
A Toolset for the Development of

Mixed-Criticality Partitioned Systems

Alejandro Alonso, Emilio Salazar, and Miguel A. de Miguel

Dept. de Ingeneŕıa de Sistemas Telemáticos
Universidad Politécnica de Madrid, Spain

Email: {aalonso, esalazar, mmiguel}@dit.upm.es

Abstract. The development of mixed-criticality virtualized multi-core
systems poses new challenges that are being subject of active research
work. There is an additional complexity: it is now required to identify
a set of partitions, and allocate applications to partitions. In this job, a
number of issues have to be considered, such as the criticality level of the
application, security and dependability requirements, time requirements
granularity, etc. MultiPARTES [11] toolset relies on Model Driven Engi-
neering (MDE), which is a suitable approach in this setting, as it helps
to bridge the gap between design issues and partitioning concerns. MDE
is changing the way systems are developed nowadays, reducing develop-
ment time. In general, modelling approaches have shown their benefits
when applied to embedded systems. These benefits have been achieved
by fostering reuse with an intensive use of abstractions, or automating
the generation of boiler-plate code.

1 Introduction

The increasing power of processing hardware makes it possible to integrate sys-
tem functionality in just use one processor, instead of using several ones. Al-
though this has a number of advantages, it presents a problem when developing
complex embedded systems. It is common that these systems include applica-
tions with di↵erent criticality level that previously were executed on di↵erent
processors, preventing undesirable interferences between them. However, this
property is not guaranteed when they coexist in the same processor. This type
of systems is called mixed-criticality. This approach presents new challenges, as
it is necessary to certify the whole system, even though there are parts that are
no critical. A suitable approach is based on system virtualization. A hypervisor
allows the creation of partitions that are isolated. Applications with di↵erent
criticality level are executed in di↵erent partitions in a safe way.

MultiPARTES is a FP7 project aimed at developing tools and solutions for
building trusted mixed-criticality embedded systems on multicore platforms. The
approach is based on an open-source virtualization layer, provided by the Xtra-
tuM hypervisor. A software development methodology and its associated tools
will be provided for creating trusted real-time embedded systems to be built as
partitioned applications, in a timely and cost-e↵ective way.



In this paper, the MultiPARTES toolset is presented. Its main goal is to
support the development of mixed-criticality multi-core partitioned systems. The
toolset integrates a number of tools for supporting activities such as system
modelling, system partitioning, validation, and system building.

2 System model

The aim of the work presented in this paper is to support the development of
mixed-criticality embedded systems running on heterogeneous multi-core pro-
cessors. The coexistence of applications with di↵erent criticality level relies on
hypervisors that provide virtual machines or partitions, where applications can
run with space and time isolation. In this way, it is possible to ensure that
applications on di↵erent partitions can run independently.

In the context of this work, the system is composed by a set of applications
that run on an execution platform. An application is considered to be a software
entity that provides a closed set of functionalities. It can interact with other
applications for performing their duties. An application is composed by its re-
quirements specification, design models, computer program, and documentation.
The execution platform is composed by the hardware devices, a hypervisor, and
the set of operating systems that can be run on top of the hypervisor. The hard-
ware platform comprises all computational devices needed by the final system.

The hypervisor provides a set of partitions or virtual machines, where applica-
tions are run on isolation. A partition is characterized by the assigned resources,
operating system, and a set of applications. The resources assigned should be
su�cient for running the applications with the required performance and time
requirements. The available CPU is usually characterized by a certain amount
of usage time that is replenished periodically. The partition receives a certain
amount of memory that is not shared with others. It can also have hardware
devices that are not sharable, and that are required by its applications.

XtratuM is the selected hypervisor [18] [10]. It is based on para-virtualization,
which means that a given operating system has to be adapted for being able to
run on top of the hypervisor. This improves system performance and predictabil-
ity, making it suitable for real-time systems. However, this limits the operating
systems range that can be used in a particular system.

