
Linux Kernel Development (LKD)
Session 2

Kernel Build System and Process Management

Paulo Baltarejo Sousa
pbs@isep.ipp.pt

2017

PBS LKD: S2 1 / 41

Disclaimer

Material and Slides
Some of the material/slides are adapted from various:

Presentations found on the internet;
Books;
Web sites;
...

PBS LKD: S2 2 / 41

Outline

1 The Linux Kernel Build System

2 Process management

3 Books and Useful links

PBS LKD: S2 3 / 41

The Linux Kernel Build System

The Linux Kernel Build System

PBS LKD: S2 4 / 41

The Linux Kernel Build System

Introduction

The Linux kernel has a monolithic architecture, which means that
the whole kernel code runs in kernel space and shares the same
address space.
But, Linux is not a pure monolithic kernel

it can be extended at runtime using loadable kernel modules.
However, to load a module

the kernel must contain all the kernel symbols used in the module.

Modules
There is the need to choose at kernel compile time most of the
features that will be built in the kernel image and the ones that will
allow you to load specific kernel modules once the kernel is executing.

PBS LKD: S2 5 / 41

The Linux Kernel Build System

The Linux Kernel Build System

Four main components:
config symbols: compilation options that can be used to compile
code conditionally in source files and to decide which objects to
include in a kernel image or its modules.
Kconfig files: define each config symbol and its attributes, such
as its type, description and dependencies. Programs that generate
an option menu tree (for example, make menuconfig) read the
menu entries from these files.
.config file: stores each config symbol’s selected value.
Makefiles: normal GNU makefiles that describe the relationship
between source files and the commands needed to generate each
make target, such as kernel images and modules.

PBS LKD: S2 6 / 41

The Linux Kernel Build System

Configuration Symbols (I)

Configuration symbols are the ones used to decide which features
will be included in the final Linux kernel image.�

config SMP

bool "Symmetric multi-processing support"

---help---

...

config X86_MCE_INJECT

depends on X86_MCE

tristate "Machine check injector support"

---help---

...
� �
In the source code as well as in the Makefile they will be referred as
CONFIG_SMP and CONFIG_X86_MCE_INJECT. The CONFIG_
prefix is assumed but is not written.

Two kinds of symbols are used for conditional compilation:
boolean and tristate.

Boolean symbols can take one of two values: true or false.
Tristate symbols can take three different values: yes (y), no (n) or
module (m).
PBS LKD: S2 7 / 41

The Linux Kernel Build System

Configuration Symbols (II)

Dependencies and help�
config PM

bool "Power Management support"

...

---help---

...

config PM_DEBUG

bool "Power Management Debug Support"

depends on PM

...

---help---

...
� �
Menus�

menu "XPTO device support"

config XPTODEVICES

...

endmenu
� �
PBS LKD: S2 8 / 41

The Linux Kernel Build System

Kconfig Files (I)

Configuration symbols are defined in files known as Kconfig
files.
Each Kconfig file can describe an arbitrary number of symbols
and can also include other Kconfig files.

Compilation targets that construct configuration menus of kernel
compile options, such as make menuconfig, read these files to
build the tree-like structure.

The contents of Kconfig are parsed by the configuration
subsystem, which presents configuration choices to the user, and
contains help text associated with a given configuration parameter.
The configuration utility (make menuconfig) reads the Kconfig
files starting from the arch subdirectory’s Kconfig file.
Typically, there is one Kconfig file per directory.

PBS LKD: S2 9 / 41

The Linux Kernel Build System

Kconfig Files (II)

PBS LKD: S2 10 / 41

The Linux Kernel Build System

.config File

The output of this configuration exercise is written to a
configuration file named .config, located in the top-level Linux
source directory that drives the kernel build.�

#
Automatically generated file; DO NOT EDIT.

Linux/x86 4.12.4-cister Kernel Configuration

#
CONFIG_64BIT=y

CONFIG_X86_64=y

CONFIG_X86=y

CONFIG_INSTRUCTION_DECODER=y

CONFIG_OUTPUT_FORMAT="elf64-x86-64"

CONFIG_ARCH_DEFCONFIG="arch/x86/configs/x86_64_defconfig"

CONFIG_LOCKDEP_SUPPORT=y

CONFIG_STACKTRACE_SUPPORT=y

CONFIG_MMU=y

...
� �

PBS LKD: S2 11 / 41

The Linux Kernel Build System

Makefile (I)

The Makefile uses information from the .config file to construct
various file lists used by kbuild tool to build any built-in or
modular targets.

