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Message from the Chairs

It gives us great pleasure to introduce this volume that includes the Proceedings of the 7th Real-Time
Scheduling Open Problems Seminar (RTSOPS 2016). This volume represents the continued openness in
the Real-Time Systems research community to share and discuss unsolved problems concerning real-time
scheduling theory.

This 7th edition of the seminar series is co-located with the 28th Euromicro Conference on Real-Time Systems
(ECRTS 2016) that is being held in Toulouse, France. The day long seminar features 5 paper presentations and
keynote presentations distributed over 2 sessions, a session on the impact of RTSOPS in real-time scheduling
research and an open session for participants to present new scheduling problems and discuss status of known
problems on-the-spot.

Each session includes ample collaboration time, during which we encourage all participants to interact in
groups and tackle the presented problems. The hope is that we make headway in solving the problems and that
more complete problem definitions and solutions will emerge as a result of the discussions initiated during the
workshop.

We would like to thank the generosity of the Program Committee for their time and attention to detail that
helped us assemble the program for the day. We are also grateful to the RTSOPS Steering Committee for
their feedback and advice. This program would not have been possible without the efforts and support of the
ECRTS 2016 organizing committee, in particular the General Chair Christian Fraboul.

We invite all of you to join us in taking advantage of this excellent opportunity to learn and interact with our
fellow colleagues. We hope you enjoy RTSOPS 2016.

Vincent Nelis1 and Arvind Easwaran2
1CISTER, ISEP, Portugal
2Nanyang Technological University, Singapore
RTSOPS 2016 Program Chairs
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Efficient Execution of Dependent Tasks on
Many-Core Processors

Hamza Rihani, Claire Maiza, Matthieu Moy
Univ. Grenoble Alpes

CNRS, VERIMAG, F-38000 Grenoble, France
Email: {first}.{last}@imag.fr

I. INTRODUCTION

The increasing performance requirements of safety-critical real-time embedded systems made traditional single-core
architectures obsolete. Moving to more complex many-core systems requires new techniques and tools for the certification
of the embedded software. Timing and functional behaviours are subject to specific requirements of certification guidelines
such as D-178B/C for avionics and ISO26262 for automotive systems. Determinism and predictability of such systems are a
major challenge. Running tasks should be known in advance which makes the static and non-preemptive scheduling a suitable
approach to reach an optimal execution with a guarantee of a certain degree of determinism. Recent work on mapping and
scheduling problems [1], [2], [3] consider a known value (or a set of possible values) of the Worst-Case Response Time (WCRT)
and computes a mapping that optimizes a predefined cost function. When the response time analysis is too pessimistic, the
static scheduling may introduce an idle time which reduces the core utilization.

Scheduling techniques must rely on tight estimations of the WCRT which in turn depends on co-runner tasks. However, in
order to obtain a tight upper-bound on the response time, a mapping and scheduling should be known in advance. Indeed, the
response time is highly influenced by the co-runner tasks. Concurrent accesses to the same shared resource may introduce
interferences that should be accounted for in the response time analysis. The search for an optimal scheduling with a tight
WCRT analysis that includes the shared resource interferences is a challenging open problem.

II. THE OPEN PROBLEM

We illustrate the open problem on a Synchronous Data-Flow (SDF) application. SDF languages such as Lustre [4] offer an
efficient programming paradigm that, using a certified compiler, can produce deterministic sequential code. An SDF application
is represented with a task dependency graph, where the amount of exchanged data among the tasks is deterministic and known
in advance. We consider the application to be running on a multi/many core architecture with a banked shared memory. Figure 1
represents an example of a node in an SDF application. The node increases the values of an input array by 1. Among the
challenges while parallelizing such applications, we need to i) specify a task mapping that optimizes a certain cost function; ii)
specify a scheduling per processing element that respects dependencies; iii) find a tight estimate of the response time that takes
into account the interferences from co-runners. There exists several solutions for the mentioned points when taken individually.
However, the connexion and the interaction among them remains as an open problem.� �
1 const n=1000;
2 node N (in_data: intˆn) returns (out_data: intˆn);
3 var N: intˆn;
4 let
5 N = 1ˆn; -- array of n values of 1
6 out_data=in_data+N;
7 tel� �

node N

in data[n]

in data[0]

out data[n]

out data[0]

