrency, which correspond to the code executed during
elaboration, and the rest of the code.

The use of the full Ada concurrency model, however, complicates the
representation. In this sense, the PCFG should be extended to include fur-
ther edges between tasks (e.g., master dependencies, task termination, ren-
dezvous, etc.). These edges must be taken into account when determining
the concurrency blocks (considering when tasks come to lifeand terminate),
and also to tune the accuracy of the results of the race condition algorithm
proposed in the following section (considering when data isactually accessed,
if possible). A detailed analysis and construction of the PCFG for the full
Ada concurrency model remains as future work. For this reason,and al-
though the analysis described in the following section applies to the whole
Ada model, for this work we consider the Ada Ravenscar pro�le.

5.2.2. Correctness Analysis for Ada/OpenMP data-race detection
Inspired by the algorithms presented in the scope of OpenMP to automat-

ically determine the data-scoping attributes [41] and the dependency clauses
[50] of an OpenMP task, we present an algorithm able to �nd data-race con-
ditions in Ada concurrent programs, containing or not OpenMP tasks. The
high-level description of the algorithm is outlined in Listing 1.

22

������������������������������������

Our approach is based on the fact that Ada protected objects area robust
and lightweight mechanism for mutual exclusion and data synchronization.
For this reason, protected objects are to be preferred to OpenMP mechanisms
whenever possible to solve race conditions, i.e., when raceconditions occur
between Ada tasks, between Ada and OpenMP tasks, and between OpenMP
tasks that belong to di�erent binding regions8. The last case is particularly
interesting because in C/C++/Fortran OpenMP programs, tasks in such a
situation cannot be synchronized, and only data synchronization is available
via the
ush operation, a highly unrecommended mechanism when safety is
essential due to the di�culty of analyzing its behavior. The extra layer of
concurrency introduced by Ada comprises the need for such a synchroniza-
tion, hence only protected objects are safe enough for that purpose. Finally,
to exploit the
exibility of OpenMP, race conditions between OpenMP tasks
that belong to the same binding region are to be solved using OpenMP mech-
anisms: mutual exclusion constructs (i.e.,atomic and critical constructs),
synchronization constructs (e.g.,taskwait and barrier), synchronization
clauses (i.e.,depend) and data-sharing clauses (e.g.,private , firstprivate
and lastprivate).

8In OpenMP, a binding region is the enclosing region that determines the execution
context. The binding region of a task is the innermost enclosing parallel region.

23

������������������������������������

Algorithm 1: Rules to detect race conditions in Ada/OpenMP.
Data : source := An Ada/OpenMP program.
Result : target := A race-free version of the source program.
target := source;
pcfg := build interprocedural CFG(target);
concurrencyblocks := computeconcurrencyblocks(pcfg);
foreach c 2 concurrencyblocksdo

shareddata := collect shareddata(c);
foreach s 2 shareddata do

all accesses := collectaccesses(s);
if within openmpsamebinding region(all accesses)then

if commutative(all accesses)[51]then
target:= protect all accesses withatomic or critical

else
target:= (full sync) insert taskwait or barrier
between accesses)jj (point-to-point sync) use
auto-dependencies mechanism [50]

else
target := wrap the shared data in a protected object

end
end

5.2.3. Use Case: Ravenscar
We use the AdaRavenscarexample application, de�ned in Section 7 of

the Ada Ravenscar Pro�le Guide [52], as test case because it includes several
features of Ada that are of our interest: protected objects, other shared data,
synchronous and asynchronous synchronizations, etc. The system modeled
in this application includes a periodic process (Regular Producer) that han-
dles o�ers for a variable amount of workload (Small Whetstone). When the
requested workload exceeds a given threshold (Due Activation), the excess
load is processed by a sporadic process (On Call Producer). Additionally,
interrupts may appear at any point (External Event Server), and di�erent
priorities are used to ensure precedence among the di�erenttasks. Figure 3
shows the HRT-HOOD9 representation of theRavenscarapplication. There,

9Hard Real-Time Hierarchical Object-Oriented Design (HRT-HOOD) is an object-
based structured design method for hard real-time systems [53].

24

������������������������������������

red dashed boxes represent tasks, blue dotted boxes represent packages with
functions and procedures, and yellow double-lined boxes represent protected
objects with entries and procedures.

REGULAR PRODUCER
7 C

ON CALL PRODUCER
5 S

REQUEST BUFFER

Deposit

Extract

9 Pr

EXTERNAL EVENT SERVER
11 I

EVENT_QUEUE
Handler

Wait

Signal

Pr

PRODUCTION WORKLOAD

Small_Whetstone

P

ACTIVATION LOG READER
3 S

EVENT_QUEUE
Interrupt_Simulator

�Z�>���•�š I

ACTIVATION LOG

Read

Write

Pr ACTIVATION LOG READER
 Signal

Wait

P

AUXILIARY

Due_Activation

Check_Due

P

ON CALL PRODUCER

Start

P

ACTIVATION MANAGER

Synchronize_Activation_Cyclic

Synchronize_Activation_Sporadic

P

Task
Protected Object
Function/Procedure

PACKAGE NAME
Subprogram name

priority Type

P Passive object
Pr Protected object
S Sporadic object
C Cyclic object
I Interrupt sporadic object

Figure 3: HRT-HOOD representation of the Ravenscar application.

To exemplify how the analysis handles Ada concurrency and OpenMP
parallelism, we have turned the procedureSmall Whetstone into the entry
point of a sensor fusion operation implemented with OpenMP.This new func-
tionality, described in Figure 4, uses an argument to indicate the parallel op-
eration to carry out: 1 for reading sensor A, 2 for reading sensor B, and 3 for
fusing the two sensors by adding up their values. Sensor A is read periodically
from Regular Producer, sensor B is read sporadically fromOn Call Producer,
and the fusion is performed sporadically fromActivation Log Reader.

