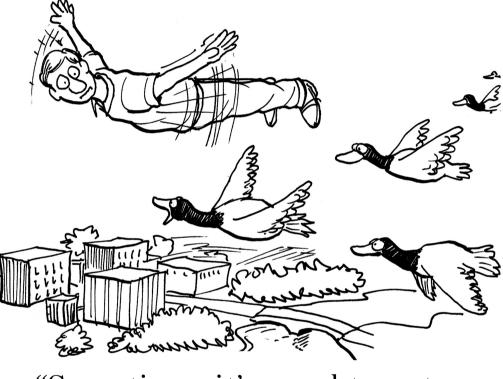
### An Introduction to Wireless Sensor Networks

**CISTER Summer Internship 2017** 

### Ricardo Severino (PhD) Research Associate




CISTER Research Center in Real-Time & Embedded Computing Systems

### Outline

### The lecture is split into 3 modules:

- Module I Bird's eye of Wireless Sensor Networks
  - Overview of Wireless Sensor Networks
  - Motivation for WSN Applications
- Module II Technologies and Tools
  - Anatomy of a WSN node (HW Concepts)
  - WSN Operating Systems
  - Communication Architectures
- Module III Application Examples (Real Deployments@CISTER.ISEP)
  - Extra WSN Concepts
  - Structural Health Monitoring
  - Datacenter Monitoring
  - ArtWise Robot Testbed
  - WSN@CISTER

### Module I Bird's eye view over Wireless Sensor Networks



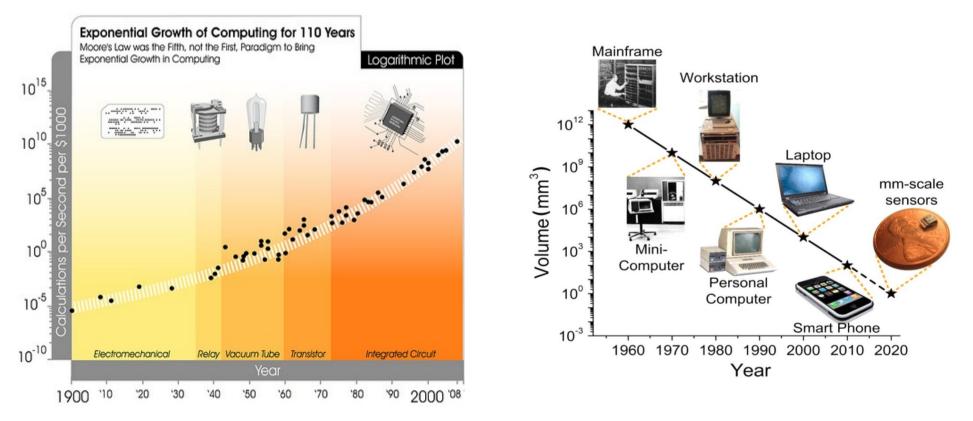
"Sometimes it's good to get a different perspective."

# Defining WS(A)Ns

- what are "wireless sensor/actuator networks"?
  - "wireless (communication)"
    - "wireless communication" is the transfer of information over a distance without the use of electrical conductors or "wires" using some form of energy, e.g. radio frequency (RF), infrared light (IR), laser light, visible light, acoustic energy
  - "sensor"
    - a sensor is a device that measures a physical quantity and converts it into a signal which can be read by an observer or by an instrument, e.g. thermocouple, strain gauge

# Defining WS(A)Ns

- what are "wireless sensor/actuator networks"? (cont.)
  - "actuator" devices which transform an input signal (mainly an electrical signal) into motion
    - e.g. electrical motors, pneumatic actuators, hydraulic pistons, relays, electro-valves, piezoelectric actuators, buzzers, lamps
  - "network"
    - a "computer network" is a group of interconnected computers


# Defining WS(A)Ns

- So... what are "wireless sensor/actuator networks"?
  - a wireless sensor network (WSN) is a wireless network consisting of spatially distributed autonomous devices using sensors to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants, at different locations.
  - originally motivated by military applications such as battlefield surveillance; now used in many civilian application areas, including environment and habitat monitoring, healthcare applications, home automation, and traffic control

### How did we get there? Microelectronics Revolution

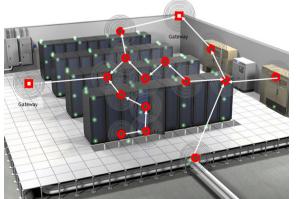
### The Semi-conductor => Micro-electronics => Microcontroller => Embedded Systems

Moore's law (1965) is the observation that the number of transistors in a dense integrated circuit doubles approximately every two years.



# Faster, smaller, in everything, everywhere

### The Semi-conductor => Micro-electronics => Microcontroller => Embedded Systems => Smart "everything"



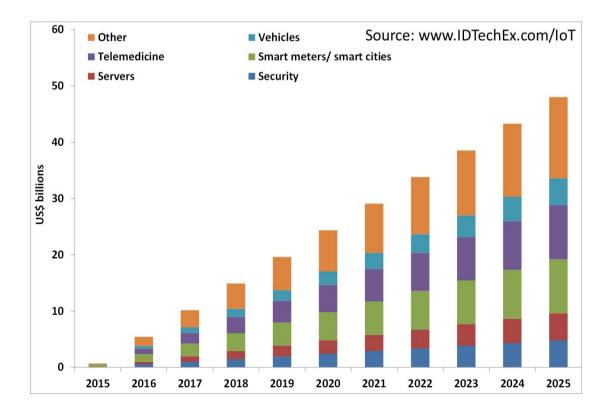

CISTER Summer Internship 2017 Introduction to WSANs

### Lets put sensors in it

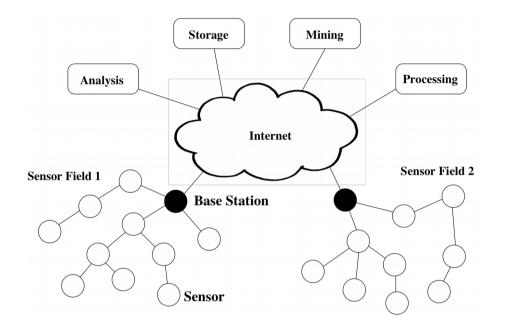
- Pervasiveness and ubiquity of embedded systems + wireless technologies
- Eagerness to control and monitor everything, everywhere
- Wireless Sensor Networks
  - The Internet of Things (IoT)
  - Cyber-Physical Systems (Timeliness in environmental monitoring/industrial automation and process control)
    - Tighter interaction between sensing and actuation
    - Communications must be logically correct but also produced on time








### History of Wireless Sensor Networks


- DARPA: Distributed Sensor Nets Workshop (1978)
  - Distributed Sensor Networks (DSN) program (early 1980s)
  - Sensor Information Technology (SensIT) program
- UCLA and Rockwell Science Center
  - Wireless Integrated Network Sensors (WINS)
  - Low Power Wireless Integrated Microsensor (LWIM) (1996)
- UC-Berkeley
  - Smart Dust project (1999)
  - concept of "motes": extremely small sensor nodes
- Berkeley Wireless Research Center (BWRC)
  - PicoRadio project (2000)
- MIT
  - µAMPS (micro-Adaptive Multidomain Power-aware Sensors) (2005)

### Market forecasts...

- Cisco IBSG predicts 25 billion IoT devices by 2015 and 50 by 2020;
- IDTechEx market value for IoT IP-addressed sensing nodes to grow from less than \$1 Billion (US) in 2015 to greater than \$48 Billion (US) by 2025.



