Conference Paper

A New Approach for Limited Preemptive Scheduling In Systems with Preemption Overhead

Mitra Nasri
Geoffrey Nelissen
Gerhard Fohler

CISTER-TR-160504
A New Approach for Limited Preemptive Scheduling in Systems with Preemption Overhead

Mitra Nasri, Geoffrey Nelissen, Gerhard Fohler

CISTER Research Center
Polytechnic Institute of Porto (ISEP-IPP)
Rua Dr. António Bernardino de Almeida, 431
4200-072 Porto
Portugal
Tel.: +351.22.8340509, Fax: +351.22.8321159
E-mail: http://www.cister.isep.ipp.pt

Abstract

This paper considers the problem of reducing the number of preemptions in a system with periodic tasks and preemption overhead. The proposed solution is based on the key observation that for periodic task sets, the task with the smallest period plays an important role in determining the maximum interval of time during which a lower priority task can be executed without being preempted. We use this property to build a new limited preemptive scheduling algorithm, named RS-LP, based on fixed-priority scheduling. In RS-LP, the length of each task’s non-preemptive region is varying during the system execution so as to keep the preemptions aligned with the releases of the highest priority task. This simple mechanism allows us to reduce the overall number of preemptions. The proposed algorithm, decides whether or not to preempt the currently executing task based on the maximum blocking tolerance of the higher priority tasks. In any case, the preemptions are authorized only at release instants of the task with the smallest period, there by limiting the maximum number of preemptions to the number of releases of the highest priority task. Moreover, in this paper, we provide two different preemption overhead aware schedulability tests for periodic and loose-harmonic task sets (i.e., where each period is an integer multiple of the smallest period), together with a lower bound on the maximum number of preemptions. To conclude, extensive experiments comparing RS-LP with the state of the art limited preemptive scheduling algorithms are finally presented.
A New Approach for Limited Preemptive Scheduling in Systems with Preemption Overhead

Mitra Nasri¹, Geoffrey Nelissen², Gerhard Fohler¹
¹ Chair of Real-time Systems, Technische Universität Kaiserslautern, Germany
² CISTER/INESC-TEC, ISEP, Porto, Portugal,
Emails: {nasri.fohler}@eit.uni-kl.de, grrpn@isep.ipp.pt

Abstract—This paper considers the problem of reducing the number of preemptions in a system with periodic tasks and preemption overhead. The proposed solution is based on the key observation that for periodic task sets, the task with the smallest period plays an important role in determining the maximum interval of time during which a lower priority task can be executed without being preempted. We use this property to build a new limited preemptive scheduling algorithm, named RS-LP, based on fixed-priority scheduling. In RS-LP, the length of each task’s non-preemptive region is varying during the system execution so as to keep the preemptions aligned with the releases of the highest priority task. This simple mechanism allows us to reduce the overall number of preemptions. The proposed algorithm, decides whether or not to preempt the currently executing task based on the maximum blocking tolerance of the higher priority tasks. In any case, the preemptions are authorized only at release instants of the task with the smallest period, thereby limiting the maximum number of preemptions to the number of releases of the highest priority task. Moreover, in this paper, we provide two different preemption overhead aware schedulability tests for periodic and loose-harmonic task sets (i.e., where each period is an integer multiple of the smallest period), together with a lower bound on the maximum number of preemptions. To conclude, extensive experiments comparing RS-LP with the state of the art limited preemptive scheduling algorithms are finally presented.

I. INTRODUCTION

Preemptive scheduling is used in most real-time systems because it allows the operating system to allocate the processor to the incoming tasks with urgent timing requirements, and hence, increases the overall schedulability [1]. For example, the preemptive earliest deadline first (EDF) scheduling algorithm is able to schedule a system up to 100% utilization if: i) tasks are periodic with implicit deadlines, ii) there is no shared resource or dependency among the tasks, and iii) the preemption overhead is negligible [2]. In reality, however, the preemption overhead is not negligible [3]. It has been shown that it can be as large as 40% of the worst-case execution time (WCET) of the task measured in isolation [4].

The preemption overhead has different sources. In cache-enabled real-time systems, cache related preemption delays (CRPD) happen when a task preempts another and evicts some cache blocks which have been used and will later be reused by the preempted task [3]. Preemption overhead can also happen in the context of networked systems where messages must be segmented in order to not cause a long blockage for messages with higher frequency and shorter deadline. In such conditions, a header will be added to each segment of the message which in turn, increases the total transmitted data, and hence, decreases the throughput. In reservation based scheduling, which are commonly used in hypervisors [5] or integrated modular avionics (IMA) systems [6], preemption overheads can be significant too. For instance, according to the ARINC 653 avionics standard, real-time applications run within a partition server which is the basic execution environment of software applications [6]. Since IMA supports the temporal and spatial isolation of the partition servers from one another, the various real-time avionics functions (having various safety-assurance levels) can be developed independently. However, in order to preserve the isolation between the partition servers, overheads for partition server context-switch (save of the data transmitted by the preempted partition to other partitions, load of the data received by the preemption partition, switching of execution stack and processor registers, cache flushes implemented to enforce the space partitioning, etc) must be considered [7].

There have been different approaches to cope with preemption overhead. One of them is to provide schedulability analysis for the scheduling algorithms such as rate monotonic (RM) and EDF which are implemented in many real-time operating systems [8]. However, RM and EDF have a relatively large number of preemptions. In order to reduce the number of preemptions, several scheduling algorithms have been developed including: fixed-priority scheduling with floating non-preemptive regions (FP-NPR) [9], fixed-priority scheduling with preemption points (FP-FPP) [9], preemption threshold (PT) approaches [10], [11], and limited preemption EDF (LP-EDF) [12], [13].

FP-NPR and LP-EDF defer the preemption of a low priority job if a high priority job is released. In both algorithms, the maximum length of the non-preemptive region (NPR) is calculated at design time in the way that the schedulability is guaranteed. In LP-EDF, the length of NPR is a function of the remaining time to the deadline of the executing job while in FP-NPR it is a constant value for all jobs of a task. In our paper, we show that the maximum length of the NPR obtained in [1], [9] and [12], [13] is valid only for sporadic tasks, not for periodic tasks. In FP-FPP, a preemption can only happen at the preemption points of the executing task. The maximum length of NPR between every two preemption points has been calculated in [1], [9] using the same method as for FP-NPR. Therefore, FP-FPP has the same problem as FP-NPR with periodic tasks. In the preemption threshold approach [10], a low priority task can disable the preemption up to a certain priority level, called preemption threshold. In most cases, however, the low priority tasks are not allowed to have
preemption threshold 1, because otherwise, they will not let
the highest priority task (denoted by τ_1) be scheduled. As a
result, every release of τ_1 causes a preemption, which in many
cases, could be postponed as we will show later.