Fig. 1: Example of a Lustre node and its high level graphical representation

In this context, Figure 2 represents a potential solution for an efficient execution of such applications. The proposed technique
relies on an iteration between a scheduling/mapping function and the WCRT analysis. Existing approaches may be used in each
step but must interact altogether. In the following, we highlight open problems regarding such composability:

1) Code Generation: A code generator transforms the example given in Figure 1 into a low level language (such as C
language) which in turn is compiled to run on a target architecture. We consider that in_data (produced by a previous
node) is present in the local memory bank. After computation, out_data is copied to the next nodes’ local memory
banks. Several execution models can be applied: 1) A single phase execution model where the output is ”sent” to the
next node as soon as it is ready. 2) A structured execution model with an execution phase and a replication phase. The
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Fig. 2: High level work flow of a complete WCRT/Scheduling interaction

execution phase uses only the local memory bank to compute and store the output data. Then, a replication phase is
added to copy the values of out_data into their memory destinations. The number of shared resource accesses may
be significantly increased, but with a good scheduling of the execution and replication phases the interference may be
reduced. The choice of the execution model affects the results in the next steps. It is not clear whether it is possible to
recognize at this stage which execution model is more efficient by analyzing the structure of the application.

2) Task Mapping: We are interested in the optimization of the overall response time according to an estimated WCRT
of each task. In memory intensive applications, the scheduler may consider minimizing the interference by avoiding
concurrent accesses to the same shared resource. Each task is modeled by its release date, response time, deadline,
and period. The single phase execution model may use traditional scheduling techniques to respect all the deadlines.
The structured execution model offers more flexibility by co-scheduling communications and computations such that
the interference is reduced [5]. However, we still need to investigate the efficiency of this method w.r.t a single-phase
execution model where the number of accesses is not increased but the interference can be pessimistically overestimated.

3) WCRT Analysis: The WCRT analysis must be able to derive tight upper-bounds on the interference due to concurrent
accesses to shared resources, and therefore estimate the response times and release dates for all tasks. This requires a
task mapping and scheduling as well as the constraints on the task dependencies. The execution model given by the
code generation step can highly influence the analysis. In the case of a structured execution model, the upper bounds
on the shared resource interferences in the execution and replication phases may be too pessimistic due to pessimistic
assumptions on the arbitration policy. This may as well result in a larger estimation on the overall interference per task
depending on the application’s topology. As a result, one may run the analysis on both execution models and retain the
one with the best overall response time.

4) WCRT/Mapping Iteration: Depending on the chosen task mapping and scheduling per processing elements, the response
times must be re-estimated by taking into account the interference in order to check that all constraints are respected and
potentially reduce idle times. However, the optimality obtained from step (2) may be lost due to the updated timing
information. A possible solution relies on constraint programming languages. A solver finds a satisfiable task mapping
that optimizes the cost function. The WCRT Analysis and a schedulability test can then compute a tighter estimation by
taking into account potential interferences. New timing constraints are added to the model and the search stops when no
better solution can be found.

Since the mapping problem is NP-hard, it is hard to prove that the iteration done in 4) converges toward an absolute optimal
solution (assuming its existence). In the absence of such guarantee, one can iterate for a certain amount of time and choose the
best solution. This interaction remains as an open problem.
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I. INTRODUCTION

Since the multicore revolution, the focus of research on real-time scheduling has shifted to multiprocessor platforms. Global
earliest-deadline-first (GEDF) is a widely studied multiprocessor scheduling algorithm. Unfortunately, in hard real-time (HRT)
systems where every deadline must be met, platform utilization must be restricted in order to guarantee schedulability under
GEDF on a multiprocessor platform due to the Dhall Effect [2]. Nonetheless, in soft real-time (SRT) systems, where deadlines
may be missed provided deadline tardiness is provably bounded, Devi and Anderson [1] showed the SRT-optimality of GEDF
schedulers, i.e., deadline tardiness bounds are guaranteed under GEDF scheduling for any feasible system.

The SRT-optimality result applies to both preemptive and non-preemptive GEDF schedulers, but only on a multiprocessor
consisting of identical processors. The uniform multiprocessor model, which extends the identical multiprocessor model by
associating a speed with each processor, is a widely studied heterogeneous multiprocessor model. We are interested in whether
GEDF schedulers are still SRT-optimal on a uniform multiprocessor.