# General System Model of a WSN

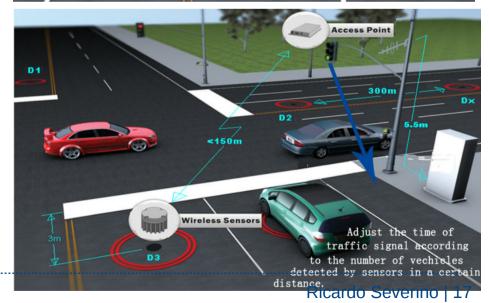


- Multiple sensors (often hundreds or thousands) form a network to cooperatively monitor large or complex physical environments
- Acquired information is wirelessly communicated to a base station (BS), which propagates the information to remote devices for storage, analysis, and processing

# WSN types

- from "traditional" WSN to other "forms":
  - Body Sensor Networks (BSN)
  - Vehicular Sensor Networks (V2V, V2I)
  - Machine-to-Machine (M2M)
  - Underwater (Acoustic) Sensor Networks (UW-ASN)
  - Internet-of-Things (pervasive Internet)
  - Urban/social/participatory Sensor Networks
  - Interplanetary Sensor Networks
  - Industrial Internet/Industry 4.0
  - Near-Field Communications (NFC)

### Motivation for WSN Application Areas


### Motivation:

- ground transportation is a vital and a complex socio-economic infrastructure
- it is linked with and provides support for a variety of systems, such as supply-chain, emergency response, and public health
  - the 2009 Urban Mobility Report reveals that in 2007, congestion caused urban Americans to
    - travel 4.2 billion hours more
    - purchase an extra 2.8 billion gallons of fuel

congestion cost is very high - \$87.2 billion; an increase of more than 50% over the previous decade

- Motivation:
  - building new roads is *not* a feasible solution for many cities
    - lack of free space
    - high cost of demolition of old roads
  - one approach: put in place distributed systems that reduce congestions
    - gather information about the density, sizes, and speed of vehicles on roads
    - infer congestions
    - suggest alternative routes and emergency exits





- How to sense?
  - Inductive loops (in-road sensing devices)
    - Advantages:
      - unaffected by weather
      - provide direct information (few ambiguity)
    - how does it work: using Faraday's induction law
      - a coil of wire (several meters in diameter, passes an electric current through the coil)
      - buried under the road and connected to a roadside control box
      - magnetic field strength can be induced as a result of a current and the speed and the size of passing vehicles
  - Magnetic sensors can determine the *direction* and *speed* of a vehicle
    - · a moving vehicle can disturb the distribution of the magnetic field
      - by producing its own magnetic field
      - by cutting across it
    - The magnitude and direction of the disturbance depends on
      - the speed, size, density and permeability of the vehicle
    - Classification of magnetic sensors:
      - low field ( below 1µGauss)
      - medium field ( between 1µGauss and 10µGauss)
      - high field ( above 10µGauss)
    - The concentration of magnetic flux varies as the vehicle moves; it c
    - The field variation reveals a *detailed* magnetic signature
    - · It is possible to distinguish between different types of vehicles





PM-04 magnetic field sensors from Alvi Technologies



- Arora et al. (2004) A Line in the Sand
  - Deploys <u>90 sensor nodes</u> to detect the movement of vehicles and people (e.g., soldiers)
  - 78 of the nodes were magnetic sensor nodes that were deployed in a 60×25 square foot area
  - 12 radar sensor nodes were overlaid on the network
  - These nodes form a self-organizing network which connects itself to a remote computer via a base station and a long haul radio repeater

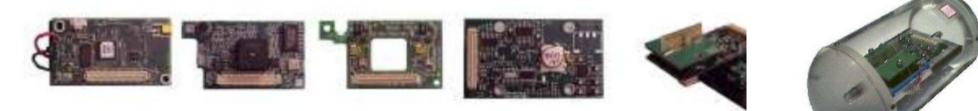



Fig. 6. Sensor hardware from left to right: (a) Mica2 network node, (b) Mica Sensor Board, (c) Mica Power Board, (d) TWR-ISM-002 Radar Board, and (e) All of the boards attached together.

### Health Care

- A wide range of health care applications have been proposed for WSN, including *monitoring patients* with:
  - Parkinson's Disease and epilepsy
  - heart patients
  - patients rehabilitating from stroke or heart attack
  - elderly people
- Health care applications do not function as standalone systems
- They are integral parts of a comprehensive and complex health and rescue system
- Preventive health care to reduce health spending and mortality rate
  - but some patients find certain practices *inconvenient, complicated,* and *interfering* with their daily life (Morris 2007)
  - many miss checkup visits or therapy sessions because of a clash of schedules with established living and working habits, fear of overexertion, or transportation cost

### Health Care

- To deal with these problems, researchers proposed comprehensible solutions that involve the following tasks:
  - building pervasive systems that provide patients with rich information about diseases and their prevention mechanisms
  - seamless integration of health infrastructures with emergency and rescue operations as well as transportation systems
  - developing reliable and unobtrusive health monitoring systems that can be worn by patients to reduce the task and presence of medical personnel
  - alarming nurses and doctors when medical intervention is necessary
  - reducing inconvenient and costly check-up visits by creating reliable links between autonomous health monitoring systems and health institutions deal with these problems, researchers proposed comprehensible solutions that involve the following tasks:

#### Eye

Glucose-sensing lens Digital fundoscope Smartphone visual-acuity tracking Automated refractive error Noninvasive intraocular pressure

#### Ear

Smart hearing aids Digital otoscope

#### Lung

Home spirometry Pulse oximetry Inhaler use Breath-based diagnostics Breathing sounds Environmental exposure

#### Blood

Continuous glucose Transdermal Hb Pathogens (genomics-based) PoC blood tests

#### Skin

Temperature Gross lesions Pressure sensor (wound care) Sweat chemistry Cutaneous blood flow

#### Other sensors and monitors

Pill-box and -bottle Posture Body position Activity Sleep

#### **Bladder and urine**

Comprehensive urinalysis STDs (genomic detection) Diaper-based sensors

#### **Brain and emotion**

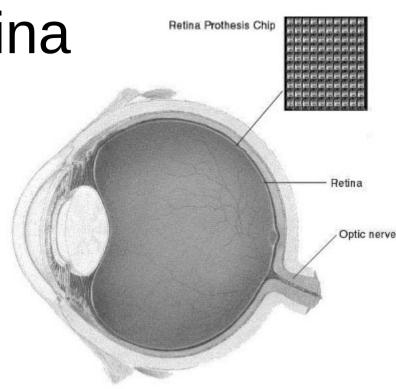
Wireless mobile EEG Seizure Autonomic nervous activity Head-impact sensor Intracranial pressure (noninvasive) Stress recognition (voice, respiration)

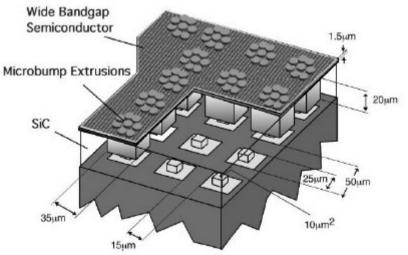
#### **Heart and vascular**

Continuous BP tracking Handheld ECG Heart rhythm Cardiac output Stroke volume Thoracic impedance (fluid)

#### Gastrointestinal

Endoscopic imaging Esophageal pH Medication compliance Fecal blood or bilirubin Gut electrical activity Chewing


#### Watching over one's health


Pulse BP Temperature Activity Hydration Sleep stages Seizure **Respiration rate** O<sub>2</sub> saturation Blood CO<sub>2</sub> Blood glucose ECG (single-lead) Cardiac output Stroke volume Stress: Heart-rate variability Electrodermal activity

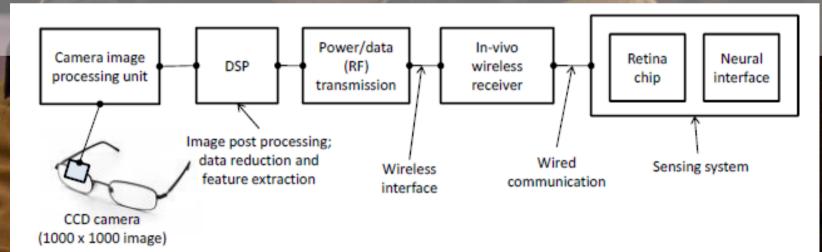
verino | 22

# Artificial Retina

- Schwiebert et al. (2001) developed a micro-sensor array that can be implanted in the eye as an artificial retina to assist people with visual impairments
- The system consists of an integrated circuit and an array of sensors
- An integrated circuit
  - is coated with a *biologically inert substan*
  - is a multiplexer with on-chip switches and pads to support a 10×10 grid of connections; it operates at 40KHz
  - has an *embedded transceiver* for wired a wireless communications
  - each connection in the chip interfaces a sensor through an aluminum probe surfa






### Artificial Retina

### An array of sensors

- each sensor is a micro-bump, sufficiently small and light
- the distance between adjacent micro-bumps is approximately 70 microns
- the sensors produce electrical signals proportional to the light reflected from an object being perceived
- the ganglia and additional tissues transform the electrical energy into a chemical energy
- the chemical energy is *transformed* into *optical signals* and *communicated to the brain* through the optical nerves
- the magnitude and wave shape of the transformed energy corresponds to the response of a normal retina to light stimulation

