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—— Abstract

An e ective way to increase the timing predictability of multicor e platforms is to use non-
preemptive scheduling. It reduces preemption and job migration oveheads, avoids intra-core
cache interference, and improves the accuracy of worst-case exeiut time (WCET) estimates.
However, existing schedulability tests for global non-preemptivemultiprocessor scheduling are
pessimistic, especially when applied to periodic workloads. Thi paper reduces this pessimism
by introducing a new type of su cient schedulability analysis th at is based on an exploration of
the space of possible schedules using concise abstractions and stptening techniques. Speci -
cally, we analyze the schedulability of non-preemptive job sets (wth bounded release jitter and
execution time variation) scheduled by a global job-level xed-priority (JLFP) scheduling algo-
rithm upon an identical multicore platform. The analysis yields a lower bound on the best-case
response-time (BCRT) and an upper bound on the worst-case responsettie (WCRT) of the jobs.
In an empirical evaluation with randomly generated workloads, we show thatthe method scales
to 30 tasks, a hundred thousand jobs (per hyperperiod), and up to 9 cags.
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1 Introduction

While modern multicore platforms o er ample processing power and acompelling price/per-
formance ratio, they also come with no small amount of architectural compleity. Unfor-
tunately, this complexity such as shared caches, memory controllers, and other shared
micro-architectural resources has proven to be a major source of exeation-time unpre-
dictability, and ultimately a fundamental obstacle to deployment i n safety-critical systems.

In response, the research community has developed a number of inretive approaches
for managing such challenging hardware platforms. One particularly promsing approach
explored in recent work [L, 15, 24] is to split each job into three distinct phases: (i) a


mailto:mitra@mpi-sws.org
mailto:grrpn@isep.ipp.pt
mailto:bbb@mpi-sws.org

9:2

A Response-Time Analysis of Global Non-Preemptive Scheduling

dedicated memory-load or prefetching phase, which transfers all of a job's required memory
from the shared main memory to a core-local private cache or scratchpad nmeory; followed
by (i) the actual execution phase, in which the job executemnon-preemptively and in an
isolated manner without interference from the memory hierarchy as allmemory references
are served from a fast, exclusive private memory, which greatly enhaces execution-time
predictability; and nally (iii) a write-back phase in which any modi ed data is ushed to
main memory. As a result of the high degree of isolation restored by this apmach [20],
a more accurateworst-case execution time(WCET) analysis becomes possible since the
complete mitigation of inter-core interference during the execuion phase allows existing
uniprocessor techniquesdb] to be leveraged. Recent implementations of the idea, such as
Tabish et al's scratchpad-centric OS P4], have shown the phased-execution approach to
indeed hold great promise in practice.

From a scheduling point of view, however, the phased-execution appach poses a number
of di cult challenges. As jobs must execute non-preemptively other wise prefetching becomes
impractical and there would be only little bene t to predictabilit y the phased-execution
approach fundamentally requires anon-preemptive real-time multiprocessor scheduling problem
to be solved. In particular, Alhammad and Pellizzoni [1] and Maia et al. [15] considered the
phase-execution model in the context of non-preemptiveglobal schedulingwhere pending
jobs are allocated simply to the next available core in order of their piorities.

Crucially, to make schedulability guarantees, Alhammad and Pellizzoni[1] and Maia et
al. [15] rely on existing state-of-the-art analyses of global non-preemptive cheduling as a
foundation for their work. Unfortunately, as we show in Sec. 6, this analyical foundation i.e.,
the leading schedulability tests for global non-preemptive schediing [4, 10, 11, 13 su ers
from substantial pessimism, especially when applied to periodidard real-time workloads.

This paper. To attack this analysis bottleneck, we introduce a new, much more acgrate
method for the schedulability analysis of nite sets of non-preemptive jobsunder global job-
level xed-priority (JLFP) scheduling policies. Our method, which can be applied toperiodic
real-time tasks (and other recurrent task models with a repeating hyperperiod),is based on
a novel state-space exploration approach that can scale to realistic sysin parameters and
workload sizes. In particular, this work introduces a new abstractionfor representing the
space of possible non-preemptive multiprocessor schedules andpéains how to explore this
space in a practical amount of time with the help of novel state-pruning techniques.

Related work.  Global non-preemptive multiprocessor scheduling has received ach less
attention to date than its preemptive counterpart. The rst sucie nt schedulability test
for global non-preemptive scheduling was proposed by Baruah]. It considered sequential
sporadic tasks scheduled with a non-preemptivearliest-deadline- rst (G-NP-EDF) scheduling
algorithm. Later, Guan et al. [10, 11] proposed three new tests; one generic schedulability
test for any work-conserving global non-preemptive scheduling algorithm, and two response-
time bounds for G-NP-EDF and global non-preemptive xed-priority (G-NP-FP) scheduling.
Recently, Lee et al. L3, 14] proposed a method to remove unnecessary carry-in workload
from the total interference that a task su ers. These tests for sporadc tasks have been used
in various contexts such as the schedulability analysis of periodic g@rallel tasks with non-
preemptive sections 21] and systems with shared cache memorie2§] or with transactional
memories [, 24]. However, these tests become needlessly pessimistic when &pg to periodic
tasks as they fail to discount many execution scenarios that are impossie in a periodic
setting. Moreover, these tests do not account for any release jitter hat may arise due to
timer inaccuracy, interrupt latency, or networking delays.

To the best of our knowledge, no exact schedulability analysis for globajob-level xed-



M. Nasri, G. Nelissen, and B.B. Brandenburg 9:3

priority non-preemptive scheduling algorithms (including G-NP-EDF and G-NP-FP) either
for sporadic or for periodic tasks has been proposed to date. The exact setiulability
analysis of globalpreemptive scheduling for sporadic tasks has been considered in several
works [3, 5, 6, 9, 23]. These analyses are mainly based on exploring all system states that can
be possibly reached using model checking, timed automata, or linearyforid automata. These
works are inherently designed for a preemptive execution model, ere no lower-priority task
can block a higher-priority one, and hence are not applicable to non-premptive scheduling.
The second limitation of the existing analyses is their limited scahbility. They are a ected

by the number of tasks, processors, and the granularity of timing paramters such as periods.
For example, the analysis of Sun et al. 23] can only handle up to 7 tasks and 4 cores, while
the solution by Guan et al. [9] is applicable only if task periods lie betveen 8 and 20.

In our recent work [16], we have introduced an exact schedulability test based on a
schedule-abstraction model for uni-processor systems execugmon-preemptive job sets with
bounded release jitter and execution time variation. By introducing an e ective state-merging
technique, we were able to scale the test to task sets with more thai30 tasks or about
100000 jobs in their hyperperiod for any job-level xed-priority scheduling algorithm. The
underlying model and the test's exploration rules, however, are dsigned for, and hence
limited to, uniprocessor systems and cannot account for any scenarios #t may arise when
multiple cores execute jobs in parallel.

Contributions.  In this paper, we introduce a su cient schedulability analysis f or global
job-level xed-priority scheduling algorithms considering a set of non-preemptive jobs with
bounded release jitter and execution time variation. Our analysis deives a lower bound on
the best-case response time (BCRT) and an upper bound on the worst-casresponse time
(WCRT) of each job, taking into account all uncertainties in release and execution times.
The proposed analysis is not limited to the analysis of periodic taskswith or without release
jitter), but can also analyze any system with a known job release patten, e.g., bursty releases,
multi-frame tasks, or any other application-speci ¢ workload that can be represented as a
recurring set of jobs.

The analysis proceeds by exploring a graph, calledchedule-abstraction graph that
contains all possible schedules that a given set of jobs may experiemcTo render such an
exploration feasible, we aggregate all schedules that result in the same aer of start times
of the jobs and hence signi cantly reduce the search space of the analysiand makes it
independent from the time granularity of the timing parameters of the systems. Moreover,
we provide an e cient path-merging technique to collapse redundan states and avoid non-
required state explorations. The paper presents an algorithm to explog the search space,
derives merge rules, and establishes the soundness of the solution.