II. SYSTEM MODEL

On a uniform multiprocessor platform, processors may have different speeds. The speed of processor p is denoted as sp.
Identical multiprocessors are a special case of uniform platforms, where all processors happen to have the same speed, which
is usually normalized as 1.0. We consider the scheduling of n sequential sporadic tasks on a uniform multiprocessor platform
of m processors. Each task τi is specified by (Ci, Ti), where Ci is its worst-case execution requirement, which is defined as its
worst-case execution time on a unit-speed processor, and Ti is its period, or minimum separation between any two consecutive
invocations of the task. Periodic tasks are a special case of sporadic tasks where the separation between any two consecutive
invocations of a task τi is always exact Ti. We assume the deadlines to be implicit (i.e., the relative deadline of each task
equals its period).

A job is an invocation of a task. The jth job of task τi is denoted as τi,j and is released at time ri,j with an absolute deadline
di,j = ri,j + Ti. If τi,j completes at time tc, then its tardiness is defined as max{0, tc − di,j}. The tardiness of a task is the
maximum tardiness of any of its jobs. A job is ready if and only if it is released and all previous jobs of the same task have
already completed. Only ready jobs can commence execution since we assume each individual task to be sequential.

The utilization of a task τi is defined as ui = Ci/Ti. Note that, on a uniform platform, ui ≤ 1 is not necessarily required
for a system to be feasible. A feasibility condition, which depends on processor speeds, is provided by the following theorem
cited from [3].

Theorem 1 (Theorem 4 in [3]). Let Sk denote the sum of the k largest processor speeds, and let Uk denote the sum of the k
largest task utilizations. Then, the n tasks can be scheduled to meet all deadlines on the m uniform processors, if and only if
the following constraints hold:

Un ≤ Sm, (1)
Uk ≤ Sk, for k = 1, 2, . . . ,m− 1. (2)

The above feasibility condition was established for periodic tasks in HRT systems. Nonetheless, it is easy to show that
(1) and (2) are also a necessary and sufficient feasibility condition for sporadic tasks in SRT systems.

Migrations. On an identical multiprocessor, a scheduler needs to determine which jobs are scheduled, but where they are
scheduled matters less since every processor is the same. In contrast, on a uniform multiprocessor, where jobs are scheduled
is crucial, and must be explicitly specified by a scheduler. In this context, we define that, under non-preemptive scheduling,
once a job is scheduled on a particular processor, it continuously executes on that processor until complete.

III. KNOWN RESULTS AND THE OPEN PROBLEM

Although both preemptive and non-preemptive GEDF schedulers are SRT-optimal on identical multiprocessors [1], it is
shown in [6] that, on uniform platforms, there exists a feasible system where a task can become unboundedly tardy under

3



non-preemptive GEDF scheduling, which precludes the SRT-optimality of the non-preemptive GEDF scheduler. Therefore, we
shift our focus to a fully preemptive GEDF scheduling algorithm (A) as follows.
(A) If at most m jobs are ready, then all ready jobs are scheduled; otherwise, the m ready jobs with earliest deadlines are

scheduled. Migrations are allowed, by which the ready job with the kth earliest deadline is always scheduled on the kth

fastest processor for any k. Deadline ties are broken arbitrarily.
Thus, we state the following open problem:

Under the preemptive GEDF scheduling algorithm (A), is the deadline tardiness for every task provably bounded
for any feasible system on a uniform multiprocessor?

Some variants of this open problem have been solved in prior work, such as,
• relaxing the task model to allow intra-task parallelism [5];
• constraining per-task utilizations [4];
• restricting the platform to have only two uniform processors [6].

Therefore, to clarify, we would like to emphasize the following assumptions in this open problem:
• intra-task parallelism is strictly forbidden (jobs of the same task must execute in sequence);
• no constraints on task utilizations other than the feasibility condition (i.e., (1) and (2)) are assumed;
• the uniform platform may have more than two processors.
To solve this open problem, we need to consider both potential answers. In order to answer “No” to this open problem, we

need a counterexample where at least one task in a feasible system becomes unboundedly tardy under the preemptive GEDF
scheduling algorithm (A). The potential counterexample must have at least three uniform processors and likely has multiple
high-utilization individual tasks (utilizations higher than the speeds of some processors in the system). On the other hand, in
order to answer “Yes” to this open problem, we need to handle a key difference between an identical multiprocessor and a
uniform one, as described in next section.

