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Abstract 
A task can be preempted by several jobs of a higher priority task during its response time. Assuming the worst-
case memory demand for each of these jobs leads to pessimistic worstcase response time (WCRT) estimations. 
Indeed, there is a high chance that a big portion of the instructions and data associated with the preempting task 
τj, are still available in the cache when τj releases its next jobs. We call this content “persistent cache blocks” 
(PCBs). Accounting for PCBs in the memory demand of the preempting task allows to significantly reduce the 
pessimism on the total memory demand considered by the WCRT analysis. In this work, we propose a refined 
WCRT analysis for fixed priority preemptive systems considering (i) the effect of PCBs on the memory demand of 
the preempting task, and (ii) accounting for the number of PCBs that can be evicted by the preempted tasks 
between two successive job releases of the preempting tasks. 
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Abstract—A task can be preempted by several jobs of a higher
priority task during its response time. Assuming the worst-case
memory demand for each of these jobs leads to pessimistic worst-
case response time (WCRT) estimations. Indeed, there is a high
chance that a big portion of the instructions and data associated
with the preempting task τj , are still available in the cache when
τj releases its next jobs. We call this content “persistent cache
blocks” (PCBs). Accounting for PCBs in the memory demand of
the preempting task allows to significantly reduce the pessimism
on the total memory demand considered by the WCRT analysis.
In this work, we propose a refined WCRT analysis for fixed
priority preemptive systems considering (i) the effect of PCBs on
the memory demand of the preempting task, and (ii) accounting
for the number of PCBs that can be evicted by the preempted
tasks between two successive job releases of the preempting tasks.

I. INTRODUCTION

The existing gap between the processor and main memory

operating speeds necessitates the use of intermediate cache

memories to accelerate the average case access time to in-

structions and data that must be executed or treated on the

processor. The introduction of cache memories in modern

computing platforms is the cause of big variations in the

execution time of each instruction depending on whether the

instruction and the data it treats are already loaded in the cache

(cache hit) or not (cache miss).

These last years, a lot of attention has been placed on the

analysis of the impact of preemptions on the worst-case exe-

cution time (WCET) and worst-case response time (WCRT) of

tasks in systems where preemptions are allowed. Indeed, the

preempted tasks may suffer additional cache misses if memory

blocks are evicted from the cache during the execution of

the preempting tasks. These evictions cause extra accesses to

the main memory, which result in additional delays in the

task execution. This extra-cost is usually referred to as cache-

related preemption delays (CRPDs).

Over the years, different approaches have been proposed to

counter the effect of preemptions. Some (e.g., [1], [2]) use

non- or limited preemption scheduling schemes to eliminate

or reduce the number of preemptions. Others [3]–[9] use

information about the task memory access pattern to bound

and incorporate the preemption costs into the WCET and the

WCRT analyses. In this work, we focus on the latter and

propose a method, complementary to [3]–[9], to bound the

memory overhead during the task response time.

Several approaches have been proposed in the literature to

compute accurate bounds on CRPDs. They are based on the

study of memory access patterns of the preempted task [4], the

preempting tasks [3], [5], or both [5]–[9]. However, all these

approaches still result in pessimistic WCRT bounds due to the

fact that they only consider the effect of preemptions on the

memory demand of the preempted task but do not consider the

variation in the memory demand of the preempting tasks. They

all assume that every job of a high priority task τj preempting a

low priority task τi will ask for its maximum memory demand,

i.e., its worst-case memory demand in isolation. Although true

for the first job released by the preempting task τj , subsequent

jobs of τj may re-use most of the data and instructions that

were already loaded in the cache during the execution of its

previous jobs. Noticeably, the memory blocks loaded by a

job Jj,k of τj remain in the cache until the execution of

the next job Jj,k+1 of τj unless evicted by any other task

executing between the completion of Jj,k and the beginning

of the execution of Jj,k+1.

Therefore, in order to propose tighter bounds on the memory

overhead, and hence on the WCRT of each task τi executing

in a preemptive system, we (i) model the impact of persistent

cache contents associated with each preempting tasks on the

WCRT of the preempted task, and (ii) analyze the effect of

the preempted task cache accesses on the memory demand of

the preempting tasks.

II. SYSTEM MODEL

This work targets single-core platforms with a single level

(L1) data/instruction cache. The cache is assumed to be direct-

mapped, that is, each memory block in the main memory can

be mapped to only one block in the cache.

