

A Response-Time Analysi s fo r Non-Preempti ve
Job Sets under Global Schedu ling

Conference Paper

CISTER-TR-180503

Mitra Nasri

Geoffrey Nelissen

Björn B. Brandenburg

Conference Paper CISTER-TR-180503 A Response-Time Analysis for Non-Preemptive Job Sets under ...

© CISTER Research Center
www.cister.isep.ipp.pt

1

A Response-Time Analysis for Non-Preemptive Job Sets under Global Scheduling

Mitra Nasri, Geoffrey Nelissen, Björn B. Brandenburg

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

http://www.cister.isep.ipp.pt

Abstract
An effective way to increase the timing predictability of multicore platforms is to use non-preemptive scheduling. It
reduces preemption and job migration overheads, avoids intra-corecache interference, and improves the accuracy
of worst-case execution time (WCET) estimates.However, existing schedulability tests for global non-preemptive
multiprocessor scheduling arepessimistic, especially when applied to periodic workloads. This paper reduce s this
pessimismby introducing a new type of sufficient schedulability analysis that is based on an exploration ofthe
space of possible schedules using concise abstractions and state-pruning techniques. Specifically, we analyze the
schedulability of non-preemptive job sets (with bounded release jitter andexecution time variation) scheduled by a
global job-level fixed-priority (JLFP) scheduling algorithm up on an identical multicore platform. The analysis yields
a lower bound on th e b est-caseresponse-time (BCRT) and an upper bound on the worst-case response time
(WCRT) of the jobs.In an empirical evaluation with randomly generated workloads, we show that the method
scalesto 30 tasks, a hundred thousand jobs (per hyperperiod), and up to 9 cores.

Technical Report MPI-SWS-2018-003 April 2018

A Response-Time Analysis for Non-Preemptive
Job Sets under Global Scheduling

Mitra Nasri
Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany
mitra@mpi-sws.org

Geo�rey Nelissen
CISTER Research Centre, Polytechnic Institute of Porto (ISEP-IPP), Porto, Portugal
grrpn@isep.ipp.pt

Björn B. Brandenburg
Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany
bbb@mpi-sws.org

Abstract
An e�ective way to increase the timing predictability of multicor e platforms is to use non-

preemptive scheduling. It reduces preemption and job migration overheads, avoids intra-core
cache interference, and improves the accuracy of worst-case execution time (WCET) estimates.
However, existing schedulability tests for global non-preemptivemultiprocessor scheduling are
pessimistic, especially when applied to periodic workloads. This paper reduces this pessimism
by introducing a new type of su�cient schedulability analysis th at is based on an exploration of
the space of possible schedules using concise abstractions and state-pruning techniques. Speci�-
cally, we analyze the schedulability of non-preemptive job sets (with bounded release jitter and
execution time variation) scheduled by a global job-level �xed-priority (JLFP) scheduling algo-
rithm upon an identical multicore platform. The analysis yields a lower bound on the best-case
response-time (BCRT) and an upper bound on the worst-case response time (WCRT) of the jobs.
In an empirical evaluation with randomly generated workloads, we show thatthe method scales
to 30 tasks, a hundred thousand jobs (per hyperperiod), and up to 9 cores.

2012 ACM Subject Classi�cation Computer systems organization! Real-time systems � Soft-
ware and its engineering! Real-time schedulability

Keywords and phrases global multiprocessor scheduling, schedulability analysis, non-preemptive
tasks, worst-case response time, best-case response time

Related Version The conference version of this paper appears in the proceedings of ECRTS'18 [19].

1 Introduction

While modern multicore platforms o�er ample processing power and acompelling price/per-
formance ratio, they also come with no small amount of architectural complexity. Unfor-
tunately, this complexity�such as shared caches, memory controllers, and other shared
micro-architectural resources�has proven to be a major source of execution-time unpre-
dictability, and ultimately a fundamental obstacle to deployment i n safety-critical systems.

In response, the research community has developed a number of innovative approaches
for managing such challenging hardware platforms. One particularly promising approach
explored in recent work [1, 15, 24] is to split each job into three distinct phases: (i) a

mailto:mitra@mpi-sws.org
mailto:grrpn@isep.ipp.pt
mailto:bbb@mpi-sws.org

9:2 A Response-Time Analysis of Global Non-Preemptive Scheduling

dedicated memory-load or prefetching phase, which transfers all of a job's required memory
from the shared main memory to a core-local private cache or scratchpad memory; followed
by (ii) the actual execution phase, in which the job executesnon-preemptively and in an
isolated manner without interference from the memory hierarchy as allmemory references
are served from a fast, exclusive private memory, which greatly enhances execution-time
predictability; and �nally (iii) a write-back phase in which any modi�ed data is �ushed to
main memory. As a result of the high degree of isolation restored by this approach [20],
a more accurateworst-case execution time(WCET) analysis becomes possible since the
complete mitigation of inter-core interference during the execution phase allows existing
uniprocessor techniques [25] to be leveraged. Recent implementations of the idea, such as
Tabish et al.'s scratchpad-centric OS [24], have shown the phased-execution approach to
indeed hold great promise in practice.

From a scheduling point of view, however, the phased-execution approach poses a number
of di�cult challenges. As jobs must execute non-preemptively�other wise prefetching becomes
impractical and there would be only little bene�t to predictabilit y�the phased-execution
approach fundamentally requires anon-preemptive real-time multiprocessor scheduling problem
to be solved. In particular, Alhammad and Pellizzoni [1] and Maia et al. [15] considered the
phase-execution model in the context of non-preemptiveglobal scheduling, where pending
jobs are allocated simply to the next available core in order of their priorities.

Crucially, to make schedulability guarantees, Alhammad and Pellizzoni[1] and Maia et
al. [15] rely on existing state-of-the-art analyses of global non-preemptive scheduling as a
foundation for their work. Unfortunately, as we show in Sec. 6, this analytical foundation�i.e.,
the leading schedulability tests for global non-preemptive scheduling [4, 10, 11, 13]�su�ers
from substantial pessimism, especially when applied to periodichard real-time workloads.

This paper. To attack this analysis bottleneck, we introduce a new, much more accurate
method for the schedulability analysis of �nite sets of non-preemptive jobsunder global job-
level �xed-priority (JLFP) scheduling policies. Our method, which can be applied toperiodic
real-time tasks (and other recurrent task models with a repeating hyperperiod),is based on
a novel state-space exploration approach that can scale to realistic system parameters and
workload sizes. In particular, this work introduces a new abstractionfor representing the
space of possible non-preemptive multiprocessor schedules and explains how to explore this
space in a practical amount of time with the help of novel state-pruning techniques.

Related work. Global non-preemptive multiprocessor scheduling has received much less
attention to date than its preemptive counterpart. The �rst su�cie nt schedulability test
for global non-preemptive scheduling was proposed by Baruah [4]. It considered sequential
sporadic tasks scheduled with a non-preemptiveearliest-deadline-�rst (G-NP-EDF) scheduling
algorithm. Later, Guan et al. [10, 11] proposed three new tests; one generic schedulability
test for any work-conserving global non-preemptive scheduling algorithm, and two response-
time bounds for G-NP-EDF and global non-preemptive �xed-priority (G-NP-FP) scheduling.
Recently, Lee et al. [13, 14] proposed a method to remove unnecessary carry-in workload
from the total interference that a task su�ers. These tests for sporadic tasks have been used
in various contexts such as the schedulability analysis of periodic parallel tasks with non-
preemptive sections [21] and systems with shared cache memories [26] or with transactional
memories [1, 24]. However, these tests become needlessly pessimistic when applied to periodic
tasks as they fail to discount many execution scenarios that are impossible in a periodic
setting. Moreover, these tests do not account for any release jitter that may arise due to
timer inaccuracy, interrupt latency, or networking delays.

To the best of our knowledge, no exact schedulability analysis for globaljob-level �xed-

M. Nasri, G. Nelissen, and B.B. Brandenburg 9:3

priority non-preemptive scheduling algorithms (including G-NP-EDF and G-NP-FP) either
for sporadic or for periodic tasks has been proposed to date. The exact schedulability
analysis of globalpreemptive scheduling for sporadic tasks has been considered in several
works [3, 5, 6, 9, 23]. These analyses are mainly based on exploring all system states that can
be possibly reached using model checking, timed automata, or linear-hybrid automata. These
works are inherently designed for a preemptive execution model, where no lower-priority task
can block a higher-priority one, and hence are not applicable to non-preemptive scheduling.
The second limitation of the existing analyses is their limited scalability. They are a�ected
by the number of tasks, processors, and the granularity of timing parameters such as periods.
For example, the analysis of Sun et al. [23] can only handle up to 7 tasks and 4 cores, while
the solution by Guan et al. [9] is applicable only if task periods lie between 8 and 20.

In our recent work [16], we have introduced an exact schedulability test based on a
schedule-abstraction model for uni-processor systems executing non-preemptive job sets with
bounded release jitter and execution time variation. By introducing an e�ective state-merging
technique, we were able to scale the test to task sets with more than30 tasks or about
100000 jobs in their hyperperiod for any job-level �xed-priority scheduling algorithm. The
underlying model and the test's exploration rules, however, are designed for, and hence
limited to, uniprocessor systems and cannot account for any scenarios that may arise when
multiple cores execute jobs in parallel.

Contributions. In this paper, we introduce a su�cient schedulability analysis f or global
job-level �xed-priority scheduling algorithms considering a set of non-preemptive jobs with
bounded release jitter and execution time variation. Our analysis derives a lower bound on
the best-case response time (BCRT) and an upper bound on the worst-case response time
(WCRT) of each job, taking into account all uncertainties in release and execution times.
The proposed analysis is not limited to the analysis of periodic tasks (with or without release
jitter), but can also analyze any system with a known job release pattern, e.g., bursty releases,
multi-frame tasks, or any other application-speci�c workload that can be represented as a
recurring set of jobs.

The analysis proceeds by exploring a graph, calledschedule-abstraction graph, that
contains all possible schedules that a given set of jobs may experience. To render such an
exploration feasible, we aggregate all schedules that result in the same order of start times
of the jobs and hence signi�cantly reduce the search space of the analysis and makes it
independent from the time granularity of the timing parameters of the systems. Moreover,
we provide an e�cient path-merging technique to collapse redundant states and avoid non-
required state explorations. The paper presents an algorithm to explore the search space,
derives merge rules, and establishes the soundness of the solution.