In [14], an EDF-based approach has been introduced that
decides whether to preempt an executing job or not based
on the newly released high priority job. At design time, a
binary variable is assigned to each task which determines
whether jobs of that task has the right to preempt any other
job in the system or not. This approach has two disadvantages:
a) in order to assign the binary variables it is required to itera
te over all possible combinations of the variables and
for each combination, a pseudo-polynomial time schedulability
test must be evaluated, and b) since the binary variables are not
related to the jobs, but to the tasks, in many task sets, τ_1 will
always be a preemtting task, meaning that as soon as a job
of τ_1 is released, it preempts the executing job. As a result,
similar to the preemption threshold approach, this approach
cannot take advantage of postponing τ_1 to provide large non-
preemptive execution segment for the task.

A non-preemptive execution segments (NPS) is defined
as an interval of time during which a task is executed non-
preemptively after it became the task with the highest priority
ready to execute. As observed in [15], τ_1 plays an important
role in the length of the NPS of other tasks in the system
because, in a periodic task set, τ_1 has the highest release
frequency and the shortest deadline. Nasri et al., [15], [16]
have used this observation to build a non-work-conserving non-
preemptive scheduling algorithm based on RM that schedules
task only if it does not cause a deadline miss for the next
instance of τ_1, otherwise, it inserts an idle time until the
next release of τ_1. However, this approach may reduce the
schedulability of highly utilized systems due to the inserted
idle times.

In order to reduce the number of preemptions, we propose
to dynamically compute the length of the NPS’ as a function
of the higher priority jobs that are being released rather than,
as currently done in most approaches of the state of the art,
statically maximizing the length of the NPR as a function of
the sole task about to be preempted.

In this paper, we present an online fixed-priority scheduling
algorithm which synchronizes the execution windows of the
low priority tasks with the releases of τ_1. Therefore, it allows
the low priority tasks to be scheduled non-preemptively for
the largest feasible non-preemptive interval of time equal to
two times the slack of τ_1. Yet, to cope with the situations
where the maximum tolerable blocking of a high priority
task is not as large as this window, we let a high priority
task with a low blocking tolerance force a preemption. That
additional preemption is however postponed until the next
release of τ_1. In other words, our approach can be seen as
a limited preemption strategy with a varying length of the
non-preemptive region, which is determined with respect to
the parameters of the released tasks. Besides, due to the fact
that even if a preemption is required, we postpone it to the the
next release of τ_1, we synchronize the execution segments of
the tasks with the releases of τ_1 which in turn, gives them a
chance to maximize their next NPS.

Contributions. The contributions of our paper are listed as
follows: 1) showing that the existing approaches, i.e., RM,
EDF, FP-NPR, FP-FPP, and LP-EDF are not able to mini-
mize the number of preemptions, 2) introducing a scheduling
solution based on fixed-priority scheduling which is able to
increase the length of NPS, 4) providing schedulability tests for
periodic and loose-harmonic task sets that are aware of
the preemption overhead, 5) deriving the lower bound on the
number of preemptions and proposing a new feasibility test,
and 6) showing that verifying the feasibility of a task set which
must be scheduled with the minimum number of preemptions
obtained from our lower bound, is an NP-Hard problem.

Paper organization. The remainder of the paper is organized
as follows: Sect. II describes the system model and back-
grounds. In Sect. III we present some motivational examples
to show differences between the existing limited preemption
scheduling solutions. In Sect. IV we introduce our fixed
priority scheduling solution. Our two schedulability tests for
periodic and loose-harmonic task sets are presented in Sect. V.
In Sect. VI, we derive and discuss the lower bound on the
number of preemptions. Sect. VII presents the experimental
results, and the paper is concluded in Sect. VIII.

II. SYSTEM MODEL AND BACKGROUND

A. System Model

We consider a uniprocessor system executing a set of
independent hard real-time periodic tasks denoted by $\tau =
\{\tau_1, \tau_2, \ldots, \tau_n\}$. Each task τ_i in the task set is identified by
$\tau_i = (C_i, T_i, \Delta_i)$, where $C_i \in \mathbb{R}$ is the worst-case execution
time (WCET) of τ_i, $T_i \in \mathbb{R}$ is its period, and $\Delta_i \in \mathbb{R}$ is its
preemption overhead. Δ_i can be calculated with one of the
several methods introduced in the state of the art (e.g., [17] or
[7]). In this paper, we assume that the deadlines are implicit
(i.e., the deadline of each task is equal to its period) and that
there is no release offsets, (i.e., all tasks are released at time
0). The task set is said to be schedulable by a given scheduling
algorithm if for all sequences of jobs generated by the tasks
from time 0 to ∞, no job misses its deadline when scheduled
with that algorithm. In the paper, we use term periodic to refer
to the periodic tasks with no release offset.

The system utilization is denoted by $U = \sum_{i=1}^{n} u_i$ where
$u_i = C_i / T_i$ is the utilization of task τ_i. The hyperperiod is
denoted by H and is the least common multiple of the periods.
Tasks are indexed according to their periods so that $T_1 < T_2 \leq
\ldots \leq T_n$. The period ratio of a task τ_i ($1 < i \leq n$) is defined as
$k_i = T_i / T_i - 1$, $k_i \in \mathbb{R}$. A task set is harmonic iff $\forall i, k_i \in \mathbb{N},$
and is loose-harmonic [16] iff $\forall i, T_i / T_1 \in \mathbb{N}$.

We use hp_i to denote the set of tasks with higher priority
than τ_i, i.e., $hp_i = \{\tau_1, \tau_2, \ldots, \tau_{i-1}\}$ where tasks are indexed
according to their periods. Without loss of generality, we
assume that if there are several tasks with a period equal to
T_1, then they are represented as a single task τ_1 with a WCET
equal to $\sum_{(\tau_i; T_i = T_1)} C_i$ and a period equal to T_1. All these
tasks are then executed sequentially.

B. Background

This subsection presents the state of the art approaches
to calculate the maximum NPR lengths of a set of tasks
scheduled with a fixed-priority scheduling algorithm. We more particularly discuss two specific policies: FP-NPR and FP-FPP.