XtratuM has been designed for meeting a set of properties oriented towards
system certification, such as predictability, security, confidentiality or fault iso-
lation. In the context of this work, spatial and space isolation are very relevant.
A partition cannot access the memory of another and partitions are executed at
specified and fixed temporal intervals. Partitions scheduling is based on a cyclic
scheduling policy, that it is statically generated. It precisely states when each
partition has to be executed. XtratuM also supports multi-core processors.



3 Toolset Requirements

The development of the toolset has been driven by a requirements specification
that has been compiled from di↵erent sources. An important input has been the
MultiPARTES requirements specification [12] that drives the project evolution.
They were mainly defined by the consortium, that is composed by academia,
research institutes, and industrial partners, from the automotive, railway, space,
video surveillance, and wind power domains. This specification has been refined
with the comments from other experts in the projects Advisory Board that coop-
erate with members of the consortium in research activities. The most relevant
requirements are summarized below.

Development of mixed-criticality systems. The toolset is aimed at supporting
the development of mixed-criticality systems. This implies that the concept of
criticality is central in the whole development process. The criticality level of
each application has to be stated. This property has to be considered in all
the operations performed by the toolset. This is the case when generating a
system partitioning. An application with a high criticality level cannot execute
in the same partition than another with a lower level. Validation activities and
code generation are also influenced by this property. When dealing with an
application with a high criticality level, it is common that the source code must
meet a number of guidelines for ensuring, for example, high testing coverage or
preventing use of dynamic memory.

Support for non-functional requirements. Non-functional requirements are of
great importance when dealing with embedded systems. They are not directly
associated with an specific function or component of the system. They usually
apply to the system as a whole. Non-functional requirements are usually defined
as constraints on the system functionality. In the context of this paper, time,
safety, and security, are examples of non-functional requirements that will be
present in most of the targeted systems. The toolset has to provide means for
specifying them, and validating their fulfilment. The toolset can include tools
for validating a certain outcome with respect to a non-functional property. The
generators and transformers have to consider them, in order to ensure that their
outcomes are compliant.

Support for partitioned systems. System partitioning is a fundamental activity
on the target type of systems. However, there is little support in similar devel-
opment tools. This toolset should generate system partitioning that has to be
compliant with the system models, non-functional requirements, and hardware
resources availability.

Support for multi-core architectures. The execution platform can be multi-
core, as it is commonplace in current industrial systems. It should be supported
modelling multi-core systems and assigning partitions to cores, according to the
model defined by the hypervisor



System modelling. The toolset has to provide means for modelling the whole
system, which includes the applications, platform, and any other information
that the user has to provide. This is required for ensuring a consistent and
coherent handling of all the information related with a system development. It
is also required to support legacy applications. This is mandatory for integrating
applications that have been developed with other approaches.

Support system deployment. Deployment is the last step required before run-
ning the system. When dealing with partitioned embedded systems, this implies
the generation of a bootable software image that includes the hypervisor, the
partitions, and their operating system and applications. The tools shall support
system deployment by generating mechanisms for the automatic building of the
system. System deployment also requires the configuration of XtratuM, which
includes information on the systems partitions, resources associated to them,
etc. This system description can be naturally generated by the toolset, if the
required data is provided by the developer.

4 Description of the toolset

4.1 General Approach

Model Driven Engineering (MDE) [21] is a software development approach man-
aged by the Object Management Group that allows engineers to raise the ab-
straction level of the languages and tools used in the development process. It
also helps designers to isolate the information and processing logic from imple-
mentation and platform aspects. A basic objective of MDE is to put the model
concept on the critical path of software development. This notion changes the
previous situation, turning the role of models from contemplative to productive.

Models provide support for di↵erent types of problems:

– Description of concepts.
– Validation of these concepts based on checking and analysis techniques.
– Transformation of models and generation of code, configurations, and docu-

mentation.

Separation of concerns avoids confusion raised by the combination of dif-
ferent types of concepts. Model-driven approaches introduce solutions for the
specialization of the models for specific concerns, as well as the interconnection
of concerns based on models transformations. It improves communication be-
tween stakeholders using the models to support the exchange of information.
The separation of concerns often requires specialized modelling languages for
the description of specific concerns.