### Artificial Retina

- The signal processing steps of the artificial retina
  - a camera embedded in a pair of spectacles directs its output to a realtime DSP
  - the camera can be combined with a laser pointer for automatic focusing
  - the output of the DSP is compressed and transmitted through a wireless link to the implanted sensor array
  - the sensor array decodes the image and produces a corresponding electrical signal



### Parkinson's Disease

The aim is to augment or entirely replace a human observer and to help physicians fine-tune medication dosage

### Weaver (2003)

- the system consists of
  - a lightweight sensor node with 3D accelerometer sensors (sampled at a rate of 40Hz.)
  - a processor core
  - a storage system for logging data for latter retrieval
- the system could record 17 hours of accelerometer data
- the patients wear the nodes in their ankles and wrists
- the report reveals that the system was able to identify the occurrence of dyskinesia at the rate of 80%

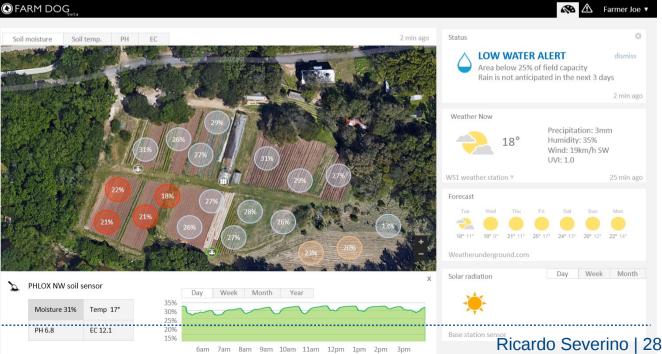




CISTER Summer Internship 2017 Introduction to WSANs

# **Precision Agriculture**

### Motivation:


- traditionally, a large farm is taken as homogeneous field in terms of resource distribution and its response to climate change, weeds, and pests
- accordingly, farmers administer
  - fertilizers, pesticides, herbicides, and water resources
- in reality, wide spatial diversity in soil types, nutrient content, and other important factors
- therefore, treating it as a uniform field can cause
  - inefficient use of resources
  - loss of productivity

Precision agriculture is a method of farm management that enables farmers to produce *more efficiently* through *a frugal use* of resources

### **Precision Agriculture**

#### Precision agriculture technologies:

- yield monitors
- yield mapping
- variable rate fertilizer
- weed mapping
- variable spraying
- topography and boundaries
- salinity mapping
- guidance systems



**CISTER Summer Internship 2017** Introduction to WSANs

SS#2

b

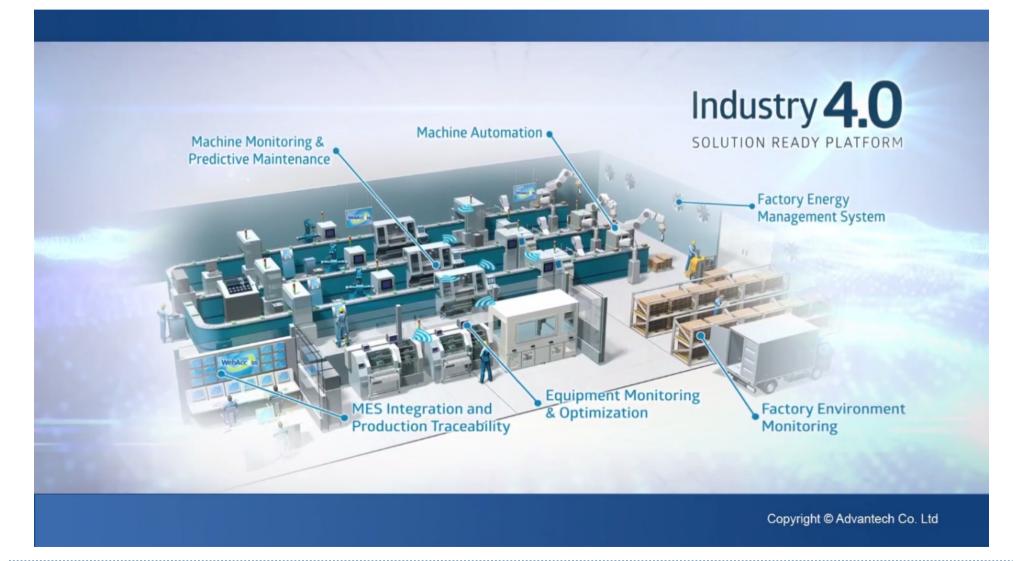
### Wine Vinyard (2004)

- Beckwith et al. deploy a WSN to *monitor* and characterize variation in *temperature* of a wine vineyard
  - heat summation and periods of freezing temperatures
- 65 nodes in a grid like pattern 10 to 20 meters apart, covering about two acres
- Easy to develop the network (1 person day)
  - due to the self-configuration nature of the network
  - inherent structured layout of vineyard fields
- Two essential constraints of the network topology
  - placement of nodes in an area of viticulture interest
  - the support for multi-hop communication

# Wine Vinyard (2004)

The data were used to investigate several aspects:

- the existence of co-variance between the temperature data collected by the network
- growing degree day differences
- potential frost damage
- The mean data enabled to observe the relative differences between heat units accumulation during that period
  - according to the authors' report, the extent of variation in this vineyard there was a measured difference of over 35% of heat summation units (HSUs) in as little as 100 meters


### Industrial Automation/Process Control

- Trends in automation and manufactoring technology towards high flexibility and strong costumization of products.
  - Industry 4.0 (Europe)
  - Industrial Internet
- Other goals
- condition monitoring and fault diagnosis -components and systems are able to gain self-awareness and self-predictiveness.
- Factory floor monitoring
- Technologies
  - Cyber Physical Systems
  - Internet of Things
  - Cloud Computing
  - Autonomous Robots
  - Augmented reality

| 6  |                                               |                                                   |                         |                           |
|----|-----------------------------------------------|---------------------------------------------------|-------------------------|---------------------------|
| -1 | 1st                                           | 2nd                                               | <b>3rd</b>              | Ath                       |
| -  | Mechanization,<br>water power, steam<br>power | Mass production,<br>assembly line,<br>electricity | Computer and automation | Cyber Physical<br>Systems |
| 7  |                                               |                                                   |                         |                           |

n Severin

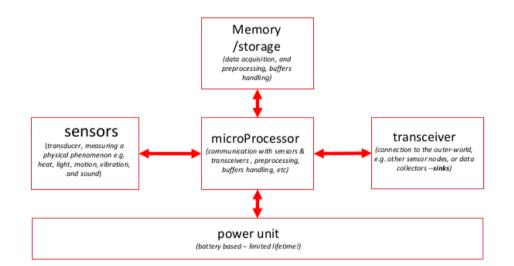
CISITER Summer Internship 2017 ntroduction to WSANs



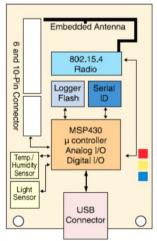
#### CISTER Summer Internship 2017 Introduction to WSANs

## Just a quick comment

- Different applications require different
  - network topologies (scalability)
  - set of sensors (heterogeneity)
  - time constraints (timeliness)
  - power sources (energy-efficiency)
  - security concerns (security)
- All of these are associated with a non-functional requirement.
  - requirement that specifies criteria that can be used to judge the operation of a system, rather than specific behaviors, e.g. reliability, robustness.
- We will talk about this later...