2 System Model and De nitions

We consider the problem of scheduling a nite set of non-preemptie jobs J on a multicore
platform with m identical cores. Each jobJ; = ([r™" ;rM& ],[C™M ;CMa ]: d;; pi) has an
earliest-release timer™" (a.k.a. arrival time ), latest-release timer™ | absolutedeadline d;,
best-case execution time (BCET)CM™" , WCET CM& | and priority p;. The priority of a job
can be decided by the system designer at design time or by the systésnJLFP scheduling
algorithm. We assume that a numerically smaller value ofp; implies higher priority. Any
ties in priority are broken by job ID. For ease of notation, we assume that the < operator
implicitly re ects this tie-breaking rule. We use N to represent the natural numbers including
0. We assume a discrete-time model and all job timing parameters are ii.
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At runtime, each job is releasedat an a priori unknown time r; 2 [r™" ;rMa ] We say
that a job J; is possibly releasedat time t if t r™" , and certainly releasedif t  rma .
Such release jitter may arise due to timer inaccuracy, interruptlatency, or communication
delays, e.g., when the task is activated after receiving data from tle network. Similarly,
each released job has aa priori unknown execution time requirementC; 2 [C™" ; CmaX ].
Execution time variation occurs because of the use of caches, out-of-cgttexecution, input
dependencies, program path diversity, state dependencies, etéMe assume that the absolute
deadline of a job, i.e.,d;, is xed a priori and not a ected by release jitter. Released jobs
remain pending until completed, i.e., there is no job-discardiry policy.

Each job must execute sequentially, i.e., it cannot execute on morehian one core at a
time. Hence, because jobs are non-preemptive, a joly that starts its execution on a core
at time t occupies that core during the interval {;t + C;). In this case, we say that job
Ji nishes by time t + C;. Attime t + C;, the core used byJ; becomes available to start
executing other jobs. A job's response timeis de ned as the length of the interval between
the arrival and completion of the job 2], i.e.,t+ C; r™" . We say that a job is ready at
time t if it is released and did not yet start its execution prior to time t.

In this paper, we assume that shared resources that must be accessedmutual exclusion
are protected by FIFO spin locks. Since we consider a non-preemjpe execution model, it is
easy to obtain a bound on the worst-case time that any job spends spinningvhile waiting to
acquire a contested lock; we assume the worst-case spinning delsyincluded in the WCETSs.

Throughout the paper, we usef g to denote a set of items in which the order of elements
is irrelevant and h i to denote an enumerated set of items. In the latter case, we assume that
items are indexed in the order of their appearance in the sequence.oF ease of notation, we
usemaxof X g and min; fX g over a set of positive valuesX N that is completed by 0 and
1 , respectively. That is, if X = ;, then maxof X g=0 and min; fXg= 1, otherwise they
return the usual maximum and minimum values in X, respectively.

The schedulability analysis proposed in this paper can be applied to eriodic tasks. A
thorough discussion of how many jobs must be considered in the analysisif di erent types
of tasks with release o set and constrained or arbitrary deadlines has beepresented in [L6].

Scheduler model. We consider a non-preemptive global JLFP scheduler upon an identical
multicore platform. The scheduler is invoked whenever a job is redased or completed. In
the interest of simplifying the presentation of the proposed analyss, we make the modeling
assumption that, without loss of generality, at any invocation of the schediler, at most one
job is picked and assigned to a core. If two or more release or completion ents occur at the
same time, the scheduler is invoked once for each event. The actualtsduler implementation
in the analyzed system need not adhere to this restriction and may pocess more than one
event during a single invocation. Our analysis remains safe if the assnption is relaxed in
this manner.

We allow for a non-deterministic core-selection policy when more thn one core is available
for executing a job, i.e., when a job is scheduled, it may be scheted on any available core.
The reason is that requiring a deterministic tie-breaker for core asignments would impose
a large synchronization overhead, e.g., to rule out any race windows wimethe scheduler is
invoked concurrently on di erent cores at virtually the same time, and hence no such rule is
usually implemented in operating systems.

We say that a job setJ is schedulableunder a given scheduling policy if no execution
scenario ofJ results in a deadline miss, where an execution scenario is de neas follows.

| De nition 1. An execution scenario = f(ry;Cq);(r2;C2);:::;(rn;Cn)g, wheren = jJj,
is an assignment of execution times and release times to the jobs df such that, for each
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job Ji, C; 2 [CMn ;CM& ] and r; 2 [rMn ;rmax],

We exclusively focus on work-conserving, and priority-driven sckduling algorithms, i.e.,
the scheduler dispatches a job only if the job has the highest priorig among all ready jobs,
and it does not leave a core idle if there exists a ready job. We assuntbat the WCET of
each job is padded to cover the scheduler overhead and to account for amgicro-architectural
interference (e.g., cache or memory bus interference).

3  Schedule-Abstraction Graph

Our schedulability analysis derives a safe upper bound on the WCRT ad a safe lower bound
on the BCRT of each job by exploring a superset of all possible schedue Since the number
of schedules depends on the space of possible execution scenariosicviis a combination

of release times and execution times of the jobs, it is intractable to mively enumerate all

distinct schedules. To solve this problem, we aggregate schedulekdt lead to the same
ordering of job start times (a.k.a. dispatch times) on the processing platforms To this end,

in the rest of this section, we introduce an abstraction of job orderingsthat encodes possible
nish times of the jobs.

To represent possible job orderings we use an acyclic graph whose edges éabeled
with jobs. Thus, each path in the graph represents a dispatch order ofgbs in the system.
Fig. 1-(b) shows an example of such a graph. For example, the path from; to v means
that the jobs hl1;Jz;J3; J4; Jsi have been scheduled one after another. The length of a path
P, denoted by jPj, is the number of jobs scheduled on that path.

To account for the uncertainties in the release times and executioniimes of jobs, which
in turn result in di erent schedules, we use intervals to represent the state of a core. For
example, assume that there is only one core in the system and considerparticular job
Ji. Assume that the release interval and execution requirement of; are [0, 5] and [1Q 15],
respectively. In a job ordering whereJ; is the rst job dispatched on the core, the resulting
core interval will become [1020], where 10 =r™" + CM" and 20 = r™ + CM are the
earliest nish time (EFT) and latest nish time (LFT), respectively, of the job on the core.
Here, the interval [10; 20] means that the core will bepossibly availableat time 10 and will be
certainly available at time 20. Equivalently, any time instant t in a core interval corresponds
to an execution scenario in which the core is busy untit and becomes available at.

Using the notion of core intervals, we de ne a system state as a set ah core intervals.
System states are vertices of the graph and represent the states of tteores after a certain
set of jobs has been scheduled in a given order.

3.1 Graph De nition

The schedule-abstraction graph is a directed acyclic graplG = (V; E), where V is a set of
system states andE is the set of labeled edges. A system state 2 V is a multiset of m
core intervals denoted byf 1; 2;:::; mg. Acoreinterval ¢ =[EFT «;LFT ] is de ned
by the EFT and LFT of a job that is scheduled on the core, denoted byEFT ¢ and LFT ,
respectively. Equivalently, EFT g is the time at which the core becomespossibly available
and LFT g is the time at which the core becomescertainly available. Since cores are identical,
the schedule-abstraction graph does not distinguish between them ahhence does not keep
track of the physical core on which a job is executing.

The schedule-abstraction graph contains all possible orderings of job statimes in any
possible schedule. This ordering is represented by directeddges. Each edgee = (vp;Vvg)
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Figure 1 A schedule-abstraction graph G for ve jobs that are scheduled on two cores: (a) shows
the job set information (jobs do not have release jitter), (b) shows the schedule-abstraction graph,
(c) to (k) show the state of the two cores at system statesv, to vig, respectively.

from state v, to state vq has a label representing the job that is scheduled next after state
Vp. The sequence of edges in a patR represents a possible sequence of scheduling decisions
(i.e., a possible sequence of job start times) to reach the systentede modeled by v, from
the initial state v;.

3.2 Example

Fig. 1-(b) shows the schedule-abstraction graph that includes all posble start-time orders

of the jobs de ned in Fig. 1-(a) on a two-core processor. In the initial state v1, no job is

scheduled. At time O, two jobsJ; and J, are released. Sinc; < p,, the scheduler rst

schedules]; on one of the available cores. For the sake of clarity, we have numbered ¢h
cores in this example, however, they are identical from our model'perspective.

Fig. 1-(c) shows the state of both cores after jobJ; is scheduled. The dashed rectangle
that covers the interval [0; 2) shows the time during which the core is certainly not available
for other jobs sinceCinin = 2. In this state, the EFT of 4 is 2 and its LFT is 4, as shown
by the white rectangle, i.e., 1 may possibly become available at time 2 and will certainly be
available at time 4. From the system statev,, only v; is reachable. The transition between
these two states indicates that jobJ, is scheduled on the available core , starting at time O.

As shown in Fig. 1-(d), core ; is certainly available from time 4. Thus, when job J3
is released at time 5, the scheduler has no other choice but to scheldujob J3 on this core.
The label of this transition shows that J; has been scheduled.