2 System Model and De�nitions

We consider the problem of scheduling a �nite set of non-preemptive jobs J on a multicore
platform with m identical cores. Each jobJ i = ([r min

i ; r max
i]; [Cmin

i ; Cmax
i]; di ; pi) has an

earliest-release timer min
i (a.k.a. arrival time), latest-release timer max

i , absolutedeadline di ,
best-case execution time (BCET)Cmin

i , WCET Cmax
i , and priority pi . The priority of a job

can be decided by the system designer at design time or by the system's JLFP scheduling
algorithm. We assume that a numerically smaller value ofpi implies higher priority. Any
ties in priority are broken by job ID. For ease of notation, we assume that the �< � operator
implicitly re�ects this tie-breaking rule. We use N to represent the natural numbers including
0. We assume a discrete-time model and all job timing parameters are inN.

9:4 A Response-Time Analysis of Global Non-Preemptive Scheduling

At runtime, each job is releasedat an a priori unknown time r i 2 [r min
i ; r max

i]. We say
that a job J i is possibly releasedat time t if t � r min

i , and certainly released if t � r max
i .

Such release jitter may arise due to timer inaccuracy, interrupt latency, or communication
delays, e.g., when the task is activated after receiving data from the network. Similarly,
each released job has ana priori unknown execution time requirementCi 2 [Cmin

i ; Cmax
i].

Execution time variation occurs because of the use of caches, out-of-order-execution, input
dependencies, program path diversity, state dependencies, etc.We assume that the absolute
deadline of a job, i.e.,di , is �xed a priori and not a�ected by release jitter. Released jobs
remain pending until completed, i.e., there is no job-discarding policy.

Each job must execute sequentially, i.e., it cannot execute on more than one core at a
time. Hence, because jobs are non-preemptive, a jobJ i that starts its execution on a core
at time t occupies that core during the interval [t; t + Ci). In this case, we say that job
J i �nishes by time t + Ci . At time t + Ci , the core used byJ i becomes available to start
executing other jobs. A job's response timeis de�ned as the length of the interval between
the arrival and completion of the job [2], i.e., t + Ci � r min

i . We say that a job is ready at
time t if it is released and did not yet start its execution prior to time t.

In this paper, we assume that shared resources that must be accessed in mutual exclusion
are protected by FIFO spin locks. Since we consider a non-preemptive execution model, it is
easy to obtain a bound on the worst-case time that any job spends spinningwhile waiting to
acquire a contested lock; we assume the worst-case spinning delayis included in the WCETs.

Throughout the paper, we usef�g to denote a set of items in which the order of elements
is irrelevant and h�i to denote an enumerated set of items. In the latter case, we assume that
items are indexed in the order of their appearance in the sequence. For ease of notation, we
usemax0f X g and min1 f X g over a set of positive valuesX � N that is completed by 0 and
1 , respectively. That is, if X = ; , then max0f X g = 0 and min1 f X g = 1 , otherwise they
return the usual maximum and minimum values in X , respectively.

The schedulability analysis proposed in this paper can be applied to periodic tasks. A
thorough discussion of how many jobs must be considered in the analysis for di�erent types
of tasks with release o�set and constrained or arbitrary deadlines has been presented in [16].

Scheduler model. We consider a non-preemptive global JLFP scheduler upon an identical
multicore platform. The scheduler is invoked whenever a job is released or completed. In
the interest of simplifying the presentation of the proposed analysis, we make the modeling
assumption that, without loss of generality, at any invocation of the scheduler, at most one
job is picked and assigned to a core. If two or more release or completion events occur at the
same time, the scheduler is invoked once for each event. The actual scheduler implementation
in the analyzed system need not adhere to this restriction and may process more than one
event during a single invocation. Our analysis remains safe if the assumption is relaxed in
this manner.

We allow for a non-deterministic core-selection policy when more than one core is available
for executing a job, i.e., when a job is scheduled, it may be scheduled on any available core.
The reason is that requiring a deterministic tie-breaker for core assignments would impose
a large synchronization overhead, e.g., to rule out any race windows when the scheduler is
invoked concurrently on di�erent cores at virtually the same time, and hence no such rule is
usually implemented in operating systems.

We say that a job set J is schedulableunder a given scheduling policy if no execution
scenario ofJ results in a deadline miss, where an execution scenario is de�nedas follows.

I De�nition 1. An execution scenario = f (r 1; C1); (r 2; C2); : : : ; (r n ; Cn)g, where n = jJ j ,
is an assignment of execution times and release times to the jobs ofJ such that, for each

M. Nasri, G. Nelissen, and B.B. Brandenburg 9:5

job J i , Ci 2 [Cmin
i ; Cmax

i] and r i 2 [r min
i ; r max

i].

We exclusively focus on work-conserving, and priority-driven scheduling algorithms, i.e.,
the scheduler dispatches a job only if the job has the highest priority among all ready jobs,
and it does not leave a core idle if there exists a ready job. We assumethat the WCET of
each job is padded to cover the scheduler overhead and to account for anymicro-architectural
interference (e.g., cache or memory bus interference).

3 Schedule-Abstraction Graph

Our schedulability analysis derives a safe upper bound on the WCRT and a safe lower bound
on the BCRT of each job by exploring a superset of all possible schedules. Since the number
of schedules depends on the space of possible execution scenarios, which is a combination
of release times and execution times of the jobs, it is intractable to naively enumerate all
distinct schedules. To solve this problem, we aggregate schedules that lead to the same
ordering of job start times (a.k.a. dispatch times) on the processing platforms. To this end,
in the rest of this section, we introduce an abstraction of job orderingsthat encodes possible
�nish times of the jobs.

To represent possible job orderings we use an acyclic graph whose edges are labeled
with jobs. Thus, each path in the graph represents a dispatch order of jobs in the system.
Fig. 1-(b) shows an example of such a graph. For example, the path fromv1 to v9 means
that the jobs hJ1; J2; J3; J4; J5i have been scheduled one after another. The length of a path
P, denoted by jP j, is the number of jobs scheduled on that path.

To account for the uncertainties in the release times and execution times of jobs, which
in turn result in di�erent schedules, we use intervals to represent the state of a core. For
example, assume that there is only one core in the system and consider aparticular job
J i . Assume that the release interval and execution requirement ofJ i are [0; 5] and [10; 15],
respectively. In a job ordering whereJ i is the �rst job dispatched on the core, the resulting
core interval will become [10; 20], where 10 =r min

i + Cmin
i and 20 = r max

i + Cmax
i are the

earliest �nish time (EFT) and latest �nish time (LFT), respectively, of the job on the core.
Here, the interval [10; 20] means that the core will bepossibly availableat time 10 and will be
certainly available at time 20. Equivalently, any time instant t in a core interval corresponds
to an execution scenario in which the core is busy untilt and becomes available att.

Using the notion of core intervals, we de�ne a system state as a set ofm core intervals.
System states are vertices of the graph and represent the states of thecores after a certain
set of jobs has been scheduled in a given order.

3.1 Graph De�nition

The schedule-abstraction graph is a directed acyclic graphG = (V; E), where V is a set of
system states andE is the set of labeled edges. A system statev 2 V is a multiset of m
core intervals denoted byf � 1; � 2; : : : ; � m g. A core interval � k = [EFT k ; LFT k] is de�ned
by the EFT and LFT of a job that is scheduled on the core, denoted byEFT k and LFT k ,
respectively. Equivalently, EFT k is the time at which the core becomespossibly available
and LFT k is the time at which the core becomescertainly available. Since cores are identical,
the schedule-abstraction graph does not distinguish between them and hence does not keep
track of the physical core on which a job is executing.

The schedule-abstraction graph contains all possible orderings of job start times in any
possible schedule. This ordering is represented by directed edges. Each edgee = (vp; vq)

9:6 A Response-Time Analysis of Global Non-Preemptive Scheduling

�ö�5�ã�t�á �v�á
�ö�6�ã�r�á �r

�,�5on �ö�5 �,�6on �ö�6 �,�7on �ö�5

�ö�5�ã�s�r�á�s�w�á
�ö�6�ã�s�r�á�s�w

�ö�5�ã
Ú
Ù�á�s�t �á
�ö�6�ã�s�t�á�s�w

�,�8on �ö�5

�,�8on �ö�6�œ
Ú �œ
Û �œ
Ü �œ
Ý

�œ
Þ

�œ
ß

�Ø
Úis updated

�œ
â �ö�5�ã�s�s�á�s�u�á
�ö�6�ã�s�t�á�s�w

�œ
á �ö�5�ã�s�r�á�s�w�á
�ö�6�ã�s�s�á�s�x

�,�9on �ö�6

�œ
à �ö�5�ã�s�s�á�s�x�á
�ö�6�ã�s�r�á�s�w

�œ
Ú
Ù
�ö�5�ã�s�r�á�s�t �á
�ö�6�ã�s�u�á�s�x

�,�9on �ö�6

(a) job set (no release jitter or dependency)

(b) schedule-abstraction graph

�ö�5�ã�x�á�s�t �á
�ö�6�ã�s�r�á�s�w

1510
�Ø
Ú

�Ø
Û

40

�,�6

�,�5

(d) core states at �œ
Ü

2

�Ø
Ú

�Ø
Û

40

�,�5

(c) core states at �œ
Û

2

�Y 1510
�Ø
Ú

�Ø
Û

126

�,�6
�,�7

(e) core states at �œ
Ý

5

0

(f) core states at �œ
Þ

8

1510

�Ø
Ú

�Ø
Û
�,�6

1510

�,�8�Y
0

�v
Ú
�v
Û
�v
Ü
�v
Ý
�v
Þ

0
0
5
8
8

�,�Ü �N�Ü
�à�Ü�á

0
0
5
8
8

�N�Ü
�à�Ô�ë

2
10
1
2
1

�%�Ü
�à�Ü�á

4
15
7
3
1

�%�Ü
�à�Ô�ë

7
20
15
20
14

�@�Ü

1
2
3
4
5

�L�Ü

�Y
1510

�Ø
Ú

�Ø
Û
�,�6

1610

�,�9

(h) core states at �œ
à

8

0

11
�Ø
Ú

�Ø
Û

(k) core states at �œ
Ú
Ù

13

�,�9�Y
8 16

1210
�,�7

5

�Y 1611

�Ø
Ú

�Ø
Û
�,�9

158

�,�8

(i) core states at �œ
á

10

10
�Y

�Ø
Ú

�Ø
Û

(j) core states at �œ
â

1311

�,�8

�,�9�Y 151210

8

�Y

�Ø
Ú

�Ø
Û

(g) core states at �œ
ß

1210

�,�7
65

1512

�,�8�Y
108�Y

�ö�5�ã�t�á �v �á
�ö�6�ã�s�r�á�s�w

�ö�5�ã�r�á �r �á
�ö�6�ã�r�á �r

�,�9on �ö�5

�,�9on �ö�5
Legend

core is certainly busy
core is possibly busy

Figure 1 A schedule-abstraction graph G for �ve jobs that are scheduled on two cores: (a) shows
the job set information (jobs do not have release jitter), (b) shows the schedule-abstraction graph,
(c) to (k) show the state of the two cores at system statesv2 to v10 , respectively.

from state vp to state vq has a label representing the job that is scheduled next after state
vp. The sequence of edges in a pathP represents a possible sequence of scheduling decisions
(i.e., a possible sequence of job start times) to reach the system state modeled by vp from
the initial state v1.