Compile a built-in object: obj-y
obj-y += foo.o: This tells kbuild that there is one object in that
directory, named foo.o.
foo.o will be built from foo.c or foo.S.
Then, it is merged into one built-in.o file.

Compile a loadable module:obj-m
obj-m += foo.o: This tells kbuild that there is one object in that
directory, named foo.o.
foo.o will be built from foo.c or foo.S.
This specifies object files which are built as loadable kernel modules.

obj-$(CONFIG_FOO) += foo.o: depends on the CONFIG_FOO
value.

CONFIG_FOO=y: built-in kernel code.
CONFIG_FOO=m: compiled as a module.
CONFIG_FOO is not set: it is not compiled.

PBS LKD: S2 12 / 41

The Linux Kernel Build System

Makefile (II)

The top Makefile reads the .config file, which it is the output of
the kernel configuration process.

It is responsible for building two major products:
vmlinux (the resident kernel image)
modules (any module files).

It builds these goals by recursively descending into the
subdirectories of the kernel source tree.
It includes an arch Makefile with the name
arch/$(ARCH)/Makefile.

The arch Makefile supplies architecture-specific information to the top
Makefile.
Each subdirectory has a Makefile which carries out the commands
passed down from above.

PBS LKD: S2 13 / 41

The Linux Kernel Build System

Makefile (III)

PBS LKD: S2 14 / 41

The Linux Kernel Build System

Makefile (IV)

PBS LKD: S2 15 / 41

The Linux Kernel Build System

Makefile (V)

All object files are combined
into a built-in.o object file
per directory.
All built-in.o files are
included into the built-in.o
file of the parent directory
All built-in.o files are then
linked and the resulting file
vmlinux is located at the root
of the source code directory.

PBS LKD: S2 16 / 41

The Linux Kernel Build System

Coding: conditional compilation

�
#ifdef CONFIG_DEBUG_PAGEALLOC

/*

* Need to access the cpu field knowing that

* DEBUG_PAGEALLOC could have unmapped it if

* the mutex owner just released it and exited.

*/

if (probe_kernel_address(&owner->cpu, cpu))

return 0;

#else
cpu = owner->cpu;

#endif

...

#ifdef CONFIG_RT_MUTEXES

...

void rt_mutex_setprio(struct task_struct *p, int prio)

{

...

}

#endif
� �
PBS LKD: S2 17 / 41

The Linux Kernel Build System

Coding: conditional inclusion

It is possible to control preprocessing itself with conditional
statements that are evaluated during preprocessing.

This provides a way to include code selectively, depending on the
value of conditions evaluated during compilation.
For example, to make sure that the contents of a file hdr.h are
included only once, the contents of the file are surrounded with a
conditional like this:�

#ifndef HDR_H

#define HDR_H

/* contents of hdr.h go here */

#endif
� �
The first inclusion of hdr.h defines the name HDR_H.
Subsequent inclusions will find the name defined and skip down to
the #endif.

PBS LKD: S2 18 / 41

Process management

Process management

PBS LKD: S2 19 / 41

Process management

Process Representation

Linux is a multi-user and multitasking operating system, and thus
has to manage multiple processes from multiple users
A process is an instance of execution that runs on a processor.
Processes are more than just the executing program code.

They also include a set of resources such as open files and
pending signals, internal kernel data, processor state, a memory
address space with one or more memory mappings, one or more
threads of execution, and a data section containing global variables.

The data structures used to represent individual processes have
connections with nearly every subsystem of the kernel

PBS LKD: S2 20 / 41

Process management

Process identification

Linux allow users to identify processes by means of a number
called the Process ID (or PID)
PIDs are numbered sequentially

The PID of a newly created process is normally the PID of the
previously created process increased by one

There is an upper limit on the PID values
When the kernel reaches such limit, it must start recycling the
lower, unused PIDs

PBS LKD: S2 21 / 41

Process management

Thread identification (I)

Each process has it’s own PID and they also have a TGID (thread
group ID).
When a new process is created, it appears as a thread where both
the PID and TGID are the same number.
When a thread/process starts another thread, that started thread
gets its own PID (so the scheduler can schedule it independently)
but it inherits the TGID from the original thread.
When a thread/process starts another process, that started
process gets its own PID and TGID.

PBS LKD: S2 22 / 41

Process management

Thread identification (II)

From the schedule point of view, the Linux kernel does not
differentiate threads and processes.

Both are managed by struct task_struct data structure.

PBS LKD: S2 23 / 41

Process management

struct task_struct data structure

The Linux kernel uses an instance of task_struct data
structure (defined in include/linux/sched.h) to manage
each process.�

struct task_struct {

...