IV. THE KEY DIFFERENCE

The difficulty in extending the SRT-optimality result on identical multiprocessors [1] to uniform multiprocessors comes
from the change of feasibility condition. In the feasibility condition for scheduling a sporadic implicit-deadline task set on m
identical processors, the total utilization constraint, which corresponds to (1), is that the sum of the utilizations of all tasks
is at most m; the per-task utilization constraint, which corresponds to (2), is that the utilization of each individual task is at
most 1.0. These two utilization constraints underlie the proof framework in [1].

In the feasibility condition for uniform platforms, (1) can play a similar role as the total utilization constraint in the identical
case; however, (2) is not as convenient as the per-task utilization constraint in the identical case. Specifically, the per-task
utilization constraint for an identical multiprocessor guarantees the following property.
(P) If any job τi,j continuously executes, it must complete within Ti time units, regardless of the processor on which τi,j

executes.
This property is critical in the induction-based proof framework in [1], in order to handle the precedence constraint of

each sequential sporadic task (i.e., a job cannot commence execution until all previous jobs of the same task have already
completed). However, (P) does not necessarily hold for a feasible system on a uniform multiprocessor.

Example 1. We consider the scheduling of three sporadic tasks with utilizations u1 = u2 = u3 = 2 on three uniform processors
with speeds s1 = 4 and s2 = s3 = 1. By checking (1) and (2), this system is feasible. However, (P) does not hold when any
job entirely executes on processor 2 or 3.
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I. INTRODUCTION

Mixed-Criticality (MC) scheduling has received a lot of attention since Vestal introduced the MC task model [1]. There
have been several studies focusing on the scheduling problem for the MC task model [2]. Baruah et al. [3] have showed that
the scheduling problem for MC systems is NP-Hard. Ekberg et al. [4] presented a note on open problems in MC systems.
Till date there is neither an optimal scheduling policy nor a discussion on the feasibility analysis for MC task systems. In this
work, we address this problem by presenting a possible solution to design a non-clairvoyant1 optimal algorithm for scheduling
implicit-deadline periodic MC task systems on uniprocessor platform and derive the feasibility tests to determine whether a
given task system is MC schedulable.

Task Model: We consider the problem of scheduling dual-criticality (namely LO and HI) periodic task set τ on a uniprocessor
platform. Each MC task τi represents an infinite number of job releases and is characterized by a tuple (Ti, χi, C

L
i , C

H
i , Di),

where Ti is the period, χi ∈ {LO,HI} is the criticality-level, CLi is the LO-criticality Worst-Case Execution Time (WCET),
CHi is the HI-criticality WCET; we assume CLi ≤ CHi and Di(= Ti) is the deadline of the task. LO- and HI-criticality
utilization of a task τi is defined as uLi

def
= CLi /Ti and uHi

def
= CHi /Ti respectively. System-level utilizations are defined as

ULL
def
=

∑
τi∈τL u

L
i , ULH

def
=

∑
τi∈τH u

L
i and UHH

def
=

∑
τi∈τH u

H
i .

II. PROBLEM DESCRIPTION

Known results: The only known necessary feasibility condition for scheduling MC task systems is given by ULL +ULH ≤ 1
and UHH ≤ 1. It has been shown that algorithms such as EDF VD [5] for uniprocessor and MC-Fluid [6] and MCF [7] for
multiprocessor MC systems are speed-up optimal2 with a speed-up bound3 of 4/3. That is, these algorithms can successfully
schedule any MC task system that satisfy the conditions ULL +ULH ≤ 3/4 and UHH ≤ 3/4. Figure 1 shows the feasibility region
of MC task systems. The diagonally shaded region in the figure is our region of interest to determine the feasibility of a task
system.

Open problem: What is a tight feasibility bound for MC task systems? The existing MC scheduling algorithms are only
speed-up optimal, but not optimal in general, i.e. there are feasible task sets that are not schedulable by these algorithms.
Therefore, to determine the feasible region of MC task systems we need a non-clairvoyant optimal scheduling algorithm with
an exact schedulability test. Given the complexity of MC scheduling problem, it is reasonable to first consider the periodic task
systems which has a fixed job release sequence. As a first step, it is necessary to design a non-clairvoyant optimal algorithm for
scheduling implicit-deadline periodic task systems on uniprocessor platform and later extend it to the multiprocessor platform
and sporadic task systems.