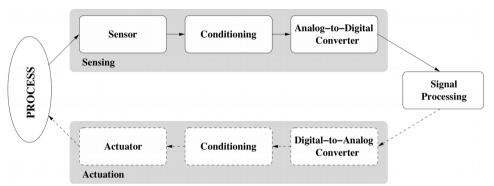

## Also... this makes it challenging

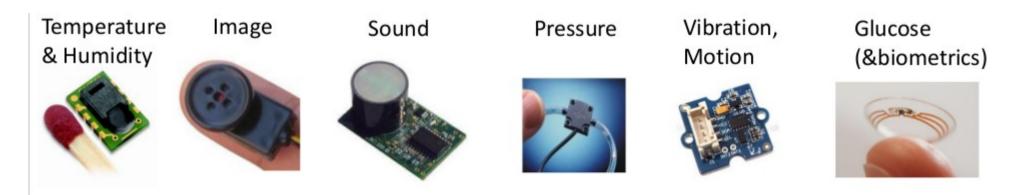
| Traditional Networks                                                                                   | Wireless Sensor Networks                                                             |  |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|
| General-purpose design; serving many applications                                                      | Single-purpose design; serving one specific application (being extended with IoT :D) |  |
| Typical primary design concerns are network performance and latencies; energy is not a primary concern | Energy is the main constraint in the design of all node and network components       |  |
| Networks are designed and engineered according to plans                                                | Deployment, network structure, and resource use are often ad-hoc (without planning)  |  |
| Devices and networks operate in controlled and mild environments                                       | Sensor networks often operate in environments with harsh conditions                  |  |
| Maintenance and repair are common and networks are typically easy to access                            | Physical access to sensor nodes is often difficult or even impossible                |  |
| Component failure is addressed through maintenance and repair                                          | Component failure is expected and addressed in the design of the network             |  |
| Obtaining global network knowledge is typically feasible and centralized management is possible        | Most decisions are made localized without the support of a central manager           |  |


### Module II Technologies and Tools

# Anatomy of a WSN Node

- Wireless sensor nodes are the essential building blocks in a wireless sensor network
  - sensing, processing, and communication
  - stores and executes the communication protocols as well as data processing algorithms
- The node consists of *sensing*, *processing*, *communication*, and *power subsystems* 
  - trade-off between flexibility and efficiency – both in terms of energy and performance






## Sensing/actuation sub-system

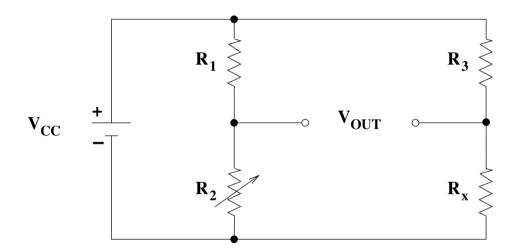
- Sensors capture phenomena in the physical world (process, system, plant)
- Signal conditioning prepare captured signals for further use (amplification, attenuation, filtering of unwanted frequencies, etc.)
- Analog-to-digital conversion (ADC) translates analog signal into digital signal
- Digital signal is processed and output is often given (via digital-analog converter and signal conditioner) to an actuator (device able to control the physical world)





## **Classifying Sensors**

 Physical property to be monitored determines type of required sensor


| Туре              | Examples                                                                    |
|-------------------|-----------------------------------------------------------------------------|
| Temperature       | Thermistors, thermocouples                                                  |
| Pressure          | Pressure gauges, barometers, ionization gauges                              |
| Optical           | Photodiodes, phototransistors, infrared sensors, CCD sensors                |
| Acoustic          | Piezoelectric resonators, microphones                                       |
| Mechanical        | Strain gauges, tactile sensors, capacitive diaphragms, piezoresistive cells |
| Motion, vibration | Accelerometers, mass air flow sensors                                       |
| Position          | GPS, ultrasound-based sensors, infrared-based sensors, inclinometers        |
| Electromagnetic   | Hall-effect sensors, magnetometers                                          |
| Chemical          | pH sensors, electrochemical sensors, infrared gas sensors                   |
| Humidity          | Capacitive and resistive sensors, hygrometers, MEMS-based humidity sensors  |
| Radiation         | Ionization detectors, Geiger-Mueller counters                               |

## **Classifying Sensors**

- Power supply:
  - active sensors require external power, i.e., they emit energy (microwaves, light, sound) to trigger response or detect change in energy of transmitted signal (e.g., electromagnetic proximity sensor)
  - passive sensors detect energy in the environment and derive their power from this energy input (e.g., passive infrared sensor)
- Electrical phenomenon:
  - resistive sensors use changes in electrical resistivity ( $\rho$ ) based on physical properties such as temperature (resistance R =  $\rho$ \*I/A)
  - capacitive sensors use changes in capacitor dimensions or permittivity ( $\epsilon$ ) based on physical properties (capacitance C =  $\epsilon$ \*A/d)
  - inductive sensors rely on the principle of inductance (electromagnetic force is induced by fluctuating current)
  - piezoelectric sensors rely on materials (crystals, ceramics) that generate a displacement of charges in response to mechanical deformation

#### Signal Conditioning Example Wheatstone Bridge Circuit

#### R1, R2, and R3 known (R2 adjustable) Rx is unknown

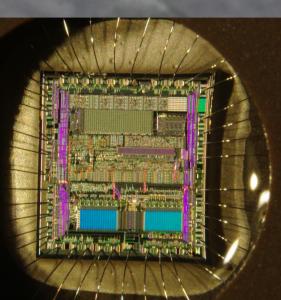


Goes into ADC

$$V_{out} = V_{CC} \times \left(\frac{R_x}{R_3 + R_x} - \frac{R_2}{R_1 + R_2}\right)$$

## **Processing subsystem**

#### The processor subsystem


- interconnects all the other subsystems and some additional peripheries
- its main purpose is to execute instructions pertaining to sensing, communication, and self-organization
- It consists of
  - processor chip
  - nonvolatile memory stores program instructions
  - active memory temporarily stores the sensed data
  - internal clock
- Usually implemented using microcontrollers, but other possibilities exist:
  - DSPs
  - FPGAs

**ASICs** 

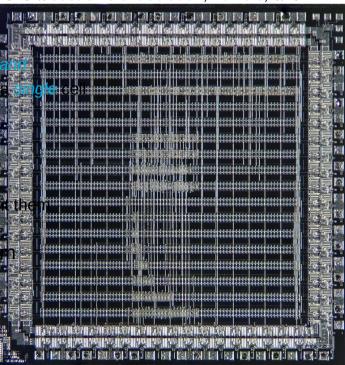
### Microcontroller

#### • Integrates:

- CPU core
- volatile memory (RAM) for data storage
- ROM, EPROM, EEPROM, or Flash memory
- parallel I/O interfaces
- discrete input and output bits
- clock generator
- one or more internal analog-to-digital converters
- serial communications interfaces
- Advantages:
  - suitable for building computationally less intensive, standalone applications, because of its compact construction, small size, low-power consumption, and low cost
  - high speed of the programming and eases debugging, because of the use of higher-level programming languages
- Disadvantages:
  - not as powerful and as efficient as some custom-made processors (such as DSPs and FPGAs)
  - some applications (simple sensing tasks but large scale deployments) may prefer to use architecturally simple but energy- and cost-efficient processors

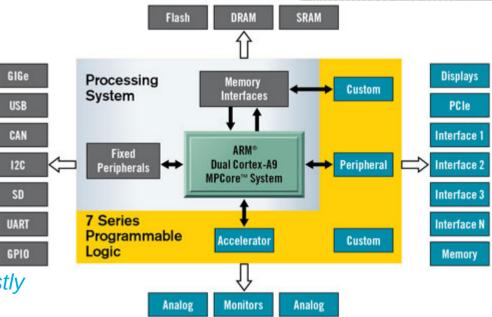


## **Digital Signal Processor**


- The main function:
  - process discrete signals with digital filters
  - filters minimize the effect of noise on a signal or enhance or modify the spectral characteristics of a signal while analog signal processing
  - requires complex hardware components, digital signal processors (DSP) requires simple adders, multipliers, and delay circuits
  - DSPs are highly efficient
- Advantages:
  - powerful and complex digital filters can be realized with commonplace DSPs
  - useful for applications that require the deployment of nodes in harsh physical settings (where the signal transmission suffers corruption due to noise and interference and, hence, requires aggressive signal processing)
- Disadvantage:
  - some tasks require *protocols* (and not numerical operations) that *require* periodical *upgrades* or *modifications* (i.e., the networks should support flexibility in network reprogramming)



#### Application-specific Integrated Circuit


- ASIC is an IC that can be customized for a specific application
- Two types of design approaches: full-customized and half-customized
  - full-customized IC:
    - some logic cells, circuits, or layout are custom made in order to optimize cell performance
    - · includes features which are not defined by the standard cell library
    - · expensive and long design time
  - half-customized ASICs are built with logic cells that are available in the standard library
  - in both cases, the final logic structure is configured by the end user an ASIC is a cost efficient solution, flexible, and reusable
- Advantages:
  - relatively simple design; can be optimized to meet a specific customer den
  - multiple microprocessor cores and embedded software can be designed in
- Disadvantage:
  - high development costs and lack of re-configurability
- Application:
  - ASICs are not meant to replace microcontrollers or DSPs but to complementation
  - handle rudimentary and low-level tasks
    - to decouple these tasks from the main processing subsyster

Microscope photograph of a gate-array ASIC showing the predefined logic cells and custom interconnections. This particular design uses less than 20% of available logic gates.