The PCFGs of the originalRavenscarapplication and the new OpenMP
code are shown in Figure 5 and Figure 6 respectively. Both �guresshow
the code executed at elaboration time (on the top), the code run during the
execution of the program (in the middle), and the most signi�cant shared
data in turquoise square boxes (on the bottom) connected with the nodes
that access the data by di�erent edge styles depending on the type of access:
read (dotted dark red), write (solid yellow) and read/write (dashed green).

25

������������������������������������

1 package body Product ion_Workload is
2 type S is range 1 .. 512;
3 type M is array (S , S) of Float ;
4 M_A , M_B , M_C: M;
5

6 procedure Read_Sensor_A is begin
7 pragma OMP (parallel);
8 pragma OMP (single);
9 pragma OMP (taskloop);

10 for I in S loop
11 for J in S loop
12 M_A(I ,J) := sensor (1 , I , J);
13 end loop ;
14 end loop ;
15 end Read_Sensor_A ;
16

17 procedure Read_Sensor_B is begin
18 pragma OMP (parallel);
19 pragma OMP (single);
20 pragma OMP (taskloop);
21 for I in S loop
22 for J in S loop
23 M_B(I ,J) := sensor (2 , I , J);
24 end loop ;
25 end loop ;
26 end Read_Sensor_B ;

27

28 procedure Fuse_Sensors is
29 begin
30 pragma OMP (parallel);
31 pragma OMP (single);
32 pragma OMP (taskloop);
33 for I in S loop
34 for J in S loop
35 M_C(I ,J) := M_A(I ,J)
36 + M_B(I ,J);
37 end loop ;
38 end loop ;
39 end Fuse_Sensors ;
40

41 procedure Smal l_Whetstone
42 (Workload : Posit ive) is
43 begin
44 case Workload is
45 when 1 => Read_Sensor_A ;
46 when 2 => Read_Sensor_B ;
47 when 3 => Fuse_Sensors ;
48 when others => null ;
49 end case ;
50 end Smal l_Whetstone ;
51

52 end Product ion_Workload ;

Figure 4: OpenMP code inserted in theProduction Workload package of theRavenscar
application.

In the former �gure, each partial PCFG represents a task (Regular Producer,
On Call Producer and Activation Log Reader); the special nodesEn and Ex
express the entry and the exit points of each task; and the OpenMP code
is pointed with dashed-dotted purple lines. In the latter �gure, the di�erent
procedures are concurrent because they are called from within di�erent Ada
tasks, which are in turn concurrent.

As an illustration, we apply Algorithm 1 to the modi�ed Ravenscarap-
plication, and the result is described as follows:

1. The PCFG of the application is the one shown in Section 5.2.1, Fig-
ures 5 and 6.

2. All Ada and OpenMP tasks correspond to the same block of concur-
rency, hence potential race conditions may occur among all Ada and
OpenMP tasks. However, since OpenMP and Ada tasks manage dif-
ferent shared data, we can treat them separately. As a result:

26

������������������������������������

Request_Buffer.
Deposit

Activation_Manager.
Synchronize_Activation_

Sporadic

Activation_Log
_Reader.Wait

Production_Workload.
Small_Whetstone

Activation_Log.
Read

En

Ex

Activation_Manager.
Synchronize_Activation_

Cyclic

Production_Workload.
Small_Whetstone

Auxiliary.
Due_Activation

On_Call_Producer.
Start

Auxiliary.
Check_Due

Activation_Log
_Reader.Signal

En

Ex

Activation_Manager.
Synchronize_Activation_

Sporadic

En

Request_Buffer.
Extract

Production_Workload.
Small_Whetstone

Ex

On_Call_Producer

Activation_Manager.
Initialize

Regular_Producer Activation_Log_Reader

Activation_Time

OPENMP CODE

My_Request_Buffer(Insert_Index) Local_Suspension_Object

Read

Write

Elaboration
time

Program
execution

Figure 5: Simpli�ed PCFG of the Ravenscar application.

En

I := 1

J := 1

M_A(I,J) := 1.0

J := J + 1

I := I + 1

En

Ex

En

Regular_Producer.
Small_Whetstone(1)

I

On_Call_Producer.
Small_Whetstone(2)

Activation_Log_Reader.
Small_Whetstone(3)

J

M_A(I,J)

I := 1

J := 1

M_B(I,J) := 1.0

J := J + 1

I := I + 1

Ex

I J

M_B(I,J)

I := 1

J := 1

M_C(I,J) :=
M_A(I,J) + M_B(I,J)

J := J + 1

I := I + 1

Ex

I J

M_C(I,J)

taskloop

Read_Sensor_B Fuse_Sensors

OpenMP
parallelism

Ada
concurrency

Read

Write

Read/Write

taskloop taskloop

Read_Sensor_A

Figure 6: CFG of the OpenMP code introduced in theSmall Whetstone procedure.

27

������������������������������������

(a) For the Ada part, the algorithm decides that: (a)Activation Time
is not in a race condition because the read and the write accesses
are in di�erent concurrent blocks, (b) Local SuspensionObject is
not in a race condition because the operations performed on it
are atomic with respect to each other, as the standard says, and
(c) My RequestBu�er(Insert Index) is not in a race condition be-
cause this object is part of the protected objectRequestBu�er .
) The algorithm con�rms that the original Ravenscarapplication
contains no race conditions.

(b) For the OpenMP part (note that the OpenMP data-sharing rules
dictate a private copy of the induction variable of the taskloop
for each thread) the algorithm reveals that accesses toI and J
are not in a race condition, but accesses to the matricesM A and
M B are in a race condition because the write access toM A and
M B from ReadSensorA and ReadSensorB respectively collide
with the read access to both variables fromFuse Sensor.
) The algorithm suggests the use of partial synchronizationsin
the form of task dependency clauses:

- ReadSensorA: depend=>in, M A(0:Dim,0:Dim) .
- ReadSensorB: depend=>in, M B(0:Dim,0:Dim) .
- Fuse Sensors: depend=>in, M A(0:Dim,0:Dim)

MB(0:Dim,0:Dim),
depend=>out, MC(0:Dim,0:Dim) .