Challenge: The major challenge in deriving the feasibility test for MC system is in determining the worst-case pattern. So
far, we do not know of any such worst-case scenario either for periodic or for sporadic MC task systems. Since the mode
switch instant is not known a priori, we need to focus on determining the worst-case scenario for the non-clairvoyant behavior.

III. POSSIBLE SOLUTIONS

This section briefly describes the possible solution in designing a non-clairvoyant optimal scheduling algorithm for periodic
MC task systems. We propose a fluid-model based scheduling algorithm.

The dual-rate fluid model [6] was designed to schedule implicit-deadline task systems with two criticality levels. It assigns
different execution rates to tasks in each criticality level. Under fluid scheduling the execution rates are computed by determining
the worst-case mode switch instant of HI-criticality tasks. Figure 2 shows the worst-case mode switch instant of a HI-criticality
task, where θLi and θHi represents the execution rates of HI-criticality task in LO and HI mode respectively. The intuition
behind this is that the carry-over job executes with the HI mode rate for the shortest possible duration.

1Non-clairvoyant algorithm has no knowledge on when the mode switch will be triggered.
2If an algorithm has an optimal speed-up bound, then no non-clairvoyant algorithm can have a tighter speed-up bound.
3Speed-up bound is defined as the additional processor speed required to schedule a feasible taskset using the proposed algorithm [8].
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Under fluid scheduling, the execution rates determine the mode switch instant. That is, each HI-criticality task complete its
CLi units of execution at CLi /θ

L
i . At that instant, if the task does not signal completion the mode switch will be triggered. We

refer to this time instant as the latest possible virtual deadline of a HI-criticality task in LO mode.
The design of optimal scheduling algorithm involves three conditions:
• In LO mode: Schedule LO-criticality tasks as late as possible.
• In LO mode: Schedule HI-criticality tasks with their virtual deadline (CLi /θ

L
i ).

• In HI mode: Optimal scheduling of HI-criticality tasks inclusive of carry-over demand of HI-criticality tasks.
In the case of non-MC systems, fluid scheduling is known to be optimal for multiprocessor platform [9],[10]. For MC systems,

it is possible to optimally schedule HI-criticality tasks in HI mode using fluid scheduling by considering the worst-case mode
switch instant of all HI-criticality tasks.

In order for each HI-criticality task to meet its deadline in HI mode, the restriction imposed on fluid scheduling is that each
HI-criticality task must execute its CLi budget within CLi /θ

L
i time units from its release. Failure to allocate CLi units within

this deadline will result in a deadline miss in HI mode.
In non-MC systems, algorithms such as DP-Fair [9] and Bfair [10] are used to convert fluid schedule into non-fluid schedule

without any loss in schedulability. The intuition behind this is that between two boundaries, tasks are allocated execution units
equal to the product of its execution rate and length of the duration. The tasks are guaranteed proportional execution units
across all job deadlines. For MC systems, in addition to job deadlines, HI-criticality tasks need to be guaranteed proportional
execution units across all virtual deadlines (CLi /θ

L
i ). Since we consider periodic job releases, one possible way to guarantee

fairness across boundaries would be to consider each HI-criticality job as a set of sub jobs with same release time and different
execution requirements and deadlines.

By guaranteeing fairness across both job and virtual deadline of each HI task and executing the LO-criticality tasks as late as
possible in LO mode using any work conserving scheduling algorithm, it is possible to optimally schedule the task system. We
shall then derive the necessary and sufficient feasibility tests for implicit-deadline periodic MC task systems. For sporadic MC
task systems the derived feasibility tests becomes a necessary (but not sufficient) condition. We believe that this is a potential
research direction for MC scheduling.
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Abstract—The timing behavior of engine control applications
has been analyzed in several papers, whose results allow verifying
the system schedulability under different schedulers and assump-
tions. However, the characterization of the scheduling problem
suffers from several inaccuracies, the most important one being
probably the hard deadline assumption. In fact, in engine control,
a few deadline misses are often well tolerated and the objective of
the scheduling is not necessarily to meet all deadlines, but rather
maximizing the engine performance. This requires evaluating
the impact of the scheduler, which is much more complex,
since it does not refer to timing properties in isolation, but is
related to the functional behavior and overload management. The
open problem addressed here is to understand how scheduling
decisions affect the engine performance. A possible approach to
address such a problem is through a suitable tool chain that
integrates a scheduling simulation framework with an engine
model for estimating the impact of a scheduling policy on engine
performance.