We consider sporadic tasks with constrained deadlines

where each task has a fixed priority. Any priority assignment

scheme (e.g., Rate Monotonic [10]) is acceptable. We also

assume that the tasks are independent and do not suspend

themselves during their execution. A task τi is defined by a

triplet (Ci, Ti, Di); where Ci is the WCET of τi, Ti is its

minimum inter-arrival time and Di is the relative deadline

of each instance (or job) of τi. We assume that the tasks

have constrained deadlines, i.e., Di ≤ Ti. In this work, we

further decompose each task WCET into two terms, namely,

the worst-case processing demand Pi and the worst-case

memory demand MDi . Pi denotes the worse case execution

time of τi considering that every memory access is a cache

hit. Consequently, it only accounts for execution requirements

of the task and does not include the time needed to fetch

data and instructions from the main memory. MDi is the



worst-case memory demand of any job of task τi, that is,

it is the maximum amount of time during which any job of

τi is performing memory operations. Because the worst-case

processing demand and the worst-case memory demand may

not necessarily be experienced on the same execution path of

τi, it results that Ci ≤ Pi + MDi . The WCRT of task τi is

denoted by Ri and is defined as the longest amount of time

between the arrival and the completion of any of its jobs. A

task τi is said to be schedulable if Ri ≤ Di. Similarly, a task

set is schedulable if all of its tasks are schedulable.

In this work, we consider that preemption costs only refer

to additional cache reloads due to those preemptions. Other

overheads due to context switches, scheduler invocations and

pipeline flushes are assumed to be included in the WCET.

For notational convenience, we define the following task

sets:

• hp(i): the set of tasks with a priority higher than that of τi.

• hep(i): the set of tasks with priorities higher than or equal

to that of τi.

• aff (i , j ): the set of tasks with priorities higher than or equal

to the priority τi but strictly lower than that of τj . This set

contains the intermediate priority tasks, which may affect

the response time of τi but may also be preempted by τj .

III. STATE OF THE ART

As already explained in the introduction, when a task τi is

preempted by a higher priority task τj , it is likely that τj will

evict memory blocks of τi from the cache. On resumption, τi
might consequently require to reload cache blocks from the

main memory along with its normal memory requirements.

This CRPD caused by τj on τi is denoted by γi,j . Several

methods have been proposed in the literature to compute γi,j .

In one of the earlier works, Lee et al. [4] introduced the

concept of useful cache block (UCB). As defined in [9], “a

memory block m is called a useful cache block (UCB) at

program point P , if it is cached at P and will be reused at

program point Q that may be reached from P without eviction

of m”. Lee et al. [4] used the maximum number of UCBs

among all the tasks in aff (i , j ) to upper bound the preemption

cost γi,j . Busquets et al. [3] and Tomiyama et al. [5] rather

used the notion of evicting cache block (ECB), i.e, any cache

block accessed during the execution of the task and which

can then evict the memory block cached by another task, to

upper bound the preemption cost that can be caused by each

preempting task. Other approaches by Tan and Mooney [7],

Staschulat et al. [6] and Altmeyer et al. [8] used both the

UCBs of the preempted tasks and ECBs of the preempting

tasks in order to come up with more precise bounds on the

preemption cost. Notably, the ECB and UCB-union and the

multi-set approaches presented in [8] and [9] dominate all

the existing approaches for CRPD calculation. We first detail

the ECB-union approach and then the UCB-union multi-set.

Readers are referred to [9] for the description of UCB-union

and ECB-union multi-set approaches.

The ECB-union approach [8] uses the ECBs of all tasks

in hep(j ) maximized over the UCBs of tasks in aff (i , j ) to

calculate the preemption cost γi,j . The resulting value for the

preemption cost, denoted as γecb
i,j , is given by

γecb
i,j = dmem × max

∀k∈aff (i,j )

(

∣

∣

∣UCBk ∩
(

⋃

∀h∈hep(j )

ECBh

)∣

∣

∣

)

(1)

where dmem is the time required to reload one memory block

from the main memory to the cache, and UCBk and ECBj

are the sets of UCBs and ECBs of task τk and τj , respectively.

The preemption cost can then be accounted for in the WCRT

analysis using the following formulation:

Rk+1
i = Ci +

∑

∀j∈hp(i)

⌈

Rk
i

Tj

⌉

× (Cj + γecb
i,j ) (2)

When combined, the ECB and UCB-union approaches

provide a reasonably precise upper bound on the preemption

cost. However, it can also lead to overestimations in different

situations as shown in [9]. To further reduce the pessimism

associated to the ECB and UCB-union approaches, Altmeyer

et al. [9] proposed two new solutions, namely, the UCB-

union multi-set and the ECB-union multi-set approaches.