Another goal of MDE is developing portable, interoperable, maintainable,
and well-documented software. MDE is backed up in the separation of system’s
function specification and how the system uses the resources provided in the
underlying platform.



When the UML2 standard was approved [15], the OMG realized that it was
necessary to define a profile for real-time and embedded systems. The new profile
was called Modelling and Analysis of Real-Time and Embedded [16]. MARTE
is a profile for providing support for modelling and analysing real-time and
embedded systems. It includes several packages for describing non-functional
properties, as well as some secondary profiles for di↵erent kinds of systems. It
was designed to be compatible with already existing profiles for quality of service
and fault tolerance that provide support for annotating embedded systems issues,
such as energy consumption, memory, etc. Its main goals are:

– Improve the communication between developers by providing a common
modeling environment and methodology for both hardware and software

– Improve the degree of interoperability between tools pertaining to di↵er-
ent domains and devoted to di↵erent development stages, like specification,
design, verification, code generation, etc.

– Leverage the use of models to obtain better analysis and predictions, taking
into account both hardware and software characteristics.

4.2 Toolset Architecture

The main components of the toolset and data flows are depicted in figure 1.
Their basic role is:

System modelling: It comprises the main input to the tool. It is composed by
three models for describing the execution platforms, the applications, and the
restrictions to be applied in the partitioning.

Partitioning tool: It is in charge of generating a system partitioning, that
is represented by the deployment model, which defines system partitions, the
assignment of applications to partitions, and the characteristics of the partitions,
including the operating system, processor time, memory, etc. The partitioning
tool takes as input the system model. It has to consider information, such as
the applications’ criticality level, their required operating system and hardware
devices, etc. Based on this information it generates a deployment model that
meets the restrictions and some basic requirements.

Validation: Full correctness of a system partitioning may require complex
checks that are di�cult to integrate within a single tool. In addition, it is de-
sirable for the toolset to be extended for supporting additional non-functional

Tool support 

4"


System  

partitioning
Validation


Generation of final 

artifacts


System model

Fig. 1. Overall architecture



5"

Applications modelPlatform model
Partitioning 

restrictions model

System model

Fig. 2. System modeling

requirements. It is convenient to use external validation tools that check the
correctness of the system configuration with respect to a given criteria.

Generation of final artefacts: when the system partitioning is correct a num-
ber of transformation tools generates a set of outcomes that are necessary for
creating and building the final system: XtratuM configuration files, system build-
ing files and source code skeletons.

These components are described below with a higher detail level.
This toolset is currently under development. There is a working version that

is able to handle simple models. Complexity is being added gradually. The
toolset is being developed based on the Eclipse Modelling Tools. Model to model
transformers are programmed in Query View Transformation Language (QVT).
Model to text generators are based on Acceleo MTL. Metamodels are created
using eCore.

4.3 System Modeling

This component includes all the models needed for describing a given system. In
general, three types of models are used for describing the execution platform, the
set of applications in the system, and restrictions imposed to the partitioning.
Figure 2 shows graphically this structure. In the figures of this paper, squares
represent data, while ellipses refer to tools. Solid lines refer to data flows and
dotted lines mean references to the model.

The execution platform is composed by the hardware, hypervisor, and avail-
able operating systems. The description of the hardware has to include all the
information required by XtratuM. It will be used for the generation of the deploy-
ment outcomes. The execution platform is modelled with an specially designed
meta-model [13]. It allows the description of the mentioned entities and ensures
that the required information for the hypervisor configuration is provided.

The model for applications can take two forms:

– Fully modelled : The full model of the application is provided. This is com-
pliant with a pure model-driven engineering approach. The description of
the application is performed using UML2 modelling notation. This is a pure
structural and funcional description.

– Partially modelled: The application is represented by the source code or
the final executable. It is suitable for legacy applications. The application
is described with global information. In particular, it is only mandatory to
include information on the application criticality and hardware resources
needed.