## Field Programmable Gate Array (FPGA)

- The distinction between ASICs and FPGAs is not always clear
  - FPGAs are *more complex* in design and *more flexible* to program
  - FPGAs are programmed electrically, by modifying a packaged part
  - programming is done with the support of circuit diagrams and hardware description languages, such as VHDL and Verilog
- Advantages:
  - higher bandwidth compared to DSPs
  - flexible in their application
  - support parallel processing
  - work with *floating point representation*
  - greater *flexibility of control*
- Disadvantages:
  - Complex
  - the design and realization process is costly



## Processing Subsystem - Summary

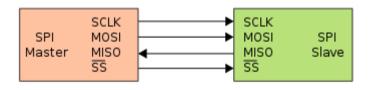
- Working with a *micro-controller* is *preferred* if the design goal is to achieve *flexibility*
- Working with the other mentioned options is preferred if power consumption and computational efficiency is desired
- DSPs are expensive, large in size and less flexible; they are best for signal processing, with specific algorithms
- FPGAs are faster than both microcontrollers and digital signal processors and support *parallel computing*; but their production cost and the programming difficulty make them *less suitable*
- ASICs have higher bandwidths; they are the smallest in size, perform much better, and consume less power than any of the other processing types; but have a high cost of production owing to the complex design process

## **Communication Interfaces**

- *Fast* and *energy efficient data transfer* between the subsystems of a wireless sensor node *is vital* 
  - however, the practical size of the node puts restriction on system buses
  - communication via a parallel bus is *faster* than a serial transmission
  - a parallel bus needs more space
- Therefore, considering the size of the node, parallel buses are never supported
- The choice is often between serial interfaces :
  - Serial Peripheral Interface (SPI)
  - General Purpose Input/Output (GPIO)
  - Secure Data Input/Output (SDIO)
  - Inter-Integrated Circuit (I<sup>2</sup>C)

Among these, the most commonly used buses are SPI and I<sup>2</sup>C

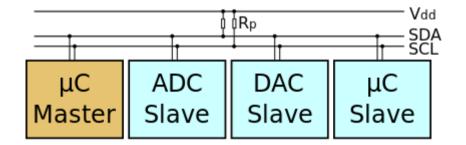
## Serial Peripheral Interface


- SPI (Motorola, in the mid-80s)
  - high-speed, full-duplex synchronous serial bus
  - does not have an official standard, but use of the SPI interface should conform to the implementation specification of others - correct communication
- The SPI bus defines *four pins*:
  - MOSI (MasterOut/SlaveIn)
    - used to transmit data from the master to the slave when a device is configured as a master
    - MISO (MasterIn/SlaveOut)
    - SCLK (Serial Clock)



- used by the master to send the clock signal that is needed to synchronize transmission
- used by the *slave* to read this signal synchronize transmission
- CS (Chip Select) communicate via the CS port

## Serial Peripheral Interface


- Both master and slave devices hold a shift register
- Every device in every transmission must read and send data
- SPI supports a synchronous communication protocol
  - the master and the slave must agree on the timing
  - master and slave should agree on two additional parameters
    - clock polarity (CPOL) defines whether a clock is used as high- or low-active
    - clock phase (CPHA) determines the times when the data in the registers is allowed to change and when the written data can be read



# Inter-Integrated Circuit



- Every device type that uses I<sup>2</sup>C must have a unique address that will be used to communicate with a device
- In earlier versions, a 7 bit address was used, allowing 112 devices to be uniquely addressed - due to an increasing number of devices, it is insufficient
- Currently I<sup>2</sup>C uses 10 bit addressing
- I<sup>2</sup>C is a *multi-master half-duplex synchronous serial* bus
  - only two bidirectional lines: (unlike SPI, which uses four)
    - Serial Clock (SCL)
    - Serial Data (SDA)

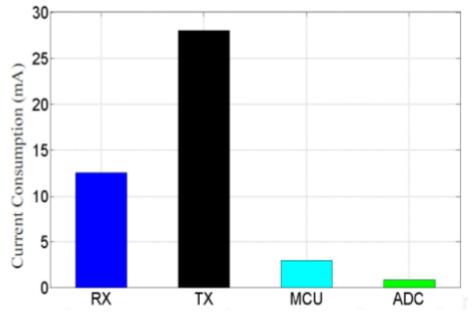


## Inter-Integrated Circuit

- Since each master generates its own clock signal, communicating devices must synchronize their clock speeds
  - a slower slave device could wrongly detect its address on the SDA line while a faster master device is sending data to a third device
- I<sup>2</sup>C requires arbitration between master devices *wanting* to send or receive data at the same time
  - no fair arbitration algorithm
  - rather the master that holds the SDA line low for the longest time wins the medium
- I<sup>2</sup>C enables a device to read data *at a byte level* for a fast communication
  - the device can hold the SCL low until it completes reading or sending the next byte called handshaking
- The *aim* of I<sup>2</sup>C is *to minimize costs* for connecting devices
  - accommodating lower transmission speeds
- I<sup>2</sup>C defines two speed modes:
  - a fast-mode a bit rate of up to 400Kbps
  - high-speed mode a transmission rate of up to 3.2 Mbps
  - they are downwards compatible to ensure communication with older components

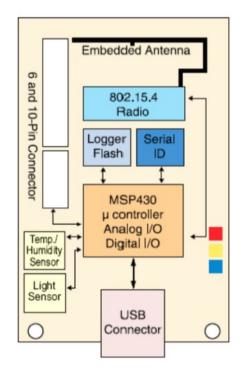
#### Communication Interfaces -Comparison

| SPI                                                                                                         | I <sup>2</sup> C                                                                                     |  |  |  |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|
| 4 lines enable full-duplex transmission                                                                     | 2 lines reduce space and simplify circuit layout;<br>Lowers costs                                    |  |  |  |
| No addressing is required due to CS                                                                         | Addressing enables multi-master mode; Arbitration is required                                        |  |  |  |
| Allowing only one master avoids conflicts                                                                   | Multi-master mode is prone to conflicts                                                              |  |  |  |
| Hardware requirement support increases with an increasing number of connected devices costly                | Hardware requirement is independent of the number of devices using the bus                           |  |  |  |
| The master's clock is configured according to the slave's speed but speed adaptation slows down the master. | Slower devices may stretch the clock latency but keeping other devices waiting                       |  |  |  |
| Speed depends on the maximum speed of the slowest device                                                    | Speed is limited to 3.2 Mbps                                                                         |  |  |  |
| Heterogeneous registers size allows flexibility in the devices that are supported.                          | Homogeneous register size reduces overhead                                                           |  |  |  |
| Combined registers imply every transmission should be read AND write                                        | Devices that do not read or provide data are not forced to provide potentially useless bytes         |  |  |  |
| The absence of an official standard leads to application specific implementations                           | Official standard eases integration of devices since developers can rely on a certain implementation |  |  |  |


### Communication Interfaces -Summary

- Buses are essential highways to transfer data
  - due to the concern for size, only serial buses can be used
  - serial buses demand high clock speeds to gain the same throughput as parallel buses
  - serial buses can also be bottlenecks (e.g., Von Neumann architecture) or may not scale well with processor speed (e.g., I<sup>2</sup>C)
- Delays due to contention for bus access become critical, for example, if some of the devices act unfairly and keep the bus occupied

