

Partitioning Algorithm for Mixed Criticality Systems

HiRES, 21th Januay 2015, Amsterdam

Emilio Salazar, Alejandro Alonso (UPM)

- 1. Introduction
- 2. Toolset architecture
- 3. Partitioning algorithm
- 4. Conclusions

1. Introduction

- Design of partitioned systems requires additional development activities and roles:
 - Partitioning, hypervisor configuration
 - System architect, system integrator
- A single tool: too complex and rigid, for integrating all required functionality
- Proposal:
 - Define a methodology
 - Define a toolset architecture
 - with means for integrating additional components

2. Toolset Architecture: Requirements

- Development of mixed-criticality systems.
- Support for non-functional requirements (NFR)
 - Specification, validation, and transformations
 - Real-time, safety, security
- Support for partitioned systems
- Support for multi-core architectures
- System modelling
 - Support legacy applications
- Support for system deployment
- Design for extensibility

Toolset Architecture

HiRES 2015, Amsterdam

DARTES

- Information for partitioning, validation & generation
- Platform & App. Models general and reusable
- Applications Model: Based on UML
 - UML-MARTE: real-time requirements and resource needs
 - Support for legacy applications:
- Platform model:
 - Hardware: UML-MARTE, with some extensions
 - Basic information on operating systems and hypervisors

System Partitioning

- System definition:
 - Applications {a1, a2..., an}.
 - Restrictions { ω 1, ω 2..., ω n}.
- Deployment model:
 - Allocate applications to partitions
 - Allocate resources to partitions

A successful partitioning

- All applications allocated to partitions
- Partitioning restrictions are met (user or NFR defined)
- Feasible resources assignment to partitions
- Optimal partitioning?

Partitioning Restriction Model

Sources of restrictions

- Implicit: Automatically considered: OS, CPU, criticality
- Explicit: Generated automatically from NFR
- System integrator: based on experience or requirements
- Must be fulfilled by the system partitioning
- Types of restrictions:
 - App. that must (not) be allocated on a given partition
 - App. that must (not) be in the same partition than another

3. Partitioning algorithm

Algorithm based on coloured graphs

- Partitions/applications are modelled by nodes
- Restrictions are modelled by edges and forbidden colours
- Proper colouring: adjacent nodes with different colour
- Colours are mapped into partitions

Phases

- Building graph: merging app. that go together, include edges and lists, assign colours and create forbidden lists
- Simplify the graph
- Colour vertices

Application	a	b	С	d	e	f	g	h	i
Criticality Level	А	С	С	С	В	А	А	А	А
Operating System	ORK	Linux	Linux	Linux	XAL	XAL	XAL	ORK	XAL

 Table 1: Applications characteristics

- Internal restrictions: OS, Criticality level
- External restrictions:
 - **b** must go with **d**
 - f must go with i
 - f must not go with e
 - g, f in partition 1
 - h in partition 2

Graph simplification

- Remove vertex to a queue, accordig to their degree
- Keep vertex that are coloured

Graph simplification

DARTES

Graph colouring

- Retrieve candidate from queue
- Colour the vertex
 - Avoid forbidden colours and colours of adjacent nodes
 - All rest of colours are possible
 - If there are no colour possible, create a new one
 - If several colours are possible: alternatives

Graph colouring

PARTES

- Proposed partitioning
 {f, i, g}, {a, h}, {e}, {d, c}, {b}
- Alternative partitioning
 {f, i, g}, {a, h}, {e}, {b, c}, {d}

I/O	Manager + Platform	ADCS	TC/TM	Experiments	Health					
GNARL	GNARL	GNARL	GNARL	GNARL						
ORK+ Drivers	ORK+ Drivers	ORK+ Drivers	ORK+ Drivers	ORK+ Drivers	MPAL					
XtratuM										
Multi-core Leon3										

Wind-Turbine

- Use case with Ikerlan & Alstom Wind
- Input:
 - Application models: include criticality level, CPU, OS
- Restrictions: applications that must be alone
- The tool generated this partitioning

7. Conclusions

- Toolset for mixed-criticality systems
- Partitioning tool
 - Rely on restrictions: Improve extensibility
 - Based on coloured graphs
 - Able to generate alternative solutions
- Future work
 - Demonstration is being done
 - Additional evaluation with more complex systems
 - Integration of optimality criteria