6. Ada and OpenMP Runtimes Interoperability

Ada supports a concurrency model that allows interleaved execution on
single-core architectures, and parallel execution of concurrent work on multi-
core architectures. To do so, Ada includes a set of features toachieve
concurrency, including Ada tasks, protected objects and priorities. More-
over, the Annex D (Real-Time Systems) [54] of the Ada speci�cation de-
�nes additional characteristics of Ada implementations intended for real-
time systems, that limits how these features can be safely used. Among
these, priorities and scheduling policies are crucial aspects. For example,
the Ravenscar pro�le forces a priority-based preemptive scheduling. This
means that tasks with higher priority can preempt tasks with lower prior-
ity, and the latter will later be resumed depending on the scheduling policy

28

������������������������������������

(e.g., FIFO Within Priorities, Round Robin Within Priorities). In this re-
gard, OpenMP o�ers the priority clause that can be attached to thetask
construct to allow the scheduler execute task in a priority-based fashion. Fur-
thermore, OpenMP allows a limited preemptive scheduling where tasks can
be preempted at task scheduling points (see Section 2.2.1 for further details).

Including OpenMP in an Ada program forces the concurrent modelof
Ada to coexist with the parallel model of OpenMP. To that end, the two
runtimes require some kind of interaction so the schedulingpolicy of the
whole system holds, while each scheduler complies with its corresponding
speci�cation. As an illustration, Figure 7a shows a program composed of
two Ada tasks, a high priority one, HPT , and a low priority one, LPT ,
both parallelized using the OpenMP tasking model. Figures 7band 7c show
di�erent preemption strategies depending on the communication available
between the Ada and the OpenMP runtimes.

1 task body HPT is begin
2 pragma OMP (parallel);
3 pragma OMP (single);
4 begin
5 pragma OMP (task); -- OMPT1
6 ... -- body
7 end ;
8 end HPT;

1 task body LPT is begin
2 pragma OMP (parallel);
3 pragma OMP (single);
4 begin
5 pragma OMP (task); -- OMPT2
6 ... -- body
7 pragma OMP (task); -- OMPT3
8 ... -- body
9 end ;

10 end LPT;

(a) Hybrid Ada/OpenMP system with concurrency and parallelism

OMPT1

OMPT1

HPT releases

Ada runtime

time
Core 1

OMPT2
time

Core 2

OpenMP
runtime

HPT executes
LPT suspends
OMPT1 starts

Ada and OpenMP
runtimes

LPT release

Ada runtime

OMPT1/
OMPT2 starts

OMPT2

OMPT1

LPT resumes

Ada runtime

(b) Preemption of all inner tasks

OMPT1

OMPT1

HPT releases

Ada runtime

time
Core 1

OMPT2
time

Core 2

OpenMP
runtime

HPT executes
OMPT1 starts

Ada and OpenMP
runtimes

LPT release

Ada runtime

OMPT1/
OMPT2 starts

OMPT2

(c) Preemption of necessary tasks

Figure 7: Interoperability between the Ada and the OpenMP runtimes: preemption

29

������������������������������������

A �rst approach that minimizes the interaction between the two runtimes
is to completely suspend the execution environment of the OpenMP runtime
derived from the lower priority Ada task, when the higher priority Ada task
is released. This behavior is shown in Figure 7b, where the Ada program
in Figure 7a is executed on two cores and, whenHPT is released and a
preemption point is reached10, both OMPT 2 and OMPT 3 from LPT stop.
Then, whenOMPT 1 �nishes, both OMPT 2 and OMPT 3 can resume. As
shown, this approach may force a non-work-conserving scheduling as the
Core 1 is idle while HPT executes, and hence introduce unnecessary delays.
Moreover, a signi�cant overhead may occur due to the suspension of the
complete OpenMP runtime execution.

A second possible approach is to let the two runtimes communicate so
just the necessary resources are released when a high priority Ada task is
encountered. This behavior is shown in Figure 7c. There, the Adaprogram
depicted in Figure 7a is executed on two cores, but this time only OMPT 2
from LPT is stopped to executeOMPT 1 from HPT when the preemption
point is reached. This is because just one core is needed to execute the
high priority Ada task, and hence the other Ada task, although having lower
priority, can continue running.

Clearly, the desired behavior is that shown in the second approach, where
only the computing resources that are needed by higher priority tasks are
preempted. The reason is that this is the only behavior that ensures a work-
conserving execution while it honors the priorities in the system as a whole,
including the Ada and the OpenMP realms. This strategy, however, implies
interoperability at two levels: (1) between the Ada and the OpenMP run-
times, to handle task priorities and scheduling policies, and (2) within the
OpenMP runtime, to communicate di�erent parallel regions.

The remainder of the section is organized as follows: Section 6.1 in-
troduces a theoretical study of how the two runtimes could be integrated.
Section 6.2 presents a novel source-code transformation technique based on
template-based execution that allows Ada programmers to experiment with
OpenMP without requiring the runtimes to be actually integrated. Finally,
Section 6.3 presents an evaluation of the use of the source-code transforma-
tion templates regarding the interaction of the runtimes and the resources.

10A limited preemption strategy is being considered in the example.

30

������������������������������������

6.1. Integration between OpenMP and Ada runtimes: the Theory

To support OpenMP in Ada, or simply to implement the Ada parallel
model on top of OpenMP, a level of interoperability between the OpenMP
and the Ada runtimes is required so compliance with the respective speci�-
cations is not compromised. There are three aspects to take into account:
(1) Ada tasks scheduling, 2) Ada tasks synchronization, and 3)Ada and
OpenMP control structures. These are analyzed as follows.