3.2 Example

Fig. 1-(b) shows the schedule-abstraction graph that includes all possible start-time orders
of the jobs de�ned in Fig. 1-(a) on a two-core processor. In the initial state v1, no job is
scheduled. At time 0, two jobs J1 and J2 are released. Sincep1 < p 2, the scheduler �rst
schedulesJ1 on one of the available cores. For the sake of clarity, we have numbered the
cores in this example, however, they are identical from our model'sperspective.

Fig. 1-(c) shows the state of both cores after jobJ1 is scheduled. The dashed rectangle
that covers the interval [0; 2) shows the time during which the core is certainly not available
for other jobs sinceCmin

1 = 2. In this state, the EFT of � 1 is 2 and its LFT is 4, as shown
by the white rectangle, i.e., � 1 may possibly become available at time 2 and will certainly be
available at time 4. From the system statev2, only v3 is reachable. The transition between
these two states indicates that jobJ2 is scheduled on the available core� 2 starting at time 0.

As shown in Fig. 1-(d), core � 1 is certainly available from time 4. Thus, when job J3

is released at time 5, the scheduler has no other choice but to schedule job J3 on this core.
The label of this transition shows that J3 has been scheduled.

From system state v4, two other states are reachable depending on the �nish times of
jobs J2 and J3. State v5: If core � 1 becomes available before core� 2, then J4 can start its
execution on � 1. This results in state v5 (Fig. 1-(f)). The core intervals of v5 are obtained

M. Nasri, G. Nelissen, and B.B. Brandenburg 9:7

as follows. According to the intervals ofv4, the earliest time at which � 1 becomes available
is 6, while the release time ofJ4 is 8, thus, the earliest start time of J4 on core � 1 is 8,
which means that its earliest �nish time is 10. The latest start time of J4 such that it is
still scheduled on core� 1 is time 12. The reason is thatJ4 is released at time 8 and hence
is pending from that time onward. However, it cannot be scheduled until a core becomes
available. The earliest time a core among� 1 and � 2 becomes available is at time 12 (which
is the latest �nish time of J3). Since the scheduling algorithm is work-conserving, it will
certainly schedule jobJ4 at 12 on the core that has become available. Consequently, the
latest �nish time of J4 is 12 + 3 = 15.

State v6: In state v4, if core � 2 becomes available before� 1, then job J4 can be scheduled
on � 2 and create statev6 (Fig. 1-(g)). In this case, the earliest start time of J4 is at time 10
because, although it has been released before, it must wait until core� 2 becomes available,
which happens only at time 10. As a result, the earliest �nish time of J4 will be time
10 + 2 = 12. On the other hand, the latest start time of J4 such that it is scheduled on core
� 2 is 12 because at this time, jobJ4 is ready and a core (� 1) becomes available. Thus, ifJ4

is going to be scheduled on� 2, core � 2 must become available by time 12. Note that since
our core-selection policy is non-deterministic, if� 2 becomes available at time 12,J4 may be
dispatched on either core. Consequently, the latest �nish time ofJ4 when scheduled on� 2 is
12 + 3 = 15. Furthermore, system state v6 may arise only if core� 1 has not become available
before time 10, as otherwise jobJ4 will be scheduled on� 1 and create statev5. Thus, state v6

can be reached only if� 1 does not become available before time 10. To re�ect this constraint,
the core interval of � 1 must be updated to [10; 12]. The red dashed rectangle in Fig. 1-(g)
illustrates this update. According to the schedule-abstraction graph in Fig. 1-(b), there exist
three scenarios in whichJ5 �nishes at time 16 and hence misses its deadline. These scenarios
are shown in Figs. 1-(h), (i) and (k), and are re�ected in states v7, v8, and v10, respectively.

4 Schedulability Analysis

This section explains how to build the schedule-abstraction graph.Sec. 4.1 presents the
high-level description of our search algorithm, which consists of alternating expansion, fast-
forward, and merge phases. These phases will be discussed in details in Sec. 4.2, 4.3, and4.4,
respectively. Sec. 5 provides a proof of correctness of the proposed algorithm.

4.1 Graph-Generation Algorithm

During the expansion phase, (one of) the shortest path(s)P in the graph from the root to a
leaf vertex vp is expanded by considering all jobs that can possibly be chosen by the JLFP
scheduler to be executed next in the job execution sequence represented byP. For each such
job, the algorithm checks on which core(s) it may execute. Finally, for each core on which
the job may execute, a new vertexv0

p is created and added to the graph, and connected via
an edge directed fromvp to v0

p.
After generating a new vertex v0

p, the fast-forward phase advances time until the next
scheduling event. It accordingly updates the system state represented by v0

p.
The merge phase attempts to moderate the growth of the graph. To this end, the terminal

vertices of paths that have the same set of scheduled jobs (but not necessarily in the same
order) and core states that will lead to similar future scheduling decisions by the scheduler,
are merged into a single state whose future states cover the set of all future states of the
merged states. The fast-forward and merge phases are essential to avoid redundant work,
i.e., to recognize that two or more states are similar early on before theyare expanded. The

9:8 A Response-Time Analysis of Global Non-Preemptive Scheduling

Algorithm 1: Schedule Graph Construction Algorithm
Input : Job set J
Output : Schedule graphG = (V; E)

1 8J i 2 J ; BCRT i 1 ; WCRT i 0;
2 Initialize G by adding a root vertex v1 =

�
[0; 0]; [0; 0]; : : : ; [0; 0]

	
, where jv1j = m;

3 while 9 a path P from v1 to a leaf vertexvp s.th. jP j < jJ j do
4 P a path from v1 to a leaf with the least number of edges in the graph;
5 vp the leaf vertex of P;
6 for each jobJ i 2 J n J P do
7 for each core� k 2 vp do
8 if J i can be dispatched on core� k according to (1) then
9 Build v0

p using (10);
10 BCRT i minf EFT 0

k � r min
i ; BCRT i g;

11 WCRT i maxf LFT 0
k � r min

i ; WCRT i g;
12 Connect vp to v0

p by an edge with label J i ;
13 Fast-forward v0

p according to (13);
14 while 9 path Q that ends to vq such that the condition de�ned in

De�nition 2 is satis�ed for v0
p and vq do

15 Update v0
p using Algorithm 2;

16 Redirect all incoming edges ofvq to v0
p;

17 Removevq from V;
18 end
19 end
20 end
21 end
22 end

algorithm terminates when there is no vertex left to expand, that is, when all paths in the
graph represent a valid schedule of all jobs inJ .

Algorithm 1 presents our iterative method to generate the schedule-abstraction graph in
full detail. A set of variables keeping track of a lower bound on the BCRT and an upper
bound on the WCRT of each job is initialized at line 1. These bounds are updated whenever
a job J i can possibly be scheduled on any of the cores. The graph is initialized atline 2 with
a root vertex v1. The expansion phase corresponds to lines 6�21; line 13 implements the
fast-forward, and lines 14�18 realize the merge phase. These phases repeatuntil every path
in the graph contains jJ j distinct jobs. We next discuss each phase in detail.

4.2 Expansion Phase

Assume that P is a path connecting the initial state v1 to vp. The sequence of edges inP
represents a sequence of scheduling decisions (i.e., a possible sequence of job executions) to
reach the system state modeled byvp from the initial state v1. We denote by J P the set of
jobs scheduled in pathP. To expand path P, Algorithm 1 evaluates for each jobJ i 2 J nJ P

that was not scheduled yet whether it may be the next job picked by the scheduler and
scheduled on any of the cores. For any jobJ i that can possibly be scheduled on a core
� k 2 vp before any other job starts executing, a new vertex v0

p is added to the graph (see
lines 6�12 of Algorithm 1).

M. Nasri, G. Nelissen, and B.B. Brandenburg 9:9

To evaluate if job J i is a potential candidate for being started next in the dispatch
sequence represented byP, we need to know:

1. The earliest time at which J i may start to execute on core� k when the system is in the
state described by vertexvp. We call that instant the earliest start time (EST) of J i on
core � k , and we denote it by EST i;k (vp).

2. The time by which J i must have certainly started executing if it is to be the next job
to be scheduled by the JLFP scheduler on the processing platform.This second time
instant is referred to as the latest start time (LST) of J i and is denoted byLST i (vp).

LST i (vp) represents the latest time at which a work-conserving JLFP scheduler schedules
J i next after state vp. Note that LST i (vp) is a global value for the platform when it is in
state vp, while EST i;k (vp) is related to a speci�c core � k .

A job J i can be the next job scheduled in the job sequence represented byP if there is a
core � k for which the earliest start time EST i;k (vp) of J i on � k is not later than the latest
time at which this job must have started executing, i.e., beforeLST i (vp) (see Lemma 2 in
Sec. 5 for a formal proof). That is, J i may commence execution on� k only if

EST i;k (vp) � LST i (vp): (1)

For each core� k that satis�es (1), a new vertex v0
p is created, wherev0

p represents the state
of the system after dispatching jobJ i on core � k .

Below, we explain how to computeEST i;k (vp) and LST i (vp). Then we describe how
to build a new vertex v0

p for each core� k and job J i that satis�es (1). Finally, we explain
how the BCRT and WCRT of job J i are updated according to itsEST i;k (vp) and LST i (vp),
respectively. To ease readability, from here on we will not specifyany more that � k , EST i;k (vp)
and LST i (vp) are related to a speci�c vertex vp when it is clear from context, and will instead
use the short-hand notationsEST i;k and LST i .

Earliest start time. To start executing on a core� k , a job J i has to be released and� k

has to be available. Thus, the earliest start timeEST i;k of a job J i on a core� k is given by

EST i;k = max f r min
i ; EFT k g: (2)

where r min
i is the earliest time at which J i may be released andEFT k is the earliest time at

which � k may become available.

Latest start time. Because we assume a work-conserving JLFP scheduling algorithm, two
conditions must hold for job J i be the next job scheduled on the processing platform:(i) J i

must be the highest-priority ready job (because of the JLFP assumption), and (ii) for every
job J j released beforeJ i , either J j was already scheduled earlier on pathP (i.e., J j 2 J P),
or all cores were busy from the release ofJ j until the release of J i .