## Wireless Transceivers


- Transceivers
  - Conventional: low-level PHY functionalities:
    - frequency and channels, spectrum handling,
    - modulation, bit rate. Advanced network functionalities and processing are implemented on software (i.e. microprocessor)
  - Current Trend:
    - System-on-Chip -> allows implementation of a sophisticated protocol stack on the chip (dedicated microprocessor & memory)
    - Either way: it is the element with the highest power consumption
      - Radio Duty Cycling: putting transceiver to different states:
        - Transmit / Receive
        - Idle: ready to receive
        - Sleep: significant parts of the chip are switched off





| Module                      |                              |                          |  |
|-----------------------------|------------------------------|--------------------------|--|
| Processor Performance       | 16-bit RISC                  |                          |  |
| Program Flash Memory        | 48K bytes                    |                          |  |
| Measurement Serial Flash    | 1024K bytes                  |                          |  |
| RAM                         | 10K bytes                    |                          |  |
| Configuration EEPROM        | 16K bytes                    |                          |  |
| Serial Communications       | UART                         | 0-3V transmission levels |  |
| Analog to Digital Converter | 12 bit ADC                   | 8 channels, 0-3V input   |  |
| Digital to Analog Converter | 12 bit DAC                   | 2 ports                  |  |
| Other Interfaces            | Digital VO,I2C,SPI           |                          |  |
| Current Draw                | 1.8 mA                       | Active mode              |  |
|                             | 5.1 μA                       | Sleep mode               |  |
| RF Transceiver              |                              |                          |  |
| Frequency band <sup>1</sup> | 2400 MHz to 2483.5 MHz       | ISM band                 |  |
| Transmit (TX) data rate     | 250 kbps                     |                          |  |
| RF power                    | -24 dBm to 0 dBm             |                          |  |
| Receive Sensitivity         | -90 dBm (min), -94 dBm (typ) |                          |  |
| Adjacent channel rejection  | 47 dB                        | + 5 MHz channel spacing  |  |
|                             | 38 dB                        | - 5 MHz channel spacing  |  |
| Outdoor Range               | 75 m to 100 m                | Inverted-F antenna       |  |
| Indoor Range                | 20 m to 30 m                 | Inverted-F antenna       |  |
| Current Draw                | 23 mA                        | Receive mode             |  |
|                             | 21 μΑ                        | ldle mode                |  |
|                             | 1 μΑ                         | Sleep mode               |  |
| Sensors                     |                              |                          |  |
| Visible Light Sensor Range  | 320 nm to 730 nm             | Hamamatsu S1087          |  |
| Visible to IR Sensor Range  | 320 nm to 1100nm             | Hamamatsu S1087-01       |  |
| Humidity Sensor Range       | 0-100% RH                    | Sensirion SHT11          |  |
| Resolution                  | 0.03% RH                     |                          |  |
| Accuracy                    | ± 3.5% RH                    | Absolute RH              |  |
| Temperature Sensor Range    | -40°C to 123.8°C             | Sensirion SHT11          |  |
| Resolution                  | 0.01°C                       |                          |  |
| Accuracy                    | ±0.5°C                       | @25°C                    |  |
| Electromechanical           |                              |                          |  |
| Battery                     | 2X AA batteries              | Attached pack            |  |
| User Interface              | USB                          | v1.1 or higher           |  |
| Size (in)                   | 2.55 x 1.24 x 0.24           | Excluding battery pack   |  |
| (mm)                        | 65 x 31 x 6                  | Excluding battery pack   |  |
| Weight (oz)                 | 0.8                          | Excluding batteries      |  |
| (grams)                     | 23                           | Excluding batteries      |  |

## TelosB Node







#### **Operating Systems**





## WSN Operating Systems

- An operating System is
  - a thin software layer
  - resides between the hardware and the application layer
  - provides basic programming abstractions to application developers
- Its *main task* is to enable applications to interact with hardware resources, to schedule and prioritize tasks.
- Operating systems are classified as: single-task/multitasking and singleuser/multiuser operating systems
  - multi-tasking OS the overhead of concurrent processing because of the limited resources
  - single task OS tasks should have a short duration
- The choice of a particular OS depends on several factors; typically *functional* and *non-functional* aspects.
  - Here we focus on functional aspects.

## Scheduling

- Two scheduling mechanisms:
  - queuing-based scheduling
    - FIFO the simplest and has minimum system overhead, but treats tasks unfairly
    - sorted queue e.g., shortest job first (SJF) incurs system overhead (to estimate execution duration)
  - round-robin scheduling
    - a time sharing scheduling technique
    - several tasks can be processed concurrently
- Regarding how tasks are executed, a scheduler can be either
  - a non-preemptive scheduler a task is executed to the end, may not be interrupted by another task
  - or preemptive scheduler a task of higher priority may interrupt a task of low priority

## Stacks & System Calls

- Stacks
  - a data structure that temporarily stores data objects in memory by piling one upon another
  - objects are accessed using last-in-first-out (LIFO)
- System Calls
  - decouple the concern of accessing hardware resources from implementation details
  - whenever users wish to access a hardware resource, they invoke these operations without the need to concern themselves how the hardware is accessed

## Handling Interrupts

- An interrupt is an asynchronous signal generated by
  - a hardware device
  - several system events
  - OS itself
- An interrupt causes:
  - the processor to interrupt executing the present instruction
  - to call for an appropriate interrupt handler
- Interrupt signals can have different priority levels, a high priority interrupt can interrupt a low level interrupt
- Interrupt mask: let programs choose whether or not they wish to be interrupted

## Multi-threading

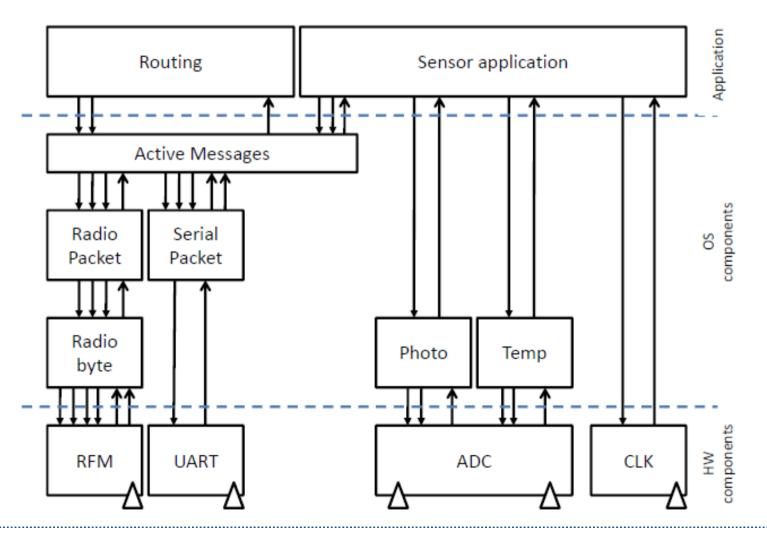
- A *thread* is the path taken by a processor or a program during its execution
- *Multi-threading* a task is divided into several logical pieces
  - scheduled independent from each other
  - executed concurrently
- Two advantages of a multi-threaded OS:
  - tasks do not block other tasks
  - short-duration tasks can be executed along with long-duration tasks
- Threads cannot be created endlessly
  - the creation of threads *slows down* the processor
  - no sufficient resources to divide
- The OS can keep the number of threads to a *manageable size* using a thread pool

### Thread-based vs. Event-based Programming

- Decision whether to use threads or events programming:
  - need for separate stacks
  - need to estimate maximum size for saving context information
- Thread-based programs use multiple threads of control within:
  - a single program
  - a single address space
  - Advantage:
    - · a thread blocked can be suspended while other tasks are executed in different threads
  - Disadvantages:
    - · must carefully protect shared data structures with locks
    - use condition variables to coordinate the execution of threads
- event-based programming: use events and event handlers
  - event-handlers register with the OS scheduler to be notified when a named event occurs
  - a loop function:
    - polls for events
    - · calls the appropriate event-handlers when events occur
  - An event is processed to completion
    - unless its handler reaches at a blocking operation (callback and returns control to the scheduler)

## **Memory Allocation**

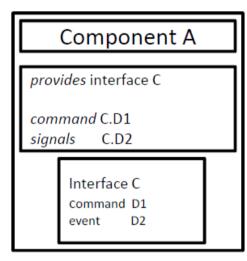
- The memory unit is a precious resource
- Reading and writing to memory is costly
- How and for how long a memory is allocated for a piece of program determines the speed of task execution
- Memory can be allocated to a program:
  - *statically* a frugal approach, but the requirement of memory *must be known* in advance
    - memory is used efficiently
    - runtime adaptation is not allowed
  - dynamically the requirement of memory is not known in advance (on a transient basis)
    - enables flexibility in programming
    - but produces a considerable management overhead


# TinyOS (2000)

- TinyOS is the most widely used, richly documented, and tool-assisted runtime environment in WSN (perhaps this is changing now...)
  - static memory allocation
  - event-based system
- TinyOS's architecture consists of
  - a scheduler
  - a set of components, which are classified into
    - configuration components "wiring" (how models are connected with each other)
    - modules the basic building blocks of a TinyOS program
- A component is made up of
  - a frame
  - command handlers
  - event handlers
  - a set of non-preemptive tasks
- A component is similar to an object in object-based programming languages:
  - it encapsulates state and interacts through well-defined interfaces
  - an interface that can define commands, event handlers, and tasks



two components at the highest level communicate asynchronously through active messages


- routing component establishing and maintaining the network
- sensor application responsible for sensing and processing



CISTER Summer Internship 2017 Introduction to WSANs

## **Binding components**

The logical structure of components and component configurations



A TinyOS component providing an interface

Component A declares its service by providing interface C, which in turn provides command D1 and signals event D2. Component B

uses interface C

call command C.D1 handle event C.D2

A TinyOS components that uses an interface

Component B expresses interest in *interface C* by declaring a call to *command D1* and by providing an event handler to process *event D2*.

| Configuration E |  |  |
|-----------------|--|--|
| B.C → A.C       |  |  |

A TinyOS configuration that wires an interface provider and an interface user

a binding between *Component A* and *Component B* is established through the *Configuration E*.