I. INTRODUCTION

Engine control systems require actions that need to be
performed at specific angular rotations of the crankshaft, in
addition to other regular periodic activities. As a consequence,
a typical engine control application consists of time-driven
periodic tasks with fixed periods, typically between a few
milliseconds and 100 ms (see [1], page 152), and angular
tasks triggered at specific crankshaft angles. The activation
rate of such angular tasks hence varies with the engine speed
(variable-rate tasks). For example, for engines where the speed
varies from 500 to 6500 revolutions per minute (RPM), the
interarrival times of the angular tasks range from about 10 to
120 ms (assuming a single activation per cycle).

To prevent overload conditions at high engine speed, such
angular tasks are implemented in such a way to decrease their
computational requirements for increasing speeds [2], hence
they are referred to as adaptive variable-rate (AVR) tasks. In
particular, they are implemented as a set of operational modes,
each characterized by a set of functions operating within a
given speed range.

Analyzing the schedulability of tasks sets consisting of
both periodic and AVR tasks is a difficult problem that has
been addressed by several authors under various simplifying
assumptions, under both fixed priority scheduling [3]–[5] and
Earliest Deadline First (EDF) [6]–[8].

All the papers considered above, however, focused on
analyzing the schedulability of task sets consisting of periodic
and AVR tasks, without any concern on engine performance.

A performance-driven design approach has been addressed
in [9] for finding the transition speeds that trigger the mode
changes of an AVR task.

The challenging open problem addressed here is to un-
derstand how scheduling decisions may affect engine per-
formance, in terms of power, fuel consumption, and pollu-
tion. Solving this problem requires the integration of differ-
ent crucial components, including a realistic engine model,
schedulability analysis, control algorithms, and a simulation
environment that accounts for the delays introduced by the
operating system.

II. OPEN PROBLEMS

The analysis of engine control applications is an interesting
and challenging problem. Not only the scheduling problem
is relatively new and complex (due to the presence of AVR
tasks), but the application is characterized by multiple per-
formance criteria (power, emissions, fuel consumption, noise)
and deadline misses are clearly tolerated by the control logic.
In addition, when studying the impact of time delays on
the performance, details on the functional and code imple-
mentation of the controls cannot be avoided. Depending on
them, a deadline miss can result in skipping an actuation, or
performing an actuation with old data, or even with incomplete
and approximate information available.

The impact of all these issues on the performance criteria of
the engine is far from obvious. Likely, most of the computa-
tional models and their corresponding real-time analyses that
are available today, fail in accounting for all the parameters
that affect the engine performance.

Similarly, the performance indices that are more affected by
scheduling issues are to date, and to the best of our knowledge,
unknown.

Finally, further complications arise when considering the
adaptive behavior of engine control tasks. As discussed in
Section I, to avoid overload conditions, AVR tasks perform
a mode-change among a set of possible control implemen-
tations. As the engine speed increases, AVR tasks switch to
simplified (or even different) control implementations with a
reduced computational demand. The switch happens at given
transition speeds. This determines a trade-off between system
schedulability (or in general, response-times and deadline miss
ratio) and the resulting performance of the engine. The design
problem of transition speeds has been investigated in [9]
under hard real-time schedulability constraints. Alternative
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approaches based on extended analyses to cope with temporary
overaload conditions are still not explored.

III. PROPOSED APPROACH AND OUTSTANDING ISSUES

To solve the problem of how to evaluate the impact of
deadline miss and scheduling delays on the performance of
the CPS system there are several possible approaches. One
possibility is to attempt a functional characterization of the
dependency of the performance function(s) from the temporal
parameters. For some simple control systems this is possible,
but for realistic CPS the task soon becomes prohibitively
difficult because of several reasons, including the need to
satisfy multiple performance criteria and the difficulty in
finding analytical models for the impact of late task executions
on other tasks (this is why several papers of this type restrict
the analysis to scheduling with time isolation).

Fuel injection is a prototypical case in this sense for the
reasons discussed in the previous section.

We are attempting a first analysis of these issues by building
a sample experimental framework. The envisioned approach
for the evaluation of the impact of scheduling policies is based
on a cosimulation framework that, following the principles of
CPS system analysis, includes a set of models:

• A model of the engine and the combustion process in it
(the physical system or plant)

• A model of the engine controls
• A model of the task configuration and the scheduling
The system is based on the Simulink toolset and leverages

the T-Res environment for the simulation of the task schedul-
ing. For the development of the engine model we leveraged
information from several sources, including engine models for
the steady state and event-based models as described in [1]
and other empirical models found online. The engine controls
are currently extremely simple and only contains a simple
analytical formula that computes the angle of injection and
the injection time that is defined by a calibration table.

The T-Res simulation framework is described in [10]. For
the purpose of this project we extended the task model block
and the timing information associated with the task to allow
for the modeling of the AVR behavior. The task block in T-Res
includes a signal for the explicit activation in case of event-
triggered tasks, and this signal is used to define the activation
of the task in correspondence to defined position of the engine
crankshaft. In addition, the block has been extended to include
another imput that refers to a generic mode. This input can be
used for multiple purposes and defines in general a different
execution time behavior for a finite and enumerated set of
conditions. In our case, the mode index is provided from a
simple block that looks at the engine rotation speeds and,
based on the speed range, defines the execution time that the
task requires.

Currently, within the assumptions of our model, the simula-
tion is able to show how the scheduling delays result in errors
in the angle/duration of the injection actuation (as shown in
Figure 1, which aims at showing that adaptation of the task
WCET for higher rates is indeed required to reduce the errors).

However, we are still not able to express how a more complex
implementation (WCET) also translates into a possible more
accurate control law.

Figure 1. Angle error with scheduling delays with and without adaptation in
the task execution times.

Future directions: While the framework and the approach
are quite general, it is not clear what amount of work is
reusable and if the problem can be partitioned in such a way
that the timing problem can be separated from the functional
analysis. In this case, the simulations with the model of the
system and the controls could be used to derive a formulation
of the dependency of the performance(s) with respect to the
timing parameters (and select the relevant parameters). The
performance function(s) could then be used to evaluate the
scheduling solutions.
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Abstract

In this note, we present a mechanization of Johnson’s procedure. We first specify the scheduling problem, we are concerned
with. Then, we formalize Johnson’s procedure and prove an invariant. Thanks to this invariant, we prove the correctness of Johnson’s
procedure and its optimality. Last, also thanks to the invariant, we elaborate a concurrent version of Johnson’s procedure which
is correct by construction. We use the Python language for expression and experimentation purposes. The Isabelle HOL assistant
theorem prover is used for validating the correctness.

I. INTRODUCTION

Johnson’s procedure [1] is one of the oldest procedure that has been proposed for scheduling in an optimal way a list
of jobs over two machines. Although Johnson’s procedure is described very precisely in the seminal paper [1] and in many
scheduling textbooks [2], to the best of our knowledge, the assertional reasoning establishing its correctness with respect to
a given program text has not been published. Moreover, we are aware neither of a mechanization1 of such a proof nor of a
parallelization of such a procedure.

This kind of scheduling is used inside multicores for the instructions to be processed. The calculus of the worst case execution
time (WCET) for such processors relies on techniques: ILP, constraints resolution, . . . for dealing with such a complex problem.
Recently, the analysis of the scheduling of trains over rails has also been considered through similar techniques. Also, one
technique to address the precise analysis of real time problems is that of timed automata. In order to scale such a technique,
it seems promising to reuse the known optimality results for such a problem. Last, if we consider the certification of critical
real-time systems, the use of formal methods is by now mandatory (DO178C). The mechanization of the basic procedures of
the domain and their parallelization can make easier such certifications. From our point of view, the certification of real-time
algorithms and their parallelization is an interesting open problem to address.

II. SPECIFICATION

Notations
• A list l is a permutation of l′ is denoted: l ∼ l′ (l and l′ are also said to be similar). Given two lists l1, l2, their

concatenation is denoted l1 + l2. Given an element e, the list consisting of the unique element e ist denoted [e].
• Given a couple c of elements, the first (resp. second) component of c is denoted c1(resp. c2).
• Given a list l of couples, l is non decreasing(resp. non increasing) according to the first element(resp. to the second

element) is denoted inc1(l) = inc(map fst l)) (resp. dec2(l) = dec(map snd l)).

A. Expression.

In the following, we model a job by a couple of naturals. The first (resp. the second) element of the couple is the duration
required on the first (resp. the second) machine. The jobs to be scheduled are modeled as a list of natural couples.