From system state v,4, two other states are reachable depending on the nish times of
jobs J, and J;. State vs: If core ; becomes available before core,, then J4 can start its
execution on ;. This results in state vs (Fig. 1-(f)). The core intervals of vs are obtained
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as follows. According to the intervals ofv,, the earliest time at which ; becomes available
is 6, while the release time ofl, is 8, thus, the earliest start time of J, on core 1 is 8,
which means that its earliest nish time is 10. The latest start time of J, such that it is
still scheduled on core 1 is time 12. The reason is thatJ, is released at time 8 and hence
is pending from that time onward. However, it cannot be scheduled unil a core becomes
available. The earliest time a core among ; and , becomes available is at time 12 (which
is the latest nish time of J3). Since the scheduling algorithm is work-conserving, it will
certainly schedule jobJ4 at 12 on the core that has become available. Consequently, the
latest nish time of J4 is 12+ 3 = 15.

State vg: In state vy, if core , becomes available before ;, then job J4 can be scheduled
on , and create statevg (Fig. 1-(g)). In this case, the earliest start time of J4 is at time 10
because, although it has been released before, it must wait until core, becomes available,
which happens only at time 10. As a result, the earliest nish time of J4 will be time
10+ 2 = 12. On the other hand, the latest start time of J4 such that it is scheduled on core
2 is 12 because at this time, jobJ, is ready and a core (1) becomes available. Thus, ifl4
is going to be scheduled on 5, core , must become available by time 12. Note that since
our core-selection policy is non-deterministic, if , becomes available at time 12,J, may be
dispatched on either core. Consequently, the latest nish time ofJ4 when scheduled on » is
12 +3 = 15. Furthermore, system state vg may arise only if core ; has not become available
before time 10, as otherwise jok), will be scheduled on ; and create statevs. Thus, state vg
can be reached only if ; does not become available before time 10. To re ect this constraint,
the core interval of ; must be updated to [1Q 12]. The red dashed rectangle in Fig. 1-(g)
illustrates this update. According to the schedule-abstraction gaph in Fig. 1-(b), there exist
three scenarios in whichJds nishes at time 16 and hence misses its deadline. These scenarios
are shown in Figs. 1-(h), (i) and (k), and are re ected in states vy, vg, and vyig, respectively.

4  Schedulability Analysis

This section explains how to build the schedule-abstraction graph.Sec. 4.1 presents the
high-level description of our search algorithm, which consists of altarating expansion fast-
forward, and merge phases. These phases will be discussed in details in Sec. 4.2, 4.3, @],
respectively. Sec. 5 provides a proof of correctness of the propakalgorithm.

4.1 Graph-Generation Algorithm

During the expansion phase, (one of) the shortest path(sP in the graph from the root to a
leaf vertex v, is expanded by considering all jobs that can possibly be chosen by theLFP
scheduler to be executed next in the job execution sequence mgsented byP. For each such
job, the algorithm checks on which core(s) it may execute. Finally, br each core on which
the job may execute, a new vertexvg is created and added to the graph, and connected via
an edge directed fromv, to vJ.

After generating a new vertexvg, the fast-forward phase advances time until the next
scheduling event. It accordingly updates the system state reprented by vg.

The merge phase attempts to moderate the growth of the graph. To this ed, the terminal
vertices of paths that have the same set of scheduled jobs (but not nessarily in the same
order) and core states that will lead to similar future scheduling deisions by the scheduler,
are merged into a single state whose future states cover the set of alliture states of the
merged states. The fast-forward and merge phases are essential to avoiedundant work,
i.e., to recognize that two or more states are similar early on before theyare expanded. The
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Algorithm 1:  Schedule Graph Construction Algorithm
Input : Job setJ
Output: Schedule graphG = (V;E)
18);2J;BCRT; 1 ;WCRT; O0;
2 Initialize G by adding a root vertex v; = [0; 0];[0; O];:::;[0; 0] , wherejvij = m;
3 while 9 a path P from v; to a leaf vertexv, s.th. jPj < jJj do

4 P a path from v; to a leaf with the least number of edges in the graph;

5 vp  the leaf vertex of P;

6 for each jobJ; 2J nJ P do

7 for each core i 2 v, do

8 if J; can be dispatched on core i according to (1) then

9 Build vp using (10);

10 BCRT; minfEFTY r™" ;BCRTg;

11 WCRT; maxfLFTQ r™ ;WCRT;g;

12 Connect v, to v) by an edge with label J;;

13 Fast-forward vg according to (13);

14 while 9 path Q that ends tovg such that the condition de ned in
De nition 2 is satis ed for vJ and vq do

15 Update vg using Algorithm 2;

16 Redirect all incoming edges ofvg to vg;

17 Removevy from V;

18 end

19 end

20 end

21 end

22 end

algorithm terminates when there is no vertex left to expand, that is, when all paths in the
graph represent a valid schedule of all jobs inJ .

Algorithm 1 presents our iterative method to generate the scheduleabstraction graph in
full detail. A set of variables keeping track of a lower bound on the BCR and an upper
bound on the WCRT of each job is initialized at line 1. These bounds are updted whenever
a job J; can possibly be scheduled on any of the cores. The graph is initialized dihe 2 with
a root vertex v;. The expansion phase corresponds to lines 6 21; line 13 implements the
fast-forward, and lines 14 18 realize the merge phase. These phases repeattil every path
in the graph contains jJj distinct jobs. We next discuss each phase in detalil.

4.2 Expansion Phase

Assume that P is a path connecting the initial state v, to vp. The sequence of edges iR
represents a sequence of scheduling decisions (i.e., a possibequence of job executions) to
reach the system state modeled by, from the initial state v;. We denote by J " the set of
jobs scheduled in pathP. To expand path P, Algorithm 1 evaluates for each jobJ; 2J nJ P
that was not scheduled yet whether it may be the next job picked by the scheduler and
scheduled on any of the cores. For any jokJ; that can possibly be scheduled on a core

k 2 Vp before any other job starts executinga new vertex vg is added to the graph (see
lines 6 12 of Algorithm 1).
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To evaluate if job J; is a potential candidate for being started next in the dispatch
sequence represented b, we need to know:

1. The earliest time at which J; may start to execute on core x when the system is in the
state described by vertexv,. We call that instant the earliest start time (EST) of J; on
core i, and we denote it by EST i (vp).

2. The time by which J; must have certainly started executing if it is to be the next job
to be scheduled by the JLFP scheduler on the processing platformThis second time
instant is referred to as the latest start time (LST) of J; and is denoted byLST;(v;).

LST(vp) represents the latest time at which a work-conserving JLFP schedler schedules
Ji next after state v,. Note that LST;(vp) is a global value for the platform when it is in
state vp, while ESTiy (vp) is related to a specic core .

A job J; can be the next job scheduled in the job sequence represented IB if there is a
core  for which the earliest start time EST;y (vp) of J; on  is not later than the latest
time at which this job must have started executing, i.e., beforeLST;(v,) (see Lemma 2 in
Sec. 5 for a formal proof). That is,J; may commence execution on x only if

ESTi;k (Vp) LST; (Vp)Z (l)

For each core , that satis es (1), a new vertex vg is created, Wherevg represents the state
of the system after dispatching jobJ; on core .

Below, we explain how to computeEST i (vp) and LST;(vp). Then we describe how
to build a new vertex VS for each core | and job J; that satis es (1). Finally, we explain
how the BCRT and WCRT of job J; are updated according to itsEST ik (vp) and LST (vp),
respectively. To ease readability, from here on we will not specifany more that ., ESTx (vp)
and LST(vp) are related to a speci ¢ vertex v, when it is clear from context, and will instead
use the short-hand notationsEST;x and LST;.

Earliest start time. To start executing on a core , a job J; has to be released and
has to be available. Thus, the earliest start time EST; of a job J; on a core  is given by

ESTix = maxfr™" :EFT g (2)

where rimin is the earliest time at which J; may be released ancEFT  is the earliest time at
which ¢ may become available.

Latest start time.  Because we assume a work-conserving JLFP scheduling algorithm, two
conditions must hold for job J; be the next job scheduled on the processing platform{i) J;
must be the highest-priority ready job (because of the JLFP assumption, and (ii) for every
job J; released beforeJ;, either J; was already scheduled earlier on pattP (i.e., Jj 23 7),
or all cores were busy from the release af; until the release of J;.