With FP-NPR, a task enters in a non-preemptive mode at the release of a higher priority task. The length of the non-preemptive region is calculated at design time according to the maximum tolerable blocking time (denoted by β_i) of each task τ_i. In [9], β_i is calculated using the following equation:

$$\beta_i = \max_{C_i < t \leq T_i} \{t - rbf_i(t)\}$$ \hspace{1cm} (1)

where $rbf_i(t)$ is an upper bound on the execution request in a time window of length t in which tasks in $hp_i \cup \tau_i$ execute. $rbf_i(t)$ is defined as

$$rbf_i(t) = C_i + \sum_{j=1}^{i-1} \left\lceil \frac{T_i}{T_j} \right\rceil C_j$$ \hspace{1cm} (2)

In [9], Equation (1) is solved by considering value of t obtained from a set of time instants which was defined in [18]. In [18] it has been shown that instead of considering all possible t values from C_i to D_i, it is enough to consider a finite set of values for each task τ_i. This set is obtained with the following recursive expression:

$$TS(\tau_i) \doteq P_{i-1}(D_i)$$ \hspace{1cm} (3)

$$P_j(t) = \begin{cases} \{t\} & j = 0 \\ P_{j-1}\left(\left\lfloor \frac{t}{T_j} \right\rfloor T_j\right) \cup P_{j-1}(t) & \text{otherwise} \end{cases}$$ \hspace{1cm} (4)

After obtaining β_i from Equation (1), the maximum NPR length (denoted by Q_i) of task τ_i is calculated the recursive equation below (starting from $Q_1 = \infty$) [9]:

$$Q_i = \min\{Q_{i-1}, \beta_i\}$$ \hspace{1cm} (5)

With FP-FPP, Q_i is used to assign preemption points in the task, i.e., the maximum distance between every two consecutive preemption points is Q_i.

Note that preemption thresholds algorithms [11] use the exact same concept of maximum tolerable blocking to compute the length of the execution segments and their associated preemption threshold.

III. Motivational Examples

In this section, we discuss the natural differences between the state of the art methods for limited preemption scheduling, in order to provide a better understanding about their advantages and weaknesses. We show that in periodic task sets, the maximum length of the non-preemptive execution segment, as well as the maximum length of the NPR of a task can be larger than what is provided by some of the state of the art algorithms.

Fig. 1 shows a task set with 3 tasks $\tau_1 : (1, 10)$, $\tau_2 : (9, 35)$, and $\tau_3 : (52, 105)$ which is scheduled by RM, EDF, FP-FPP, FP-NPR, LP-EDF, and our scheduling algorithm which will be presented in this paper. As it can be seen, as soon as a job of τ_1 is released both EDF and RM preempt the low priority job even if the preemption can be postponed. For FP-FPP, shown in Fig. 1-(b), we have used Equation (5) to calculate Q_i (i.e., the length of the NPR between every two preemption points). This algorithm executes the tasks non-preemptively until it reaches a preemption point. As can be seen, FP-FPP does not minimize the number of preemption since in this algorithm, Q_i is highly affected by the slack of the first task.

The schedule provided by the floating point limited preemption algorithms, e.g., LP-EDF and FP-NPR, is shown in Fig. 1-(c). However, as one can see, since the non-preemptive mode of a task is activated when any higher priority task is released, these algorithms preempt τ_3 at 44 while it could have been executed for 5 more time units without jeopardizing the schedulability of τ_2 or τ_1. The reason is that the maximum length of the NPR (which will be activated at the releases of high priority tasks) should in fact depend of the characteristics of the released tasks. For example, at time 20 when τ_1 is released, the length of the NPR is 9, which will create a non-preemptive execution segment [11, 29] for τ_3. However, when τ_2 is released at 35, it is possible to have a larger non-preemptive execution segment from 31 until 49 for τ_3. At 49, the slack of the 5th job of τ_1 becomes 0, and hence a preemption is unavoidable. This solution has been shown in Fig. 1-(d). We summarize these properties in the following theorem.

Theorem 1. In periodic task sets, EDF, RM, LP-EDF, FP-NPR, and FP-FPP neither minimize the number of preemptions nor maximize the length of the non-preemptive execution
segment of a task.

Proof: The proof is based on the counter example shown in Fig. 1 with 3 periodic tasks $\tau_1 : (1, 10)$, $\tau_2 : (9, 35)$, and $\tau_3 : (52, 105)$ with no preemption overhead. As shown in Fig. 1-(d), the largest execution segment is 18 units for τ_3, and it can be feasibly scheduled only with 2 preemptions.

Based on the intuition behind the example in Fig. 1, we show that for periodic tasks, the method suggested by Yao et al., [9] does not calculate the largest length of the NPR for FP-NPR (and FP-FPP).

Theorem 2. The method suggested by Yao et al. in [9] (based on Equation (5)) does not calculate the largest length of the NPR in periodic task sets.

Proof: The proof is based on a counter example with 4 tasks $\tau_1 : (1, 10)$, $\tau_2 : (4, 18)$, $\tau_3 : (5, 45)$, and $\tau_4 : (18, 90)$ shown in Fig. 2. In this task set, τ_4 releases only one job in the hyper-period. Moreover, it is possible to schedule that only job of τ_4 non-preemptively in the execution window [11, 29], which means that the maximum NPR length for this task is 11 units, while according to Equation (5), this length should not be larger than $T_1 - C_1 = 9$.

An interesting conclusion from Theorems 1 and 2 is that the length of the last non-preemptive region of the task is not the only factor that affects the number of preemptions. As shown in Fig. 1-(d) and further analyzed in Section VII, by synchronizing the preemptions generated by any task on the releases of τ_1, the overall number of preemptions can be significantly reduced. Later, in Sect. VI, we derive a lower bound on the number of preemptions for any feasible task set. We show that in order to minimize the number of preemptions, the length of the NPSs must be equal to two times the slack of the highest priority task τ_1 (i.e., $2 \times (T_1 - C_1)$).

IV. A NEW SCHEDULING ALGORITHM

In this section, we introduce our new limited preemptive scheduling algorithm referred to as release-sensitive limited preemptive (RS-LP).

As stated in Section III, FP-NPR and LP-EDF activate the non-preemptive region of a running task τ_i at the release of any higher priority job regardless of the characteristics of that job. The NPR completes after Q_i time units and τ_i gets preempted. This approach may generate a succession of short execution segments for τ_i when their length could otherwise have been larger. Indeed, if the released higher priority job has more slack than Q_i, there is no need to preempt τ_i after Q_i.

Therefore, instead of having a fixed length for the non-preemptive region as it is the case for PT, FP-NPR and FP-FPP, we propose that whenever a high priority task is released, the decision of whether or not to preempt the running task is dynamically taken based on the maximum blocking tolerance of the released job (and that job only).

As presented in Algorithm 1, when a new task must be chosen for execution, RS-LP picks the task with the highest priority and starts an execution segment as long as the remaining time until the next release of τ_i plus the whole slack of the next job of τ_i. That is, if τ_i starts executing at time t, then its execution segment will span from t to $a_{\tau_i}^{next}$, where $a_{\tau_i}^{next}$ is the next release of τ_i after time t. As illustrated in Fig. 3-(a), this scheduling decision allows us to 1) maximize the length of the execution segment of τ_i, and 2) push the completion of the job $J_{1,p}$ of τ_i released at $a_{\tau_i}^{next}$ to coincide with the release of its next job $J_{1,p+1}$ released at time $a_{\tau_i}^{next} + T_1$. Therefore, $J_{1,p+1}$ will directly start executing after the completion of $J_{1,p}$ and one preemption will be avoided.