/* -1 unrunnable, 0 runnable, >0 stopped: */

volatile long state;

...

int prio;

...

const struct sched_class *sched_class;

...

unsigned int policy;

...

pid_t pid;

pid_t tgid;

...

};
� �
PBS LKD: S2 24 / 41

Process management

Process hierarchy

All processes are descendants of the init process, whose
Process ID (PID) is one

The kernel starts init in the last step of the boot process
Every process has exactly one parent
Likewise, every process has zero or more children
Processes that are all direct children of the same parent are called
siblings

PBS LKD: S2 25 / 41

Process management

Process lifecycle (I)

The first, fork , creates a child process that is a copy of the
current task.

It differs from the parent only in its PID (which is unique), its PPID
(parent’s PID, which is set to the original process), and certain
resources and statistics, such as pending signals, which are not
inherited.

The second function, exec , loads a new executable into the
address space and begins executing it.
When a process terminates, by invoking exit function, the kernel
releases the resources owned by the process and notifies the
child’s parent of its demise.
After process completes, the process descriptor for the terminated
process still exists, but the process is a zombie and is unable to
run. After the parent has obtained information on its terminated
childthe child’s task_struct is deallocated.

PBS LKD: S2 26 / 41

Process management

Process lifecycle (II)

The standard behavior of the wait function is to suspend
execution of the calling task until one of its children exits, at which
time the function returns with the PID of the exited child.

PBS LKD: S2 27 / 41

Process management

Parentless task

If a parent exits before its children, some mechanism must exist to
re-parent any child tasks to a new process

Otherwise, parentless terminated processes would forever remain
zombies

The solution is to re-parent a task’s children on exit to either
another process in the current thread group or, if that fails, the
init process
init routinely calls wait on its children, cleaning up any
zombies assigned to it

PBS LKD: S2 28 / 41

Process management

Task state (I)

Every task has its own state that shows what is currently
happening in the task

PBS LKD: S2 29 / 41

Process management

Task state (II)

Range of values for volatile long state field of the struct
task_struct data structure.

-1: unrunnable;
0: runnable;
>0: stopped.

Defined in /include/linux/sched.h�
/* Used in tsk->state: */

#define TASK_RUNNING 0

#define TASK_INTERRUPTIBLE 1

#define TASK_UNINTERRUPTIBLE 2

#define __TASK_STOPPED 4

#define __TASK_TRACED 8

/* Used in tsk->exit_state: */

#define EXIT_DEAD 16

#define EXIT_ZOMBIE 32

#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)

/* Used in tsk->state again: */

#define TASK_DEAD 64

...
� �
PBS LKD: S2 30 / 41

Process management

Task state (III)

TASK_RUNNING
The task is either executing on a CPU or waiting to be executed.
This is the only possible state for a task executing in user-space.

TASK_INTERRUPTIBLE
The task is blocked until some condition becomes true. A typical
example of a TASK_INTERRUPTIBLE process is a process waiting
for keyboard interrupt.

TASK_UNINTERRUPTIBLE
Identical to TASK_INTERRUPTIBLE except that the task does not
wake up and become runnable if it receives a signal.

__TASK_STOPPED
Process execution has stopped; the task is not running nor is it
eligible to run. This occurs if the task receives some (such as
SIGSTOP or other) signal or if it receives any signal while it is being
debugged.

__TASK_TRACED
The process is being traced by another process, such as a
debugger, via ptrace.
PBS LKD: S2 31 / 41

Process management

Task exit state

Range of values for int exit_state field of the struct
task_struct data structure.

EXIT_ZOMBIE
A process always switches briefly to the zombie state between
termination and removal of its data from the process table.

EXIT_DEAD
It is the state after an appropriate wait system call has been issued
and before the task is completely removed from the system.

PBS LKD: S2 32 / 41

Process management

policy

The policy field holds the scheduling policy applied to the
process.
Range of values for int policy field of the struct
task_struct data structure.
Defined in /include/uapi/linux/sched.h�

/*

* Scheduling policies

*/

#define SCHED_NORMAL 0

#define SCHED_FIFO 1

#define SCHED_RR 2

#define SCHED_BATCH 3

/* SCHED_ISO: reserved but not implemented yet */

#define SCHED_IDLE 5

#define SCHED_DEADLINE 6

/* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork

*/

#define SCHED_RESET_ON_FORK 0x40000000
� �
PBS LKD: S2 33 / 41

Process management

Scheduling policies

Handled by the CFS.
SCHED_NORMAL: is used for normal processes.
SCHED_BATCH and SCHED_IDLE can be used for less important
tasks.