If (i) is not satis�ed, then a higher-priority ready job is scheduled instead of J i . Therefore
the latest start time LST i of J i must be earlier than the earliest time at which a not-yet-
scheduled higher-priority job is certainly released, that is,LST i < t high , where

thigh = min
1

f r max
x j Jx 2 J n J P ^ px < p i g: (3)

If (ii) is not satis�ed, then an earlier released job J j will start executing on an idle core
before J i is released. Therefore the latest start timeLST i of J i cannot be later than the
earliest time at which both a core is certainly idle and a not-yet-scheduled job is certainly

9:10 A Response-Time Analysis of Global Non-Preemptive Scheduling

14

�R�ã
�ö�6:

�ö�5:
9

�,�Üon �ö�6

�,�ë
146

�,�Û
13 17

�,�Ü
8 26

10 27

24

�'�5�6�Ü�á�6

10

�P�Û�Ü�Ú�Û

17

�P�Ý�â�Õ �P�ê�Ö

24

�.�5�6�Ü
16

Legend:

�'�(�6 �.�(�6

�N�à�Ü�á �N�à�Ô�ë

�R�ã �ö�6:

�ö�5:
10

16 25

24

�R�ã�ñ
�ö�6:

�ö�5:
10

16 26

24

�R�ä �ö�6:

�ö�5:

20 26

1412

�$�:�P�á �R�ã�;

(a) (b)

1 1 1 2 2 1 0
0 1 0 0 1 1 1
1 1 1 2 2 1 1

�$�:�P�á �R�ä�;

�$�:�P�á �R�ã
�ñ�;

Figure 2 (a) Expansion scenario for J i and � 2 , where ph < p i < p x . (b) An example merge.

released. Formally,LST i � twc , where

twc , maxf tcore ; t job g; (4)

tcore , minf LFT x j 1 � x � mg; and (5)

t job , min
1

f r max
y j Jy 2 J n J P g: (6)

In the equations above,tcore is the earliest time at which a core is certainly idle andt job is
the earliest time at which a not-yet-scheduled job is certainly released.

Combining LST i < t high and LST i � twc , we observe thatJ i must start by time

LST i = min f twc ; thigh � 1g: (7)

I Example 1. Fig. 2-(a) shows howEST i;k and LST i are calculated when jobJ i is scheduled
on core � 2. In this example, t job = 14 since job Jx becomes certainly available at that time.
However, the earliest time at which a core (in this case, core� 1) becomes available is
tcore = 24, thus, twc = 24. On the other hand, the earliest time at which a job with a higher
priority than J i is certainly released isthigh = 17. Thus, LST i = thigh � 1 = 16.

Building a new system state. If Inequality (1) holds, it is possible that job J i is the next
successor of pathP and is scheduled on core� k at any t 2 [EST i;k ; LST i] (Lemma 2 in Sec. 5
proves this claim). Our goal is to generate a single new vertex for the schedule-abstraction
graph that aggregates all these execution scenarios.

Let v0
p denote the vertex that represents the new system state resulting from the execution

of job J i on core� k . The earliest and latest times at which � k may become available after
executing job J i is obtained as follows:

EFT 0
k = EST i;k + Cmin

i and LFT 0
k = LST i + Cmax

i : (8)

Furthermore, because the latest scheduling event in the systemstate v0
p occurs no earlier

than EST i;k , no other job in J n J P may possibly be scheduled beforeEST i;k .

I Property 1. If job J i is the next job scheduled on the platform, and if it is scheduled on
core � k , then no job 2 J n J P starts executing on any core� x ; 1 � x � m before ESTi;k .

Proof. By contradiction. Assume a job J j 2 J n J P starts executing on a core� x before
EST i;k . BecauseJ i cannot start executing on � k beforeEST i;k , J j must be di�erent from
J i and henceJ j starts to execute beforeJ i . That contradicts the assumption that J i is the
�rst job in J n J P to be scheduled on the platform. J

M. Nasri, G. Nelissen, and B.B. Brandenburg 9:11

To ensure that Property 1 is correctly enforced in the new system state represented by
v0

p, we update the core intervals in statev0
p as follows

� 0
x ,

8
>><

>>:

[EFT 0
k ; LFT 0

k] if x = k;

[EST i;k ; EST i;k] if x 6= k ^ LFT x � EST i;k ;

[maxf EST i;k ; EFT x g; LFT x] otherwise:

(9)

The �rst case of (9) simply repeats (8) for job J i . The second and third cases ensure that
no job in J n J P can be scheduled on those cores beforeEST i;k . This is done by forcing
� x 's earliest availability time to be equal to EST i;k . Finally, for cores that would certainly
be idle after EST i;k (i.e., the second case in(9)), we set LFT k (i.e., the time at which it
becomes certainly available) toEST i;k .

Finally, the new vertex v0
p is generated by applying (9) on all cores, i.e.,

v0
p = f � 0

1; � 0
2; : : : ; � 0

m g: (10)

Deriving the BCRT and WCRT of the jobs. Recall that the BCRT and the WCRT
of a job are relative to its arrival time , i.e., r min

i , and not its actual release time, which can
be any time betweenr min

i and r max
i . In other words, release jitter counts towards a job's

response time. As stated earlier, the earliest �nish time ofJ i on core� k cannot be smaller
than EFT 0

k and the latest �nish time of J i on core� k cannot be larger than LFT 0
k (obtained

from (8)). Using these two values, the BCRT and WCRT of job J i are updated at lines 10
and 11 of Algorithm 1 as follows.

BCRT i minf EFT 0
k � r min

i ; BCRT i g (11)

WCRT i maxf LFT 0
k � r min

i ; WCRT i g (12)

If the algorithm terminates, then WCRT i and BCRT i contain an upper bound on the
WCRT and a lower bound on the BCRT of job J i , respectively, over all paths. Since the
graph considers all possible execution scenarios ofJ , it considers all possible schedules ofJ i .
The resulting WCRT and BCRT estimates are therefore safe bounds on the actual WCRT
and BCRT of the job, respectively. This property is proven in Corollary 3 in Sec. 5.

The quality of service of many real-time systems depends on both the WCRT and
response-time jitter [7] of each task, i.e., the di�erence between the BCRT and WCRT of that
task. One of the advantages of our schedule-abstraction graph is that it not only provides a
way to compute those quantities, but also allows to extract the maximum variation between
the response times of successive jobs released by the same task, hence allowing a more
accurate analysis of (for instance) sampling jitter in control systems.

4.3 Fast-Forward Phase

As shown in lines 6 and 7, one new state will be added to the graph for each not-yet-
scheduled job that can be scheduled next on one of the cores. This situation can lead to
an explosion in the search space if the number of states is not reduced.In this work, we
merge states to avoid redundant future explorations. To aid the subseqent merge phase, the
fast-forward phase advances the time until a job may be released. We denote that instant by
tmin , min1

�
r min

x j Jx 2 J n J P n f J i g
	

. The fast-forward phase thus updates each core
interval � 0

x 2 v0
p as follows:

� 0
x =

(
[tmin ; tmin] LFT x � tmin ;

[maxf tmin ; EFT x g; LFT x] otherwise:
(13)

9:12 A Response-Time Analysis of Global Non-Preemptive Scheduling

Algorithm 2: Algorithm that merges vp and vq, and createsv0
p.

1 Sort and re-index the core intervals� k (vp) of vp in a non-decreasing order of their
EFTs, such that EFT 1(vp) � EFT 2(vp) � : : : EFT m (vp);

2 Sort and re-index vq's core intervals in a non-decreasing order of their EFTs such that
EFT 1(vq) � EFT 2(vq) � : : : EFT m (vq);

3 Pair each two core intervals � x (vp) and � x (vq) to create
� x (v0

p) , [minf EFT x (vp); EFT x (vq)g; maxf LFT x (vp); LFT x (vq)g];

The �rst case of (13) relies on the fact that from LFT 0
x onward (i.e., the time at which a

core � 0
x becomes certainly available),� 0

x remains available until a new job is scheduled on it.
Since the earliest time at which a job can be scheduled istmin , this core remains available at
least until tmin . Thus, it is safe to update its interval to [tmin ; tmin], which denotes that the
core is certainly free bytmin . Similarly, the second case of(13) is based on the fact that a
core � x that is possibly available at EFT 0

x remains possibly available either until reaching
LFT 0

x (where it certainly becomes free) or until a job may be scheduled on� x , which does
not happen until tmin at the earliest. Lemma 4 in Sec. 5 proves that fast-forwarding statev0

p

will not change any of the future states that can be reached fromv0
p before applying (13).

4.4 Merge Phase

The merge phase seeks to collapse states to avoid redundant future explorations. The goal
is to reduce the size of the search space such that the computed BCRTof any job may
never become larger, the computed WCRT of any job may never become smaller, and all
job scheduling sequences that were possible before merging statesare still considered after
merging those states. The merge phase is implemented in lines 14�18 of Algorithm 1, where
the condition de�ned below in De�nition 2 is evaluated for paths with length jP j + 1.

Since each state consists of exactlym core intervals, merging two states requires �nding
a matching among the two sets of intervals to merge individual intervals. Let states vp and
vq be the end vertices of two pathsP and Q. In order to merge vp and vq into a new state
v0

p, we apply Algorithm 2. Next, we establish our merging rules, which will be proven to be
safe in Corollary 1 in Sec. 5.

I De�nition 2. Two states vp and vq can be merged if(i) J P = J Q , (ii) 8 � i (vp); � i (vq),
maxf EFT i (vp); EFT i (vq)g � minf LFT i (vp); LFT i (vq)g, and (iii) at any time t, the number
of possibly-available cores in the merged state must be equal to the number of possibly-
available cores invp or vq, i.e.,

8t 2 T; B(t; v0
p) = B (t; vp) _ B (t; v0

p) = B (t; vq); (14)

where B (t; vx) counts the number of core intervals of a statevx that contain t, i.e.,

B (t; vx) =

�
�
�
�

n
� y (vx) j t 2

�
EFT y (vx); LFT y (vx)

� o
�
�
�
� ; (15)

and whereT is the set of time instants at which the value of B (�) may change, i.e.,

T = f EFT x (vp)j 8xg [f LFT x (vp)j 8xg [f EFT x (vq)j 8xg [f LFT x (vq)j 8xg: (16)

I Example 2. Fig. 2-(b) shows two statesvp and vq that are merged to create statev0
p. As

shown, for any t 2 T, B (t; v0
p) is equal to B (t; vp) or B (t; vq).

M. Nasri, G. Nelissen, and B.B. Brandenburg 9:13

Notably, any merge rule that respects condition (i) in De�nition 2 is safe (see Corollary 1
in Sec. 5.3). The role of conditions (ii) and (iii) is to trade-o� between the accuracy and
performance of the analysis by evading the inclusion of impossible execution scenarios in
the resulting state. We leave the investigation of more accurate (or more eager) merging
conditions, as well as the applicability of abstraction-re�nement techniques, to future work.