These multi-set versions of the UCB-union and ECB-union ap-

proaches additionally take into account the maximum number

of jobs Ej(Ri)
def
=
⌈

Ri

Tj

⌉

that each higher priority task τj can

release during the response time of τi. Under that framework,

the WCRT equation becomes:

Rk+1
i = Ci +

∑

∀j∈hp(i)

⌈

Rk
i

Tj

⌉

× Cj +
∑

∀j∈hp(i)

γmul
i,j (3)

where γmul
i,j accounts for the total preemption cost that can be

caused by all the jobs of τj released during the response time

of τi. Using the UCB-union multi-set approach γmul
i,j is upper

bounded by γucb−m
i,j defined as follows:

γucb−m
i,j = dmem ×

∣

∣Mucb
i,j ∩Mecb

i,j

∣

∣ (4)

where Mucb
i,j and Mecb

i,j are multi-sets defined as

Mucb
i,j =

⋃

∀k∈aff (i,j )





⋃

Ej(Rk)Ek(Ri)

UCBk



 (5)

and

Mecb
i,j =

⋃

Ej(Ri)

ECBj (6)

Note that the ECB-union multi-set approach dominates the

ECB-union approach [8] whereas the UCB-union multi-set

approach dominates the UCB-union approach [7]. Yet, it is

shown in [9] that the ECB-union and UCB-union multi-set

approaches are incomparable.

For a more detailed description on the formulation of

Equations (2) to (6), the reader is referred to [9].



IV. MOTIVATIONAL EXAMPLE

As presented in the previous section, the impact of a high

priority task τj on the WCRT of lower priority task τi can

be estimated in a fairly accurate manner by analyzing the

mapping of UCBs and ECBs in the cache. The impact of

τi on the memory demand of τj is however ignored during

the WCRT analysis of τi. Yet, high priority tasks may often

execute more than one job during the response time of a lower

priority task. Therefore, to accurately estimate the WCRT of

a low priority task τi, one must consider the impact of the

preempted tasks on the memory demand of each job released

by the preempting tasks. In the literature, this is dealt with

by assuming that the memory demand for each job of a high

priority task τj executing within the response time of a low

priority task τi is always maximum, i.e, equal to the maximum

memory demand MDj . As a result, the total memory overhead

MOi that must be accounted by τi during its WCRT is upper

bounded by the following equation derived in [11].

MOi = MDi +
∑

∀j∈hp(i)

⌈

Ri

Tj

⌉

× (MDj + γi,j) (7)

There is a significant level of pessimism involved in Equa-

tion (7) as we will demonstrate using the example given below.

Example 1. Consider the two tasks τ1 and τ2 (where τ1 has

a higher priority than τ2) presented in Fig. 1. We assume that

the time dmem needed to access the main memory and load

a memory block to the cache is equal to 1 time unit, and

that the memory demand of τ1 and τ2 are MD1 = 6 and

MD2 = 81, respectively. We also assume that the memory

block {9} accessed by τ1 contains some data that must be

reloaded at the beginning of each of its job’s execution. Fig. 1

depicts a possible schedule together with the evolution of the

cache content over time. The memory blocks that must be

loaded/reloaded from the main memory after each preemption

or resumption are shown on a grey background.

Initially, the cache is empty and τ2 loads all its ECBs from

the main memory as soon as it starts to execute. When τ1
preempts τ2 for the first time, it loads MD1 = 6 memory

blocks into the cache. Since there is an overlap between the

ECBs of τ1 and the UCBs of τ2, τ1 evicts some of the useful

cache blocks of τ2. When τ2 resumes its execution, it has to

reload γ2,1 = 2 cache blocks from the main memory. As

the second job of τ1 preempts τ2, one can notice that its

memory demand is no longer equal to MD1 . In fact, most

of the memory blocks needed by τ1 are still in the cache.

As a consequence, τ1 must only reload the memory blocks

{5, 6} which have been evicted by τ2, as well as the memory

block {9} which must be reloaded at each new job execution.

The same scenario happens for all the jobs released by τ1 at

the exception of the first one. Therefore, the actual memory

demand for the second and third job of τ1 is much less (i.e.,

3) than MD1 = 6.

1Note that because the same cache block may be used by several memory
blocks of the same task τi, the worst-case memory demand MDi of τi may
be larger than the number of ECBs of τi multiplied by dmem.

In the presented example, the memory blocks {5, 6, 7, 8, 10}
are called persistent cache blocks (PCBs) as they are never

evicted from the cache when τ1 executes in isolation. A PCB

is therefore a memory block that remains cached during the

entire execution of a task unless evicted by another task

executing on the same processor. The cache block {9} however

is called non-persistent cache block (nPCB) as it must be

reloaded at the beginning of each job execution. nPCBs may

be cache blocks that are shared by several memory blocks

of the same task, or simply some data that must be reloaded

before each job execution of a task. One must note that PCBs

and nPCBs are different from the notions of UCBs and ECBs

in the sense that it does not matter if they are referenced more

than once during a single execution of a task. However, a PCB

must never be evicted from the cache by the task itself once

it is fetched from the main memory.