These models can be enriched with information related with non-functional
requirements, which are included as annotations in the model. This approach
can be easily extended. If it is required to support an additional non-functional
property, the modelling language can be extended with the required annotations.

Currently, it is possible to include global information on the applications,
and annotations related with real-time requirements. The global information
includes information on the criticality of the application, and global resource
needs, if it is partially modelled. It is specified as the required memory and CPU
percentage, which is defined as a computation time and a replenishment period.
This information allows system partitioning to allocate them to the partition
when the application is run, to ensure a smooth execution.

The toolset allows for defining real-time annotations for fully modelled ap-
plications, based on the UML-Marte profile. Using this profile, di↵erent entities
can be declared, such as periodic, sporadic or aperiodic tasks, or synchroniza-
tion objects. In addition, meaningful parameters can be defined, such as periods,
deadlines, scheduling policies, priorities, and worst execution times. The toolset
extracts automatically the global resource needs for these applications.

Platform and applications models are independent of a particular system. It
should be possible to reuse them for creating di↵erent systems. The restrictions
model includes information that relates them for a particular system or specific
criteria for partitioning. In particular, the types of restrictions that are currently
supported includes: application that must be allocated on a given partition, ap-
plication that must (not) be in the same partition than another one, application
that requires a particular hardware device, or partition or application that must
run on a given core.

Finally, these restrictions can be provided by the user or automatically gen-
erated by specific tools that are able to analyse a type of model annotations.
In this case, restrictions will be used for ensuring that a system partitioning is
compliant with the annotations related for the non-functional property. As an
example, this is the case with criticality level annotations. A number of restric-
tions can be automatically derived for ensuring that applications with di↵erent
criticality level are not allocated in the same partition.

4.4 System partitioning

This component generates a system partitioning, where each partition is charac-
terized by the applications it includes, the operating system, the processor where
it is executed, and the assigned resources. They include a CPU share, memory,
and other devices required by its applications. System partitioning is described
in the deployment model. This is an internal metamodel, that represents this in-
formation and that is not supposed to be edited by the developer. The structure
of this component is depicted in figure 3.

A successful partitioning has to met a number of requirements, being the
following the most relevant: (i) all applications must be allocated to partitions (ii)
partitioning restrictions has to be met, and (iii) resources assigned to partitions
must not exceed those available.



Tool support 

6"

Validation

Generation of 
final artifacts



System model

System 
partitioning

 Partitioning 
tool

Deployment model

Fig. 3. System partitioning

XtratuM schedules partitions following a cyclic executive policy. The parti-
tioning algorithm has to generate a plan that is repeated cyclically. It defines
execution slots and assigns them to the partitions. The size of the slots assigned
to a partition has to be compliant with the required processing capability de-
scribed in the application model.

4.5 Validation

The partitioning algorithm cannot ensure the fulfilment of any type of non-
functional requirement, as specific analysis is required. For this reason, the
toolset provides a method for including validation tools that checks a given
partitioning with respect to a type of non-functional requirement. The toolset
provides an approach for automating this process, that is sketched in figure 4.

Generation of 
final artifacts

System 
model

System 
partitioning

Validation
tool

Tool input model Transformation

Tool output model

Transformation

Toolset 
result model

Validation

Fig. 4. Validation

The automatic execution of the validation for a system property relies on
metamodels and transformers. Initially, a transformer generates a model using
the input format of the tool. It is obtained by extracting the relevant information
from the system and the deployment models. Then, the validation tool is exe-
cuted and generates an outcome with the analysis results. Another transformer
converts this information on a model that can be used by the partitioning tool,
or on a set of new restrictions.

This approach can be used for analysing the fulfilment of time requirements
on fully modelled applications. The first transformer can produce the input to



the response time analysis tool, by extracting real-time annotations from the
system model and the cyclic plan for partitions, from the deployment model.
The tool will perform the analysis and generates an output that can be fed back
to the tool. This approach has been successfully used in the toolset developed
in the CHESS project [3], which is the predecessor of the one described in this
paper. MAST [6] is the selected tool for the response time analysis.

