
Mul$PARTES	
	
	

	
Par$$oning	 Algorithm	 	

for	 Mixed	 Cri$cality	 Systems	 	
Emilio	 Salazar,	 Alejandro	 Alonso	 (UPM)	 HiRES,	 21th	 Januay	 2015,	 Amsterdam	

Contents

1.  Introduction

2.  Toolset architecture

3.  Partitioning algorithm

4.  Conclusions

2	 HiRES	 2015,	 Amsterdam	

1. Introduction

§  Design of partitioned systems requires
additional development activities and roles:
–  Par55oning,	 hypervisor	 configura5on	
–  System	 architect,	 system	 integrator	

§  A single tool: too complex and rigid,
for integrating all required functionality

§  Proposal:
–  Define	 a	 methodology	
–  Define	 a	 toolset	 architecture	
–  with	 means	 for	 integra5ng	 addi5onal	 components	

3	 HiRES	 2015,	 Amsterdam	

2. Toolset Architecture: Requirements

§  Development of mixed-criticality systems.
§  Support for non-functional requirements (NFR)

–  Specifica5on,	 valida5on,	 and	 transforma5ons	
–  Real-‐5me,	 safety,	 security	

§  Support for partitioned systems
§  Support for multi-core architectures
§  System modelling

–  Support	 legacy	 applica5ons	
§  Support for system deployment
§  Design for extensibility

9	 HiRES	 2015,	 Amsterdam	

Toolset Architecture

11	

System 
partitioning Partitioning

tool

Deployment model

Neutral model

Transformation to
neutral model

Source code

Transfor-
mation

XtratuM configuration
files

System building  
files

Validation
tool

Tool input model Transfor- 
mation

Tool output
model

Transfor- 
mation

Toolset 
result model

Validation

Final 
Artifacts

Generation

Applications modelPlatform model

Partitioning
restrictions model

System model

Transfor- 
mation

Transfor-
mation

Transfor-
mation

Transfor-
mation

Documentation
HiRES	 2015,	 Amsterdam	

System Model

13	

Applications modelPlatform model

Partitioning
restrictions model

System model

Transfor- 
mation

§  Information for partitioning, validation & generation
§  Platform & App. Models general and reusable
§  Applications Model: Based on UML

–  UML-‐MARTE:	 real-‐5me	 requirements	 and	 resource	 needs	
–  Support	 for	 legacy	 applica5ons:	

§  Platform model:
–  Hardware:	 UML-‐MARTE,	 with	 some	 extensions	
–  Basic	 informa5on	 on	 opera5ng	 systems	 and	 hypervisors	

HiRES	 2015,	 Amsterdam	

System Partitioning

§  System definition:
–  Applica5ons	 {a1,	 a2...,	 an}.	 	
–  Restric5ons	 {ω1,	 ω2...,	 ωn}.	 	

§  Deployment model:
–  Allocate	 applica5ons	 to	 par55ons	
–  Allocate	 resources	 to	 par55ons	

§  A successful partitioning
–  All	 applica5ons	 allocated	 to	 par55ons	
–  Par55oning	 restric5ons	 are	 met	 (user	 or	 NFR	 defined)	
–  Feasible	 resources	 assignment	 to	 par55ons	
–  Op5mal	 par55oning?	

15	

Validation	

Generation of
final artifacts

System
model	

System 
partitioning	

Partitionin
g tool	

Deployment model	

HiRES	 2015,	 Amsterdam	

Partitioning Restriction Model

§  Sources of restrictions
–  Implicit:	 Automa5cally	 considered:	 OS,	 CPU,	 cri5cality	
–  Explicit:	 Generated	 automa5cally	 from	 NFR	
–  System	 integrator:	 based	 on	 experience	 or	 requirements	

§  Must be fulfilled by the system partitioning
§  Types of restrictions:

–  App.	 that	 must	 (not)	 be	 allocated	 on	 a	 given	 par55on	
–  App.	 that	 must	 (not)	 be	 in	 the	 same	 par55on	 than	 another	