## Tasks, Commands and Events

- The fundamental building blocks of a TinyOS runtime environment: *tasks, commands,* and *events* 
  - enabling effective communication between the components of a single frame
- Tasks :
  - monolithic processes should execute to completion they cannot be preempted by other tasks, though they can be interrupted by events
  - possible to allocate a single stack to store context information
  - call lower level commands; signal higher level events; and post (schedule) other tasks
  - scheduled based on FIFO principle (in TinyOS)

## Tasks, Commands and Events

- Commands:
  - non-blocking requests made by higher-level components to lower-level components
  - split-phase operation:
    - a function call returns immediately
    - the called function notifies the caller when the task is completed
- Events:
  - events are processed by the event handler
    - event handlers are called when hardware events occur
    - an event handler may react to the occurrence of an event in different ways
      - deposit information into its frame, post tasks, signal higher level events, or call lower level commands

## WSN Operating Systems

• Operating systems that implement the OpenWSN stack. (Watteyne et. al, 2016)

THE FOUR OPERATING SYSTEMS IMPLEMENTING THE 6TISCH STACK STUDIED IN THIS PAPER.

| Name    | Programming<br>Model          | Targeted Devices <sup>1</sup> | Supported MCU Families or<br>Vendors               | Developed<br>Since | Supported RPL<br>Modes  | 6LBR Imple-<br>mentation   |
|---------|-------------------------------|-------------------------------|----------------------------------------------------|--------------------|-------------------------|----------------------------|
| OpenWSN | event-driven                  | Class 0 - 2                   | MSP430, ARM Cortex-M                               | 2010               | non-storing             | on the host                |
| Contiki | event-driven,<br>protothreads | Class 0 – 2                   | AVR, MSP430, PIC32, ARM<br>CM, OpenRISC, ARM7, x86 | 2002               | storing                 | on the mote<br>or the host |
| RIOT    | multi-threading               | Class 1 + 2                   | AVR, MSP430, ARM7, ARM<br>Cortex-M, x86            | 2012               | storing and non-storing | on the mote                |
| TinyOS  | event-driven                  | Class 0 – 2                   | AVR, MSP430, px27ax, ARM<br>Cortex-M, OpenRISC     | 2000               | storing                 | on the host                |

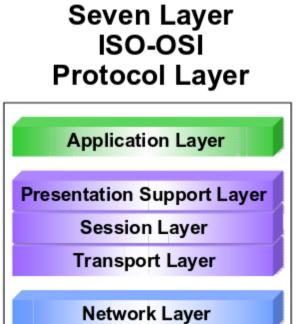
According to RFC7228 [32]: Class 0 devices have  $\ll 10kB$  RAM and  $\ll 100kB$  ROM, Class 1 devices have  $\sim 10kB$  and  $\sim 100kB$  ROM, Class 2 devices have  $\sim 50kB$  and  $\sim 250kB$  ROM.

## Assigment

- Implement a simple application with timing constraints using:
  - OpenWSN stack (TSCH + 6TiSCH stack)
  - RIOT OS or OpenWSN (FreeRTOS based)
  - HW: TelosB WSN node
- Start by installing the OS and compiling/running a simple example application.
- We will talk about OpenWSN and WSN communication basics in the next lecture.

# Communication Architectures

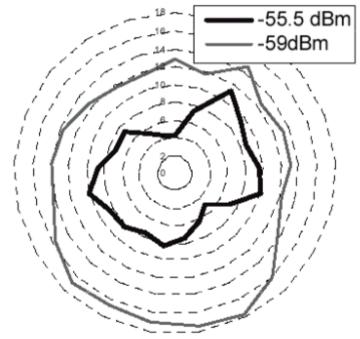
P


20

## **OSI Reference Model**

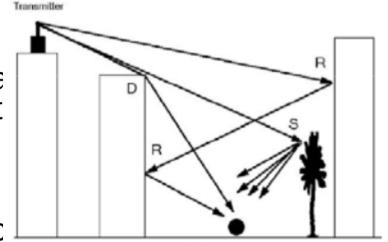
- Open Systems Interconnection model
  - standardizes the communication functions for:
    - Comunication systems
    - Computing systems
  - More layers higher complexity higher computational and memory demands
  - But... more scalable and increased interoperat
    - Fundamental in standardization efforts!

#### Protocol Stack Model for WSN


- Physical Layer: (de)modulation, spectrum allocation, transmission and reception (relying on well defined techniques and standards)
- Data Link Layer (noisy environment / dynamic topologies) Error Control techniques for reliable communication and manage channel access through the MAC sublayer
- Network Layer: (Energy-aware) data routing
- Transport layer: Data flow maintenance



**Data Link Layer** 


**Physical Layer** 

- radio link characteristics
  - Link asymmetry
    - node A is connected to Node B does not mean that Node B is connected to node A
  - non-isotropic connectivity
    - connectivity depends on the direction of the signal (at same distance from source)
  - non-monotonic distance decay
    - nodes geographically far away from source may get better connectivity than nodes that are geographically closer



\*Zhou et. al. 04

- propagation phenomena
  - Reflection
    - is the change in direction of a wa between two different media so t returns into the medium from wh
  - Diffraction
    - refer to various phenomena whic encounters an obstacle
  - Scattering
    - from objects that are small (wher wavelength), e.g.: rough surface:



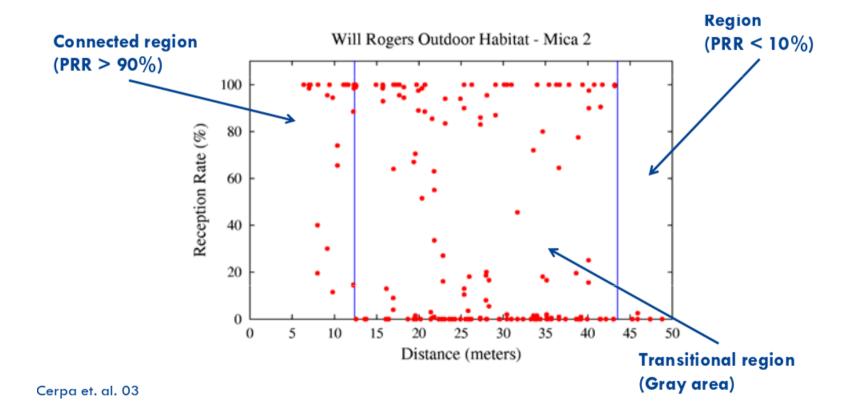
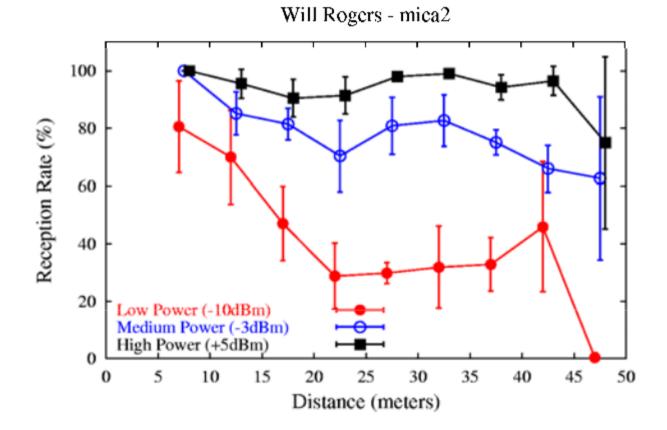
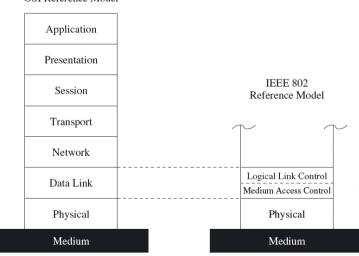