5 Correctness of the Proposed Solution

In this section, we show that the schedule-abstraction graph constructed by Algorithm 1
correctly includes all job schedules that can arise from any possible execution scenario, i.e.,
for any possible execution scenario, there exists a path in the graph that represents the
schedule of those jobs in that execution scenario (Theorem 1). The proof has two main
steps: we �rst assume that the fast-forward and merge phases are not executed and show
that the EFT and LFT of a job obtained from Equation (8) are correct lower and upper
bounds on the �nish time of a job scheduled on a core (Lemma 1) and that for an arbitrary
vertex vp, Inequality (1) is a necessary condition for a job to be scheduled next on core� k

(Lemma 2). From these lemmas, we conclude that without fast-forwardingand merging, for
any execution scenario there exists a path in the schedule graph thatrepresents the schedule
of the jobs in that execution scenario (Lemma 3).

In the second step, we show that the fast-forward and merge phases aresafe, i.e., these
phases will not remove any potentially reachable state from the original graph (Lemma 4
and Corollary 2). Finally, we establish that Algorithm 1 correctly derive s an upper bound
on the WCRT and a lower bound on the BCRT of every job (Corollary 3).

5.1 Soundness of the Expansion Phase

In this section, we assume that neither the fast-forward nor the mergephase is executed.

I Lemma 1. For any vertex vp 2 V and any successorv0
p of vp such that jobJ i 2 J n J P

is scheduled on core� k betweenvp and v0
p, EFT k (v0

p) and LFT k (v0
p) (as computed by(8))

are a lower bound and an upper bound, respectively, on the completiontime of J i .

Proof. If neither the fast-forward nor the merge phases are executed,(9) is the only equation
used to build a new statev0

p. In this lemma, we �rst prove that the EST and LST of the job
obtained from (2) and (7) are a lower and an upper bound on the start time of jobJ i on
� k after the scheduling sequence represented byP. Then, we conclude that EFT k (v0

p) and
LFT k (v0

p) are safe bounds on the �nish time ofJ i on � k . The proof is by induction.

Base case. The base case is for any vertexv0
p that succeeds to the root vertexv1 where

all cores are idle. Hence inv0
p, job J i is scheduled on one of the idle cores, say� k . Since all

cores are idle at time 0, Equation(2) yields EST i;k (v1) = r min
i , which is by de�nition the

earliest time at which job J i may start. Consequently, the earliest �nish time of J i cannot
be smaller than EFT k (v0

p) = r min
i + Cmin

i .
Similarly, (7) yields LST i (v1) = minf thigh � 1; t job g (recall that tcore = 0 since all cores

are idle in v1). J i cannot start later than LST i (v1) = t job if it is the �rst scheduled job as all
cores are idle and hence as soon as a job is certainly released, it will bescheduled right away
on one of the idle cores. Similarly,J i cannot start its execution if it is not the highest-priority
job anymore, i.e., at or after time thigh . As a result, the latest �nish time of J i cannot be
larger than LFT k (v0

p) = minf t job ; thigh � 1g + Cmax
i . Therefore, EFT k (v0

p) and LFT k (v0
p)

are safe bounds on the �nishing time ofJ i on � k after the scheduling sequenceP = hv1; v0
p i .

9:14 A Response-Time Analysis of Global Non-Preemptive Scheduling

For all other cores � x such that x 6= k, (9) enforces that EFT x (v0
p) = LFT x (v0

p) =
EST i;k (v1) = r min

i (recall that EFT k (v1) = LFT k (v1) = 0), which is indeed the earliest
time at which any job may start on � x if J i is the �rst job executing on the platform and J i

is not released beforer min
i .

Induction step . Assume now that each core interval on every vertex fromv1 to vp along
path P provides a lower bound and an upper bound on the time at which that core will
possibly and certainly be available, respectively, to start executing a new job. We show that
in the new vertex v0

p obtained from scheduling jobJ i on core � k after P, (8) provides a safe
lower and upper bound on the �nish time of J i , and for other cores, the new core intervals
computed by (9) are safe, i.e., no new job can start its execution on a core� x before EFT x

and the core cannot remain busy afterLFT x .

EFT. The earliest start time of J i on core � k , i.e., EST i;k (vp), cannot be smaller than
EFT k (vp) since, by the induction hypothesis,EFT k (vp) is the earliest time at which core � k

may start executing a new job. Moreover, a lower bound onEST i;k (vp) is given by r min
i ,

becauseJ i cannot execute before it is released. This proves(2) for � k . Further, if J i starts
its execution at EST i;k (vp), it cannot �nish before EST i;k (vp) + Cmin

i since its minimum
execution time is Cmin

i . Thus, the EFT of job J i on � k in system state v0
p cannot be smaller

than EST i;k (vp) + Cmin
i , which proves the correctness of (8) forEFT k (v0

p).
The EFTs of all other cores � x in v0

p cannot be smaller thanEFT x (vp) in state vp since
no new job is scheduled on them. Furthermore, according to Property1, job J i can be
scheduled on core� k (instead of any other core) only if no other job in J n J P has started
executing on any other core than� k until EST i;k (vp). Hence, maxf EST i;k (vp); EFT x (vp)g
is a safe lower bound on the EST of a job in statev0

p (as computed by (9)).

LFT. Next, we show that LST i (vp) cannot exceedthigh � 1 or twc as stated by (7). First,
consider thigh and supposethigh 6= 1 (otherwise the claim is trivial). Since a higher-priority
job is certainly released at the latest at time thigh , job J i is no longer the highest-priority job
at time thigh . Consequently, it cannot commence execution under a JLFP scheduler at or
after time thigh if it is to be the next job scheduled after P. Hence, jobJ i will be a direct
successor of pathP only if its execution starts no later than time thigh � 1. Now, consider
twc . At time twc , a not-yet-scheduled job is certainly released and a core is certainly available.
Hence a work-conserving scheduler will schedule that job attwc , thus, job J i will be a direct
successor of pathP only if its execution starts no later than time twc . SinceLST i (vp) is
the upper bound on the time at which job J i can start its execution while being the next
job scheduled after path P, the latest �nish time of J i on core � k cannot be larger than
minf thigh � 1; twc g + Cmax

i , which proves the correctness of (8) forLFT k (v0
p).

Since in statev0
p job J i is scheduled on core� k other cores cannot be available before

EST i;k , otherwise a work-conserving scheduler would scheduleJ i on one of those cores
instead of on � k . Equation (9) ensures that if J i is the next job to be scheduled and if� k is
the core on whichJ i is scheduled, no other core willcertainly be available by EST i;k (vp),
i.e., EFT x (v0

p) � EST i;k (vp).
By induction on all vertices in V , we have that EFT k (v0

p) and LFT k (v0
p) are safe bounds

on the �nish time of any job scheduled between any two statesvp and v0
p, including J i . J

I Lemma 2. Job J i can be scheduled next on core� k after jobs in path P only if (1) holds.

Proof. If job J i is released at timer min
i and the core� k becomes available atEFT k , then it

can be dispatched no earlier than at timeEST i;k = maxf r min
i ; EFT k g. If (1) does not hold,

then thigh or twc (or both) are smaller than EST i;k . This implies that either a higher-priority
job other than job J i is certainly released beforeEST i;k or a job other than J i is certainly

M. Nasri, G. Nelissen, and B.B. Brandenburg 9:15

released beforeEST i;k and a core is certainly available beforeEST i;k . In both cases, a
work-conserving JLFP scheduling algorithm will not schedule jobJ i until that other job is
scheduled. Consequently, jobJ i cannot be the next successor of pathP. J

I Lemma 3. Assuming that neither the fast-forward nor the merge phases are executed
in Algorithm 1, for any execution scenario such that a jobJ i 2 J completes at some
time t on core � k (under the given scheduler), there exists a pathP = hv1; : : : ; vp; v0

p i
in the schedule-abstraction graph such thatJ i is the label of the edge fromvp to v0

p and
t 2 [EFT k (v0

p); LFT k (v0
p)], where EFTk (v0

p) and LFT k (v0
p) are given by Equation(8).

Proof. Since Algorithm 1 creates a new state in the graph for every jobJ i and every core
� k that respects Condition (1), the combination of Lemmas 1 and 2 proves that all possible
system states are generated by the algorithm when the fast-forward and merge phases are
not executed. Further, Lemma 1 proves thatEFT k (v0

p) and LFT k (v0
p) are safe bounds on

the �nishing time of J i , meaning that if J i �nishes at t in the execution scenario represented
by path P, then t is within [EFT k (v0

p); LFT k (v0
p)]. J

5.2 Soundness of the Fast-Forward Phase

We prove that fast-forwarding will not a�ect any of the successor statesof an updated state.

I Lemma 4. Updating the core intervals of vertexvp during the fast-forwarding phase does
not a�ect any of the states reachable fromvp.

Proof. Let vp be the original state and vq be the updated state after applying (13). Let
path P denote the path from v1 to vp. Note that state vq shares the same pathP as vp. We
show that for any arbitrary job J i 2 J n J P (i.e., those that are not scheduled in pathP)
and any arbitrary core � k (vp) 2 vp, the EST and LST of job J i is the same as for core
� k (vq) 2 vq. From this we conclude that all system states reachable fromvp are reachable
from vq and that those reachable states remain unchanged. More precisely, we show that,
8k, (i) EST i;k (vp) = EST i;k (vq) and (ii) LST k (vp) = LST k (vq).

Claim (i). From (2), we have EST i;k (vp) = maxf r min
i ; EFT k (vp)g. If the EFT of

� k (vq) has not been updated by (13), i.e., EFT k (vp) > t min , then we trivially have
EST i;k (vq) = EST i;k (vp). Otherwise, if EFT k (vq) has been updated, it must be true
that EFT k (vp) � tmin and EFT k (vq) = tmin . In this case,EST i;k (vq) = maxf r min

i ; tmin g =
maxf r min

i ; EFT k (vp)g = EST i;k (vp) since EFT k (vp) � tmin � r min
i (from the de�nition of

tmin). Thus, in both cases,EST i;k (vp) = EST i;k (vq).