AB.	 Tools	 and	 Modeling	 	 16	

3. Partitioning algorithm

§  Algorithm based on coloured graphs
–  Par55ons/applica5ons	 are	 modelled	 by	 nodes	
–  Restric5ons	 are	 modelled	 by	 edges	 and	 forbidden	 colours	
–  Proper	 colouring:	 adjacent	 nodes	 with	 different	 colour	
–  Colours	 are	 mapped	 into	 par55ons	

§  Phases
–  Building	 graph:	 merging	 app.	 that	 go	 together,	 include	
edges	 and	 lists,	 assign	 colours	 and	 create	 forbidden	 lists	

–  Simplify	 the	 graph	
–  Colour	 ver5ces	

19	 HiRES	 2015,	 Amsterdam	

Use case

20	

4.2.2 Coloring Vertices

This step can be broken down into the following stages:

– Retrieving candidate colors of the vertex v. For each vertex v extracted
from the queue Q, a set of candidate colors is computed. To begin with,
all colors already created in the graph, C, are valid candidates. However,
colors used by the live adjacent vertices of v and colors forbidden for v

must be removed. If the resulting set is empty, a new color is created.

– Coloring the vertex v. Once the candidate color set is computed, only
one of these colors can be used to color v. For this purpose, the function
score(u, c) is defined. This function returns a score that indicates how
desirable the coloring of v is with a specific candidate color. The color
that receives the highest score is the one used to color v.

– Multiple candidate color. Only one color is used to color a vertex when
multiple candidate colors are available. However, all of the candidate
colors are valid colors. This means that the provided solution is only
one of the possible colorings of the graph. When the first vertex vfirst

with multiple candidate colors is found, the graph is saved before coloring
vfirst. Then, the vertex is colored with the highest-scored color, cfirst,
which is added to the vfirst’s forbidden colors list, as this color cannot be
used again in further solutions.

– Alternative colorings. When an alternative coloring is requested, the graph
is restored to the same state as in vfirst, the first vertex with multiple
candidate colors is found. However, when vfirst must be colored, the
color cfirst (used in the first coloring) is now in the forbidden color list
of vfirst. Therefore, cfirst is discarded from the valid candidate colors of
vfirst. As a result, vfirst is colored with the next highest-scored color.
This process ends when all nodes are colored.

5 Use Case

Three use cases in the MultiPARTES projects (wind power, aerospace, and video
surveillance) have relied on this partitioning algorithm for generating their sys-
tem partitioning. In this subsection, a more complex case is used for illustrat-
ing the algorithm behaviour. The system is composed of a set of applications
{a, b, c, d, e, f, g, h, i}. Application models include information, such as their
criticality level and operating system, as shown in table 1.

Application a b c d e f g h i

Criticality Level A C C C B A A A A

Operating System ORK Linux Linux Linux XAL XAL XAL ORK XAL

Table 1: Applications characteristics

§  Internal restrictions: OS, Criticality level
§  External restrictions:

–  b	 must	 go	 with	 d	 	
–  f	 must	 go	 with	 i	
–  f	 must	 not	 go	 with	 e	 	
–  g,	 f	 in	 par55on	 1	
–  h	 in	 par55on	 2	