If (i) is not satis ed, then a higher-priority ready job is scheduled instead of J;. Therefore
the latest start time LST; of J; must be earlier than the earliest time at which a not-yet-
scheduled higher-priority job is certainly released, that is,LST; <t pignh , Where

thigh =minfrif™ j e 2JnJ PN pe<pig 3)
If (ii) is not satis ed, then an earlier released job J; will start executing on an idle core

before J; is released. Therefore the latest start timeLST; of J; cannot be later than the
earliest time at which both a core is certainly idle and a not-yet-scleduled job is certainly

9:9
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Figure 2 (a) Expansion scenario for Ji and >, where p, <pi <px. (b) An example merge.

released. Formally,LST; t,., where

twe maxf toore ;tjob g (4)
teoe » MINfLFTxj1 x mg; and (5)
tiob rqinfr{,“ax jdy23ndPg (6)

In the equations above,teye is the earliest time at which a core is certainly idle andtjo, is
the earliest time at which a not-yet-scheduled job is certainly rdeased.
Combining LST; <tpgn and LST;  tyc, we observe thatJ; must start by time

LST; = min fty; thigh 1g: (7)

| Example 1. Fig. 2-(a) shows howESTx and LST; are calculated when jobJ; is scheduled
on core ». In this example, tjo, = 14 since job Jy, becomes certainly available at that time.
However, the earliest time at which a core (in this case, core ;) becomes available is
teore = 24, thus, tyc = 24. On the other hand, the earliest time at which a job with a higher

priority than J; is certainly released istphign = 17. Thus, LST; = thgh 1 =16.

Building a new system state. If Inequality (1) holds, it is possible that job J; is the next
successor of patiP and is scheduled on core  atany t 2 [EST ; LST;] (Lemma 2 in Sec. 5
proves this claim). Our goal is to generate a single new vertex for thechedule-abstraction
graph that aggregates all these execution scenarios.

Let vg denote the vertex that represents the new system state resultig from the execution
of job J; on core . The earliest and latest times at which ¢ may become available after
executing job J; is obtained as follows:

EFTY = ESTix + C™  and LFT{ = LST; + C"™: (8)

Furthermore, because the latest scheduling event in the systerstate vg occurs no earlier
than EST;x , no other job in J nJ P may possibly be scheduled befor&ST y .

| Property 1. If job J; is the next job scheduled on the platform, and if it is scheduledno
core i, thennojob2J nJ P starts executing on any core ;1 x m before ESTiy .

Proof. By contradiction. Assume ajobJ; 2J nJ P starts executing on a core  before
ESTix . BecauseJ; cannot start executing on  beforeEST;y , J; must be di erent from
J;i and henceJ; starts to execute beforeJ;. That contradicts the assumption that J; is the
rstjobin J nJ P to be scheduled on the platform. J
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To ensure that Property 1 is correctly enforced in the new system tte represented by
vg, we update the core intervals in statevg as follows

3 [EFT {;LFT {] if x = k;
0, _[ESTik;ESTix] ifx6 k ~ LFT, ESTix; 9)
* [maxfESTix ; EFT xg; LFT ] otherwise

The rst case of (9) simply repeats(8) for job J;. The second and third cases ensure that
no job in J nJ P can be scheduled on those cores befoEST . This is done by forcing
x'S earliest availability time to be equal to EST; . Finally, for cores that would certainly
be idle after ESTk (i.e., the second case in9)), we setLFT i (i.e., the time at which it
becomes certainly available) toEST . .
Finally, the new vertex vg is generated by applying (9) on all cores, i.e.,

vp=f 9 %o o (10)
Deriving the BCRT and WCRT of the jobs. Recall that the BCRT and the WCRT

of a job are relative to its arrival time, i.e., r™" , and not its actual release time which can
be any time betweenr™" and r™ . In other words, release jitter counts towards a job's
response time. As stated earlier, the earliest nish time ofJ; on core ¢ cannot be smaller
than EFTE and the latest nish time of J; on core y cannot be larger thanLFT E (obtained
from (8)). Using these two values, the BCRT and WCRT of job J; are updated at lines 10
and 11 of Algorithm 1 as follows.

BCRT; minfEFTY rM":BCRT g (11)
WCRT ; mafoFTE rMn - WCRT ;g (12)

If the algorithm terminates, then WCRT ; and BCRT ; contain an upper bound on the
WCRT and a lower bound on the BCRT of job Jj, respectively, over all paths. Since the
graph considers all possible execution scenarios df, it considers all possible schedules af;.
The resulting WCRT and BCRT estimates are therefore safe bounds on tke actual WCRT
and BCRT of the job, respectively. This property is proven in Corollary 3 in Sec. 5.

The quality of service of many real-time systems depends on both the \@RT and
response-time jitter [7] of each task, i.e., the di erence between the BCRT and WCRT of that
task. One of the advantages of our schedule-abstraction graph is that it not ol provides a
way to compute those quantities, but also allows to extract the maxinmum variation between
the response times of successive jobs released by the same task, deemllowing a more
accurate analysis of (for instance) sampling jitter in control systems

4.3 Fast-Forward Phase

As shown in lines 6 and 7, one new state will be added to the graph for each nget-
scheduled job that can be scheduled next on one of the cores. This sition can lead to
an explosion in the search space if the number of states is not reducedn this work, we
merge states to avoid redundant future explorations. To aid the subsgent merge phase, the
fast-forward phase advances the time until a job may be released. We dete that instant by
tmin , Ming r;”‘” jJdx 23 nJd P nflig . The fast-forward phase thus updates each core
interval {2 vj as follows:

[tmin s tmin ] LFT X tmin 3
[maxftmin ; EFT x0; LFT ] otherwise

0 _
x =

(13)
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Algorithm 2:  Algorithm that merges v, and vq, and createsvg.

1 Sort and re-index the core intervals (vp) of v, in a non-decreasing order of their

EFTs, such that EFT 1(vp) EFT 2(vp) ::EFT m(vp);
2 Sort and re-index vq4's core intervals in a non-decreasing order of their EFTs such that
EFT 1(vq) EFT2(vg) ::iEFT m(vg);

3 Pair each two core intervals ,(vp) and (vq) to create
X(vg) v [MINfFEFT y (vp); EFT x(vq) g maxf LFT (vp); LFT x(vq)d];

The rst case of (13) relies on the fact that from LFT 2 onward (i.e., the time at which a
core 2 becomes certainly available),  remains available until a new job is scheduled on it.
Since the earliest time at which a job can be scheduled iy, , this core remains available at
least until tyi, . Thus, it is safe to update its interval to [tmin ;tmin ], Which denotes that the
core is certainly free bytmi, . Similarly, the second case 0f{13) is based on the fact that a
core  that is possibly available at EFTS remains possibly available either until reaching
LFT S (where it certainly becomes free) or until a job may be scheduled on, which does
not happen until t,, at the earliest. Lemma 4 in Sec. 5 proves that fast-forwarding stata/g
will not change any of the future states that can be reached fromlg before applying (13).

4.4 Merge Phase

The merge phase seeks to collapse states to avoid redundant future @grations. The goal
is to reduce the size of the search space such that the computed BCR®f any job may
never become larger, the computed WCRT of any job may never become smal, and all
job scheduling sequences that were possible before merging state® still considered after
merging those states. The merge phase is implemented in lines 14 18 of Algtdim 1, where
the condition de ned below in De nition 2 is evaluated for paths with length jPj + 1.

Since each state consists of exactlyn core intervals, merging two states requires nding
a matching among the two sets of intervals to merge individual intenals. Let statesv, and
vq be the end vertices of two pathsP and Q. In order to merge v, and vq into a new state
vg, we apply Algorithm 2. Next, we establish our merging rules, which will be proven to be
safe in Corollary 1 in Sec. 5.

| De nition 2. Two states v, and vq can be merged if(i) J 7 = J Q, (i) 8 i(Vp); i(vg)
maxf EFT i (vp); EFT i(vq)g minfLFT ;(vp); LFT i(vq)g, and (iii) at any time t, the number
of possibly-available cores in the merged state must be equal to the maober of possibly-
available cores inv, or vq, i.e.,

8t 2 T;B(t;v)) = B(t;vp) _ B(t;v]) = B(t;vy); (14)

where B (t; vx) counts the number of core intervals of a statevy that contain t, i.e.,

n o]
B(t;vy) = y(W) Jt2 EFT y(vy),LFT y(w) (15)

and whereT is the set of time instants at which the value of B() may change, i.e.,
T =fEFT x(vp)j 8xg [ f LFT x(vp)j 8xg [ f EFT x(vq)j 8xg [ f LFT 4 (vg)j 8xg: (16)

| Example 2. Fig. 2-(b) shows two statesv, and v, that are merged to create statevg. As
shown, for anyt 2 T, B(t;vg) is equal to B (t;vp) or B(t; vg).
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Notably, any merge rule that respects condition (i) in De nition 2 is safe (see Corollary 1
in Sec. 5.3). The role of conditions (ii) and (iii) is to trade-o between the accuracy and
performance of the analysis by evading the inclusion of impossible egation scenarios in
the resulting state. We leave the investigation of more accurate (or moe eager) merging
conditions, as well as the applicability of abstraction-re nement techniques, to future work.