Ada Task Scheduling.The Ada runtime is in charge of scheduling Ada tasks.
When the scheduling conditions change, e.g., a high prioritytask arrives, a
running Ada task can be preempted in favor of lower priority ones. This
scenario is shown in Figure 7c. When this occurs, the Ada runtimemust
inform the OpenMP runtime so parallel execution derived from lower priority
Ada task can be stopped, in case the high-priority Ada task needs it. The
preempted portion of the parallel execution must be safely stopped because
OpenMP does not allow dynamically changing the number of threads of a
team. A possible solution is the Ada runtime informing the operating system
(OS) to release the corresponding cores from the selected Adatask, and the
OpenMP runtime informing the OS when the OpenMP tasks executed in the
cores to be stopped reach atask scheduling point. Preempted tasks are put
back into the task ready queueto resume its execution when an OpenMP
thread becomes available for the low priority Ada task.

Ada Task Synchronization: Protected Objects.Ada incorporates a deadlock-
free mutual exclusion mechanism, namedprotected objects, that can be ap-
plied at both Ada task and tasklet levels. Protected objects are commonly
implemented with conditional locks. When applying protected objects to
tasklets from the same Ada task (synchronizing tasklets fromdi�erent Ada
tasks is not allowed), the OpenMP runtime has access to all threads spawned
by the Ada task, so OpenMP synchronization mechanisms can be used to im-
plement protected objects. However, when synchronizing twodi�erent Ada
tasks, the corresponding OpenMP data structures are not shared among Ada
tasks, hence they cannot access their respective team of threads. As a re-
sult the synchronization must be managed by the Ada runtime, although
initiated within the OpenMP runtime. That said, when an OpenMP task
accesses a protected object, the Ada runtime is invoked to determine the
value of the associated conditional lock. If it is available, the corresponding
Ada task acquires it. If not, the OpenMP task is preempted and placed in

31

������������������������������������

the waiting queue, and the OpenMP thread executing that taskis assigned
to a di�erent OpenMP task. When the conditional lock becomes available,
the Ada runtime must inform the OpenMP runtime, which is in charge of
putting the OpenMP tasks associated to that conditional lock back to the
ready queue to acquire the lock and continue the execution.

Ada Task Attributes. When executing an OpenMP parallel region (corre-
sponding to either the lowering of an Ada parallel code or anOMP parallel
pragma call), threads must have access to some information of the Ada task
(e.g., task id). To do so, OpenMP control structures must include information
about the Ada task, so any thread in the parallel region can have access to it.
Similarly, Ada control structures must include informationabout OpenMP
execution (e.g., the team of threads that is being executed by an Ada task
at any point).

6.2. A First Step Towards an Integration between OpenMP and Ada Run-
times: Source-code Templates

The previous sections show how OpenMP can be used to e�cientlyim-
plement the Ada tasklet model, as well as the bene�ts of using OpenMP on
top of Ada to exploit forms of parallelism that cannot be expressed with Ada
tasklets. Furthermore, we analyze what is the interplay needed between the
runtime of Ada and that of OpenMP to ful�ll compliance with the respective
speci�cations. However, there is not yet an implementation that allows the
exchange of information between the two runtimes.

The e�ort of providing a full integration of OpenMP and Ada may be
signi�cant, and remains as a future work. However, the OpenMPand the
Ada runtimes still can play together under certain restrictions to deliver
valid applications. In this regard, this section presents a novel source-code
template that allows Ada programmers to naturally integrateOpenMP into
Ada and experiment with the bene�ts of parallelizing Ada concurrent ap-
plications. This template ensures that both, the Ada and the OpenMP
schedulers, are compliant with the respective speci�cations while it enables
the OpenMP runtime to ful�ll work-conserving priority-dri ven policies that
match the timing analysis performed at analysis time. This is, in our opinion,
a fundamental step towards the full integration of both runtimes.

The next sections (1) present the di�culties of using the Ada concur-
rent model and the OpenMP parallel model together, (2) introduce the pro-
posed source-code transformation based on a prede�ned execution template,

32

������������������������������������

������������������������������������

region [55]. This approach, depicted in Figure 8b, together with a particular
way to instantiate OpenMP tasks from the Ada code (the source-code tem-
plate presented in the next Section), a uni�ed view of the OpenMP scheduler
can be achieved, and the Ada and the OpenMP runtimes can work as ifthey
were integrated.

6.2.2. Source-code Template
The objective of the source-code template is to provide an execution en-

vironment in which the OpenMP and the Ada runtimes operate as they were
integrated to experiment with the OpenMP tasking model.

The principle behind our proposed source-code transformation is depicted
in Figure 9. The OpenMP parallel code included in the di�erentAda tasks
is centralized into a unique parallel region, so a single teamof threads is in
charge of managing the complete OpenMP parallel execution [55]. To do so,
all OpenMP code is moved to a new Ada task, in which a single parallel
region is created, and the OpenMP code in the original Ada tasks is replaced
by a call to an entry of this new task. This strategy allows to have a single
OpenMP runtime in charge of scheduling all the OpenMP tasks spawned by
the di�erent Ada tasks. Moreover, with the objective of guaranteeing that
the priorities of the Ada tasks are ful�lled, the OpenMP tasksinherit the
same priority of the Ada task that created it (by using thepriority clause
of the task construct).

!"#$%#&' !"#$%#&' !"#$%#&' ()*$!"#$ %#&'

+,)-./

!"#$%&'()*+

+,)-./

+,)-./

,-+'./
%&'()*+

callcallcall

!"#$%&'($)#$*

pragma OMP (parallel)
pragma OMP (single)
begin

end

Figure 9: Schema of the source-code template.

Concretely, our proposed source-code transformation to experiment with
the OpenMP tasking model considers a set of Ada tasks parallelized using:
(1) the parallel and single constructs to create a parallel region and allow
only one thread to execute the inner code, and (2) thetask construct to

34

������������������������������������

distribute work within the parallel region. Note that with th is environment,
the scheduler will not have a uni�ed view of the system, as multiple OpenMP
parallel regions (and so OpenMP runtimes) will exist.