SCHED_BATCH is for CPU-intensive batch processes that are not
interactive. Tasks of this type are disfavored in scheduling decisions.
SCHED_IDLE tasks will also be of low importance in the scheduling
decisions, but this time because their relative weight is always
minimal.
Note that SCHED_IDLE is, despite its name, not responsible to
schedule the idle task.

Handled by the RT.
SCHED_RR implements a round robin method.
SCHED_FIFO uses a first in, first out mechanism.

Handleded by the Deadline
SCHED_DEADLINE it is an implementation of the Earliest Deadline
First (EDF) + Constant Bandwidth Server (CBS) scheduling
algorithms.

PBS LKD: S2 34 / 41

Process management

Kernel Representation of Priorities

The static priority of a process can be set in userspace by means
of the nice command, which internally invokes the nice system
call.
The nice value of a process is between −20 and +19 (inclusive).

Lower values mean higher priorities.
Why this strange range was chosen is shrouded in history.

The kernel uses a simpler scale ranging from 0 to 139 inclusive to
represent priorities internally.

Lower values mean higher priorities.
The range from 0 to 99 is reserved for real-time processes.
The nice values [−20, +19] are mapped to the range from 100 to
139.

PBS LKD: S2 35 / 41

Process management

__schedule function (I)

Defined in kernel/sched/core.c�
static void __sched notrace __schedule(bool preempt)

{

struct task_struct *prev, *next;

struct rq_flags rf;

struct rq *rq;

int cpu;

cpu = smp_processor_id();

rq = cpu_rq(cpu);

prev = rq->curr;

...

next = pick_next_task(rq, prev, &rf);

...

if (likely(prev != next)) {

rq->nr_switches++;

...

rq = context_switch(rq, prev, next, &rf);

} else {

rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);

rq_unlock_irq(rq, &rf);

}

...

}
� �
PBS LKD: S2 36 / 41

Process management

__schedule function (II)

Scheduler core function.
The main means of driving the scheduler and thus entering this
function are:

Explicit blocking: mutex, semaphore, waitqueue, etc.
The executing task is marked to be preempted.

To drive preemption between tasks, the scheduler marks the
executing task to be preempted in timer interrupt handler
scheduler_tick.

Wakeups do not really cause entry into schedule.
They add a task to the run-queue and that’s it.

At task execution termination (invoking exit function).

PBS LKD: S2 37 / 41

Process management

__scheduler_tick function

This function gets called by the timer code, with HZ frequency.
It is called with interrupts disabled.
Defined in kernel/sched/core.c�

/*

* This function gets called by the timer code, with HZ frequency.

* We call it with interrupts disabled.

*/

void scheduler_tick(void)
{

int cpu = smp_processor_id();

struct rq *rq = cpu_rq(cpu);

struct task_struct *curr = rq->curr;

struct rq_flags rf;

sched_clock_tick();

rq_lock(rq, &rf);

update_rq_clock(rq);

curr->sched_class->task_tick(rq, curr, 0);

cpu_load_update_active(rq);

calc_global_load_tick(rq);

rq_unlock(rq, &rf);

perf_event_task_tick();

...

}
� �
PBS LKD: S2 38 / 41

Books and Useful links

Books and Useful links

PBS LKD: S2 39 / 41

Books and Useful links

Books

Linux Kernel Development: A thorough guide to the design and
implementation of the Linux kernel, 3rd Edition, Robert Love.
Addison-Wesley Professional, 2010.
Professional Linux Kernel Architecture, Wolfgang Mauerer. Wrox

, 2008.
Linux Device Drivers, 3rd Edition, Jonathan Corbet, Alessandro
Rubini, Greg Kroah-Hartman. O’Reilly, 2005.
Understanding the Linux Kernel, 3rd Edition, Daniel P.Bovet,
Marco Cesati, O’Reilly Media, 2005.

PBS LKD: S2 40 / 41

Books and Useful links

Links

elixir.free-electrons.com/linux/v4.10/source

www.kernel.org/doc/htmldocs/kernel-api/

kernelnewbies.org/Documents

lwn.net/Kernel/LDD3/

PBS LKD: S2 41 / 41

elixir.free-electrons.com/linux/v4.10/source
www.kernel.org/doc/htmldocs/kernel-api/
kernelnewbies.org/Documents
lwn.net/Kernel/LDD3/

	The Linux Kernel Build System
	Process management
	Books and Useful links