Furthermore, when a high priority task τ_k releases a job during the execution of a low priority task τ_i, RS-LP may decide to preempt the execution segment of τ_i before its completion. Yet, in order to limit the total number of preemptions, the preemption can only happen at the next release of τ_i. This technique has two advantages: 1) it allows us to synchronize the execution of the execution segments of the tasks with the release of τ_i, and hence, increase the chance that these tasks are scheduled using the largest possible time interval between two consecutive execution of τ_i; 2) by deferring these preemptions and synchronizing the finishing time of the execution segment of the low priority task τ_i with the releases of τ_i, we actually postpone several potential
Algorithm 1: Algorithm executed at the completion of a job or an execution segment

Input: t: the current time
1 $a_{1}^{\text{next}} \leftarrow ([t/T] + 1) \times T_{1}$; \hspace{1em} // next release of τ_{1} after t
2 $i \leftarrow$ index of the highest priority task with a pending job;
3 Schedule τ_{i} for $a_{1}^{\text{next}} + (T_{1} - C_{1}) - t$ time units;

Algorithm 2: Algorithm executed at a job release

Input: t: the current time, τ_{k}: the released task
1 if the processor is idle then
2 Call Algorithm 1;
3 else
4 $i \leftarrow$ index of the task running on the processor;
5 $\sigma_{i} \leftarrow$ remaining execution time of the current execution segment of τ_{i};
6 $\beta_{k} \leftarrow$ maximum blocking time of τ_{k};
7 if τ_{k} has a lower priority than τ_{k} and $\beta_{k} < \sigma_{i}$ then
8 $a_{1}^{\text{next}} \leftarrow ([t/T] + 1) \times T_{1}$; \hspace{1em} // next release of τ_{1} at or after t
9 Schedule τ_{i} for $(a_{1}^{\text{next}} - t)$ time units;
10 else
11 Schedule τ_{i} for σ_{i} time units; \hspace{1em} // continue executing τ_{i};
12 end
13 end

preemptions to a single time instant. Consequently, the only task which preempts a low priority task will be τ_{1} (since τ_{1} will be the task with the highest priority at the time τ_{1} is actually preempted). Fig. 3-(c) shows a case where several high priority tasks (τ_{k} and then τ_{j}) have been released during the execution of τ_{1}. As shown in the figure, the preemption of both τ_{k} and τ_{j} are postponed until a_{1}^{next}. Using this simple technique, we avoid a cascade of preemptions that may happen in RM or EDF due to the consecutive releases of high priority tasks in the reverse order of their priorities. As a result, with RS-LP, the number of preemptions suffered by any task other than τ_{1} will be a function of the number of releases of τ_{1}.

Algorithm 2 describes the procedure followed by RS-LP whenever a new job is released. If the task τ_{k} which released a job has a lower priority than the currently executing task τ_{i} or if the maximum blocking tolerance of τ_{k} (i.e., β_{k}), is larger than or equal to the remaining length of the execution segment of τ_{i} (denoted by σ_{i}), we continue executing τ_{i} until completion of its execution segment (Line 11). Otherwise, if the maximum blocking tolerance of τ_{k} is not larger than the remaining length of the execution segment of τ_{i}, then we reduce the size of the execution segment of τ_{i} such that it finishes at the next release of τ_{1} happening at a_{1}^{next} (Lines 7 to 9). This situation is illustrated in Fig. 3-(b).

Since finding the highest priority task with a pending job can be done in a constant time [19], the computational complexity of Algorithm 1 as well as the amortized complexity of Algorithm 2 per released job is $O(1)$.

As a property of Algorithms 1 and 2, one can easily derive an upper bound for the maximum length of an execution segment with the RS-LP algorithm.

Lemma 1. With RS-LP, the length of an execution segment of any task τ_{i} such that $i \neq 1$, is at most $2(T_{1} - C_{1})$.

Proof: According to Line 3 in Algorithm 1, the execution segment of any task τ_{i} is the longest if it starts executing at a time t as far as possible from the next release a_{1}^{next} of a job of τ_{1}. Since τ_{1} has the highest priority, the last release of τ_{1} before t must have completed its execution before τ_{1} becomes eligible for execution. Hence, $(a_{1}^{\text{next}} - t)$ is upper bounded by $(T_{1} - C_{1})$. At Line 3 in Algorithm 1, the maximum length of a non-preemptive execution segment of any task τ_{i} is given by $a_{1}^{\text{next}} + (T_{1} - C_{1}) - t \leq 2(T_{1} - C_{1})$.

V. Schedulability Analysis

A. Schedulability Test for Periodic Tasks

In this section, we first derive an upper bound for the total preemption cost during the execution of a task τ_{i} scheduled with RS-LP (see Lemma 2 and Corollary 1). We then provide an equation to compute the maximum blocking time β_{i} tolerable by τ_{i} (see Equation (9)) and an upper bound on the actual blocking time suffered by τ_{i} during its execution (Lemma 3). All that information is finally used in Theorem 3 to derive an upper bound on the WCRT of a task τ_{1} scheduled with RS-LP.

Let S_{i} be the set of tasks $\tau_{j} \in h_{p_{i}} \setminus \tau_{1}$ with a maximum tolerable blocking time β_{j} (computed with Equation (9) below) smaller than $2(T_{1} - C_{1})$.

Lemma 2. With RS-LP, in a time window of length t where only tasks in $h_{p_{i}} \cup \tau_{1}$ execute (i.e., tasks in $\{\tau_{1}, \tau_{2}, \ldots , \tau_{l}\}$), the total number of preemptions is upper bounded by

$$P_{1}(t) = \min \left\{ \left\lfloor \frac{t}{T_{1}} \right\rfloor \left\lfloor \frac{t}{2T_{1}} \right\rfloor + \sum_{\tau_{k} \in S_{i}} \left\lfloor \frac{t}{T_{k}} \right\rfloor \right\}$$

Proof: We first prove that the number of preemptions is upper bounded by $\left\lfloor t/T_{1} \right\rfloor$ and then by $\left\lfloor t/(2T_{1}) \right\rfloor + \sum_{\tau_{k} \in S_{i}} \left\lfloor t/T_{k} \right\rfloor$. Since both expressions are upper bounds, the total number of preemptions is upper bounded by the minimum of those two, which then proves the claim.

1) According to Line 3 in Algorithm 1 and Line 9 in Algorithm 2, the length of an execution segment is based on the arrival time of the next job released by τ_{1}. This means that only jobs released by τ_{1} can preempt a running task. Since there are at most $\left\lfloor t/T_{1} \right\rfloor$ jobs released by τ_{1} in a window of length t, the number of preemptions is upper bounded by $\left\lfloor t/T_{1} \right\rfloor$.