The process to generate the templated program applies the following
transformations:

1. Create a new Ada task that implements an entry for each of theparallel
regions of the original code. This Ada task creates an OpenMP parallel
region with a single construct inside (see Figure 9). Within the single
region, a loop accepts calls to the de�ned entries until no call exists.
Each entry implements an OpenMP task that encloses ataskgroup
construct containing the code inside the OpenMP parallel region of the
original Ada task that is now calling the entry. Thetaskgroup ensures
that all inner OpenMP tasks �nish before the OpenMP task �nishes
(i.e., it sequentializes di�erent calls to the same entry).This new Ada
task is to have the lowest priority in the whole Ada system, so itdoes
not interfere with the original Ada tasks. However, each entryin this
task inherits the priority of the caller Ada task.

2. For each entry in the new Ada task, propagate the priority ofeach Ada
task generating an entry to the OpenMP tasks created within the code
of the respective entry.

3. Replace each original parallel region with a call to the corresponding
entry of the new Ada task, and include the Ada synchronization mecha-
nism (i.e., a protected object) that allows simulating the implicit barrier
at the end of the original parallel region. This means synchronizing the
end of the OpenMP task implementing an entry of the new Ada task
with the end of the original parallel region generating that entry.

For illustration purposes, we have designed the hybrid Ada/OpenMP sys-
tem depicted in Figure 10. The system is composed of: (1) a periodic Ada
task with priority 3, ada chol, that generates calls to a Cholesky decompo-
sition implemented using OpenMP tasks, and (2) a periodic Adatask with
priority 2, ada pps, that generates calls to an image processing sampling
application also parallelized using OpenMP tasks. In orderto describe the
transformations needed in the application to achieve the templated source
code, we show only theada chol Ada task and the new created Ada task.
The original code of this task is shown in Listing 10. The codeafter the

35

������������������������������������

������������������������������������

Listing 10: Periodic Ada task implementing a
Cholesky factorization using OpenMP tasks

1 task Cholesky_Periodic is
2 pragma Priority (2);
3 end Cholesky_Periodic ;
4 task body Cholesky_Periodic is begin
5 for i in 1..24 loop
6 pragma OMP (parallel);
7 pragma OMP (single);
8 begin -- OpenMP Cholesky
9 for ... loop

10 pragma OMP (task);
11 potrf ;
12 for ... loop
13 pragma OMP (task);
14 trsm ;
15 for ... loop
16 for ... loop
17 pragma OMP (task);
18 gemm;
19 end loop ;
20 pragma OMP (task);
21 syrk ;
22 end loop ;
23 end loop ;
24 end ;
25 end loop ;
26 end Cholesky_Periodic ;

Listing 11: Ada task implementing the
entry point of OpenMP in the templated
source code

1 task OpenMP_Paral le l_Task
2 pragma Priority (1);
3 end OpenMP_Paral le l_Task ;
4 task body OpenMP_Paral le l_Task is
5 begin
6 pragma OMP (parallel)
7 pragma OMP (single)
8 begin
9 loop

10 select
11 accept Cholesky do
12 pragma OMP (task);
13 begin
14 pragma OMP (taskgroup);
15 begin -- OpenMP Cholesky
16 ...
17 end ;
18 Cholesky_Sync . Release ;
19 end ;
20 end Cholesky ;
21 or
22 accept ImageProcessing do
23 ...
24 end ImageProcessing ;
25 or
26 exit ;
27 end select ;
28 end loop ;
29 end
30 end OpenMP_Paral le l_Task ;

Listing 12: Transformed periodic Ada task
implementing a Cholesky factorization

1 task body Cholesky_Periodic is begin
2 for i in 1..24 loop
3 OpenMP_Paral le l_Task . Cholesky ;
4 Cholesky_Sync .Wait ;
5 end loop ;
6 end Cholesky_Periodic ;

Listing 13: Ada protected object to syn-
chronize di�erent releases of a periodic task

1 protected body Cholesky_Sync is
2 entry Wait when Open is begin
3 Open := False ;
4 end Wait ;
5 procedure Release is begin
6 Open := True ;
7 end Release ;
8 end Cholesky_Sync ;

6.3.1. Experimental Setup
Application. The use case used for this evaluation is the hybrid Ada/OpenMP
application introduced in Section 6.2.2. This applicationcomprises two Ada

37

������������������������������������

periodic tasks that instantiate two benchmarks, a Cholesky decomposition
and an image processing algorithm based on a Histogram of Oriented Gra-
dients (HoG), respectively. An illustration of the application after applying
the template is shown in Listings 11 and 12.

Runtimes. We use two runtime implementations that support parallelism:
1) GNU libgomp for OpenMP from GCC 7.2 [56], and 2) GNAT Ada from
GCC 7.2 [28]. We use the OMPNUM THREADS environment variable to
de�ne the number of OpenMP threads to be used.

Tools. To analyze the execution of the Ada/OpenMP application we have
used two performance tools: (1) Extrae [57], a dynamic instrumentation
package to trace programs compiled and run with the shared memory model
(e.g., OpenMP, Pthreads and OmpSs), the message passing (MPI) program-
ming model or combinations of these two paradigms; and (2) Paraver [58], a

exible parallel program visualization and analysis tool based on an easy-to-
use wxWidgets GUI that uses the tracing information collectedwith Extrae.
These two tools combined are commonly used in HPC studies to analyze the
performance of applications qualitatively, thanks to the global perception
provided of the application, and quantitatively, by allowing a microscopic
analysis of the speci�c points of interest.

Platform. The execution takes place on an IntelR
 Core
TM

i7-5600U CPU
at 2.60GHz with 2 processors, and 2 hardware threads per processor. The
system runs a 64 bits Ubuntu 18.04 LTS.