5 Correctness of the Proposed Solution

In this section, we show that the schedule-abstraction graph constrated by Algorithm 1
correctly includes all job schedules that can arise from any possiblexecution scenario, i.e.,
for any possible execution scenario, there exists a path in the graph #t represents the
schedule of those jobs in that execution scenario (Theorem 1). The paf has two main
steps: we rst assume that the fast-forward and merge phases are not exeted and show
that the EFT and LFT of a job obtained from Equation (8) are correct lower and upper
bounds on the nish time of a job scheduled on a core (Lemma 1) and that for an ditrary
vertex vp, Inequality (1) is a necessary condition for a job to be scheduled next on corg,
(Lemma 2). From these lemmas, we conclude that without fast-forwardingand merging, for
any execution scenario there exists a path in the schedule graph thatepresents the schedule
of the jobs in that execution scenario (Lemma 3).

In the second step, we show that the fast-forward and merge phases asafe i.e., these
phases will not remove any potentially reachable state from the original gaph (Lemma 4
and Corollary 2). Finally, we establish that Algorithm 1 correctly derive s an upper bound
on the WCRT and a lower bound on the BCRT of every job (Corollary 3).

5.1 Soundness of the Expansion Phase

In this section, we assume that neither the fast-forward nor the mergephase is executed.

| Lemma 1. For any vertex v, 2 V and any successow, of v, such that jobJ; 23 nJ P
is scheduled on core i betweenv, and vJ, EFT (v9) and LFT y(vp) (as computed by(8))
are a lower bound and an upper bound, respectively, on the completidime of J;.

Proof. If neither the fast-forward nor the merge phases are executed9) is the only equation
used to build a new statevg. In this lemma, we rst prove that the EST and LST of the job
obtained from (2) and (7) are a lower and an upper bound on the start time of jobJ; on

k after the scheduling sequence represented by. Then, we conclude that EFT k(vg) and
LFT k(vg) are safe bounds on the nish time ofJ; on . The proof is by induction.

Base case. The base case is for any verteX/g that succeeds to the root vertexv; where
all cores are idle. Hence in/g, job J; is scheduled on one of the idle cores, sayk. Since all
cores are idle at time 0, Equation(2) yields ESTx (v1) = r™ , which is by de nition the
earliest time at which job J; may start. Consequently, the earliest nish time of J; cannot
be smaller than EFT  (v3) = r™ + C™"

Similarly, (7) yields LST;(v1) = minfthgn 1 tjon g (recall that tere = O since all cores
are idle in vq). J; cannot start later than LST;(v1) = tjop if it is the rst scheduled job as all
cores are idle and hence as soon as a job is certainly released, it will Beheduled right away
on one of the idle cores. SimilarlyJ; cannot start its execution if it is not the highest-priority
job anymore, i.e., at or after time thign . As a result, the latest nish time of J; cannot be
larger than LFT (v0) = minftion;thign 19+ C™ . Therefore, EFT \(v3) and LFT (v9)
are safe bounds on the nishing time ofJ; on  after the scheduling sequencé = h/l;vgi.
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For all other cores , such that x 6 k, (9) enforces that EFT ,(v]) = LFT (v]) =
ESTix (vi) = r™ (recall that EFT (v1) = LFT «(v1) = 0), which is indeed the earliest
time at which any job may start on  if J; is the rst job executing on the platform and J;
is not released beforg ™" .

Induction step . Assume now that each core interval on every vertex fromvy to v, along
path P provides a lower bound and an upper bound on the time at which that core Wl
possibly and certainly be available, respectively, to start execting a new job. We show that
in the new vertex vg obtained from scheduling jobJ; on core | after P, (8) provides a safe
lower and upper bound on the nish time of J;, and for other cores, the new core intervals
computed by (9) are safe, i.e., no new job can start its execution on a corey before EFT
and the core cannot remain busy afterLFT .

EFT. The earliest start time of J; on core , i.e., ESTx (vp), cannot be smaller than
EFT «(vp) since, by the induction hypothesis, EFT i (v,) is the earliest time at which core
may start executing a new job. Moreover, a lower bound orEST i (vp) is given by r/™n
becausel; cannot execute before it is released. This prove®) for . Further, if J; starts
its execution at EST iy (vp), it cannot nish before EST iy (vp) + Ci"“” since its minimum
execution time is Cimi” . Thus, the EFT of job J; on  in system statevg cannot be smaller
than ESTix (vp) + C™" , which proves the correctness of (8) folEFT k(vg).

The EFTs of all other cores  in vg cannot be smaller thanEFT 4 (vp) in state v, since
no new job is scheduled on them. Furthermore, according to Propertyl, job J; can be
scheduled on core  (instead of any other core) only if no other job inJ nJ P has started
executing on any other core than y until ESTx (vp). Hence, maxf ESTx (vp); EFT x(vp)g
is a safe lower bound on the EST of a job in statelg (as computed by (9)).

LFT. Next, we show that LST;(vp) cannot exceedthgh 1 or ty. as stated by (7). First,
considertpigh and supposetnign 6 1 (otherwise the claim is trivial). Since a higher-priority
job is certainly released at the latest at time thgh , job J; is no longer the highest-priority job
at time tpigh . Consequently, it cannot commence execution under a JLFP scheduleat or
after time thgn if it is to be the next job scheduled after P. Hence, jobJ; will be a direct
successor of pathP only if its execution starts no later than time tnign 1. Now, consider
twe. Attime tyc, a not-yet-scheduled job is certainly released and a core is certdinavailable.
Hence a work-conserving scheduler will schedule that job at,., thus, job J; will be a direct
successor of pathP only if its execution starts no later than time t,.. SinceLST;(vp) is
the upper bound on the time at which job J; can start its execution while being the next
job scheduled after path P, the latest nish time of J; on core g cannot be larger than
minfthign  Ltwecg+ CM®, which proves the correctness of (8) folLFT k(vg).

Since in statevg job J; is scheduled on core ¢ other cores cannot be available before
ESTk , otherwise a work-conserving scheduler would schedul& on one of those cores
instead of on . Equation (9) ensures that if J; is the next job to be scheduled and if  is
the core on whichJ; is scheduled, no other core willcertainly be available by ESTx (vp),
i.e, EFTx(v)) ESTix (Vp).

By induction on all vertices in V, we have that EFT k(vg) and LFT k(vg) are safe bounds
on the nish time of any job scheduled between any two statesv, and vg, including J;. J

| Lemma 2. Job J; can be scheduled next on corey after jobs in path P only if (1) holds.

Proof. If job J; is released at timerimin and the core  becomes available atEFT , then it
can be dispatched no earlier than at timeESTx = maxfrimin JEFT kg. If (1) does not hold,
then thignh or twe (or both) are smaller than ESTy . This implies that either a higher-priority

job other than job J; is certainly released beforeESTx or a job other than J; is certainly
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released beforeESTx and a core is certainly available beforeESTx . In both cases, a
work-conserving JLFP scheduling algorithm will not schedule jobJ; until that other job is
scheduled. Consequently, joh]; cannot be the next successor of pattP. J

I Lemma 3. Assuming that neither the fast-forward nor the merge phases are exated

in Algorithm 1, for any execution scenario such that a jobJ; 2 J completes at some
time t on core  (under the given scheduler), there exists a pathP = h/l;:::;vp;vgi
in the schedule-abstraction graph such thad; is the label of the edge fromv, to vg and

t 2 [EFT «(v9); LFT (v])], where EFT(vy) and LFT y(vp) are given by Equation(8).

Proof. Since Algorithm 1 creates a new state in the graph for every jokl; and every core
k that respects Condition (1), the combination of Lemmas 1 and 2 proves that all possible
system states are generated by the algorithm when the fast-forward and nmige phases are
not executed. Further, Lemma 1 proves thatEFT k(vg) and LFT k(vg) are safe bounds on
the nishing time of J;, meaning that if J; nishes at t in the execution scenario represented
by path P, then t is within [EFT  (v3); LFT i (vp)]. J

5.2 Soundness of the Fast-Forward Phase
We prove that fast-forwarding will not a ect any of the successor statesof an updated state.

