How Does Task Scheduling Affect Engine Control Performance?

Paolo Pazzaglia, Alessandro Biondi, Marco Di Natale and Giorgio Buttazzo

Scuola Superiore Sant’Anna, Pisa, Italy
Real-time scheduling theory has provided a foundation for understanding and solving resource problems in systems that have real-time constraints. New fundamental results are needed to capture the main trends in real-time systems design. RTSOPS 2016 encompasses all aspects that are relevant to real-time scheduling.

RTSOPS 2016 invites extended abstracts of open problems in areas such as, but not limited to:

- Single-, Multi- and Many-core scheduling;
- New models for real-time systems;
- Scheduling in cyber-physical systems;
- Mixed-criticality scheduling;
- Interactions between WCET (worst-case execution time) analysis and scheduling.

Instructions for authors

Extended abstracts (for either new open problems or status reports on previously-presented problems) should be written in English, and not exceed two A4 pages in length in single column, 10pt format, including all figures.

- Download the MS Word template [here](#)
- Download the LaTeX template [here](#)
INTRODUCTION

• **Engine control** is a very interesting and challenging **CPS** problem

• Scheduling plays a **key** role

• **Design constraints** (limited computational power)

• Timing significantly influences system **performance**

• Both time- and event-driven behavior
ENGINE CONTROL APPLICATIONS

- **Engine control** applications include
 - **Periodic Tasks**, with fixed periods (1-500 ms)
 - **Angular Tasks**, linked to the rotation of the crankshaft

![Diagram showing task activations](image)

- Task activations
- $\theta(t)$
 - t: 10-120 ms
To prevent **overload** at high rates, *different control implementations* are used.
ENGINE CONTROL APPLICATIONS

Set of Periodic Tasks
\[\tau_i (C_i, T_i, D_i) \]

Set of AVR tasks
\[\tau_i^* (C_i(\omega), T_i(\omega), D_i(\omega)) \]

Scheduler
Ready queue

CPU
ECU

Timer
Engine

A. Biondi – RTSOPS 2016
Periodic computational activities

Periodic Real-Time Tasks – Studied since 70’s

Engine-triggered computational activities

AVR Tasks – Studied only in the last years

- Buttazzo et al. DATE14
- Davis et al. RTAS14
- Biondi et al. ICCPS15
- Guo and Baruah ICCPS15
ALL THE SOLUTIONS FOR THE SCHEDULING PROBLEM ASSUMED HARD DEADLINES

Are engine control applications hard real-time?
THE (REAL) PROBLEM

• Engine control is **not** hard real-time

 Deadline misses can be **tolerated**

• **Informal specifications**
 • “Deadline can be missed but **not that many**”
 • “Not that many *consecutive* deadline misses”
 • “Not that large maximum response-times”
 • “What matters is the *engine performance*”
 • “The system incurs in transient *overloads*”
THE (REAL) PROBLEM

- The **objective** of the scheduling is **not** necessarily to **meet** all the **deadlines**.

BUT

Maximize the **engine performance** given a set of computational constraints

Engine control is a **complex multi-criteria design optimization** problem
(power, fuel efficiency, noise, emissions,...)
EXAMPLE OF CHALLENGES

FUEL INJECTION

• **TPU** uses data produced from the **CPU** (injection angle, quantity of fuel, CR pressure...)

If **deadlines** are **missed** (on the **CPU**), the **TPU** uses **old data** for the **next injection**
EXAMPLE OF CHALLENGES

FUEL INJECTION

• Deadline misses can be penalizing if the conditions of the engine changed (too much) from previous cycles.
• The use of old data can produce errors in the injection angle.

Scheduling errors

Inaccurate injection

Decreasing performance
EXAMPLE OF CHALLENGES

SWITCHING SPEEDS

• To prevent overload conditions, different control implementations are used depending on the engine speed.
EXAMPLE OF CHALLENGES

SWITCHING SPEEDS

complexity
WCET
performance
EXAMPLE OF CHALLENGES
SWITCHING SPEEDS

• Which is the **best** speed to **switch** control implementation?
• The problem has been *recently* attempted only under the assumption of **hard deadlines**…
“Something” more systematic supported by a model and an analysis would be very useful...
CAN THE PROBLEM BE PARTITIONED?

- Is it possible to separate the timing (scheduling) problem from the functional (performance) analysis?
EXISTING APPROACHES

Firm real-time (e.g., m-k model)
- Still yes/no analysis;
- No way to express impact on performance.

Generalized response-time analysis
- Allows computing max. number of consecutive deadline misses;
- System state not considered;
- No way to express impact on performance.

Value-based scheduling
- Allows expressing performance as value functions;
- How to obtain (and define) value functions?
- Value should be dependent on the system state.
LIMITATIONS

• **None** of the **existing approaches** can be used **as it is**.

• Possibly a **combination** of such techniques will be required.

Large lack of **models** (and corresponding **analysis techniques**) to take into account the **system state** (and hence **performance**).
SCHEDULING AS DESIGN OPTIMIZATION

Scheduling in engine control should be a design optimization of performance functions.

PROBLEMS

• Likely, performance cannot be expressed as a simple function of timing parameters.
• Performance is not independent from past behavior.
• Multiple performance indexes must be considered.
OUR (CURRENT) APPROACH

• Closed form functional mapping between temporal parameters and performance is possible for simple control systems.

• This approach becomes soon prohibitively difficult for a realistic CPS due to the intrinsic complexity of the system.

Our attempt

Use a simulation framework
OUR (CURRENT) APPROACH

Simulink architecture

Engine model

Control laws

Simulink Scheduler interface

External Scheduling Simulator

Control Unit

Actuation

Sensors
Thank you!

Alessandro Biondi
alessandro.biondi@sssup.it