Receiver

Figure 2.5 Reflection (R), diffraction (D) and scattering (S)


#### Source: Wireless Networks,

P. Nicopolitidis, A. S. Pomportsis, G. I. Papadimitriou, M. S. Obaidat Publisher John Wiley & Sons, Inc. New York, NY, USA (2003)

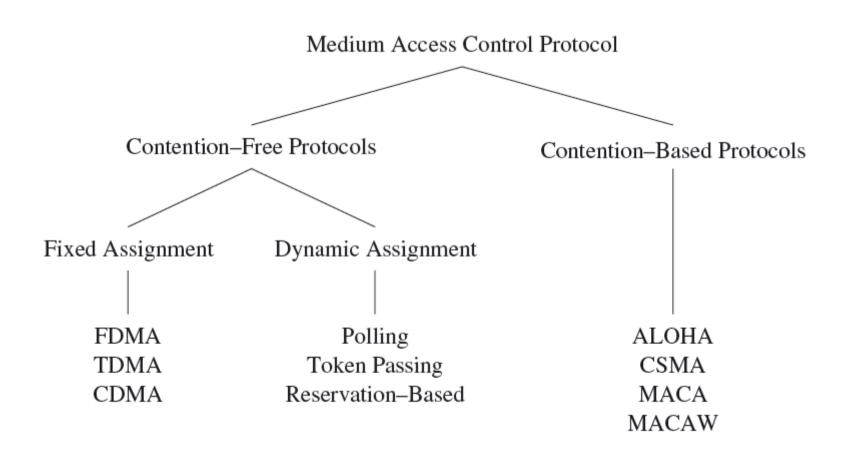
• spatial characteristics




packet reception rate vs. distance



# Data Link Layer


- In most networks, multiple nodes share a communication medium for transmitting their data packets
- The medium access control (MAC) protocol is primarily responsible for regulating access to the shared medium
- The choice of MAC protocol has a direct bearing on the reliability and efficiency of network transmissions
  - due to errors and interferences in wireless communications and to other challenges
- Energy efficiency also affects the protocol
  - trade energy efficiency for increase throughput or fairness



# MAC Sub-layer

- Responsibilities of MAC layer include:
  - decide when a node accesses a shared medium
  - resolve any potential conflicts between competing nodes
  - correct communication errors occurring at the physical layer
  - perform other activities such as framing, addressing, and flow control

#### MAC Sub-layer



## **Contention-Free Medium Access**

- Collisions can be avoided by ensuring that each node can use its allocated resources exclusively
- Examples of fixed assignment strategies:
  - FDMA: Frequency Division Multiple Access
    - the frequency band is divided into several smaller frequency bands
    - the data transfer between a pair of nodes uses one frequency band
    - all other nodes use a different frequency band
  - TDMA: Time Division Multiple Access
    - multiple devices to use the same frequency band
    - relies on periodic time windows (frames)
      - frames consist of a fixed number of transmission slots to separate the medium accesses of different devices
    - a time schedule indicates which node may transmit data during a certain slot

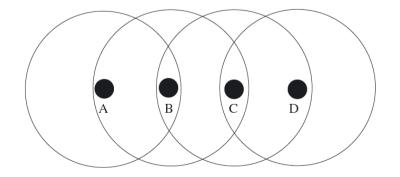
## **Contention-Free Medium Access**

- Examples of fixed assignment strategies (contd.):
  - CDMA: Code Division Multiple Access
    - simultaneous accesses of the wireless medium are supported using different codes
    - if these codes are orthogonal, it is possible for multiple communications to share the same frequency band
    - forward error correction (FEC) at the receiver is used to recover from interferences among these simultaneous communications
- Fixed assignment strategies are inefficient
  - it is impossible to reallocate slots belonging to one device to other devices if not needed in every frame
    - generating schedules for an entire network can be a taunting task
    - these schedules may require modifications every time the network topology or traffic characteristics in the network change

## **Contention-Free Medium Access**

- Dynamic assignment strategies: allow nodes to access the medium on demand
  - polling-based protocols
    - a controller device issues small polling frames in a round-robin fashion, asking each station if it has data to send
    - if no data to be sent, the controller polls the next station
  - token passing
    - stations pass a polling request to each other (round-robin fashion) using a special frame called a token
    - a station is allowed to transmit data only when it holds the token
  - reservation-based protocols
    - static time slots used to reserve future access to the medium
    - e.g., a node can indicate its desire to transmit data by toggling a reservation bit in a fixed location
    - these often very complex protocols then ensure that other potentially conflicting nodes take note of such a reservation to avoid collisions

## **Contention-Based Medium Access**


- Nodes may initiate transmissions at the same time
  - requires mechanisms to reduce the number of collisions and to recover from collisions
- Example 1: ALOHA protocol
  - uses acknowledgments to confirm the success of a broadcast data transmission
    - allows nodes to access the medium immediately
    - addresses collisions with approaches such as exponential back-off to increase the likelihood of successful transmissions
- Example 2: slotted-ALOHA protocol
  - requires that a station may commence transmission only at predefined points in time (the beginning of a time slot)
  - increases the efficiency of ALOHA
  - introduces the need for synchronization among nodes

## **Contention-Based Medium Access**

- Destructive collisions
  - CSMA with Collision Avoidance (CSMA/CA)
    - nodes sense the medium, but do not immediately access the channel when it is found idle
    - instead, a node waits for a time period (Contention Window)
    - in case there are multiple nodes attempting to access the medium, the one with the shorter back-off period will win
- non-destructive collisions
  - resolve bus conflicts by using a bitwise arbitration; each node has a unique identifier (= priority); Wire acts like a logic AND (0 is dominant, 1 is recessive); transmit identifier bit by bit and hear the medium; if a node sends a '1' but hears a '0', he loses;
  - CAN (cars), HomePlug (domotics), WiDOM(wireless)
    - pros: deterministic, time and energy-efficient
    - cons: synchronization, short tx/rx turnaround time (or 2 transceivers); multiple broadcast domains

#### Hidden and Exposed Terminal Problems

- Hidden-terminal problem
  - senders A and C are able to reach B, but cannot overhear each other's signals
  - it is possible for A and C to transmit data to B at the same time, causing a collision at B, without being able to directly detect this collision
- Exposed-terminal problem
  - C wants to transmit data D, but decides to wait because it overhears an ongoing transmission from B to A
  - B's transmission could not interfere with data reception at C



## **Contention-Based Medium Access**

- Multiple Access with Collision Avoidance (MACA)
  - dynamic reservation mechanism
  - sender indicates desire to send with ready-to-send (RTS) packet
  - intended receiver responds with clear-to-send (CTS) packet
  - if sender does not receive CTS, it will retry at later point in time
  - nodes overhearing RTS or CTS know that reservation has taken place and must wait (e.g., based on the size of data transmission)
  - address hidden terminal problem and reduces number of collisions
- MACA for Wireless LANs (MACAW)
  - receiver responds with acknowledgment (ACK) after data reception
    - other nodes in receiver's range learn that channel is available
  - nodes hearing RTS, but not CTS do not know if transmission will occur
    - MACAW uses data sending (DS) packet, sent by sender after receiving CTS to inform such nodes of successful handshake

#### MAC aspects - summary

- Characteristics of a good MAC/DLL protocol for WSNs
  - energy efficiency (to prolong the network lifetime)
    - flexible enough to adapt duty-cycles  $(100\% \rightarrow 0\%)$ 
      - dynamically
      - in a per-cluster basis
    - must resolve some causes of energy loss:
      - Collisions (due to retransmissions)
      - Hidden-nodes and exposed-nodes(lead to unnecessary extra collisions)
      - Overhearing (wasted effort in receiving a packet destined to another node)
      - idle listening (sitting idly and trying to receive when nobody is sending)

### MAC aspects - summary

- Characteristics of a good MAC/DLL protocol for WSNs (cont.)
  - scalability and adaptability
    - changes in network size node density and topology should be handled rapidly, transparently and effectively
  - Reliability
    - error detection/correction mechanisms; order inversion avoidance
  - traffic differentiation
    - support higher/lower priority traffic classes; support best-effort and real-time traffic
  - minimized frame overhead
    - but still support network management, security, error detection/correction