I Lemma 4. Updating the core intervals of vertexv, during the fast-forwarding phase does
not a ect any of the states reachable fromv,.

Proof. Let v, be the original state and vq be the updated state after applying (13). Let
path P denote the path from v, to v,. Note that state v, shares the same pattP asv,. We
show that for any arbitrary job J; 2J nJ P (i.e., those that are not scheduled in pathP)
and any arbitrary core (vp) 2 Vp, the EST and LST of job J; is the same as for core

k(Vq) 2 vq. From this we conclude that all system states reachable fronv, are reachable
from vq and that those reachable states remain unchanged. More precisely, we @h that,
8K, (i) ESTik (Vp) = ESTik (vq) and (ii) LSTy(vp) = LST «(vg).

Claim (i). From (2), we have ESTix (vp) = maxfr™ ;EFT \(vp)g. If the EFT of
k(vgq) has not been updated by (13), i.e., EFT (vp) > tmin, then we trivially have
ESTix (vq) = ESTix (vp). Otherwise, if EFT ¢(vq) has been updated, it must be true
that EFT k(Vp)  tmin and EFT k(Vq) = tmin . In this case,EST iy (vq) = maxfrimin itmin 9=
maxf r™ ; EFT x(Vp)g = ESTik (Vp) SINCEEFT ((Vp) tmin ™" (from the de nition of

tmin ). Thus, in both cases,ESTiyx (vp) = ESTix (vq).

Claim  (ii). From (13) we know that if the LFT of a core ((vp) is being updated,
LFT «(Vp) <tmin and LFT y(Vq) = tmin . By de nition, tmin = minfr™ jJ,2JnJ Pg
minfr™ jJ, 23nJ Pg= tip (Vp) (the last equality is due to (6)). Moreover, by (5) we have
teoe (Vo) LFT k(vp) < LFT «(Vq) = tmin tiob (Vp) and teore (Vq)  LFT «(Vg) = tmin

tjob (Vq) (becausetjo, only depends on pathP and v, and vq share the same path). Therefore,
by (7), LST k(vp) = minftpign (Vp) 1L maxftjop (Vp); teore (Vp)9g= minfthign (Vp) 1 tjon (Vp)g
and LST g (vg) = minfthigh (Vq) 1, maxftion (Vq); teore (Vq)9 = mMinftnign (Vg) L tjob (V)0
Sincetjop and thgn only depend on pathP, and v, and vq share the same path, the LST in
both states is identical, i.e., LST i (vp) = LST (vq). J

5.3 Soundness of the Merge Phase

We now establish that merging two states is safe, i.e., it neither emoves a possible job
sequence from the graph (Corollary 2), nor does it decrease the upper bod on the WCRT
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(or increase the lower bound on the BCRT) of any job inJ (Corollary 3).

We rst de ne the notion of a mutated vertex as follows: v{ is a mutated version ofv, if
it has the same set of scheduled jobs as the original state, and 8x, EFT X(vg) EFT «(Vp)
and 8x, LFT »(vp)  LFT »(vg) _ LFT x(Vp)  tjon (Vp). We assume that a mutated statev]
sits in place of the original state v, in the schedule-abstraction graph.

Next, for any such mutated vertex, we prove that any job that was a direct successor
of the original state is also a direct successor of the mutated vertex (Lema 5). Moreover,
we show that the direct successors of mutated states are also mutated. ¢mma 6 and 7).
This property is then used to prove the main claim that merging is saé. The proofs of
Lemmas 5 to 9 are provided in the appendix on page 21.

| Lemma 5. For a vertex vg created by mutatingv,, any job J; that can be scheduled on
core (Vvp) according to (1), can still be scheduled on core k(vg) according to (1).

| Lemma 6. Let vy be created by mutatingv,, and let v4 and vJ be the vertices resulting
from scheduling jobJ; on core (vp) and (v9), respectively. 8x, LFT ,(v§)  LFT x(vq)
or LFT x(Vg)  tjob (Vg).

| Lemma 7. Let vj be created by mutatingv,, and let vq and vJ be the vertices resulting
from scheduling jobJ; on core (vp) and (VvJ), respectively. 8x, EFT ,(v])  EFT x(vq).

| Lemma 8. If vg is a vertex created by mutatingv,, then all the system states reachable
from v, are also reachable fromvj.

| Lemma 9. Let vq and v, be two vertices such thatl P = J @ (i.e., the set of jobs scheduled
until reaching vq is equal to the set of jobs scheduled until reaching,), then the state vg
resulting from merging v, and vq with Algorithm 2 is a mutated version of bothv, and vq.

By successively applying Lemmas 8 and 9, we obtain the following corollgr

| Corollary 1. Let vq and v, be two vertices such thatl ® = J °Q (i.e., the set of jobs
scheduled until reachingvq is equal to the set of jobs scheduled until reaching,), all system
states reachable fromv, and vq are also reachable from the merged state.

| Corollary 2. For two states that are merged by Algorithm 1, all system states reachke
from either of them are also reachable from the merged state.

Proof. Since for two statesv, and vq, De nition 2 enforces that J P = J Q, the resulting
merged state satis es the requirement of Corollary 1 and hence provethe claim. J

5.4 Soundness of Algorithm 1

By successively applying Lemmas 3 and 4 and then Corollary 2, we obtain thathe analysis
is safe, as stated in Theorem 1 and its corollary below.

| Theorem 1. For any execution scenario such that a jobJ; 2 J completes at some
time t on core  (under the given scheduler), there exists a pathP = h/l;:::;vp;vgi
in the schedule-abstraction graph such thad; is the label of the edge fromv, to vg and

t 2 [EFT «(v); LFT «(vp)], where EFT(vp) and LFT ((vy) are given by Equation(8).

| Corollary 3. Lines 10 and 11 of Algorithm 1 calculate a lower and an upper bound othe
BCRT and WCRT, respectively, of every job inJ .
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Proof. Lines 10 and 11 obtain a job's response time directly fron(8), which provides correct
bounds on the earliest and latest nish times of a job according to Lemma 1.Since according
to Theorem 1, for any execution scenario, there is a path in the graph, Algothm 1 includes
all possible schedules of a job and hence the obtained values are cordgdbwer-bounding
and upper-bounding the actual BCRT and WCRT of that job. J

5.5 Inexactness of Algorithm 1

The following example shows that the abstraction that we use to repreent core states may
re ect impossible execution scenarios. Therefore, Algorithm 1 is swient but not exact.
Assume that a system statev, contains two core intervals ; =[5;10] and , =[1;10]

and that there is an unscheduled jobJ; with C"" = CI"& =5 rpin = (M =1 and
d; = 30. Further, assume that during the expansion phase of Algorithm 1,J; is dispatched to

1, which results in  ; =[10;15] and , =[5;10] (after the update phase). According to this
new system state, it may happen that core , becomes available at time 3 [5;10], and that
core 1 remains busy until time 152 [10; 15]. However, this scenario is actually impossible.
If 1 remains busy until time 15, then J; must have started to execute at time 10, implying
that both 3 and , must have been busy until time 10. Otherwise, jobJ; would have been
dispatched on  rather than ;. In other words, ; may become available at time 15 only if

2 becomes available no earlier than time 10. This example shows a depesmnty between
the availability time of the cores, which is ignored in the current system state abstraction
to keep the system state encoding simple, and to increase the nuwer of states that can
be merged. This design decision, however, makes the analysis inexaince it considers all
possible but also some impossible execution scenarios.

6 Empirical Evaluation

We conducted experiments to answer two main questions{(i) does our test yield better
schedulability; and (ii) is the runtime of our analysis practical? To answer the rst question,
we applied Algorithm 1 to two global non-preemptive scheduling polices: G-NP-FP and
G-NP-EDF. As we are unaware of any schedulability analysis for non-preemtive job sets
(or periodic tasks) for the aforementioned global scheduling policieswe used the existing
tests designed for sporadic non-preemptive task sets as a baselinehdse tests include the
schedulability test of Baruah [4] for G-NP-EDF (denoted by Baruah-EDF), two tests of Guan
et al. [1Q] for any global non-preemptive work-conserving scheduler (denotedybGuan-Test1-
WC), and for G-NP-FP (denoted by Guan-Test2-FP), and the recent schealulability test of
Lee (denoted by Lee-FP) [L3]. For the sake of comparison, we used simple rate-monotonic
priorities for the xed-priority tests since we did not observe substantial di erences when
trying out other heuristics such as laxity-monotonic priorities.

