
1

Need for Reservation Servers

with Constrained Deadlines

Daniel Casini, Alessandro Biondi, and Giorgio Buttazzo

Scuola Superiore Sant’Anna – ReTiS Laboratory

Pisa, Italy

2

Why using constrained-deadlines?

Recent work showed that Semi-Partitioned

scheduling can achieve high schedulability

performance:

 “Global Scheduling Not Required” by

Brandenburg and Gul for static workloads
(RTSS 2016)

 “Semi-Partitioned Scheduling of Dynamic Real-

Time Workload” by Casini et al. for dynamic

workloads
(29th June, 15:30 PM @ ECRTS 2017)

3

Why using constrained-deadlines?

 Supporting constrained-deadlines is an

open problem also for the SCHED_DEADLINE

scheduling class of Linux (based on

reservation with the CBS algorithm)

 Currently discussed also in the Linux kernel

mailing list

4

Hard Constant Bandwidth Server

H-CBS is a reservation algorithm allowing

to guarantee:

A bandwidth 𝛼 =
𝑄

𝑇

A bounded maximum service-delay ∆= 2(𝑇 − 𝑄)

T 2T

∆= 2(𝑇 − 𝑄)

Q

Worst-case scenario

for the service delay

Used in several works and implementations

5

Importance of a bounded delay

A bounded-delay allows deriving a supply function

that can be used for testing the schedulability of

the workload running inside the server:

T 2T

∆

T − 𝑄

𝑡

sbf(𝑡)
Case of implicit-deadlines

6

H-CBS and constrained-deadlines

As long as the server behaves (in the worst-

case) as a standard periodic/sporadic task

with constrained deadlines, existing EDF

schedulability theory can be applied

 The core issue is how to guarantee that the

demand generated by the server never

exceeds the one of a corresponding sporadic
task in all possible scenarios…

T 2TD T+D0

7

H-CBS key rule

H-CBS has a specific rule when the server

wakes up from the idle state:

Rule 2: “When H-CBS is idle and a job

arrives at time t, a replenishment time is

computed as 𝑡𝑟 = 𝑑 −
𝑞

𝛼
”

 Then, if 𝑡 < 𝑡𝑟 the server is suspended until time 𝑡,
where the budget is replenished and the absolute

deadline is postponed to time 𝑡𝑟 + 𝑇;

 otherwise, the budget is immediately replenished and

the absolute deadline is postponed to t + 𝑇.

8

H-CBS and constrained-deadlines

H-CBS rules are not directly applicable in

case of constrained-deadlines:

Rule 2: “When H-CBS is idle and a job

arrives at time t, a replenishment time is

computed as 𝑡𝑟 = 𝑑 −
𝑞

𝛼
”

This rule has been derived by EDF schedulability

theory for implicit-deadline tasks (utilization-

based), which indeed cannot be re-used to

ensure schedulability with constrained deadlines!

10

Naïve solution

New Rule: “When H-CBS goes IDLE, discard

all the budget. The budget is replenishment

only at server periods, i.e., 𝑡𝑟 = 𝑘𝑇𝑖“

T 2T

∆= T + (D − Q)

Q𝜖 0

The worst-case service delay is much higher!

D T+D

Mimic the polling server

11

Questions

T 2T

∆= D + T −2Q

Q

D T+D

Desired ∆

How to modify the replenishment rules for

obtaining a better maximum-service delay?

Is it possible to achieve a maximum service

delay equal to ∆ = 𝐷 + 𝑇 − 2𝑄?

12

Issues with shared resources

BROE

Avoids budget overruns

Ensures bandwidth isolation

Guarantees bounded-delay

The protocol is based on a proportional

deadline-postponement rule which relies

on the server bandwidth
(again, EDF schedulability theory for implicit-deadlines)

13

Issues with shared resources

BROE

Avoids budget overruns

Ensures bandwidth isolation

Guarantees bounded-delay

How to guarantee a bounded-delay partition

in the presence of shared-resources?

14

Issues with admission control

 Replenishment rules are based on the admission

test, so another question arise:

Which admission control test should be used for

admitting reservations?

We expect that the adopted admission test will

strongly influence the server rules

An efficient (and hence possibly sufficient)

admission test would also reduce the server run-

time overhead

15

Issues with admission control

With implicit-deadline the admission test of the

H-CBS (based on EDF) is very simple:

𝛼𝑖 ≤ 1

 This is relevant to our purpose because the

H-CBS rule builds upon the schedulability test

𝛼∆𝑇 = 𝑞 → 𝛼 𝑑 − 𝑡𝑟 = 𝑞 → 𝑡𝑟 = 𝑑 −
𝑞

𝛼

Exact test

Constant-time complexity

𝑆1

Server goes idle Safe-wake up time

∆𝑇

What is the 𝑡𝑟 which guarantees a bandwidth 𝛼 in ∆𝑇?

d𝑡𝑟

16

Issues with admission control

Conversely, considering constrained-deadlines

the schedulability check is based on Processor

Demand Criterion (Baruah et al. 1990)

Exact test, Pseudo-polynomial

complexity if σ𝛼𝑖 < 1

t

dbf(t)Based on demand

bound functions

17

Issues with admission control

 Some approximations exist to limit the

computational complexity of the admission-test

 They are based on approximating the demand-

bound function with a fixed number of

discontinuities (Fisher et al., 2006)

t

dbf(t)

Polynomial-time complexity

(sufficient test)

18

Questions

Which admission control test should be used for

admitting reservations?

How to modify the replenishment rules for

obtaining a better maximum-service delay?

Is it possible to achieve a maximum service

delay equal to ∆ = 𝐷 + 𝑇 − 2𝑄?

How to guarantee a bounded-delay partion in

presence of shared-resources?

19

SKETCH OF SOLUTION:

SHADOW BUDGETING

How to implement a new Hard Constant

Bandwidth Server supporting

constrained-deadlines?

THE QUESTION

20

Sketch of solution

 The results proposed by Biondi et al. for real-time

self-suspending tasks can be used to derive a

solution

According to their approach, whenever a server

should execute according to EDF scheduling, it

consumes its budget independently whether it is

suspended or not

Alessandro Biondi, Alessio Balsini, and Mauro Marinoni,

“Resource reservation for real-time self-suspending tasks:

theory and practice” (RTNS 2015)

21

Shadow budget

A similar approach can be adopted when a

reservation goes idle:

Server goes idle

𝑆1 consumes its budget even if it is idle

𝑆1

𝑆2

Replenishment times are

always set to 𝑡𝑟 = 𝑘𝑇𝑖

t

t

t

t

𝑞2

𝑞1

Server wakes up

22

Pro and Cons

Simplicity

Worst-case service delay is smallest as
possible

Independent from the admission test

Lower throughtput (average-case)

Still do not consider shared resources

23

What are we doing?

Evaluation of different solutions

Simulations

Derive methodologies to increase the

throughtput

Develop a solution to cope with shared

resources

 Implement the new resource reservation server

in Linux (SCHED_DEADLINE)

24

Thank you!
Daniel Casini

daniel.casini@sssup.it