6.4. Execution Analysis
To obtain the information we need about the interoperability between

Ada and OpenMP, we exploit the fact that both Ada and OpenMP use
Pthreads to implement parallelism. In this sense, we use the Extrae library
to instrument Pthreads, libpttrace.

The trace extracted from the Ada/OpenMP application using the setup
introduced in the previous subsection is shown in Figure 11. There, blueish
colors relate to the Cholesky benchmark, and reddish colorsrelate to the im-
age processing benchmark. There are seven rows, each corresponding to one
thread created by a call to pthreadcreate. Threads from 1 to 4 are created
by the Ada runtime, and they are: thread 1 is created for the Ada main task;
thread 2 is created for the Ada task generated by the templatedexecution
to create and manage the OpenMP environment; thread 3 is created for the

38

������������������������������������

������������������������������������

There are two important aspects to highlight regarding the interoperabil-
ity accomplished by means of the templated execution:

1. The Ada and the OpenMP runtimes share the Pthread corresponding
to thread 2. This thread is �rst used by the Ada runtime until it reaches
the implicit barrier at the end of the parallel region. Then it is used
by the OpenMP runtime to �nish work, so all OpenMP threads getto
the barrier, and the thread returns to the Ada runtime to �nish some
work after the OpenMP barrier.

2. The priorities of the Ada tasks are passed to the OpenMP tasks by
means of the template, and so the Cholesky tasks, which are the
OpenMP tasks with higher priority, run before the image processing
tasks to the extent possible (i.e., whenever an entry is accepted and
the dependencies are ful�lled).

6.5. Limitations of the Source-code Template

The objective of the proposed source-code template is to provide Ada
programmers with a way to experiment with OpenMP without the need for
an actual integration of the Ada and the OpenMP runtimes. This is a major
task that remains as future work at this point. As a result, a number of
limitations and considerations must be acknowledged:

1. The proposed transformation does not support OpenMP work-sharing
constructs (e.g.,for and sections) because the programming model
does not consider assigning priorities to threads. Regarding the OpenMP
tasking model, it currently only supports thetask construct because
it accepts the priority clause, which allows assigning a priority to
the task; on the other hand, the tasks created with thetaskloop con-
struct cannot be assigned with priorities. This, however, requires a
minimal implementation, e.g., the compiler could accept apriority
clause together with thetaskloop construct, and the runtime could use
this information to manage the associated tasks in the corresponding
priority queues.

2. The transformation performed by the template might slightly change
the order in which OpenMP creates tasks. This is so because inthe
original supported code, calls to di�erent OpenMP environments can be
made concurrently (in the example, the parallel region of theCholesky

40

������������������������������������

benchmark and that of the image processing benchmark are concur-
rent). After the transformation, calls to the OpenMP environment are
sequentialized due to the way task entries are managed (in the example,
only one entry of the Cholesky or the image processing benchmarks will
be processed at a time). However, since each entry actually creates an
OpenMP task with the code within the original OpenMP environment,
then several of these can run concurrently as well.

7. Conclusions

This paper tackles the challenge of allowing the use of the OpenMP �ne-
grained parallel model with the Ada language, by addressing the safety of
the code in the presence of parallel computation, and the interoperability of
the OpenMP and Ada runtimes. For this, the paper is built upon three main
pillars: the programming models syntax and semantics (considering all Ada,
the Ada 202X parallel model and OpenMP), the compilers support, and the
runtimes implementation and interoperability. Regardingthe �rst, we intro-
duce a new syntax to use OpenMP in Ada based on a series of experiments
that prove the bene�ts of OpenMP considering performance, programmabil-
ity and portability, hence productivity. Particularly, we show that OpenMP
can be used to implement the Ada 202X parallel model, and also beused on
top of Ada to exploit further forms of parallelism. Regarding the compiler
support, we present a series of compiler analysis techniques that can identify
potential race conditions in Ada, both considering Ada tasks and parallel
OpenMP code. This contribution, together with the limitations and modi�-
cations that this work identi�es as necessary to be done in the OpenMP spec-
i�cation to be portable to critical real-time systems, bring OpenMP closer
to its adoption in safety-critical systems. Finally, regarding the runtimes,
this paper extends previous work that analyze the requirements of the in-
tegration of the Ada and the OpenMP runtimes, with a novel source-code
transformation that enables the OpenMP and the Ada runtimes to operate
(under certain restrictions) as they were actually integrated into a uni�ed
framework. Furthermore, we use instrumentation and visualization tools to
show the accomplished interoperability between the runtimes by virtue of
templated execution. Together with previous work, this paper provides a
further step to enable the use of the OpenMP �ne-grained tasking model,
together with, or supporting, the proposed parallel model to be included in
the forthcoming revision of the Ada standard.

41

������������������������������������

Acknowledgments

This work was supported by the Spanish Ministry of Science and Innova-
tion under contract TIN2015-65316-P, by the European Unions Horizon 2020
Research and Innovation Programme under grant agreements No 611016 and
No 780622, and by the FCT (Portuguese Foundation for Science and Tech-
nology) within the CISTER Research Unit (CEC/04234).

References

[1] S. Royuela, X. Martorell, E. Qui~nones, L. M. Pinho, OpenMPtasking
model for Ada: safety and correctness, in: Ada-Europe International
Conference on Reliable Software Technologies, Springer, 2017, pp. 184{
200.

[2] S. Royuela, X. Martorell, E. Qui~nones, L. M. Pinho, Safe parallelism:
compiler analysis techniques for Ada and OpenMP, in: Ada-Europe
International Conference on Reliable Software Technologies, Springer,
2018, pp. 141{157.

[3] S. Royuela, L. M. Pinho, E. Quinones, Converging safety and high-
performance domains: Integrating OpenMP into Ada, in: 2018 Design,
Automation & Test in Europe Conference & Exhibition (DATE), IEEE,
2018, pp. 1021{1026.