The state-of-the-art does not consider PCBs while calcu-

lating the memory overhead suffered by a task τi in case

of preemptions. This results in pessimistic memory overhead

evaluations and hence pessimistic WCRT computations. This

can easily be shown using the example of Fig. 1. If τ2’s

memory overhead is computed using Eq. (7), one would get:

MO2 = MD2 +3×MD1+3×γ2,1 = 8+3×6+3×2 = 32

Equation (7) considers the worst-case memory demand, i.e.,

MD1 for each job of τ1 that executes during the response time

of τ2. As we have shown in Example 1, the actual memory

demand of the second and third job of τ1 is in fact much less.

Considering the PCBs of τ1 while calculating the memory

overhead MO2 , the resulting value is given as:

MO2 = MD2 +MD1 + 2× (MD1 − |PCB1 | × dmem)

+ 3× γ2,1

= 8 + 6 + 2× (6− 5× 1) + 3× 2 = 22

This simple example demonstrates why it is important to

account for PCBs when calculating the memory demand and

hence the WCRT of a task.

V. WCRT ANALYSIS USING MEMORY OVERHEAD COST OF

HIGH PRIORITY TASKS

Two interesting properties can be observed in the example

of Section IV:

1) The tasks with a high number of PCBs will have a lower

memory demand after the execution of their first job than

their worst-case memory demand in isolation. Therefore,

we define MDr
i as the worst-case memory demand over

all the jobs of τi except the first one.

2) The PCBs of a task τj can be evicted due to the execution

of lower and high priority tasks (i.e., tasks in aff (i , j ) ∪
hp(j )) between the arrivals of two successive jobs of τj .

This requires to consider the effect of the tasks in aff (i , j )∪
hp(j ) on the memory demand of τj during the WCRT of

τi. This extra memory demand caused by the eviction of

the PCBs of τj by the tasks in aff(i, j)∪hp(j) is denoted

by ρj,i.



Fig. 1. Task schedule and cache content for Example 1.

ρj,i can be computed using a similar formulation to the ECB-

union approach described in Section III (see Eq. (2)). First,

we note that every task τk ∈ aff (i , j ) ∪ hp(j ) can execute

between the releases of two successive jobs of τj . Second,

we consider the fact that each task τk may need to load new

content in all its ECBs at any time of its execution. Since we

are interested in upper bounding the number of PCBs of τj that

can be evicted by the tasks in aff (i , j ) ∪ hp(j ), we therefore

check how many PCBs of τj intersect with the ECBs of the

tasks in aff (i , j )∪hp(j ). Consequently, the memory overhead

ρj,i is given by:

ρj,i = dmem ×

∣

∣

∣

∣

PCBj ∩
(

⋃

∀k∈aff (i,j )∪hp(j )

ECBk

)

∣

∣

∣

∣

(8)

Considering the two properties identified at the beginning

of this section, we present a more elaborate formulation of the

WCRT equation presented in Section III (see Eq. (3)):

Ri =Pi +MDi +
∑

∀j∈hp(i)

(Pj +MDj ) +
∑

∀j∈hp(i)

γmul
i,j

+
∑

∀j∈hp(i)

⌈

Ri

Tj

− 1

⌉

×
(

Pj +MDr
j + ρj,i

)

(9)

In this equation, we separately account for the processing and

memory demand of each task, i.e., Pi and MDi . Similarly, so

as incorporate the effect of both MDi and MDr
i , we separate

the execution of the first job of each preempting task from

the execution of their next jobs. While the first job of each

task τj in hp(i) has a worst-case memory demand MDj , all

the other jobs have a worst-case memory demand MDr
j +ρj,i,

where ρj,i is calculated using Equation (8). The CRPD γmul
i,j

is calculated using the multi-set approach given by Eq. (4). In

cases where PCBs are also UCBs, double accounting of same

preemption overheads can be avoided by choosing the min
between Cj and (Pj +MDr

j + ρj,i) for each job of τj after

the execution of the first job.

VI. CONCLUSION

This work proposes a method to calculate the memory

overhead of high priority tasks executing during the response

time of a low priority task. In order to bound this overhead,

we identified the existence of persistent and non-persistent

cache blocks (i.e., PCBs and nPCBs) associated with each

task. We showed with an example that, due to existence of

PCBs, the memory demand of a task can significantly vary

over time. We also presented an approach, complementary

to [9], to upper bound the number of PCBs of a preempting

task that can be evicted by the execution of the preempted

tasks. Finally, we reformulated the WCRT analysis so as to

consider the effect of the PCBs and the memory demand

overhead. In future, we plan to extend our approach to set

associative caches. We also aim to present a less pessimistic

multi-set approach for memory demand overhead calculation.

We further plan to generate results for the proposed WCRT

analysis using available benchmarks.
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