Claim (ii). From (13) we know that if the LFT of a core � k (vp) is being updated,
LFT k (vp) < t min and LFT k (vq) = tmin . By de�nition, tmin = minf r min

x j Jx 2 J n J P g �
minf r max

x j Jx 2 J nJ P g = t job (vp) (the last equality is due to (6)). Moreover, by (5) we have
tcore (vp) � LFT k (vp) < LFT k (vq) = tmin � t job (vp) and tcore (vq) � LFT k (vq) = tmin �
t job (vq) (becauset job only depends on pathP and vp and vq share the same path). Therefore,
by (7), LST k (vp) = minf thigh (vp)� 1; maxf t job (vp); tcore (vp)gg = minf thigh (vp)� 1; t job (vp)g
and LST k (vq) = minf thigh (vq) � 1; maxf t job (vq); tcore (vq)g = minf thigh (vq) � 1; t job (vq)g.
Sincet job and thigh only depend on pathP, and vp and vq share the same path, the LST in
both states is identical, i.e., LST k (vp) = LST k (vq). J

5.3 Soundness of the Merge Phase

We now establish that merging two states is safe, i.e., it neither removes a possible job
sequence from the graph (Corollary 2), nor does it decrease the upper bound on the WCRT

9:16 A Response-Time Analysis of Global Non-Preemptive Scheduling

(or increase the lower bound on the BCRT) of any job inJ (Corollary 3).
We �rst de�ne the notion of a �mutated� vertex as follows: v0

p is a mutated version ofvp if
it has the same set of scheduled jobs as the original statevp and 8x, EFT x (v0

p) � EFT x (vp)
and 8x, LFT x (vp) � LFT x (v0

p) _ LFT x (vp) � t job (vp). We assume that a mutated statev0
p

sits in place of the original state vp in the schedule-abstraction graph.
Next, for any such mutated vertex, we prove that any job that was a direct successor

of the original state is also a direct successor of the mutated vertex (Lemma 5). Moreover,
we show that the direct successors of mutated states are also mutated (Lemma 6 and 7).
This property is then used to prove the main claim that merging is safe. The proofs of
Lemmas 5 to 9 are provided in the appendix on page 21.

I Lemma 5. For a vertex v0
p created by mutatingvp, any job J i that can be scheduled on

core � k (vp) according to (1), can stil l be scheduled on core� k (v0
p) according to (1).

I Lemma 6. Let v0
p be created by mutatingvp, and let vq and v0

q be the vertices resulting
from scheduling jobJ i on core � k (vp) and � k (v0

p), respectively. 8x, LFT x (v0
q) � LFT x (vq)

or LFT x (vq) � t job (vq).

I Lemma 7. Let v0
p be created by mutatingvp, and let vq and v0

q be the vertices resulting
from scheduling jobJ i on core � k (vp) and � k (v0

p), respectively. 8x, EFT x (v0
q) � EFT x (vq).

I Lemma 8. If v0
p is a vertex created by mutatingvp, then all the system states reachable

from vp are also reachable fromv0
p.

I Lemma 9. Let vq and vp be two vertices such thatJ P = J Q (i.e., the set of jobs scheduled
until reaching vq is equal to the set of jobs scheduled until reachingvp), then the state v0

p

resulting from merging vp and vq with Algorithm 2 is a mutated version of bothvp and vq.

By successively applying Lemmas 8 and 9, we obtain the following corollary.

I Corollary 1. Let vq and vp be two vertices such thatJ P = J Q (i.e., the set of jobs
scheduled until reachingvq is equal to the set of jobs scheduled until reachingvp), all system
states reachable fromvp and vq are also reachable from the merged statev0

p.

I Corollary 2. For two states that are merged by Algorithm 1, all system states reachable
from either of them are also reachable from the merged state.

Proof. Since for two statesvp and vq, De�nition 2 enforces that J P = J Q , the resulting
merged state satis�es the requirement of Corollary 1 and hence provesthe claim. J

5.4 Soundness of Algorithm 1

By successively applying Lemmas 3 and 4 and then Corollary 2, we obtain thatthe analysis
is safe, as stated in Theorem 1 and its corollary below.

I Theorem 1. For any execution scenario such that a jobJ i 2 J completes at some
time t on core � k (under the given scheduler), there exists a pathP = hv1; : : : ; vp; v0

p i
in the schedule-abstraction graph such thatJ i is the label of the edge fromvp to v0

p and
t 2 [EFT k (v0

p); LFT k (v0
p)], where EFTk (v0

p) and LFT k (v0
p) are given by Equation(8).

I Corollary 3. Lines 10 and 11 of Algorithm 1 calculate a lower and an upper bound onthe
BCRT and WCRT, respectively, of every job in J .

M. Nasri, G. Nelissen, and B.B. Brandenburg 9:17

Proof. Lines 10 and 11 obtain a job's response time directly from(8), which provides correct
bounds on the earliest and latest �nish times of a job according to Lemma 1.Since according
to Theorem 1, for any execution scenario, there is a path in the graph, Algorithm 1 includes
all possible schedules of a job and hence the obtained values are correctly lower-bounding
and upper-bounding the actual BCRT and WCRT of that job. J

5.5 Inexactness of Algorithm 1

The following example shows that the abstraction that we use to represent core states may
re�ect impossible execution scenarios. Therefore, Algorithm 1 is su�cient but not exact.

Assume that a system statevp contains two core intervals � 1 = [5 ; 10] and � 2 = [1 ; 10]
and that there is an unscheduled jobJ1 with Cmin

1 = Cmax
1 = 5, r min

1 = r max
1 = 1, and

d1 = 30. Further, assume that during the expansion phase of Algorithm 1,J1 is dispatched to
� 1, which results in � 1 = [10; 15] and � 2 = [5 ; 10] (after the update phase). According to this
new system state, it may happen that core� 2 becomes available at time 52 [5; 10], and that
core � 1 remains busy until time 15 2 [10; 15]. However, this scenario is actually impossible.
If � 1 remains busy until time 15, then J1 must have started to execute at time 10, implying
that both � 1 and � 2 must have been busy until time 10. Otherwise, jobJ1 would have been
dispatched on� 2 rather than � 1. In other words, � 1 may become available at time 15 only if
� 2 becomes available no earlier than time 10. This example shows a dependency between
the availability time of the cores, which is ignored in the current system state abstraction
to keep the system state encoding simple, and to increase the number of states that can
be merged. This design decision, however, makes the analysis inexact since it considers all
possible but also some impossible execution scenarios.

6 Empirical Evaluation

We conducted experiments to answer two main questions:(i) does our test yield better
schedulability; and (ii) is the runtime of our analysis practical? To answer the �rst question,
we applied Algorithm 1 to two global non-preemptive scheduling policies: G-NP-FP and
G-NP-EDF. As we are unaware of any schedulability analysis for non-preemptive job sets
(or periodic tasks) for the aforementioned global scheduling policies, we used the existing
tests designed for sporadic non-preemptive task sets as a baseline. These tests include the
schedulability test of Baruah [4] for G-NP-EDF (denoted by Baruah-EDF), two tests of Guan
et al. [10] for any global non-preemptive work-conserving scheduler (denoted by Guan-Test1-
WC), and for G-NP-FP (denoted by Guan-Test2-FP), and the recent schedulability test of
Lee (denoted by Lee-FP) [13]. For the sake of comparison, we used simple rate-monotonic
priorities for the �xed-priority tests since we did not observe substantial di�erences when
trying out other heuristics such as laxity-monotonic priorities.

To randomly generate a periodic task set withn tasks and a given utilization U, we
�rst randomly generated n period values in the range [10000; 100000] microseconds with
log-uniform distribution (and a granularity of 5000 �s as suggested by Emberson et al. [8].
We then used the RandFixSum [22] algorithm to generate n random task-utilization values
that sum to U. From the task utilization, we obtained Cmax

i and set Cmin
i to be 0:1 � Cmax

i .
Tasks were assumed to have implicit deadlines. We discarded any task set that had more
than 100000 jobs per hyperperiod. Although, in theory, a hyperperiod maycontain many
more jobs, in industrial settings, e.g., automotive systems [12], periods are usually chosen
such that the hyperperiod includes only at most a couple of thousand jobs.

9:18 A Response-Time Analysis of Global Non-Preemptive Scheduling

Figure 3 Experimental results for various parameters. (a, b, c, d) Schedulability ratio. (e, f,
g, h) Average analysis runtime. (i, j) Analysis runtime vs. the number of jobs in a hyperperiod.

The experiments were performed by varying(i) the total system utilization U (for 4 cores
and 10 tasks), (ii) the number of tasks n (for 4 cores andU = 2 :8, which is 70% of the
capacity of the cores),(iii) the number of coresm (for 10 tasks andU = 2 :8), and (iv) the
total task utilization U while tasks had 100 microseconds release jitter (10 tasks and 4 cores).
This roughly represents jitter magnitudes that can be expected dueto interrupt handling
delays. For each combination ofn, m, and U, 1000 random task sets were generated.

To evaluate schedulability of a task set, we implemented Algorithm 1 asa single-threaded
C++ program and performed the analysis on a cluster of hosts having an Intel Xeon E7-8857
v2 processor clocked at 3 GHz and 1.5 TiB RAM. In the experiments, a task set was claimed
unschedulable as soon as either an execution scenario with a deadlinemiss was found or
a timeout of four hours was reached. Fig. 3 reports the observed schedulability ratio and
runtime of Algorithm 1 for di�erent setups. The schedulability rati o is the ratio of task sets
deemed to be schedulable divided by the number of generated task sets.

Schedulability results. Figs. 3-(a) to (c) show a signi�cant gap between the schedulability
ratio of our solution and the state-of-the-art tests. For example, while Lee-FP could only

M. Nasri, G. Nelissen, and B.B. Brandenburg 9:19

identify 8% of schedulable task sets forU = 2 :4, our test shows that at least 72% of them are
schedulable. Similar patterns are seen when the number of tasks or cores increases. As shown
in Fig. 3-(b), schedulability improves as the number of tasks increases. This is because, by
keeping utilization constant, an increase inn will decrease per-task utilization, which in turn
reduces the WCETs and blocking. Thus, more task sets become schedulable. Of the existing
tests, however, only the Lee-FP and Guan-Test2-FP tests could bene�t from this behavior
and only by up to 16% (for n = 30).

With the increase in the number of cores, blocking scenarios causedby tasks with large
execution times are less likely to occur and hence more task sets aredeemed schedulable.
However, as shown in Fig. 3-(c), the current tests are quite pessimistic, e.g., Lee-FP could
identify only 11% of the task sets as schedulable when (at least) 82% of the task sets are
schedulable on 5 cores. From Figs. 3-(a) to (c), we conclude that our analysis is able to
reclaim a large portion of pessimism in the baseline analyses (when applied to periodic tasks).

Fig. 3-(d) shows the e�ect of jitter on schedulability. Since jitt er increases the number of
possible interleavings between the start time of the tasks, more blocking scenarios become
possible and hence tasks with tight deadlines may become unschedulable. This behavior can
be observed in the average runtime of the analysis reported in Fig. 3-(h). Yet, our analysis
achieves a substantially higher schedulability ratio than the baselines.