To randomly generate a periodic task set withn tasks and a given utilization U, we
rst randomly generated n period values in the range [10000 100000] microseconds with
log-uniform distribution (and a granularity of 5000 s as suggested by Emberson et al.g].
We then used the RandFixSum R2] algorithm to generate n random task-utilization values
that sum to U. From the task utilization, we obtained C™* and setC™" to be 0:1 CM .
Tasks were assumed to have implicit deadlines. We discarded any tesset that had more
than 100000 jobs per hyperperiod. Although, in theory, a hyperperiod maycontain many
more jobs, in industrial settings, e.g., automotive systems12], periods are usually chosen
such that the hyperperiod includes only at most a couple of thousand job.
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Figure 3 Experimental results for various parameters. (a, b, ¢, d) Schedulability ratio. (e, f,
g, h) Average analysis runtime. (i, j) Analysis runtime vs. the number of jobs in a hyperperiod.

The experiments were performed by varying(i) the total system utilization U (for 4 cores
and 10 tasks), (i) the number of tasksn (for 4 cores andU = 2:8, which is 70% of the
capacity of the cores), (iii) the number of coresm (for 10 tasks andU = 2:8), and (iv) the
total task utilization U while tasks had 100 microseconds release jitter (10 tasks and 4 cores).
This roughly represents jitter magnitudes that can be expected dueo interrupt handling
delays. For each combination ofn, m, and U, 1000 random task sets were generated.

To evaluate schedulability of a task set, we implemented Algorithm 1 asa single-threaded
C++ program and performed the analysis on a cluster of hosts having an Inté Xeon E7-8857
v2 processor clocked at 3 GHz and 1.5 TiB RAM. In the experiments, a tas set was claimed
unschedulable as soon as either an execution scenario with a deadlingss was found or
a timeout of four hours was reached. Fig. 3 reports the observed schedbility ratio and
runtime of Algorithm 1 for di erent setups. The schedulability rati o is the ratio of task sets
deemed to be schedulable divided by the number of generated tasktse

Schedulability results. Figs. 3-(a) to (c) show a signi cant gap between the schedulability
ratio of our solution and the state-of-the-art tests. For example, while Lee-FP could only
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identify 8% of schedulable task sets folU = 2:4, our test shows that at least 72% of them are
schedulable. Similar patterns are seen when the number of tasks or increases. As shown
in Fig. 3-(b), schedulability improves as the number of tasks incrases. This is because, by
keeping utilization constant, an increase inn will decrease per-task utilization, which in turn
reduces the WCETs and blocking. Thus, more task sets become schedble. Of the existing
tests, however, only the Lee-FP and Guan-Test2-FP tests could benefrom this behavior
and only by up to 16% (for n = 30).

With the increase in the number of cores, blocking scenarios causeay tasks with large
execution times are less likely to occur and hence more task sets adeemed schedulable.
However, as shown in Fig. 3-(c), the current tests are quite pessiistic, e.g., Lee-FP could
identify only 11% of the task sets as schedulable when (at least) 82% of theask sets are
schedulable on 5 cores. From Figs. 3-(a) to (c), we conclude that our analisis able to
reclaim a large portion of pessimism in the baseline analyses (when apetl to periodic tasks).

Fig. 3-(d) shows the e ect of jitter on schedulability. Since jitt er increases the number of
possible interleavings between the start time of the tasks, more lncking scenarios become
possible and hence tasks with tight deadlines may become unschedible. This behavior can
be observed in the average runtime of the analysis reported in Fig. 3-(h Yet, our analysis
achieves a substantially higher schedulability ratio than the basehes.

It is worth noting that for U = 0:4, the counterintuitive drop in schedulability for tasks
with jitter is due to the timeout. The bar chart shown at the bottom of F ig. 3-(d) represents
the ratio of task sets that could not be analyzed within the four-hour limit. The reason is
that for U = 0:4, tasks have a small WCET and thus more combinations of job orderings
may require analysis before Algorithm 1 is able to merge the branches.nlthe future, we
plan to develop techniques to handle lower (or higher) utilization tasks di erently, e.g., by
designing more eager merge rules that combine paths with di erent job ets.

Moreover, we observed that the gap between the schedulability raticof EDF and FP is
small because most of the deadline misses are due to the work-consenyinature of the policy
rather than the priority assignment. Namely, since a work-conservingscheduler cannot leave
the processor idle, it will schedule any lower-priority job befole the next higher-priority job
is released. As a result, high-frequency tasks with tight deadling will miss their deadline
before the priority assignment method can play a signi cant role in improving the order of
executions. We conclude that there is a need for a global schedulinggdrithm that is able
to avoid such blocking scenarios, for instance by being non-work-caerving. While such
non-work-conserving non-preemptive scheduling algorithms haveecently been proposed for
uniprocessor systems17, 18], currently no such solution exists for multiprocessor platforms

Runtime of the analysis.  As shown in Fig. 3-(e), with the increase in the utilization the
average runtime of the analysis increases since busy windows becohoeager. Consequently,
paths that have the same set of jobs are merged only at later stages. For largettilizations
such as forU  2:8, however, identifying unschedulabletask sets becomes easy due to the
presence of tasks with large WCETSs that can block all cores for a long time Since we
stop the analysis as soon as a deadline miss is found, not-schedulable kasets with large
utilization can be identi ed quickly. The runtime of the analysis h ence decreases rapidly for
larger utilization values.

Figs. 3-(f) and (g) show that the runtime of the analysis grows with increases in the
number of tasks or cores because more states will be generated in the exgsion phase.
It is worth noting that unlike the e ect pertaining to the number of tasks, increasing the
number of cores will not increase the runtime monotonically. The reasn is that, as shown in
Fig. 3-(c), for a workload with U = 2:8 and 10 tasks, almost all task sets are schedulable



9:20

A Response-Time Analysis of Global Non-Preemptive Scheduling

on 6 cores or more. That is, the number of coreper seonly has a limited e ect on the
runtime of the algorithm; however, larger platforms are likely to host large task sets, with
a potentially large number of jobs per hyperperiod, and our analysis is ensitive to such
increases in workload size.

Figs. 3-(i) and (j) report the runtime of the analysis for each task set wr.t. the number of
jobs in a hyperperiod for two scenarios: varying utilization and varying the number of tasks,
respectively. As shown by the gures, the runtime of the analysis gows with the increase in
the number of jobs in a hyperperiod. We also observe that with an incease in the number of
tasks from 10 (Fig. 3-(i)) to up to 30 (Fig. 3-(j)), the largest observed runtime of the analysis
grows linearly, i.e., from 1000 to 4000.

Since a naive analysis without path merging does not scale even for a (priocessor system,
as shown in [L6], we did not perform a separate experiment to show the e ciency of the path
merging technique. In the future, we plan to further explore the design space for di erent
merge conditions and their e ciency for di erent task set types and u tilizations.

Benets. Overall, we conclude that: (i) the proposed analysis is practical for realistic
workload sizes,(ii) itidenti es a signi cantly larger portion of schedulable tasks in comp arison
with state-of-the-art tests for sporadic tasks, and(iii) even when jitter is considered (which
allows for more blocking scenarios and uncertainties), our analysis 8t achieves much higher
schedulability than the baseline tests.

Limitations. We also observed that the runtime of the analysis grows quickly (e.g.more

task sets hit the four-hour timeout) for larger systems, e.g., when moe than 20 tasks run on
a 16 core platform. This is due to the increase in the number of tasks anthe number of

ways a task can be assigned to a core in the expansion phase of the algorithifio scale to

such large systems, a more e cient abstraction will be needed that albws for more eager
merging techniques.

7 Conclusion

The paper provides a su cient schedulability analysis for global job-level xed-priority
scheduling algorithms and non-preemptive job sets. We have prestsd a technique for
deriving an upper bound on the WCRT and a lower bound on the BCRT by expdoring an
abstraction of all possible schedules of a job set that re ects the unagainties in job execution
and release times. We developed the notion of a schedule-abstractionaph for global
schedulers and introduced two key techniques, namely path mergg and fast-forwarding, to
slow the state-space growth and proved the analysis to be sound.

Empirical evaluations on periodic task sets show a signi cant improvement in identifying
schedulable task sets w.r.t. the state-of-the-art tests in all exgrimental setups. The evalua-
tions show that the runtime of the analysis ranges from a couple of second® a couple of
hours for realistic system setups, e.g., up to 30 tasks, up to 9 coreand up to 100000 jobs
per hyperperiod, which is an acceptable performance for an o ine, degn-time analysis.