2) According to Line 3 in Algorithm 1, the length of an execution segment of a task τ_{i} that starts to execute at time t is set to $a_{i}^{\text{next}} + (T_{1} - C_{1}) - t$ (where a_{i}^{next} is the release of the next job $J_{i,j}$ by τ_{i} after t). Three situations may occur:

a) τ_{i} completes its execution before the end of the segment, in which case no preemption happens and Algorithm 1 is called again;

b) τ_{i} executes for $a_{i}^{\text{next}} + (T_{1} - C_{1}) - t$ and is preempted by τ_{1} at time $a_{1}^{\text{next}} + (T_{1} - C_{1})$. Since τ_{1} executes for C_{1} time units, it completes at time $a_{1}^{\text{next}} + T_{1}$,
which happens to be the release of a new job \(J_{i,j+1} \) by \(\tau_i \). Since \(\tau_1 \) has the highest priority, this new job \(J_{i,j+1} \) is elected by Algorithm 1 to be executed right after the completion of the previous job \(J_{i,j} \) of \(\tau_i \). Therefore, \(J_{1,j} \) generates a preemption but \(J_{1,j+1} \) does not:

c) Another task \(\tau_k \) releases a job before the end of the execution segment of \(\tau_i \). Algorithm 2 is then called. If \(\tau_k \) has a higher priority than \(\tau_i \) and its maximum tolerable blocking time \(\beta_k \) is smaller than the remaining time \(\sigma_i \) until the end of the current execution segment of \(\tau_i \), then the execution segment of \(\tau_i \) is shortened and one more preemption is generated. Note that by Lemma 1, \(\sigma_i \) is upper bounded by \(2(T_1 - C_1) \). Hence, only tasks in \(S_i \) (i.e., higher priority tasks such that \(\beta_k < 2(T_1 - C_1) \)) can cause such reschedule, and at most \(\sum_{\tau_k \in S_i} \lceil t/T_k \rceil \) jobs can be released by the tasks in \(S_i \) within a time interval of length \(t \). Consequently, the number of preemptions initiated by \(\tau_i \) is upper bounded by \(\lceil t/(2T_1) \rceil + \sum_{\tau_k \in S_i} \lceil t/T_k \rceil \).

Therefore, by a) and b), only half of the jobs released by \(\tau_i \) can generate a preemption, that is, \(\lceil 0.5 \lceil t/T_1 \rceil \rceil \). As shown in [20], this ceiling operation can be simplified as \(\lceil t/(2T_1) \rceil \).

Furthermore, by c), at most \(\sum_{\tau_k \in S_i} \lceil t/T_k \rceil \) other tasks than \(\tau_i \) can be the cause of one more preemption. Hence, the total number of preemptions in a window of length \(t \) is upper bounded by \(\lceil t/(2T_1) \rceil + \sum_{\tau_k \in S_i} \lceil t/T_k \rceil \).

Corollary 1. In a time window of length \(t \) where only tasks in \(hp_i \cup \tau_i \) execute, an upper bound on the total preemption cost is given by

\[
\hat{\Delta}_t(t) = \hat{P}_i(t) \times \max_{k=2}^n \Delta_k
\]

Proof: Because \(\tau_1 \) has the highest priority, it cannot be preempted. The maximum preemption cost caused by one preemption is therefore upper bounded by \(\max_{k=2}^n \Delta_k \). Since by Lemma 2, there are at most \(\hat{P}_i(t) \) preemptions in such a time window, the total preemption cost is upper bounded by \(\hat{P}_i(t) \times \max_{k=2}^n \Delta_k \).

As explained in Sect. II-B, Yao et al. [9] have proposed a lower bound \(\beta_1 \) on the maximum blocking time tolerable by \(\tau_i \), defined in Equation (1). In this equation, \(rbf_i(t) \) is an upper bound on the execution request in a time interval of length \(t \) where tasks in \(hp_i \cup \tau_i \) execute. Therefore, the total demand \(rbf_i(t) \) is given by the sum of: (i) the execution request of each task in \(hp_i \cup \tau_i \), and (ii) the total preemption overhead suffered in a window of length \(t \). As shown in [21], the former is upper bounded by

\[
rbf_k(t) = \left(\left\lfloor \frac{t}{T_k} \right\rfloor - 1 \right) C_k + \min\left\{C_k, t - \left\lfloor \frac{t}{T_k} \right\rfloor T_k \right\}
\]

and by Corollary 1, the latter is upper bounded by Equation (7). A lower bound on the maximum tolerable blocking time is thus given by

\[
\beta_i = \max_{C_i < t \leq T_i} \left\{ t - \left(\hat{\Delta}_t(t) + \sum_{k=1}^{i-1} rbf_k(t) \right) \right\}
\]

Using Equation (9) and Algorithm 2, one can now define the maximum blocking time \(B_i \) suffered by any job \(J_{i,j} \) of task \(\tau_i \) due to a lower priority task already running on the processor at \(J_{i,j} \)'s release.

Lemma 3. The maximum blocking time suffered by any job released by \(\tau_i \) due to lower priority tasks is upper bounded by

\[
B_i = \begin{cases}
0 & \text{if } i = n \\
\min \left\{ T_1 - C_1, \frac{n}{j+1} \max_j (C_j) \right\} & \text{if } \beta_i < 2(T_1 - C_1) \\
\min \left\{ 2(T_1 - C_1), \frac{n}{j+1} \max_j (C_j) \right\} & \text{otherwise}
\end{cases}
\]

Proof: The first case is for \(\tau_n \) which is the lowest priority task, and hence, cannot be blocked by a lower priority task. For the other tasks, we prove the three following properties:

1) Because Algorithm 1 always selects the highest priority task to be scheduled when a job completes an execution segment, at most one job of a lower priority task can block \(\tau_i \). For any other tasks than \(\tau_i \), the blocking time is thus upper bounded by \(\max_j (C_j) \).

2) By Lemma 1, the maximum length of a non-preemptive execution segment of any task \(\tau_i \) with a smaller priority than \(\tau_i \) is \(2(T_1 - C_1) \). Combining this fact with 1), we get that

\[
B_i \leq \min \left\{ 2(T_1 - C_1), \frac{n}{j+1} \max_j (C_j) \right\}
\]

for any task \(\tau_i \). This proves the third case of Equation (10).

3) According to Line 9 of Algorithm 2, if \(\tau_k \) has a maximum tolerable blocking time \(\beta_k \) smaller than the remaining execution length \(\sigma_i \) of the current execution segment of the lower priority running task \(\tau_i \), then the length of \(\tau_i \)'s execution segment is shortened to \((a_{i,ext} - t) \). By Lemma 1, \(\sigma_i \) is upper bounded by \(2(T_1 - C_1) \), and \((a_{i,ext} - t) \) is smaller than or equal to \((T_1 - C_1) \). Combining this with 1), we get that for any task \(\tau_i \) such that \(\beta_i < 2(T_1 - C_1) \), there is

\[
B_i \leq \min \left\{ T_1 - C_1, \frac{n}{j+1} \max_j (C_j) \right\}
\]

This proves the second case of Equation (10).