V1{a}, -

V8{h}, 2

V2{b}, -

V4{d}, -

V5{e}, -

V7{f}, 1

V6{g}, 1

V3{c}, -

V9{i}, -

HiRES	 2015,	 Amsterdam	

Graph simplification

21	

§  Remove vertex to a queue,
accordig to their degree

§  Keep vertex that are coloured

HiRES	 2015,	 Amsterdam	

Graph simplification

22	

V1{a}, -

V8{h}, 2

V2{b}, -

V4{d}, -

V5{e}, -

V7{f}, 1

V6{g}, 1

V3{c}, -

V9{i}, -

Figure 1: Initial system

V3{c}, -

V1{a}, -

V7{h}, 2

V2{b}, -

V4{d}, -

V5{e}, -

V6{f,i,g}, 1

V7{h}, 2

V2{b}, -

V4{d}, -

V5{e}, -

V6{f,i,g}, 1

V1{a}, -
V3{c}, -

V7{h}, 2

V4{d}, -

V5{e}, -

V6{f,i,g}, 1
V1{a}, -
V2{b}, -

V3{c}, -

V7{h}, 2

V5{e}, -

V6{f,i,g}, 1

V4{d}, -

V1{a}, -
V2{b}, -

V3{c}, -

V7{h}, 2

V6{f,i,g}, 1

V5{e}, -
V4{d}, -

V1{a}, -
V2{b}, -

V3{c}, -

1 2

3 4

5

Figure 2: Simplify the graph

color is created (see figure 3.1, 3.2 and 3.3). It is possible that a vertex
has multiple valid colors available (see figure 3.5). In order to choose
the color, a scoring function evaluates all of the possible allocations. The
allocation with the highest score is chosen. In the case of Figure 3.5, vertex
vc is colored with color 4, which is added to the forbidden colors list of
vertex vc. If an alternative solution is requested, vc would be colored with
color 5.

HiRES	 2015,	 Amsterdam	

Graph colouring

§  Retrieve candidate from queue
§  Colour the vertex

–  Avoid	 forbidden	 colours	 and	 colours	 of	 adjacent	 nodes	
–  All	 rest	 of	 colours	 are	 possible	
–  If	 there	 are	 no	 colour	 possible,	 create	 a	 new	 one	
–  If	 several	 colours	 are	 possible:	 alterna5ves	

23	 HiRES	 2015,	 Amsterdam	

Graph colouring

24	

V1{a}, 2

V7{h}, 2

V2{b}, 5

V4{d}, 4

V5{e}, 3

V6{f,i,g}, 1

V3{c}, [4,5]

5

V3{c}, -

V1{a}, 2

V7{h}, 2

V2{b}, 5

V4{d}, 4

V5{e}, 3

V6{f,i,g}, 1

4

V7{h}, 2

V2{b}, 5

V4{d}, 4

V5{e}, 3

V6{f,i,g}, 1

V1{a}, -
V3{c}, -

3

V7{h}, 2

V4{d}, 4

V5{e}, 3

V6{f,i,g}, 1

V2{b}, -
V1{a}, -
V3{c}, -

V7{h}, 2

V5{e}, 3

V6{f,i,g}, 1

V4{d}, -
V2{b}, -
V1{a}, -
V3{c}, -

1 2

Figure 3: Vertices’ coloring

As a result of the graph coloring, the initial partitioning schema is:
{f, i, g}, {a, h}, {e}, {d, c}, {b}

If an alternative schema is requested, the algorithm provides: As a result of
the graph coloring, the initial partitioning schema is:
{f, i, g}, {a, h}, {e}, {b, c}, {d}

In both schemata, all of the applications with di↵erent criticality levels are
allocated to a di↵erent partition. Applications f and i are both allocated to the
same partition(�(f) = i). Since it was requested f to be allocated to partition
1 (⇠(f) = 1), i is allocated to this partition, as well. Also, g has to be allocated
to partition 1 (⇠(g) = 1). Applications b and d cannot be allocated to the same
partition (�(b) = d).

6 Conclusions

This paper describes an algorithm for generating a system partitioning in a
mixed criticality embedded system. The inputs are the application models and
a set of restrictions, that define requirements on the partitioning. The aim is to

HiRES	 2015,	 Amsterdam	

System Partitioning

HiRES	 2015,	 Amsterdam	 25	

§  Proposed partitioning
{f, i, g}, {a, h}, {e}, {d, c}, {b}

§  Alternative partitioning
{f, i, g}, {a, h}, {e}, {b, c}, {d}

6. Use cases: UPMSat2 Satellite

26	 HiRES	 2015,	 Amsterdam	

Wind-Turbine

27	

!

Figure 6

§  Use case with Ikerlan & Alstom Wind
§  Input:

–  Application models: include criticality level, CPU, OS	

§  Restrictions: applications that must be alone
§  The tool generated this partitioning

HiRES	 2015,	 Amsterdam	

7. Conclusions

§  Toolset for mixed-criticality systems
§  Partitioning tool

–  Rely	 on	 restric5ons:	 Improve	 extensibility	
–  Based	 on	 coloured	 graphs	
–  Able	 to	 generate	 alterna5ve	 solu5ons	

§  Future work
–  Demonstra5on	 is	 being	 done	
–  Addi5onal	 evalua5on	 with	 more	 complex	 systems	
–  Integra5on	 of	 op5mality	 criteria	

28	 HiRES	 2015,	 Amsterdam	