[4] NVIDIA R
 Corporation, NVIDIA R
 CUDA C Programming Guide,
https://docs.nvidia.com/cuda/cuda-c-programming-gui de/
index.html , [Online; accessed January-2017] (2016).

[5] J. E. Stone, D. Gohara, G. Shi, OpenCL: A parallel programming stan-
dard for heterogeneous computing systems, CS&E 12 (3) (2010) 66{73.

[6] B. Chapman, G. Jost, R. Van Der Pas, Using OpenMP: portable shared
memory parallel programming, Vol. 10, MIT press, 2008.

[7] A. L. Varbanescu, P. Hijma, R. Van Nieuwpoort, H. Bal, Towardsan
e�ective uni�ed programming model for many-cores, in: IPDPS, IEEE,
2011, pp. 681{692.

42

������������������������������������

[8] P. Kegel, M. Schellmann, S. Gorlatch, Using OpenMP vs. Thread-
ing Building Blocks for Medical Imaging on Multi-Cores, in:Europar,
Springer, 2009, pp. 654{665.

[9] S. Lee, S.-J. Min, R. Eigenmann, OpenMP to GPGPU: A Compiler
Framework for Automatic Translation and Optimization, SIGPLAN
Not. 44 (4) (2009) 101{110.

[10] J. Shen, J. Fang, H. Sips, A. L. Varbanescu, Performance gapsbetween
OpenMP and OpenCL for multi-core CPUs, in: ICPPW, IEEE, 2012,
pp. 116{125.

[11] G. Krawezik, F. Cappello, Performance comparison of MPI and three
OpenMP programming styles on shared memory multiprocessors, in:
SPAA, ACM, 2003, pp. 118{127.

[12] B. Kuhn, P. Petersen, E. O'Toole, OpenMP versus threading in C/C++,
Concurrency - Practice and Experience 12 (12) (2000) 1165{1176.

[13] GCC team, GOMP,https://gcc.gnu.org/projects/gomp/ (2016).

[14] IntelR
 Corporation, Intel R
 OpenMP* Runtime Library, https://www.
openmprtl.org (2016).

[15] IBM R
 , IBM Parallel Environment, http://www-03.ibm.com/systems/
power/software/parallel/ (2016).

[16] OpenMP ARB, OpenMP Application Program Interface, version 2.5,
http://www.openmp.org/wp-content/uploads/spec25.pdf (2005).

[17] OpenMP ARB, OpenMP Application Program Interface, version 3.0,
http://www.openmp.org/wp-content/uploads/spec30.pdf (2008).

[18] OpenMP ARB, OpenMP Application Program Interface, ver-
sion 4.0, http://www.openmp.org/wp-content/uploads/OpenMP4.0.
0.pdf (2013).

[19] A. Podobas, S. Karlsson, Towards Unifying OpenMP Under theTask-
Parallel Paradigm, in: IWOMP, 2016, pp. 116{129.

43

������������������������������������

[20] OpenMP Architecture Review Board, OpenMP Application Pro-
gram Interface, version 5.0,https://www.openmp.org/wp-content/
uploads/OpenMP-API-Specification-5.0.pdf (2018).

[21] K. L. Sielski, Implementing Ada 83 and Ada 9X Using Solaris Threads,
Ada: Towards Maturity 6 (1993) 5.

[22] S. Michell, B. Moore, L. M. Pinho, Tasklettes{a �ne grained parallelism
for Ada on multicores, in: International Conference on Reliable Software
Technologies - Ada-Europe, Springer, 2013, pp. 17{34.

[23] S. T. Taft, B. Moore, L. M. Pinho, S. Michell, Safe parallel programming
in Ada with language extensions, ACM SIGAda Ada Letters 34 (3)
(2014) 87{96.

[24] A. R. Group, Ada 202x Language Reference Manual,http://www.
ada-auth.org/standards/ada2x.html (2019).

[25] L. M. Pinho, B. Moore, S. Michell, S. T. Taft, An ExecutionModel for
Fine-Grained Parallelism in Ada, in: Ada-Europe International Confer-
ence on Reliable Software Technologies, 2015.

[26] IEC, 8652: 2012 Programming Languages and their Environments{
Programming Language Ada, International Standards Organization
(2012).

[27] B. J. Moore, Parallelism generics for Ada 2005 and beyond, in: Ada
Letters, ACM, 2010, pp. 41{52.

[28] AdaCore, GNAT Users Guide for Native Platform,https://gcc.gnu.
org/onlinedocs/gnat_ugn.pdf (2017).

[29] P. M. . B. S. Center, Barcelona openmp task suite (bots),https://
github.com/bsc-pm/bots (2019).

[30] E. Ayguad�e, R. M. Badia, P. Bellens, D. Cabrera, A. Duran,R. Ferrer,
M. Gonz�alez, F. Igual, D. Jim�enez-Gonz�alez, J. Labarta, et al., Extend-
ing openmp to survive the heterogeneous multi-core era, International
Journal of Parallel Programming 38 (5-6) (2010) 440{459.

[31] BSC, Marenostrum IV, https://www.bsc.es/support/
MareNostrum4-ug.pdf (2017).

44

������������������������������������

[32] G. Tagliavini, D. Cesarini, A. Marongiu, Unleashing �ne-grained par-
allelism on embedded many-core accelerators with lightweight openmp
tasking, IEEE Transactions on Parallel and Distributed Systems 29 (9)
(2018) 2150{2163.

[33] R. E. Vargas, S. Royuela, M. A. Serrano, X. Martorell, E. Quinones, A
lightweight openmp4 run-time for embedded systems, in: 2016 21st Asia
and South Paci�c Design Automation Conference (ASP-DAC), IEEE,
2016, pp. 43{49.

[34] M. A. Serrano, A. Melani, R. Vargas, A. Marongiu, M. Bertogna,
E. Quinones, Timing characterization of OpenMP4 tasking model, in:
CASES, IEEE Press, 2015, pp. 157{166.