We can now derive an upper bound on the WCRT of a task \(\tau_i \) under RS-LP:

Theorem 3. An upper bound on the WCRT of a task \(\tau_i \) scheduled with RS-LP is given by the smallest positive value \(R_i \) such that

\[
R_i = B_i + C_i + \sum_{j=1}^{i-1} \left\lfloor \frac{R_j}{T_j} \right\rfloor C_j + \hat{\Delta}_i(R_i)
\]

Proof: The WCRT of \(\tau_i \) happens when (i) it executes for its WCET, (ii) it suffers its maximum blocking time, (iii) it suffers the maximum interference by higher priority tasks and (iv) it suffers the maximum preemption cost.

(i) is given by \(C_i \). (ii) is given by Equation (10) in Lemma 3. (iv) is given by Equation (7) in Corollary 1. Only (iii) must still be quantified. The maximum number of jobs any higher priority task \(\tau_j \) can release within a time window of length \(R_i \) is \(\left\lceil R_i/T_j \right\rceil \). The maximum interference they can
therefore generate is \([R_i/T_j] \cdot C_j\). (iii) is thus upper bounded by \(\sum_{j=1}^{i-1} [R_i/T_j] \cdot C_j\).

Summing all those terms, we get Equation (11), which proves the theorem.

Note that Equation (11) is recursive. It can be solved with a fixed point iteration on \(R_i\) by initializing \(R_i\) to \(B_i + C_i\).

B. Schedulability Test for Harmonic and Loose Harmonic Tasks

In harmonic and loose harmonic task sets every release of a job is synchronized to the releases of the jobs of the highest priority task \(\tau_1\). This simple fact introduces some interesting properties in RS-LP that results in a reduced number of preemptions in a time window of length \(t\) (see Lemma 4) and limits the maximum blocking time that is actually suffered by a task \(\tau_i\) due to lower priority tasks delaying their preemptions (see Lemma 5). This in turn allows us to reduce the pessimism in the computation of the maximum tolerable blocking time \(\beta_i\) (see Equation (14) and the WCRT of task \(\tau_i\) (see Theorem 4).

To avoid any confusion with the generic formulas of the previous section, in this section, we append the superscript \(h\) to each quantity (i.e., \(S_i, P_i, \Delta_i(t), \beta_i, B_i\) and \(R_i\)) which is related to harmonic (and loose harmonic) tasks.

Hence, we define \(S_i^h\) as the set of tasks \(\tau_k \in hP_i \setminus \tau_1\) with a maximum blocking time \(\beta_k^h\) (defined by Equation (14) below) smaller than \((T_1 - C_1)\), i.e., \(\beta_k^h < (T_1 - C_1)\). Note that \(S_i^h\) considers only the tasks with a tolerable blocking time smaller than \((T_1 - C_1)\). The set \(S_i\) defined in the previous section for generic periodic tasks, was however containing all the tasks with a maximum tolerable blocking time smaller than \(2(T_1 - C_1)\). This difference in their respective definitions is important as it impact the computation of the total number of preemptions and thus the total preemption cost as demonstrated below.

Lemma 4. With RS-LP, in a time window of length \(t\) where only loose harmonic tasks in \(hP_i \cup \tau_1\) execute, the total number of preemptions is upper bounded by

\[
\hat{P}_i^h(t) = \min \left\{ \left[\frac{t}{T_1} \right], \left[\frac{t}{2T_1} \right] + \sum_{\tau_k \in S_i^h} \left[\frac{t}{T_k} \right] \right\}
\]

Proof: The only difference between Equation (6) and (12) resides in the definition of \(S_i^h\). The sum on the elements in \(S_i^h\) is therefore the only term we will discuss in this proof. All the other terms were already proven in point 1. (i.e., \(P_i^h(t)\) is upper bounded by \([t/T_1]\)) and points 2.a. and 2.b. (i.e., at most \([t/(2T_1)]\) preemptions are initiated by \(\tau_1\)) of the proof of Lemma 2. However, point 2.c. of Lemma 2’s proof must be revisited.

When a task \(\tau_k\) releases a job before the end of the execution segment of a task \(\tau_i\) already running on the processor, Algorithm 2 is called. If \(\tau_k\) has a higher priority than \(\tau_i\) and its maximum tolerable blocking time \(\beta_k^h\) is smaller than the remaining time \(s_i\) until the end of the current execution segment of \(\tau_i\), the execution segment of \(\tau_i\) is shortened and one more preemption is generated.

From Line 3 of Algorithm 1, the maximum length of an execution segment of \(\tau_i\) is \(a_i^{next} + (T_1 - C_1) - t\). Since the releases of \(\tau_k\) are synchronized on the releases of \(\tau_i\), the earliest time at which a job of \(\tau_i\) can be released is \(a_i^{next}\). It results that the maximum remaining time until the end of the current execution segment of \(\tau_i\) at \(a_i^{next}\) (and thus at the release of \(\tau_i\)) is \((T_1 – \tau_i)\).

Combining this last result with the fact that at most \([t/(2T_1)]\) preemptions are initiated by \(\tau_1\) (see points 2.a. and 2.b. in the proof of Lemma 2), we get \([t/(2T_1)] + \sum_{\tau_k \in S_i^h} [t/T_k]\) as an upper bound on \(\hat{P}_i^h(t)\). And because it was already proven (point 1. of the proof of Lemma 2) that \([t/(T_1)]\) is also an upper bound on \(\hat{P}_i^h(t)\), the claim follows.

Corollary 2. In a time window of length \(t\) where only loose-harmonic tasks in \(hP_i \cup \tau_1\) execute, an upper bound on the total preemption cost is given by

\[
\hat{\Delta}_i(t) = \hat{P}_i^h(t) \times \max_{k=2} (\Delta_k)
\]

Proof: Identical to the proof of Corollary 1.

Replacing the total preemption \(\hat{\Delta}_i(t)\) by \(\hat{\Delta}_i^h(t)\) in Equation (9), we get the following lower bound on the maximum tolerable blocking time for loose harmonic tasks

\[
\beta_i^h = \max_{C_i < t \leq T_i} \left\{ t - \left(\hat{\Delta}_i^h(t) + \sum_{k=1}^{i} rbf_k^h(t) \right) \right\}
\]

Using Equation (9) together with Algorithm 2, we now quantify the maximum blocking time that is actually suffered by a task \(\tau_i\) scheduled with RS-LP when all tasks are loose harmonic.