It is worth noting that for U = 0 :4, the counterintuitive drop in schedulability for tasks
with jitter is due to the timeout. The bar chart shown at the bottom of F ig. 3-(d) represents
the ratio of task sets that could not be analyzed within the four-hour limit. The reason is
that for U = 0 :4, tasks have a small WCET and thus more combinations of job orderings
may require analysis before Algorithm 1 is able to merge the branches. In the future, we
plan to develop techniques to handle lower (or higher) utilization tasks di�erently, e.g., by
designing more eager merge rules that combine paths with di�erent job sets.

Moreover, we observed that the gap between the schedulability ratioof EDF and FP is
small because most of the deadline misses are due to the work-conserving nature of the policy
rather than the priority assignment. Namely, since a work-conservingscheduler cannot leave
the processor idle, it will schedule any lower-priority job before the next higher-priority job
is released. As a result, high-frequency tasks with tight deadlines will miss their deadline
before the priority assignment method can play a signi�cant role in improving the order of
executions. We conclude that there is a need for a global scheduling algorithm that is able
to avoid such blocking scenarios, for instance by being non-work-conserving. While such
non-work-conserving non-preemptive scheduling algorithms have recently been proposed for
uniprocessor systems [17, 18], currently no such solution exists for multiprocessor platforms.

Runtime of the analysis. As shown in Fig. 3-(e), with the increase in the utilization the
average runtime of the analysis increases since busy windows becomelonger. Consequently,
paths that have the same set of jobs are merged only at later stages. For larger utilizations
such as forU � 2:8, however, identifying unschedulabletask sets becomes easy due to the
presence of tasks with large WCETs that can block all cores for a long time. Since we
stop the analysis as soon as a deadline miss is found, not-schedulable task sets with large
utilization can be identi�ed quickly. The runtime of the analysis h ence decreases rapidly for
larger utilization values.

Figs. 3-(f) and (g) show that the runtime of the analysis grows with increases in the
number of tasks or cores because more states will be generated in the expansion phase.
It is worth noting that unlike the e�ect pertaining to the number of tasks, increasing the
number of cores will not increase the runtime monotonically. The reason is that, as shown in
Fig. 3-(c), for a workload with U = 2 :8 and 10 tasks, almost all task sets are schedulable

9:20 A Response-Time Analysis of Global Non-Preemptive Scheduling

on 6 cores or more. That is, the number of coresper se only has a limited e�ect on the
runtime of the algorithm; however, larger platforms are likely to host large task sets, with
a potentially large number of jobs per hyperperiod, and our analysis is sensitive to such
increases in workload size.

Figs. 3-(i) and (j) report the runtime of the analysis for each task set w.r.t. the number of
jobs in a hyperperiod for two scenarios: varying utilization and varying the number of tasks,
respectively. As shown by the �gures, the runtime of the analysis grows with the increase in
the number of jobs in a hyperperiod. We also observe that with an increase in the number of
tasks from 10 (Fig. 3-(i)) to up to 30 (Fig. 3-(j)), the largest observed runtime of the analysis
grows linearly, i.e., from 1000 to 4000.

Since a naive analysis without path merging does not scale even for a uniprocessor system,
as shown in [16], we did not perform a separate experiment to show the e�ciency of the path
merging technique. In the future, we plan to further explore the design space for di�erent
merge conditions and their e�ciency for di�erent task set types and u tilizations.

Bene�ts. Overall, we conclude that: (i) the proposed analysis is practical for realistic
workload sizes,(ii) it identi�es a signi�cantly larger portion of schedulable tasks in comp arison
with state-of-the-art tests for sporadic tasks, and(iii) even when jitter is considered (which
allows for more blocking scenarios and uncertainties), our analysis still achieves much higher
schedulability than the baseline tests.

Limitations. We also observed that the runtime of the analysis grows quickly (e.g.,more
task sets hit the four-hour timeout) for larger systems, e.g., when more than 20 tasks run on
a 16 core platform. This is due to the increase in the number of tasks andthe number of
ways a task can be assigned to a core in the expansion phase of the algorithm.To scale to
such large systems, a more e�cient abstraction will be needed that allows for more eager
merging techniques.

7 Conclusion

The paper provides a su�cient schedulability analysis for global job-level �xed-priority
scheduling algorithms and non-preemptive job sets. We have presented a technique for
deriving an upper bound on the WCRT and a lower bound on the BCRT by exploring an
abstraction of all possible schedules of a job set that re�ects the uncertainties in job execution
and release times. We developed the notion of a schedule-abstraction graph for global
schedulers and introduced two key techniques, namely path merging and fast-forwarding, to
slow the state-space growth and proved the analysis to be sound.

Empirical evaluations on periodic task sets show a signi�cant improvement in identifying
schedulable task sets w.r.t. the state-of-the-art tests in all experimental setups. The evalua-
tions show that the runtime of the analysis ranges from a couple of secondsto a couple of
hours for realistic system setups, e.g., up to 30 tasks, up to 9 cores,and up to 100000 jobs
per hyperperiod, which is an acceptable performance for an o�ine, design-time analysis.

The experiments reported in the paper are all based on a sequential implementation. We
expect that the results could still be improved by parallelizing the analysis so that naturally
independent scenarios are explored in parallel. To this end, we hopeto derive rules that
allow maximum paralellism between independent exploration frontiers. Moreover, we will
investigate di�erent merge rules to reduce the runtime of the analysis. We also plan to extend
the solution presented here to analyze systems with more complicated properties such as
precedence constraints and preemption points, and to other scheduling problems such as
gang scheduling.

M. Nasri, G. Nelissen, and B.B. Brandenburg 9:21

Appendix

Lemma 5. For a vertex v0
p created by mutatingvp, any job J i that can be scheduled on

core � k (vp) according to (1), can stil l be scheduled on core� k (v0
p) according to (1).

Proof. We must show that (1) holds for J i and � k (v0
p), i.e., EST i;k (v0

p) � LST i (v0
p). For

a mutated state, we have EFT i (v0
p) � EFT i (vp) which leads to having EST i;k (v0

p) �
EST i;k (vp) (from (2) since the release timer min

i of J i does not change). On the other
hand, LST i (v0

p) = minf thigh (v0
p) � 1; maxf t job (v0

p); tcore (v0
p)gg. Since mutating a state will

not change the set of scheduled jobs in the path reaching to that state,t job (v0
p) = t job (vp)

and thigh (v0
p) = thigh (vp). Regarding tcore (vp) and tcore (v0

p), two cases must be considered;
by de�nition of an mutated vertex, either 8x, LFT x (vp) � LFT x (v0

p), or 9� x such that
LFT x (v0

p) < LFT x (vp) � t job (vp).

Case (i). If there is a core interval � x such that LFT x (v0
p) < LFT x (vp) � t job (vp), then by

(5), tcore (vp) � t job (vp) and tcore (v0
p) � t job (v0

p) (recall that t job (vp) = t job (v0
p)). Therefore,

we haveLST i (vp) = minf thigh (vp) � 1; t job (vp)g and LST i (v0
p) = minf thigh (v0

p) � 1; t job (v0
p)g,

which implies LST i (vp) = LST i (v0
p).

Case (ii). If 8x, LFT x (vp) � LFT x (v0
p), then by (5), tcore (vp) � tcore (v0

p), implying by (7)
that LST i (v0

p) can only be larger than LST i (vp).
Finally, because (1) holds for vp, we have EST i;k (v0

p) � EST i;k (vp) � LST i (vp) �
LST i (v0

p). Thus, Condition (1) holds for J i and core� k (v0
p). J

Lemma 6. Let v0
p be created by mutatingvp, and let vq and v0

q be the vertices resulting from
scheduling jobJ i on core � k (vp) and � k (v0

p), respectively. Then we have8x, LFT x (v0
q) �

LFT x (vq) or LFT x (vq) � t job (vq).

Proof. We know from Lemma 5 that v0
q exists if vq does. We show that8x, LFT x (v0

q) �
LFT x (vq) or LFT x (vq) < t job (vq).

Case (i). First consider core � k (i.e., the core on whichJ i is scheduled). According to(8),
LFT k (vq) = LST i (vp) + Cmax

i and LFT k (v0
q) = LST i (v0

p) + Cmax
i . Sincev0

p is a mutated
state of vp, similar to cases (i) and (ii) of Lemma 5's proof,LST i (v0

p) � LST i (vp). It follows
that LFT k (v0

q) � LFT k (vq). This proves the claim for � k .

Case (ii). For all the other cores � x s.th. x 6= k, LFT x (vq) and LFT x (v0
q) are computed

with (9) (during the expansion phase) and(13) (during the fast-forward phase). Therefore,
LFT x (vq) = maxf tmin (vq); LFT x (vp); EST i;k (vp)g and LFT x (v0

q) = maxf tmin (v0
q); LFT x (v0

p);
EST i;k (v0

p)g. We consider three sub-cases for whenLFT x (vq) is equal to tmin (vq), LFT x (vp),
or EST i;k (vp):

(ii.a.) Assume that maxf tmin (vq); LFT x (vp); EST i;k (vp)g = tmin (vq). We note that because
tmin (vq) only depends on the jobs that have been scheduled on the path to reaching vq,
we have that tmin (vq) = tmin (v0

q) (vq and v0
q share the same path). HenceLFT x (vq) =

tmin (vq) = tmin (v0
q) � maxf tmin (v0

q); LFT x (v0
p); EST i;k (v0

p)g = LFT x (v0
q). This proves the

claim for this case.

(ii.b.) If maxf tmin (vq); LFT x (vp); EST i;k (vp)g = EST i;k (vp), then EST i;k (vp) � LFT x (vp)
� tcore (vp) (the last inequality comes from (5)). Further, by Condition (1), job J i was eligible
to be scheduled on� k (vp) only if EST i;k (vp) � minf thigh (vp) � 1; maxf t job (vp); tcore (vp)gg.
BecauseEST i;k (vp) � tcore (vp), it must hold that EST i;k (vp) � t job (vp). Since by assumption
LFT x (vq) = EST i;k (vp), we have LFT x (vq) � t job (vp) , min1 f r max

y j Jy 2 J n J P g �
min1 f r max

y j Jy 2 J n J P n f J i gg = t job (vq), which proves the claim for this case.