The experiments reported in the paper are all based on a sequential ipiementation. We
expect that the results could still be improved by parallelizing the analysis so that naturally
independent scenarios are explored in parallel. To this end, we hop® derive rules that
allow maximum paralellism between independent exploration frontigs. Moreover, we will
investigate di erent merge rules to reduce the runtime of the analysis. We also plan to extend
the solution presented here to analyze systems with more complicateproperties such as
precedence constraints and preemption points, and to other schediulg problems such as
gang scheduling.
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Appendix

Lemma 5. For a vertex vg created by mutatingvp, any job J; that can be scheduled on
core (vp) according to (1), can still be scheduled on core k(vg) according to (1).

Proof. We must show that (1) holds for J; and (vp), i.e., ESTix (vp)  LSTi(vp). For
a mutated state, we have EFT i(v))  EFT(vp) which leads to having ESTix (v9)
ESTix (vp) (from (2) since the release timer™" of J; does not change). On the other
hand, LST(vp) = minftugn (v)) 1, maxf tion (V); teore (V)99 Since mutating a state will
not change the set of scheduled jobs in the path reaching to that statet;op (vg) = tjob (Vp)
and tpign (vg) = thigh (Vp). Regarding teore (Vp) and tegre (vg), two cases must be considered;
by de nition of an mutated vertex, either 8x, LFT y(vp) LFT X(vg), or 9 4 such that
LFT x(v9) < LFT x(Vp)  tjon (Vp).
Case (i). If there is a core interval y such that LFT X(vg) < LFT x(Vp)  tjon(Vp), then by
(5), teore (Vp)  tiob (Vp) @nd teore (VJ)  tion (Vp) (recall that tion (Vp) = tjon (vJ)). Therefore,
we haveLST(Vp) = minftngn (Vo)  Litjon (Vp)g and LSTi(vp) = minfthgn (Vp)  L;tion (V9)G,
which implies LST(vp) = LST;(vD).
Case (ii). If 8x, LFT (vp) LFT x(vp), then by (5), teore (Vp)  teore (Vp), implying by (7)
that LSTi(vg) can only be larger than LST; (vp).

Finally, because (1) holds for v,, we have EST (vg) ESTix (vp) LSTi(vp)
LST;(vg). Thus, Condition (1) holds for J; and core (vp). J

Lemma 6. Let v] be created by mutatingv,, and let vq and v§ be the vertices resulting from
scheduling jobJ; on core (v,) and (vy), respectively. Then we haveBx, LFT ,(v§)

Proof. We know from Lemma 5 that v exists if vq does. We show that8x, LFT ,(v§)

Case (i). First consider core  (i.e., the core on whichJ; is scheduled). According to(8),
LFT k(vq) = LSTi(vp) + C™* and LFT (v]) = LSTi(v)) + C™ . Sincev, is a mutated
state of v, similar to cases (i) and (ii) of Lemma 5's proof, LSTi(vg) LST(vp). It follows
that LFT k(vg) LFT k(vq). This proves the claim for .

Case (ii). For all the other cores , s.th. x 6 k, LFT x(vq) and LFT x(vg) are computed
with (9) (during the expansion phase) and(13) (during the fast-forward phase). Therefore,
LFT x(vq) = maxftmin (Vg); LFT x(Vp); ESTix (Vp)gand LFT 4 (v§) = maxf tmin (V9); LFT x(V9);
EST ik (vg)g. We consider three sub-cases for whebFT  (vq) is equal to tmin (Vg), LFT x(Vp),
or ESTi;k (Vp)l
(ii.a.) Assume that maxftmin (Vg); LFT x(Vp); ESTix (Vp)g = tmin (V). We note that because
tmin (Vq) only depends on the jobs that have been scheduled on the path to readty vq,
we have that tmin (V) = tmin (VJ) (Vq and vJ share the same path). HencelFT 4(vg) =
tmin (Vg) = tmin (vQ)  maxftmin (Vg); LFT x(v); ESTik (v3)g = LFT x(vg). This proves the
claim for this case.
(ii.b.) If maxftmin (Vgq); LFT x(Vp); ESTixk (Vp)9= ESTix (Vp), then ESTix (vp)  LFT x(vp)
teore (Vp) (the last inequality comes from (5)). Further, by Condition (1), job J; was eligible
to be scheduled on (vp) only if ESTix (Vp) minfthgn (vp) L maxftion (Vp); teore (Vp)90.
BecauseESTx (Vp)  teore (Vp), itmust hold that ESTix (Vp)  tjob (Vp). Since by assumption
LFT x(vq) = ESTik (vp), we haveLFT x(vq)  tin(vp) , ming fry®™ jJy 23 nJ Pg
ming fry® jJy 23 nd P nfJigg= tjo (Vq), which proves the claim for this case.

9:21
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(ii.c.) Finally, if maxftmin (Vg); LFT x(Vp); ESTix (Vp)g = LFT x(vp), then, becausevg is a
mutated version of v,, we either have LFT X(vg) LFT x(vp) or LFT x(Vp)  tjon (Vp). If
LFT «(vp)  LFT x(vp), then LFT x(v]) = maxf tmin (vg); LFT x(VD);ESTix (V)9 LFT x(v9)
LFT x(vp) = LFT x(vq); which proves the claim. IfLFT x(vp)  tjon (Vp), then LFT y(vq) =
LFT «(Vp)  tion(Vp) , ming fr jJ,23nJ Pg ming fr™ jJy, 23 nJ P nfligg=
tjob (Vg); which proves the claim for the last case. J

Lemma 7. Let v] be created by mutatingv,, and let vq and v{ be the vertices resulting from
scheduling jobJ; on core (vp) and k(vg), respectively. Then we havex, EFTX(vg)
EFT x(vq).

Proof. We know from Lemma 5 that vg exists if vy does. We show that8x, EFT X(vg)
EFT x (V).

Case (i). First consider core k(vg) (i.e., the core on which J; is scheduled). According
to (8) and (2), EFT k(vq) = ESTik (vp) + C™ = maxfr™ ;EFT «(vp)g+ C™ and
EFT «(v)) = ESTix (vp) + C™ = maxfr™ ;EFT \(v3)g+ C™" . Sincev is a mutated
version of vy, we have that EFT k(vg) EFT (vp), thus, inserting it in the above equations,
EFT (V)  EFT (V).
Case (ii). For the other core intervals ,(v]) sith. x & k, EFT x(vq) and EFT (V)
are computed with (9) (during the expansion phase) and(13) (during the fast-forward
phase). Therefore,EFT x(vq) = maxftmin (vq); EFT x(vp); ESTix (Vp)g and EFTX(vg) =
maxf tmin (V)); EFT x(v3); ESTix (vp)g. Becausev] is a mutated version of v,, we have
EFT «(vg) EFT x(vp) which also leads to havingESTx (v))  ESTix (Vp) (from (2) since
the release timer™" of J; does not change). Finally, becausémin (vq) only depends on
the jobs that have been scheduled on the path to reachingy, we have that tmin (Vq) =
tmin (V) (Vq and v§ share the same path). Putting it all together we get EFT x(vg) =
maxf tmin (Vg); EFT x(Vp); ESTix (V)9 maxf tmin (Vq); EFT x(Vp); ESTix (Vp)g = LFT x(Vq).
J

Lemma 8. |If vg is a vertex created by mutatingvy, then all the system states reachable
from v, are also reachable fromvj.

Proof. By Lemma 5, all direct successor states, of v, obtained by scheduling a jobJ; on
core (vp) are also reachable fromvg. Let vg be the successor 0\‘/5J obtained by scheduling
a job J; on core k(vg), by Lemmas 6 and 7, statevg is either equal to vq or is a mutated
version ofvy. Therefore, by inductively applying Lemmas 5, 6 and 7 onv, and vg and all
their direct and transitive successors, the claim follows. J

Lemma 9. Let vq and v, be two vertices such thatl P = J © (i.e., the set of jobs scheduled
until reaching vq is equal to the set of jobs scheduled until reaching,), then the state vg
resulting from merging v, and vq with Algorithm 2, is a mutated version of bothv, and vq.

Proof. From line 3 of Algorithm 2, we have 8x; EFTX(VS) = minf EFT x(vp); EFT x(vg)g
and LFT x(v9) = maxfLFT x(vp); LFT «(vq)g. Therefore, 8x; EFT x(v))  EFT x(v,) and
EFT (V) EFT x(Vg) and LFT ,(v3)  LFT »(vp) and LFT ,(v3)  LFT x(vq). Further, by
assumption,J P = J 9, hence it follows that vJ is a mutated version of bothv, and vq. J
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