Lemma 5. In a loose-harmonic task set, the maximum blocking time suffered by any job released by \(\tau_i\) due to lower priority tasks, is upper bounded by

\[
P_i^h = \begin{cases} 0 & \text{if } i = n \text{ or } \\
\min \left\{ (T_1 - C_1), \max_{j=i+1} (C_j) \right\} & \beta_i^h < (T_1 - C_1) \text{ otherwise}
\end{cases}
\]

Proof: Since \(\tau_n\) is the lowest priority task, it cannot suffer any blocking due to lower priority tasks. Therefore, we have \(B_i^h = 0\).

Furthermore, from Line 3 of Algorithm 1, the maximum length of an execution segment is \(a_i^{next} + (T_1 - C_1) - t\). Since the releases of \(\tau_i\) are synchronized on the releases of \(\tau_1\), the earliest time at which a job of \(\tau_i\) can be released after a lower priority task \(\tau_j\) started running, is \(a_i^{next}\). It follows that the maximum remaining time until the end of the current execution segment of \(\tau_j\) at \(a_i^{next}\) (and thus at the release of \(\tau_i\)) is \((T_1 – \tau_i)\).
Two cases must be considered: **Case 1**, $\beta_i < (T_i - C_1)$. In this case, Algorithm 2 preempts i at time α_i^{next}, which happens to be the release time of i. Therefore, i will never suffer any blocking due to i when $\beta_i < (T_i - C_1)$. This proves the first case of Equation (15). **Case 2**, $\beta_i \geq (T_i - C_1)$, in which i keeps running and the maximum blocking time that i can suffer due to i is upper bounded by $(T_i - C_1)$.

Moreover, because Algorithm 1 always selects the highest priority task to be scheduled when a job completes an execution segment, at most one job of a lower priority task can block i. For any other tasks than i, the blocking time is thus upper bounded by $\max_{j=1}^{n}(C_j)$. Combining this with the conclusion of case 2 above, we get that $B_i^h \leq \min\left\{ (T_i - C_1), \frac{\max_{j=1}^{n}(C_j)}{1 + \beta} \right\}$ which proves the second case of Equation (15).

Theorem 4. In a loose harmonic task set, an upper bound on the WCRT of a task i scheduled with RS-LP is given by the smallest value R_i^h larger than C_i such that

$$R_i^h = B_i^h + C_i + \sum_{j=1}^{i-1} \left[\frac{R_i^h}{T_j} \right] C_j + \Delta_i^h(R_i^h) \quad (16)$$

Proof: The proof is identical to the proof of Theorem 3, replacing B_i and $\Delta_i(t)$ with B_i^h and $\Delta_i^h(t)$, respectively.

VI. DISCUSSION ON THE NUMBER OF PREEMPTIONS

As mentioned in [15], [22] a necessary condition for the schedulability of non-preemptive periodic tasks is

$$\forall i, 1 < i \leq n, C_i \leq 2(T_1 - C_1) \quad (17)$$

meaning that the WCET of any low priority task $i, 1 < i \leq n$ must not be larger than two times the slack of i. Based on this observation, we derive the lower bound on the number of preemptions of any scheduling algorithm which does not miss a deadline as follows.

Theorem 5. Let $C_{i,j}$ be the actual execution time of a job $J_{i,j}$ of task i ($1 < i \leq n$). If all the jobs released by the tasks in τ respect their deadlines, then the number of preemptions suffered by $J_{i,j}$ is lower bounded by

$$P(C_{i,j}) = \left\lfloor \frac{C_{i,j}}{2(T_1 - C_1)} \right\rfloor + \begin{cases} 1 & \frac{C_{i,j}}{2(T_1 - C_1)} \in \mathbb{N} \\ 0 & \text{otherwise} \end{cases} \quad (18)$$

Proof: The proof is by contradiction; we show that if $J_{i,j}$ has a smaller number of preemptions than $P(C_{i,j})$, then at least one task in the system will miss its deadline. Assume that $J_{i,j}$ suffers $P'_{i,j} < P_i$ preemptions (where $P_i = P(C_{i,j})$ and $P_i' = P'(C_{i,j})$). It means that it will have one non-preemptive execution segment which has a length larger than $2(T_1 - C_1)$, i.e., that execution segment has length $l = 2(T_1 - C_1) + \epsilon$ where $\epsilon \in \mathbb{R}^{>0}$. Let us call that execution segment S_j. Assume that the last release of i before the execution of S_j was at t. Two cases can happen: i starts its execution before that execution segment of i, thus, i can be scheduled from $t + C_i$ and ends at $t + C_i + 2(T_1 - C_1) + \epsilon$. It means that the next job of i released at $t + T_1$ cannot meet its deadline. In the second case, i is not yet scheduled when S_i starts. Even in the best-case where S_i start its execution at time t, the first instance of i released at time t will miss its deadline because $l > t + T_1$. Thus, in both cases, at least one job will miss its deadline if $J_{i,j}$ has a non-preemptive execution segment with length l. As a result, the assumption is not valid, and $J_{i,j}$ cannot have a smaller number of preemptions than $P(C_{i,j})$.

If the preemption overhead is considered, the worst-case execution time of the task when it suffers the minimum number of preemptions is given by C_i' such that

$$C_i' = C_i + P(C_i') \times \Delta_i \quad (19)$$

where C_i' is the smallest value larger than C_i which satisfies the equation. Equation (20) can be solved with a fixed point iteration initiating C_i' to C_i. The following two theorem directly follow from that fact.

Theorem 6. If all the jobs released by the tasks in τ respect their deadlines, then the number of preemptions suffered by i is lower bounded by $P_i^b = P(C_i')$ where

$$C_i' = C_i + P(C_i') \times \Delta_i \quad (20)$$

Using Equation (20) we derive a necessary condition on the feasibility of a task set τ composed of periodic (or sporadic) tasks executing on a uniprocessor platform in the presence of preemption overhead.

Theorem 7. Let Δ_i be the preemption cost suffered by i whenever it is preempted by another task, then the task set τ is feasible on a uniprocessor platform only if

$$\sum_{i=1}^{n} \frac{C_i'}{T_i} \leq 1 \quad (21)$$

where C_i' is obtained from Equation (20).

Proof: This claim follows directly from the feasibility test proposed by Liu and Layland in [2] where instead of the WCET in isolation, we use C_i' which is the smallest worst-case execution time in the presence of preemption overhead.

Although Theorem 7 provides a necessary feasibility condition with linear complexity, proving that there exists a feasible schedule such that each job suffers its minimum number of preemptions, is an intractable problem as proven below.

Theorem 8. Verifying the feasibility of a periodic task set τ with implicit deadlines such that every job of every task i does not suffer more than $P(C_i')$ preemptions, is a NP-hard problem.