[35] Intel Interprocedural Optimization, https://software.intel.com/
en-us/node/522666 (2017).

[36] International Organization for Standardization, ISO/DIS 26262. Road
Vehicles { Functional Safety (2009).

[37] RTCA, DO-178C, Software considerations in airborne systems and
equipment certi�cation (2011).

[38] International Electrotechnical Comission, IEC 61508, Functional Safety
of Electrical/Electronic/Programmable Electronic Safety-related Sys-
tems, Edition 2.0 (2009).

[39] S. Royuela, A. Duran, M. A. Serrano, E. Qui~nones, X. Martorell, A
Functional Safety OpenMP� for Critical Real-Time Embedded Systems,
in: International Workshop on OpenMP, Springer, 2017, pp. 231{245.

[40] OpenMP ARB, OpenMP Application Program Interface, version
4.5, http://www.openmp.org/wp-content/uploads/openmp-4.5 .pdf
(2015).

[41] S. Royuela, A. Duran, C. Liao, D. J. Quinlan, Auto-scoping for OpenMP
tasks, in: International Workshop on OpenMP, Springer, 2012, pp. 29{
43.

[42] S. Royuela, R. Ferrer, D. Caballero, X. Martorell, Compiler analysis for
OpenMP tasks correctness, in: Computing Frontiers, ACM, 2015, p. 7.

45

������������������������������������

[43] H. Ma, S. R. Diersen, L. Wang, C. Liao, D. Quinlan, Z. Yang,Symbolic
analysis of concurrency errors in OpenMP programs, in: ICPP, IEEE,
2013, pp. 510{516.

[44] V. Basupalli, T. Yuki, S. Rajopadhye, A. Morvan, S. Derrien, P. Quin-
ton, D. Wonnacott, ompVerify: polyhedral analysis for the OpenMP
programmer, in: International Workshop on OpenMP, Springer, 2011,
pp. 37{53.

[45] D. Kroening, D. Poetzl, P. Schrammel, B. Wachter, Soundstatic dead-
lock analysis for C/Pthreads, in: 31st International Conference on Au-
tomated Software Engineering, IEEE, 2016, pp. 379{390.

[46] A. Duran, R. Ferrer, J. J. Costa, M. Gonz�alez, X. Martorell,E. Ayguad�e,
J. Labarta, A proposal for error handling in OpenMP, IJPP 35 (4)(2007)
393{416.

[47] M. Wong, M. Klemm, A. Duran, T. Mattson, G. Haab, B. R. de Supin-
ski, A. Churbanov, Towards an error model for OpenMP, in: IWOMP,
Springer, 2010, pp. 70{82.

[48] A. Duran, E. Ayguad�e, R. M. Badia, J. Labarta, L. Martinell, X. Mar-
torell, J. Planas, OmpSs: a proposal for programming heterogeneous
multi-core architectures, Parallel Processing Letters 21 (02) (2011) 173{
193.

[49] R. Fechete, G. Kienesberger, A Framework for CFG-Based Static Pro-
gram Analysis of Ada Programs, in: 13th Ada-Europe International
Conference on Reliable Software Technologies, Springer, 2008, pp. 130{
143.

[50] S. Royuela, A. Duran, X. Martorell, Compiler automatic discovery of
OmpSs task dependencies, in: International Workshop on Languages
and Compilers for Parallel Computing, Springer, 2012, pp. 234{248.

[51] E. Lippe, N. van Oosterom, Operation-based Merging, in:Proceedings
of the Fifth ACM SIGSOFT Symposium on Software Development En-
vironments, SDE 5, ACM, 1992, pp. 78{87.

46

������������������������������������

[52] A. Burns, B. Dobbing, T. Vardanega, Guide for the use of the Ada
Ravenscar Pro�le in high integrity systems, ACM SIGAda Ada Letters
24 (2) (2004) 1{74.

[53] A. Burns, A. J. Wellings, HRT-HOOD: A structured design methodfor
hard real-time systems, Real-Time Systems 6 (1) (1994) 73{114.

[54] Ada Conformity Assessment Authority, Annex D: Real-Time Systems
(2012).

[55] M. A. Serrano, S. Royuela, E. Qui~nones, Towards an OpenMP Speci�-
cation for Critical Real-Time Systems, in: International Workshop on
OpenMP, Springer, 2018, pp. 143{159.

[56] GNU, The GOMP project, https://gcc.gnu.org/projects/gomp
(2017).

[57] BSC, Extrae,https://tools.bsc.es/extrae (2017).

[58] BSC, Paraver,https://tools.bsc.es/paraver (2017).

47

������������������������������������

Declaration of Competing Interest

The authors declare that they have no known competing �nancial inter-
ests or personal relationships that could have appeared to in
uence the work
reported in this paper.

48

������������������������������������

Dr. Sara Royuela got her PhD in Computer Architecture in 2018.
She has been working at BSC for the last 9 years, �rst in the Program-
ming Models department and the in the Parallel Predictable Computing
department. She is a compiler expert, particularly in compiler analysis tech-
niques for correctness and safety, with deep knowledge on OpenMP. Sara has
participated as BSC member in several European Projects:ENCORE (FP7,
'10-'13), PSOCRATES (FP7,'13-'16), CLASS (H2020,'18-'20) and ELASTIC
(H2020, '19-'21), providing key contributions on compiler analysis techniques
for parallel programming models in the context of critical embedded systems
and HPC. She has co-led the e�orts to introduce OpenMP into Ada,col-
laborating with reasearch institutions (CISTER), companies (AdaCore) and
organizations (OpenMP ARB and Ada ARG members). She has participated
in bilateral projects with the ESA and Denso, and is currently involved in
a project with Airbus Defense and Space. Her work has been published in
international well-recognized conferences. She has been part of the program
committee and participated in the organization of a number of conferences.
Additionally, she mentors di�erent PhD and Master students from the UPC
which research involves functional safety and parallel programming for em-
bedded systems.

49

������������������������������������

