
Experiences and Results of Parallelisation of
Industrial Hard Real-time Applications for the

parMERASA Multi-core

Theo Ungerer1, Christian Bradatsch1, Martin Frieb1, Florian Kluge1, Jörg
Mische1, Alexander Stegmeier1, Ralf Jahr1, Mike Gerdes1?,

Pavel Zaykov2, Lucie Matusova2, Zai Jian Jia Li2, Zlatko Petrov3,
Bert Böddeker4, Sebastian Kehr4, Hans Regler5, Andreas Hugl5,

Christine Rochange6, Haluk Ozaktas6, Hugues Cassé6, Armelle Bonenfant6,
Pascal Sainrat6, Nick Lay7, David George7, Ian Broster7,

Eduardo Quiñones8, Milos Panic8,9, Jaume Abella8, Carles Hernandez8,
Francisco Cazorla8,10, Sascha Uhrig11, Mathias Rohde11, and Arthur Pyka11

1 University of Augsburg, Augsburg, Germany
2 Honeywell International s.r.o., Brno, Czech Republic

3 Honeywell EOOD, Sofia, Bulgaria
4 DENSO AUTOMOTIVE Deutschland GmbH, Eching, Germany

5 BAUER Maschinen GmBH, Schrobenhausen, Germany
6 Université Paul Sabatier, Toulouse, France

7 Rapita Systems Ltd., York, UK
8 Barcelona Supercomputing Center, Barcelona, Spain
9 Technical University of Catalunya, Barcelona, Spain

10 Spanish National Research Council, Barcelona, Spain
11 Technical University of Dortmund, Dortmund, Germany

theo.ungerer@informatik.uni-augsburg.de

Abstract. The EC FP-7 project parMERASA1 (Multi-Core Execution
of Parallelised Hard Real-Time Applications Supporting Analysability,
Oct. 1, 2011 until Sept. 30, 2014) provides a timing analysable system of
parallel hard real-time applications running on a scalable multi-core pro-
cessor. parMERASA goes one step beyond mixed criticality demands: It
targets future complex control algorithms by parallelising hard real-time
programs to run on predictable multi-/many-core processors. A software
engineering approach was developed to ease sequential to parallel pro-
gram transformation by developing and supporting suitable parallel de-
sign patterns that are analysable. The following sequential hard real-time
programs were parallelised by applying the pattern-oriented parallelisa-
tion approach: 3D path planning and stereo navigation algorithms (Hon-
eywell International s.r.o.), diesel engine management system (DENSO
AUTOMOTIVE Deutschland GmbH), and the control algorithm for a
dynamic compaction machine (BAUER Maschinen GmbH). The paper
reports on parallelisation approach, experiences made during paralleli-
sation with applications, tools and multi-core architecture, scalability of
applications and quantitative results reached.

? Now with Autoliv B.V. & Co. KG
1 http://www.parmerasa.eu/

2 T. Ungerer et al.

1 Introduction

Providing higher performance than state-of-the-art embedded processors can
deliver today will increase safety, comfort, number and quality of services, and
lower emissions as well as fuel demands for automotive, avionic and automation
applications. In the avionic industry, the ever increasing demands for additional
aircraft functionality, safety and security drive markets towards the need for
greater platform performance. These demands require a significant increase in
the computational power hosted on board, together with the necessity for ab-
solute guarantees on the timing performance of applications. In the automotive
domain driver assistance systems and ‘safety relevant’ systems such as automatic
emergency-braking triggered by collision avoidance systems can evaluate more
sensor signals and master more complex situations if higher performance is pro-
vided by future control units. Hybrid car technology and fuel injection can be
optimized to reduce gasoline consumption and emissions if better processor per-
formance is available. Finally, on a similar level, automation systems from power
plants and large medical equipment to construction machinery can incorporate
more sensors and more powerful control algorithms.

The common feature of all the application domains discussed above is that
they have hard real-time constraints, requiring absolute timing predictability,
i.e. it is essential to guarantee the timing correctness of the application such
that an execution deadline will never be missed. Processors in use today for
embedded applications with hard real-time requirements are characterized by
simpler architectures than desktop processors, encompassing single cores, short
pipelines and often in-order execution only. However, the growing performance
requirements for hard real-time systems to host more computationally intensive
applications with high data throughput rates and low latency demands make
it crucial that future processors are able to provide higher performance than
today. Multi-core processor technology is considered as an effective solution to
cope with the performance requirements of embedded systems.

Multi-core processors offer solutions to increase the overall aggregated per-
formance of the system beyond the co-hosting of mixed criticality workloads
within a single powerful processor. Higher performance levels can be achieved
with multi-core processors if applications are parallelised, i.e. applications are
split into threads that run in parallel on different cores and synchronize when
they need to communicate. The main obstacle for harnessing the potential per-
formance increase offered by multi-core technology is the parallelisation of state-
of-the-art single-core applications to timing analysable thread-level parallel pro-
grams.

Hard real-time applications require absolute timing predictability in terms
of Worst-Case Execution Time (WCET) analysability. There are two families of
approaches for performing the WCET analysis of applications [22]: static WCET
analysis and measurement-based WCET analysis. Each approach is complemen-
tary to the other. Static WCET analysis techniques are based on a timing model
of the hardware architecture, while measurement-based approaches derive tim-
ings of small blocks of code by direct observation of the execution of the program
on the target, avoiding the effort of having to build an exact timing model of
the processor, but without the full guarantee to catch the real WCET. When

Experiences and Results of Parallelisation of Industrial HRT Applications 3

used together, these methods provide additional assurance of the correctness
and precision of the approaches. In addition, a close interaction of both methods
enables much tighter results. Path information can be derived by one method
easily and used effectively in the other.

Existing academic and commercial WCET tools cannot analyse multi-thread-
ed parallel applications running on multi-core processors. This gap should be
filled to match the expected evolution of embedded software. That is, the indi-
vidual WCETs of parallel threads must be properly combined and, in particular,
communication times and waiting times at synchronization points must be de-
termined as accurately as possible.

The next section introduces some related EC projects. Section 3 gives an
overview of the parMERASA project and the reached results. Section 4 describes
the parallelisation approach and Section 5 the parallelised applications. Section 6
focuses on the achieved results.

2 Related Projects

Several EC FP-7 projects have successfully shown that hard real-time capable
multi-core system design is feasible at least for a small number of cores by a com-
bination of hardware techniques, adapted WCET tools, and timing analysable
system software. Thus, the PREDATOR project (2007 – 2010) aimed to re-
duce the uncertainty in the timing behaviour of multi-core processors by pro-
viding system design guidelines at hardware and software level. PREDATOR
targeted the problem of predictability by developing deterministic designs which
enable traditional static and measurement-based WCET analysis approaches.
The JEOPARD project (2007 – 2010) aimed to develop a new framework for
Java-based real-time applications on modern multi-core processor systems. The
strategic objective of the JEOPARD project was to provide the tools for plat-
form independent development of predictable systems that make use of multi-
core platforms. The PROARTIS project (2010 – 2013) and its successor project
PROXIMA investigate probabilistic timing analysis. The central hypothesis of
these projects is that new advanced hardware/software features such as multi-
cores enabling truly randomized timing behavior can be defined for use in critical
real-time embedded systems. The T-CREST project (2011 – 2014) researched
a timing predictable system that simplifies the safety argument with respect to
maximum execution time while striving to double performance for four cores and
to be four times faster for 16 cores than a standard processor of the same technol-
ogy (e.g. FPGA). The ultimate goal of the T-CREST system was to lower costs
for safety relevant applications, reducing system complexity and at the same
time achieving faster timing predictable execution. CERTAINTY project (2011
– 2014) focused on the certification process for mixed-critical embedded systems
featuring functions dependent on information of varying confidence levels. Its
key objective was to push forward the certification of real-time mixed critical
embedded systems, a process currently challenged by the choices made at appli-
cation design time about reliability and disturbances handling which deals with
the management of interferences between different functions of complex control
software over the whole system.

4 T. Ungerer et al.

The parMERASA project (2011 – 2014) builds upon the results of MERASA
project (2007 – 2010) that focused on execution of hard real-time tasks on multi-
cores with a relatively small number of cores. The shared-memory and bus-
based techniques of the MERASA processor actually limited the scalability to
about four to eight cores. Instead, parMERASA focused on parallelisation and
parallelisation support tools for hard real-time applications and targeted a much
higher performance with a scalable multi-core.

3 Project Overview

A pattern supported parallelisation approach was developed at University of
Augsburg to guide the parallelisation of the legacy software and allow usage
of standard tools. The approach eases sequential to parallel program trans-
formation by developing and supporting suitable parallel design patterns and
algorithmic skeletons that are analysable with WCET tools. The approach was
applied to successfully parallelise four use cases: 3D path planning algorithm and
stereo navigation algorithm (Honeywell International s.r.o.), diesel engine man-
agement system (DENSO AUTOMOTIVE Deutschland GmbH), and the control
algorithm for a dynamic compaction machine (BAUER Maschinen GmbH).

The parallelisation work-flow was supported by several tools. The static
WCET analysis tool OTAWA [4] of University of Toulouse was enhanced by
modelling the parMERASA multi-core processor and extended with support for
the timing analysis of parallel programs. Source code annotations for paralleli-
sation analysis were defined that are based on the parallel design patterns. The
new OTAWA tool is available as Open Source software, too.

Tools developed by Rapita Systems Ltd comprise (1) On-target timing and
WCET analysis tool RapiTime enhanced for parallel programs; (2) On-target
code coverage tool RapiCover with support for code coverage for parallel pro-
grams; (3) Constraint verification tool RapiCheck for constraint checking of par-
allel programs; (4) Dependency Analysis tool to assist with the parallelisation
of existing sequential software; (5) Visualization and profiling tool RapiTask for
parallel programs. Barcelona Supercomputing Center (BSC) developed a map-
ping tool to statically allocate tasks to cores of the parMERASA multi-core.

Fig. 1 shows the overall system architecture [6] that was defined to sup-
port the execution of parallelised hard real-time applications and their WCET
analysability. Based on the requirements of the different, industrial application
domains, the parMERASA system software comprises domain specific runtime
environment (RTE) services to support the parallelised applications. The AU-
TOSAR standard for the automotive domain, ARINC 653 specification for the
avionic domain, respectively the BIOS for the construction machinery domain
serve as basis for these RTEs.

The system software is based on a common Kernel Library [5] developed at
University of Augsburg. The Kernel Library also represents the common basis for
the domain specific RTE implementations. It acts as a hardware abstraction layer
and provides the basic functionalities required by the application domain specific
RTE services that is scheduling, protection, communication & synchronization,
and I/O. The Kernel Library provides timing-analysable synchronization prim-
itives based on ticket-locks, context management as basis for domain-specific

Experiences and Results of Parallelisation of Industrial HRT Applications 5

Domain Specific Interface

Context
Management

Synchronisation
Mechanisms

I/O

Memory
Management

Scheduling
Communication

&
Synchronisation

Protection

Interrupt
Handling

Simulated Hardware

Kernel Services

Critical RTE Services

 Protection Boundary

User
Mode

Kernel
Mode

Application Layer

Non-Critical RTE Services

Fig. 1. parMERASA system architecture

scheduling, MMU and interrupt handling. The implementation of RTE services
is divided by a protection boundary into non-critical/critical services executed in
user/kernel mode respectively. To ensure time and space partitioning, only crit-
ical services can influence other partitions. Non-critical services have no access
across partition boundaries except if explicitly allowed, for example through
memory mapping. In all cases, extensions to support advanced parMERASA
mechanisms of synchronization, inter-core communication, and parallel design
patterns were implemented. The system software is open source.

parMERASA target applications rely on incremental qualification, that al-
lows each system component to be subject to formal certification (including
timing analysis) in isolation and independently of other components, with ob-
vious benefits for cost, time and effort. As a result, they impose the processor
architecture to provide mechanisms to guarantee time and space isolation among
applications. Moreover, such a property must remain the same even when moving
towards parallel execution.

To that end, BSC developed two novel concepts [16]: parallel Software Par-
titions (pSWPs) and Guaranteed Resource Partitions (GRPs) that provide in-
cremental qualification for parallel hard real-time applications:

– pSWPs extend the functionality of software partitions (as defined in AR-
INC653 [3] and ISO26262 [10] standards) to allow parallel execution on
multi-core processors. pSWP guarantees that parallel tasks belonging to one
application cannot affect the timing (and functional) behaviour of parallel
tasks belonging to other applications.

– GRP defines a hardware execution environment composed of a cluster of
processor resources, including cores, NoC resources, memory, etc., in which
pSWPs run, providing the desirable time isolation properties as defined
above. A fundamental property that GRPs must accomplish is time pre-
dictability, i.e. the response time of the different processor resources must

6 T. Ungerer et al.

be known. Note that the GRP is, in fact, the hardware counterpart of the
pSWP: while the pSWP encapsulates parallel applications to provide the
desirable time isolation properties imposed by the standards, the GRP en-
capsulates the pSWP to provide the required time isolation guarantees at
the hardware level.

Figure 2(a) shows a block diagram of the envisioned architecture composed
of two GRPs, each formed by four cores, a NoC and a memory device. Figures
2(b) and (c) shows two specific implementations of the parMERASA architec-
ture. Figure 2(b) presents a clusterised two-level hierarchical NoC architecture
composed of a first-level NoC (a tree) to connect cores and a second-level NoC
(a bus) to connect clusters among them. Regular NoC designs such as meshes
also allow to define GRPs that fulfil the time isolation requirements. To do so,
virtual clusters are defined by grouping adjacent cores in rectangular shapes (i.e.
organizing cores in groups of 2, 4, 6, 8, 9) with a memory device connecting to
one of the cores. In this case, if XY or YX routing policy is used, an isolated
communication island is created with properties similar to those of clustered
architectures. Figure 2(c) shows a processor implementing a mesh defining four
GRPs: GRP1 composed of 6 cores, GRP2 composed of 2 cores and GRP3 and
GRP4 composed of 4 cores each.

(a) (b) (c)

Fig. 2. Different implementations of the parMERASA multi-core processor architec-
ture: (a) general architecture, (b) clusterised implementation and (c) mesh-based im-
plementation.

Moreover, the parMERASA multi-core architecture relies on data caches to
reduce latencies and impact of interferences when multiple cores want to access
the memory. In this case, because multiple cores can share data, it is mandatory
to guarantee coherent data accesses. WCET analysis of standard coherent multi-
core caches is particularly hard or even impossible. Therefore a predictable cache
coherence mechanism has been developed by Technical University of Dortmund:
the On-Demand Coherent Cache (ODC2) [18–20]. ODC2 guarantees coherent
accesses only to shared data that is accessed inside critical regions and between
barriers. Therefore, all local caches are kept free from shared data outside critical
regions. Nevertheless, the applications can profit from the advantage of caches
inside as well as outside of critical regions. Because the proposed technique is free
from cache-to-cache communication, a tight worst-case execution time analysis
on the level of a single-core data cache analysis is feasible.

Experiences and Results of Parallelisation of Industrial HRT Applications 7

4 Parallelisation Approach for Industrial Hard Real-time
Programs

The parMERASA pattern-supported parallelisation approach developed at Uni-
versity of Augsburg [12, 13] is based on two well-known parallelisation approaches
from the HPC domain: The methodology is derived from the PCAM approach
by Foster [7]; the use of parallel design patterns is adapted from the approach
by Mattson et al. [15]. Both approaches are combined and enhanced to sup-
port WCET analysis of parallel programs by predictable parallel design pat-
terns (PDPs). The parMERASA pattern-supported parallelisation approach de-
fines a model-based development path from sequential legacy programs to timing
analysable parallel programs. Compared to development of parallel software from
scratch, the development and testing effort is strongly reduced because of (a)
high reuse of code from the sequential implementation and (b) allowing only
best practice, clearly defined, and analysable parallel design patterns to intro-
duce parallelism. They are defined, together with platform dependent and timing
analysable synchronization idioms [8], in the Pattern Catalogue [9].

The approach comprises two phases: First, based on the sequential imple-
mentation, a model similar to the UML2 Activity Diagram consisting only of
sequential code blocks and PDPs is constructed. The goal is to express a high
degree of parallelism. The potential (WCET) speed-up is assessed by rating
the computation versus synchronization/communication overhead. Second, if a
higher (WCET) speed-up can be expected with less parallelism, this model will
be refined towards an optimal level of parallelism by agglomeration of its code
blocks and collapsing of PDPs to sequential code blocks. The first phase is plat-
form independent whereas in the second phase all the trade-offs and limitations
of the target platform have to be taken into account. Next the real coding can
be started; algorithmic skeletons [21] are available in an optimal case for efficient
implementation of the PDPs.

Fig. 3 shows the principal tools developed to support the parMERASA
pattern-supported parallelisation approach. These concern the Dependency Anal-
ysis tool of Rapita Systems Ltd to assist parallelisation by the application pro-
grammer towards the PDPs, which represent the model-based stage of the ap-
proach. Low overhead for static WCET analysis will be assured by (a) allowing
only analysable parallel design patterns and (b) an extension of the Patterns Cat-
alogue with requirements for static WCET analysis. In the intermediate stage
UML-based verification tools could be used, but also the Speed-up Approxima-
tion and Parameter Optimization tool [14] developed by University of Augsburg.
Mutator Functions and Algorithmic Skeletons [14] help while coding the parallel
program. The Mapping tool [17] developed at BSC assists in mapping tasks to
cores. Next the OTAWA tool performs a static WCET analysis of the parallel
code. The tools of Rapita Systems Ltd require instrumentation of the parallel
code and running the code on the target hardware, in case of parMERASA multi-
core on its simulator, to collect comprehensive traces. RapiTime then performs a
measurement-based WCET analysis, RapiCover shows the code coverage, Rapi-
Task profiling and visualization, and RapiCheck allows constraint checking.

8 T. Ungerer et al.

Parallelization
Approach:

Phase II - APD

Sequential
Source Code

Parallel
Source Code

Parallelization
Approach:

Phase I - APD

Implementation:
Mutator Functions,

Algorithmic Skeletons

Speedup Approximation &
Parameter Optimization

Dependency
Analysis WCET

Analysis

Mapping

Fig. 3. Overview of the pattern-supported parallelisation process and suggested tools
to ease process (analysis, optimization, and implementation)

5 Parallelised Applications

Honeywell International s.r.o. parallelised a 3D path planning (3DPP)/collision
avoidance system and a stereo navigation system. The 3DPP algorithm provides
a good basis for parallelisation, and as such can be easily configured to evaluate
the execution time impact of different multi-core architectures. The 3DPP ap-
plication is based on the Laplacian multi-grid algorithm that has been extended
to take sensor data and use it to set up boundary conditions for the grids. The
stereo navigation application comprises several pipelined stages starting from an
image of a stereo camera.

The automotive supplier DENSO AUTOMOTIVE Deutschland GmbH par-
allelised an existing diesel engine management system (EMS). This is a typical
application for controlling a combustion engine. Its software structure comprises
many cyclic or event-driven functions called runnables. A key issue of parallelis-
ing automotive software is the high number of dependences between runnables.
For that reason, an application specific parallelisation approach is developed,
which uses timing properties and data dependences as constraint. Parallelisa-
tion is done on three levels:

1. Inter-task level: parallel execution of AUTOSAR tasks that comprise several
runnable.

2. Intra-task level: parallel execution of runnables within a task by distribution
runnables over cores.

3. Intra-runnable: runnables with a high WCET are itself parallelised to execute
on multiple cores of one cluster.

Inter-task level was optimized by combining runnables scheduled to the same
point in time into single tasks. Inter-task and intra-task level activities were stat-
ically mapped to cores using the BSC mapping tool [17]. For Intra-runnable level
several large runnables were analysed for potential parallelism. The parallelisa-
tion is based on PDPs and Timing Analysable Algorithmic Skeletons (TAS) and
demonstrated on a single selected runnable.

Experiences and Results of Parallelisation of Industrial HRT Applications 9

Current control algorithms of BAUER Maschinen are sequential, but in fu-
ture, the control applications for construction machines will be more complicated
(more automatic function, more safety and security functions are expected).
So limits in performance, time, and code structure of the sequential code will
be reached. BAUER Maschinen GmbH parallelised the control algorithm for a
large compaction machine. The main control loop was parallelised such that
each supervised sub-task (PWM, CAN connected, I/O) could be mapped on a
different core. Code was divided into periodic and non-periodic tasks. Periodic
tasks derived from the main loop were executed on two dedicated cores. Timing-
analysable algorithmic skeletons were applied to the non-periodic tasks. Detailed
information on algorithmic structures of all case studies is provided in [1, 2].

The parMERASA pattern-based parallelisation approach was applied to par-
allelise all applications based on the respective PDPs of the Pattern Catalog and
its Algorithmic Skeletons. Table 1 correlates the applied PDPs to the applica-
tions.

Table 1. Applied PDPs to applications

Application Task Periodic Task Data Parallel
Parallelism Parallelism Parallel Pipeline

Honeywell: 3DPP X X
Honeywell: Stereo Nav. X X
Bauer: Compaction M. X X
DENSO: Diesel EMS X X

6 Experiences and Results of Parallelisation of Industrial
Hard Real-time Applications

To find out, whether the parMERASA approach is feasible, we have to com-
pare the performance of the original sequential programs with their parallelised
versions. Performance of parallel programs is typically measured by running the
sequential and the parallelised programs on scalable hardware – COTS proces-
sors or in our case the parMERASA multi-core simulator. Dividing the execution
time of the sequential program by the execution time of the parallelised version
delivers the general speed-up, and dividing the speed-up through the number of
threads/cores gives the efficiency.

For our hard real-time applications, however, the general speed-up is of less
importance compared to the performance improvement in the WCET. We there-
fore define the WCET speed-up as the WCET of the sequential program divided
by the WCET of the parallelised program, and WCET efficiency again by divid-
ing the WCET speed-up by the number of threads/cores. To ease analysability
we run each thread on another core. For static WCET speed-up we use OTAWA
tool with its architectural model of the predictable parMERASA multi-core ar-
chitecture; for measurement-based WCET speed-up we use RapiTime tool based
on measurements on the parMERASA simulator.

10 T. Ungerer et al.

For speed-up calculations we require a sequential program, which is the case
for the two Honeywell applications. The BAUER and DENSO applications, how-
ever, are comprised of a set of interrupt-driven tasks running on a single-core
processor, together with a main loop in the BAUER case study. For the diesel
EMS we evaluate inter-task parallelism by the overall runtime of the scheduled
tasks on a single core versus the maximum of the runtimes of the tasks dis-
tributed over several cores. Intra-task parallelism is evaluated by the runtime of
a task versus the runtime of the parallel version where all runnables of the task
are distributed over different cores. Intra-runnable parallelism is derived from
parallelising the sequential runnable. For the BAUER application we compare
the runtime of the main loop with parallelised versions of the main loop with
additionally spreading the interrupt-driven tasks onto further cores.

Table 2 presents the achieved WCET speed-ups of the WCET-aware par-
allelisation of the 3DPP application. The algorithm of the application allows
a theoretical maximum speed-up of half of the number of threads. A compar-
ison of several different implementations showed the superiority of a barrier-
implementation versus a lock-/condition variable based implementation of the
Data Parallel pattern for WCET analysability and static WCET speed-up [11].
The stereo navigation algorithm proved as hard to parallelise and achieved only
partly speed-ups for algorithmic stages. For feature extraction, one of the compu-
tationally intensive computing stages, we achieved a measurement based WCET
speed-up of 1.5 times for a 12 thread configuration.

Table 2. Theoretical maximum and WCET speed-ups of the parallelised 3DPP appli-
cation derived by OTAWA and RapiTime

Threads 8 16

OTAWA 2.10 2.81
RapiTime 2.60 4.58
Theoretical 4.00 8.00

For the diesel EMS three levels of parallelism was investigated. Intra-runnable
parallelism was exploited with the pattern-based approach. A WCET speed-
up of up to 2.3 was reached by using RapiTime on 4 cores for one runnable.
Intra-task parallelism was exploited with the parMERASA mapping tool. A
static WCET speed-up of up to 3.3 was estimated on 4 cores for a single task.
The concept of supertasks (i.e., tasks scheduled to the same point in time are
treated as one task respecting data dependencies) further improved the speed-
up. Inter-task parallelism was exploited with timed implicit communication. A
static WCET speed-up of up to 4.46 was estimated by mapping of all tasks on 8
cores. Eventually, intra- and inter-task parallelism were combined (one task was
distributed over 2 cores) and the static WCET speed-up estimate increased to
5.97 on 8 cores. Hence, the efficiency of the combined approach is 0.75.

The WCET-aware parallelisation of dynamic compaction machine applica-
tion showed that multi-core platforms are applicable and that a static WCET

Experiences and Results of Parallelisation of Industrial HRT Applications 11

speed-up of 2.38 can be reached with 4 cores. A higher number of cores decreases
the static WCET speed-up.

The overall experience from parallelising the four industrial algorithms sug-
gests that parallelising real-world hard real-time applications that run successful
on single-core reach moderate speed-ups on multi-cores. The scalability of such
algorithms is limited. In particular static WCET speed-ups suffer from high
pessimism caused by global memory accesses in a multi-core.

7 Conclusion

The EC FP-7 project parMERASA (Oct. 1, 2011 until Sept. 30, 2014) investi-
gated a timing analysable system of parallel hard real-time applications running
on a scalable multi-core processor. parMERASA goes one step beyond mixed
criticality demands: It targets future complex control algorithms by parallelising
hard real-time programs to run on predictable multi-/many-core processors. A
major breakthrough in the project was certainly achieved by having shown the
ability to increase performance by parallelising hard real-time applications onto
multi-core hardware.

parMERASA project paved the way for future high-performance embedded
systems applications. The hard real-time control algorithms of such future sys-
tems will not be limited in their performance by single-core processors. More
complex control algorithms than today can be applied. Such newly developed
control algorithms should be scalable and able to utilize the performance increase
offered by multi- and many-core processors.

Acknowledgement

The research leading to these results has received funding from the European
Union Seventh Framework Programme under grant agreement no. 287519.

References

1. Deliverable 2.4 – ”sequential to parallel program development path and parallel
execution patterns” (Sep 2014), http://www.parmerasa.eu/

2. Deliverable 2.6 – ”final evaluation results on parallel industrial applications” (Sep
2014), http://www.parmerasa.eu/

3. ARINC Inc.: ARINC Specification 653: Avionics Application Software Standard
Standard Interface, Part 1 and 4, Subset Services (June 2012)

4. Ballabriga, C., Cass, H., Rochange, C., Sainrat, P.: Otawa: An open toolbox for
adaptive wcet analysis. In: Min, S., Pettit, R., Puschner, P., Ungerer, T. (eds.)
Software Technologies for Embedded and Ubiquitous Systems, Lecture Notes in
Computer Science, vol. 6399, pp. 35–46. Springer Berlin Heidelberg (2011)

5. Bradatsch, C., Kluge, F.: parmerasa multi-core rtos kernel. Tech. Rep. no. 2013-02,
University of Augsburg (Feb 2013)

6. Bradatsch, C., Kluge, F., Ungerer, T.: A cross-domain system architecture for
embedded hard real-time many-core systems. In: 11th IEEE/IFIP International
Conference on Embedded and Ubiquitous Computing (EUC-13). IEEE (Nov 2013)

12 T. Ungerer et al.

7. Foster, I.: Designing and Building Parallel Programs: Concepts and Tools for Par-
allel Software Engineering. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA (1995)

8. Gerdes, M., Kluge, F., Ungerer, T., Rochange, C., Sainrat, P.: Time analysable
synchronisation techniques for parallelised hard real-time applications. In: Design,
Automation Test in Europe Conference Exhibition (DATE). pp. 671–676 (Mar
2012)

9. Gerdes, M., Jahr, R., Ungerer, T.: parMERASA Pattern Catalogue: Timing pre-
dictable parallel design patterns. Tech. Rep. no. 2013-11, University of Augsburg
(Nov 2013)

10. ISO: Road vehicles – Functional safety – Part 6: Product development at the
software level, Ref. num. ISO 26262-6:2011(E) (2011)

11. Jahr, R., Gerdes, M., Ungerer, T., Ozaktas, H., Rochange, C., Zaykov, P.: Ef-
fects of structured parallelism by parallel design patterns on embedded hard real-
time systems. In: Embedded and Real-Time Computing Systems and Applications
(RTCSA), IEEE 20th International Conference on. pp. 1–10 (Aug 2014)

12. Jahr, R., Gerdes, M., Ungerer, T.: On efficient and effective model-based paral-
lelization of hard real-time applications. In: Dagstuhl-Workshop MBEES: Modell-
basierte Entwicklung eingebetteter Systeme IX. pp. 50–59 (Apr 2013)

13. Jahr, R., Gerdes, M., Ungerer, T.: A pattern-supported parallelization approach.
In: Proceedings of the 2013 International Workshop on Programming Models and
Applications for Multicores and Manycores (PMAM). pp. 53–62 (Feb 2013)

14. Jahr, R., Stegmeier, A., Kiefhaber, R., Frieb, M., Ungerer, T.: User manual for
the optimization and wcet analysis of software with timing analyzable algorithmic
skeletons. Tech. Rep. no. 2014-05, University of Augsburg (May 2014)

15. Mattson, T., Sanders, B., Massingill, B.: Patterns for parallel programming.
Addison-Wesley Professional, first edn. (2004)

16. Panic, M., Quinones, E., Zaykov, P., Hernandez, C., Abella, J., Cazorla, F.: Parallel
many-core avionics systems. In: Proceedings of the 14th International Conference
on Embedded Software (EMSOFT). pp. 26:1–26:10 (Oct 2014)

17. Panic, M., Kehr, S., Quiñones, E., Böddeker, B., Abella, J., Cazorla, F.J.: Run-
par: An allocation algorithm for automotive applications exploiting runnable par-
allelism in multicores. In: 12th International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS) (2014)

18. Pyka, A., Tadros, L., Uhrig, S., Cass, H., Ozaktas, H., Rochange, C.: WCET anal-
ysis of parallel benchmarks using on-demand coherent cache. In: 3rd Workshop on
High-performance and Real-time Embedded Systems (HiRES) (2015)

19. Pyka, A., Rohde, M., Uhrig, S.: A real-time capable first-level cache for multi-cores.
In: Workshop on High Performance and Real-time Embedded Systems (HiRES) in
conjunction with HiPEAC’13 (Jan 2013)

20. Pyka, A., Rohde, M., Uhrig, S.: A real-time capable coherent data cache for mul-
ticores. Concurrency and Computation: Practice and Experience 26(6), 1342–1354
(2014)

21. Stegmeier, A., Frieb, M., Jahr, R., Ungerer, T.: Algorithmic skeletons for paral-
lelization of embedded real-time systems. In: 3rd Workshop on High-performance
and Real-time Embedded Systems (HiRES) (2015)

22. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley,
D., Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut,
I., Puschner, P., Staschulat, J., Stenström, P.: The worst-case execution-time
problem—overview of methods and survey of tools. ACM Trans. Embed. Com-
put. Syst. (TECS) 7(3), 36:1–36:53 (May 2008)