Proof: The proof is based on the fact that if $P_i(C_i') = 0$ for all tasks, each task must be scheduled non-preemptively. And, as stated in [23], verifying the feasibility of a non-preemptive periodic task set with implicit deadline is a NP-hard problem.
VII. EXPERIMENTAL RESULTS

In this section, we present the experimental results obtained for different scheduling algorithms including RM, EDF, FP-NPR, LP-EDF and RS-LP with randomly generated task sets. The schedule of each task set is simulated over its hyper-period to assess its schedulability. The schedulability ratio of each algorithm, i.e., the number of schedulable task sets over the total number of generated task sets, is then reported in Fig. 4.

In the presented graphs, we also include the schedulability ratio of the existing schedulability tests for the studied scheduling algorithms. For our algorithm, we use Theorem 4 as the schedulability test for loose harmonic task sets and Theorem 3 for period task sets. For RM we use the test presented in [8], for FP-NPR we use the test in [9], and for EDF we use the utilization based test presented in [24].

It is worth noting that EDF and LP-EDF are in the class of dynamic priority scheduling algorithms, which are known to have better schedulability performance than fixed priority scheduling algorithms; particularly if the preemption overhead is negligible. However, we decided to include EDF and LP-EDF in our comparisons so as to get an idea on the gap that still exists between dynamic and fixed priority algorithms when the preemption overhead is taken into account. Yet, one should consider that the real opponents to RS-LP are FP-NPR and RM.

In the conducted experiments, we consider the effect of the task set utilization (denoted by U) and the maximum preemption cost, which is computed as a percentage (denoted by δ) of the WCET of the tasks. Due to space limitation, we could not show the influence of the number of tasks n on the schedulability ratio. However, according to our experiments, the schedulability ratio did not vary much for values of n larger than 4. Therefore, we decided to fix the number of tasks to 8.

We used uUniFast [18] to generate random task sets. We produced $n = 8$ random values $u_i \in [0, 1]$ with a total utilization U. For periodic task sets, periods have been selected randomly in the interval $[10, 500]$ following the same approach suggested in [18]. Note that we only accepted task sets with $T_2 \geq 2T_1$ so as to increase the variability in the overall schedule (i.e., on an hyper-period). For loose-harmonic task sets, we first assigned a random period $T_i \in [1, 10]$ to τ_1, and then generated $n - 1$ random values $k_i \in \{2, 3, \ldots, 500\}$ with a uniform distribution. Hence, we defined T_i as $T_i = k_i \times T_1$. Using u_i and T_i, we computed C_i. Finally, we generated the preemption cost Δ_i by selecting a random value $x_i \in [0, \delta]$, and assigning $\Delta_i = \min\{x_i \times C_i, \Delta\}$ where Δ is an upper-bound on the time required to reload the whole cache content. In the presented experiments, we have assumed $\Delta = 50$. For each data point in the resulting diagrams, we generated 200 task sets.

Fig. 4 shows the schedulability ratios of the scheduling algorithms and their respective schedulability tests for periodic (left column), and loose-harmonic (right column) tasks as a function of U and δ. In (a) and (b), the horizontal axis is U and δ is set to 0.15 while in (c) and (d) the horizontal axis is δ and U is set to 0.75. Diagrams (a) and (c) are for periodic tasks while (b) and (d) are for loose-harmonic tasks.

Fig. 4. Schedulability ratio as a function of U and δ. In (a) and (b), the horizontal axis is U and δ is set to 0.15 while in (c) and (d) the horizontal axis is δ and U is set to 0.75. Diagrams (a) and (c) are for periodic tasks while (b) and (d) are for loose-harmonic tasks.
As one can see, in all experiments presented in Fig. 4, RS-LP show a better schedulability ratio than FP-NPR, particularly in loose harmonic task sets (Fig. 4-(b) and (d)). As explained in Sect. IV and then in V-B, since in loose harmonic task sets, RS-LP is able to fit the execution segments within the slack of two consecutive jobs of τ_1, it can efficiently create larger NPSs. It directly affects the performance of the test in Theorem 4. In loose harmonic task sets, tasks are released together with the release of τ_1, hence, the maximum non-preemptive region obtained by Yao et al. [9] in Equation (5) is exact as long as $\beta_i \geq T_1 - C_1$, since no counter example such as Fig. 2-(a) can happen in loose harmonic task sets. As a result, we expect that the schedulability of FP-NPR and RS-LP becomes similar in loose harmonic task sets, however, we still see a clear difference between their performance. This difference comes from the situations where some tasks have $\beta_i \leq T_1 - C_1$. If that happens, the length of Q_i in FP-NPR is reduced according to Equation (5). However, since β_i is calculated according to the worst-case scenario, it is the minimum safe value of blocking tolerance of the jobs of τ_1. In other words, the real blocking tolerance for each job can be larger than β_i as it depends on the releases of other high priority jobs. FP-NPR ignores this fact and preempts a job after Q_i units of NPR, even if the job can continue its execution without jeopardizing the schedulability of the other jobs. As a result, it creates smaller execution segments which are not synchronized with the releases of τ_1 anymore.

VIII. CONCLUSION

In this paper we have introduced a new limited preemptive scheduling solution based on fixed priorities in order to increase the schedulability of the systems which suffer from preemption overheads. In the presented method, we try to increase the maximum non-preemptive execution segment length by fitting the execution segments in the continuous slack of two consecutive releases of the task with the smallest period. Consequently, the tasks can be executed with smaller number of preemptions. Furthermore, whenever a higher priority task is released, we decide whether to preempt the low priority task, based on the maximum blocking tolerance of the high priority task. Yet, even if we decide to preempt the running task, the preemption is postponed until the next release of the task with the smallest period. Thus, we keep the execution segments synchronized with the releases of the highest priority task, so as to optimize the overall number of preemptions.

We have provided two schedulability tests one for periodic and one for loose-harmonic task sets. We have derived a feasibility condition based on a proven lower bound on the number of preemptions, and shown that the exact feasibility analysis to check the existence of a schedule which can guarantee the minimum number of preemptions is a NP-Hard problem.

Our experimental results show that our approach has higher a schedulability ratio than the existing limited preemptive fixed-priority scheduling algorithms including FP-NPR, which is one of the most efficient methods in the class of fixed-priority scheduling algorithms. Similarly, the schedulability test for harmonic task sets shows very good performances against its opponents. Yet, we plan to improve the performance of our schedulability test for periodic tasks as future work.

ACKNOWLEDGMENT

This work was partially supported by National Funds through FCT/MEC (Portuguese Foundation for Science and Technology) and co-financed by ERDF (European Regional Development Fund) under the PT2020 Partnership, within project UID/CEC/04234/2013 (CISTER); also by FCT/MEC and the EU ARTEMIS JU within projects ARTEMIS/0003/2012 - JU grant nr. 333053 (CONCERTO) and ARTEMIS/0001/2013 - JU grant nr. 621429 (EMC2).

REFERENCES