9:22 A Response-Time Analysis of Global Non-Preemptive Scheduling

(ii.c.) Finally, if maxf tmin (vq); LFT x (vp); EST i;k (vp)g = LFT x (vp), then, becausev0
p is a

mutated version of vp, we either haveLFT x (v0
p) � LFT x (vp) or LFT x (vp) � t job (vp). If

LFT x (v0
p) � LFT x (vp), then LFT x (v0

q) = maxf tmin (v0
q); LFT x (v0

p); EST i;k (v0
p)g � LFT x (v0

p)
� LFT x (vp) = LFT x (vq); which proves the claim. If LFT x (vp) � t job (vp), then LFT x (vq) =
LFT x (vp) � t job (vp) , min1 f r max

y j Jy 2 J n J P g � min1 f r max
y j Jy 2 J n J P n f J i gg =

t job (vq); which proves the claim for the last case. J

Lemma 7. Let v0
p be created by mutatingvp, and let vq and v0

q be the vertices resulting from
scheduling jobJ i on core � k (vp) and � k (v0

p), respectively. Then we have8x, EFT x (v0
q) �

EFT x (vq).

Proof. We know from Lemma 5 that v0
q exists if vq does. We show that8x, EFT x (v0

q) �
EFT x (vq).

Case (i). First consider core � k (v0
q) (i.e., the core on which J i is scheduled). According

to (8) and (2), EFT k (vq) = EST i;k (vp) + Cmin
i = maxf r min

i ; EFT k (vp)g + Cmin
i and

EFT k (v0
q) = EST i;k (v0

p) + Cmin
i = maxf r min

i ; EFT k (v0
p)g + Cmin

i . Since v0
p is a mutated

version of vp, we have that EFT k (v0
p) � EFT k (vp), thus, inserting it in the above equations,

EFT k (v0
q) � EFT k (vq).

Case (ii). For the other core intervals � x (v0
q) s.th. x 6= k, EFT x (vq) and EFT x (v0

q)
are computed with (9) (during the expansion phase) and(13) (during the fast-forward
phase). Therefore,EFT x (vq) = maxf tmin (vq); EFT x (vp); EST i;k (vp)g and EFT x (v0

q) =
maxf tmin (v0

q); EFT x (v0
p); EST i;k (v0

p)g. Becausev0
p is a mutated version of vp, we have

EFT x (v0
p) � EFT x (vp) which also leads to havingEST i;k (v0

p) � EST i;k (vp) (from (2) since
the release timer min

i of J i does not change). Finally, becausetmin (vq) only depends on
the jobs that have been scheduled on the path to reachingvq, we have that tmin (vq) =
tmin (v0

q) (vq and v0
q share the same path). Putting it all together we get EFT x (v0

q) =
maxf tmin (v0

q); EFT x (v0
p); EST i;k (v0

p)g � maxf tmin (vq); EFT x (vp); EST i;k (vp)g = LFT x (vq).
J

Lemma 8. If v0
p is a vertex created by mutatingvp, then all the system states reachable

from vp are also reachable fromv0
p.

Proof. By Lemma 5, all direct successor statesvq of vp obtained by scheduling a jobJ i on
core � k (vp) are also reachable fromv0

p. Let v0
q be the successor ofv0

p obtained by scheduling
a job J i on core� k (v0

p), by Lemmas 6 and 7, statev0
q is either equal to vq or is a mutated

version of vq. Therefore, by inductively applying Lemmas 5, 6 and 7 onvp and v0
p and all

their direct and transitive successors, the claim follows. J

Lemma 9. Let vq and vp be two vertices such thatJ P = J Q (i.e., the set of jobs scheduled
until reaching vq is equal to the set of jobs scheduled until reachingvp), then the state v0

p

resulting from merging vp and vq with Algorithm 2, is a mutated version of bothvp and vq.

Proof. From line 3 of Algorithm 2, we have 8x; EFT x (v0
p) = minf EFT x (vp); EFT x (vq)g

and LFT x (v0
p) = maxf LFT x (vp); LFT x (vq)g. Therefore, 8x; EFT x (v0

p) � EFT x (vp) and
EFT x (v0

p) � EFT x (vq) and LFT x (v0
p) � LFT x (vp) and LFT x (v0

p) � LFT x (vq). Further, by
assumption, J P = J Q , hence it follows that v0

p is a mutated version of both vp and vq. J

REFERENCES 9:23

Acknowledgements. The �rst author is supported by a post-doc fellowship awarded by
the Alexander von Humboldt Foundation. The second author was partially supported by
National Funds through FCT (Portuguese Foundation for Science and Technology) within
the CISTER Research Unit (CEC/04234).

References

1 Ahmed Alhammad and Rodolfo Pellizzoni. Schedulability analysis of global memory-
predictable scheduling. InACM International Conference on Embedded Software, pages
20:1�20:10, 2014.

2 Neil Audsley, Alan Burns, Mike Richardson, Ken Tindell, and Andy J. W ellings. Applying
new scheduling theory to static priority preemptive scheduling. Software Engineering
Journal, 8(5):284�292, 1993.

3 Theodore P. Baker and Michele Cirinei. Brute-force determination of multiprocessor
schedulability for sets of sporadic hard-deadline tasks. InInternational Conference on
Principles of Distributed Systems (OPODIS), pages 62�75. Springer, 2007.

4 Sanjoy Baruah and Alan Burns. Sustainable scheduling analysis. InIEEE Real-Time
Systems Symposium (RTSS), pages 159�168, 2006.

5 Vincenzo Bonifaci and Alberto Marchetti-Spaccamela. Feasibility analysis of sporadic
real-time multiprocessor task systems.Algorithmica , 63(4):763�780, 2012.

6 Artem Burmyakov, Enrico Bini, and Eduardo Tovar. An exact schedulabi lity test for
global FP using state space pruning. InInternational Conference on Real-Time Networks
and Systems (RTNS), 2015.

7 Anton Cervin, Bo Lincoln, Karl-Erik Arzen, and Giorgio Buttazzo. The Jit ter Margin and
Its Application in the Design of Real-Time Control Systems. In International Conference
on Real-Time and Embedded Computing Systems and Applications (RTCSA) , pages 1�9,
2004.

8 Paul Emberson, Roger Sta�ord, and Robert I. Davis. Techniques For The Synthesis Of
Multiprocessor Tasksets. InInternational Workshop on Analysis Tools and Methodologies
for Embedded and Real-time Systems (WATERS), pages 6�11, 2010.

9 Nan Guan, Zonghua Gu, Qingxu Deng, Shuaihong Gao, and Ge Yu. Exact Schedulability
Analysis for Static-Priority Global Multiprocessor Scheduling Using Model-Checking. In
Software Technologies for Embedded and Ubiquitous Systems (SEUS), pages 263�272,
2007.

10 Nan Guan, Wang Yi, Qingxu Deng, Zonghua Gu, and Ge Yu. Schedulability analysis for
non-preemptive �xed-priority multiprocessor scheduling. Journal of Systems Architecture,
57(5):536�546, 2011.

11 Nan Guan, Wang Yi, Zonghua Gu, Qingxu Deng, and Ge Yu. New schedulability test
conditions for non-preemptive scheduling on multiprocessor platforms. In IEEE Real-Time
Systems Symposium (RTSS), pages 137�146, 2008.

12 S. Kramer, D Ziegenbein, and A Hamann. Real world automotive benchmark for free. In
International Workshop on Analysis Tools and Methodologies for Embedded Real-Time
Systems (WATERS), 2015.

13 Jinkyu Lee. Improved schedulability analysis using carry-in limitation for non-preemptive
�xed-priority multiprocessor scheduling. IEEE Transactions on Computers, 66(10):1816�
1823, 2017.

9:24 REFERENCES

14 Jinkyu Lee and Kang G. Shin. Improvement of real-time multi-coreschedulability
with forced non-preemption. IEEE Transactions on Parallel and Distributed Systems,
25(5):1233�1243, 2014.

15 Cláudio Maia, Geo�rey Nelissen, Luis Nogueira, Luis Miguel Pinho, and DanielGracia
Pérez. Schedulability analysis for global �xed-priority scheduling of the 3-phase task
model. In IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), pages 1�10, 2017.

16 Mitra Nasri and Björn B. Brandenburg. An exact and sustainable analysis of non-
preemptive scheduling. In IEEE Real-Time Systems Symposium (RTSS), pages 1�12,
2017.

17 Mitra Nasri and Gerhard Fohler. Non-work-conserving non-preemptive scheduling:
motivations, challenges, and potential solutions. InEuromicro Conference on Real-Time
Systems (ECRTS), pages 165�175, 2016.

18 Mitra Nasri and Mehdi Kargahi. Precautious-RM: a predictable non-preemptive schedul-
ing algorithm for harmonic tasks. Real-Time Systems, 50(4):548�584, 2014.

19 Mitra Nasri, Geo�rey Nelissen, and Björn B. Brandenburg. A Response-Time Analysis
for Non-Preemptive Job Sets under Global Scheduling. InEuromicro Conference on
Real-Time Systems (ECRTS), 2018.

20 Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell, Marco
Caccamo, and Russell Kegley. A predictable execution model for COTS-based embedded
systems. In IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS) , pages 269�279, 2011.

21 Abusayeed Saifullah, David Ferry, Jing Li, Kunal Agrawal, Chenyang Lu, and Christo-
pher D. Gill. Parallel real-time scheduling of DAGs. IEEE Transactions on Parallel and
Distributed Systems, 25(12):3242�3252, 2014.

22 Roger Sta�ord. Random vectors with �xed sum. Technical report, Univers ity of Oxford,
2006. URL: http://www.mathworks.com/matlabcentral/fileexchange/9700 .

23 Youcheng Sun and Giuseppe Lipari. A pre-order relation for exact schedulability test
of sporadic tasks on multiprocessor Global Fixed-Priority scheduling. Real-Time Syst.,
52(3):323�355, 2016.

24 Rohan Tabish, Renato Mancuso, Saud Wasly, Ahmed Alhammad, Sujit S Phatak,
Rodolfo Pellizzoni, and Marco Caccamo. A real-time scratchpad-centric OS for multi-core
embedded systems. InIEEE Conference on Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 1�11, 2016.

25 Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,
David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra,
Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, andPer Stenström. The
worst-case execution-time problem - overview of methods and survey of tools. ACM
Transactions on Embedded Computing Systems, 7(3):36:1�36:53, 2008.

26 Jun Xiao, Sebastian Altmeyer, and Andy Pimentel. Schedulability analysis of non-
preemptive real-time scheduling for multicore processors withshared caches. InIEEE
Real-Time Systems Symposium (RTSS), 2017.

	Introduction
	System Model and Definitions
	Schedule-Abstraction Graph
	Graph Definition
	Example

	Schedulability Analysis
	Graph-Generation Algorithm
	Expansion Phase
	Fast-Forward Phase
	Merge Phase

	Correctness of the Proposed Solution
	Soundness of the Expansion Phase
	Soundness of the Fast-Forward Phase
	Soundness of the Merge Phase
	Soundness of Algorithm 1
	Inexactness of Algorithm 1

	Empirical Evaluation