1) Makespan definition: The makespan function ms is defined through an intermediate definition msi as follows:

msi ∈ (N× N)list× (N× N)→ N× N
(l, i) 7→ reduce(lambda(m,m′) : lambda(d, d′) : (m+ d,max(m′,m+ d) + d′)), l, i)

and ms(l) = msi(l, (0, 0)).
2) Scheduling specification: We model Johnson’s procedure as a function J with the following properties:

(J1) J is a total function: J ∈ (N× N)list→ (N× N)list.
(J2) J is conservative: J does not create or loose jobs. J generates a permutation: ∀l. J(l) ' l.
(J3) J is optimal: ∀l l′. l ∼ l′ ⇒ms(J(l))1 ≤ms(l′)1 ∧ms(J(l))2 ≤ms(l′)2.

1Actually, we have done a mechanization of all the development in Isabelle HOL. Due to the lack of space, we do not detail it here.
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III. JOHNSON’S PROCEDURE EXPRESSION AND CORRECTNESS

In order to establish the correctness of Johnson’s procedure, we first express it is as a recursive Python procedure. Then,
we state an invariant characterizing a schedule as returned by Johnson’s procedure.

A. Johnson’s procedure functional expression

# a u x i l i a r y procedure
def J_aux ( b , l , e ) : # b i s to be scheduled f i r s t , l remains to process , e i s to be scheduled l a s t

# recu rs i ve procedure : the v a r i a n t i s len ( l )
i f l == [ ] : return b+e
else :

m1,m2 = min ( l , key = lambda ( d1 , d2 ) : d1 ) , min ( l , key = lambda ( d1 , d2 ) : d2 )
i f m1[ 0 ] <= m2 [ 1 ] : l . remove (m1) ; return J_aux ( b+[m1] , l , e )
else : l . remove (m2) ; return J_aux ( b , l , [ m2]+e )

# Johnson ’ s procedure
def J ( l ) : return J_aux ( [ ] , l , [ ] )

B. Johnson’s procedure invariant
The invariant (I_J) states formally how the schedule returned by Johnson’s procedure is structured. This schedule is indeed

a 2-partition of the jobs characterized by the comparison (≤) of the first duration and the second duration of a job. The first
subset is sorted according to the increasing order of the first duration, while the second subset is sorted according to the
decreasing order of the second duration. More formally:

(I_J)

J(l) ∼ l
∧ let l1 = [(d1, d2) for (d1, d2) in J(l) if d1 ≤ d2] in

let l2 = [(d1, d2) for (d1, d2) in J(l) if ¬(d1 ≤ d2)] in
J(l) = l1@l2

∧ inc1(l1) ∧ dec2(l2)

C. Johnson’s procedure proof obligations

• The properties (J1) and (J2) are trivially established thanks to the invariant of the auxiliary procedure J_aux and the
invariant (I_J) seen in the previous section.

• The proof of property (J3) relies on the following intermediate result stating that the Johnson’s procedure is efficient:

∀l. ms(J(l))1 ≤ms(l)1 ∧ms(J(l))2 ≤ms(l)2

In turn, this result relies on the following property (and a similar symmetrical one) of the makespan function ms wich
states when we can swap the jobs of a list while improving the makespan components:

(∀x in l. x1 ≥ e1) ∧ (∀ x in l. x2 ≥ e1) ∧ e1 ≤ e2 ⇒ms([e] + p)2 ≤ms(p+ [e])2

Then, (J3) is again obtained thanks to the invariant.

IV. A CONCURRENT JOHNSON’S PROCEDURE

Thanks to the invariant, we know that the schedule returned by Johnson’s procedure is a 2-partition of the jobs. Then, based
on this separation property, we propose the following parallelization:

partition ; (sort1 ‖ sort2) ; fusion

where, we first partition the list of jobs, then concurrently we sort each partition according to the first and second component.
Eventually, we fusion the sorted results. Since this solution validates the invariant and the correctness proofs rely on the
invariant, we assert that this solution is correct by construction2.

V. CONCLUSION

We have proposed a formal development of Johnson’s procedure based on assertional reasoning. The invariant has been
used for correctness purposes but also as a hint for parallelizing the procedure. Then, the correctness of the parallel procedure
can be obtained for free. We believe that such an approach could be interesting for suggesting the parallelisations of other
scheduling algorithms together with their correctness. For future work, we envision the formal validation of other scheduling
algorithms, we are especially interested in realtime ones.
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