4.6 Generation of final artefacts

This component operates when a validated system partitioning has been built.
Its main goal is to generate a number of artefacts that facilitates the building
of the final executable system or required documentation. Figure 5 depicts the
structure of this component. Initially, it is generated a neutral model, which is a
simplified version of the system including only the strictly necessary information
for the final outcomes. It simplifies the generation transformers. In particular, it
has served to reduce the development cost of transformers for two di↵erent pro-
gramming languages: Ada and Real-Time Java. Currently, the toolset generates
three types of artefacts:

XtratuM configuration files: The configuration of the XtratuM hypervi-
sor is stored in a set of files. They describe the number of partitions, the resources
assigned to each of them, memory addresses where di↵erent software parts must
be stored, etc. Their manual construction requires providing a number of tiny
details that must be carefully reviewed after each minor change in the system.
The MultiPARTES toolset simplifies this process. System models include anno-
tations for providing all required information for creating those files. The toolset
checks that no data is missed. Finally, a transformer automatically generates
these configuration files.

System building files: The generation of the final system requires locating
information on the applications’ code, the used operating systems, hypervisor
executable, configuration files, etc. In addition, a number of operations are re-
quired, such as compiling source code and linking the whole system. The toolset
supports the generation of scripts for automating this process. The system model
includes slots for providing information such as the location of the sources, the
directories where information is located and has to be stored, etc. A script is

Validation

System 
model

Neutral model

Transformation to 
neutral model

Source codeTransformation

XtratuM  
configuration 

System building 
files

System 
partitioning

Transformation

Transformation

Generation of 
final artifacts

Fig. 5. Generation of final artifacts



provided for building the image that will be loaded and executed in the hardware
platform.

Source code skeletons: Application models can be taken as the basis for
generating source code. Depending on the detail level of the model, the generated
code can be more or less complete. The Eclipse toolset provides few support for
the manipulation and generation of Ada source code. Hence, the toolset is able
to generate skeletons that correspond to the model entities. System models and
the code generator are oriented towards the generation of high-integrity Ada.
The Ravenscar computational model [2] is the basis for the application structure.
The code generated is compliant with this profile and with the a language subset
suitable for this type of systems [8].

Ada code generation takes as input the application class diagram using UML
2.2, including real-time annotations with the UML-MARTE profile. The pack-
ages structure, their use relations, tasks, synchronization objects, and passive
packages are generated. As an example, if the system model includes a periodic
task, the skeleton includes the defined attributes, the activation scheme based on
the period and phase in the model, exception handlers, hooks for the functional
code, etc. The details of the code generator are described in [20].

This scheme can be easily extended. Currently, it is being designed a gen-
erator of evidences needed for the certification of safety critical code. These
evidences can include outcomes, such as the schedulability analysis, means for
fault detection and contention, results of the validation tools.

5 Related work

The presented framework has three main aspects: automatic generation of a suit-
able partition schema, integrated analysis and artifacts generation. Automatic
code generation tools are widely used nowadays. There are industrial approaches
such as IBM Rhapsody [5], which is able to generate complex Ada code from
state machines. However, it does not support MARTE models nor the generation
of Ada Ravenscar code.

Another alternative is Papyrus [9]. Ada 2005 code compliant with the Raven-
scar profile is supported, as well as UML-MARTE models and schedulability
analysis. However, Papyrus lacks support for automatic partition and partition
artefacts generation. Ocarina [7] [14] is a tool that takes as inputs AADL models
and generates Ada and C code. It is able to perform a number of analysis to the
input models such as hardware checks, schedulabilty analysis using Cheddar or
WCET analysis with Bound-T.

The toolset generated in the context of the ASSERT project has a number of
commonalities with that described in this paper. Two sets of tools were developed
in this project, one based on HRT-UML [17] [1], and the other one on AADL
which later evolved to the current version [19]. Both can generate Ravenscar Ada
code and include timing analysis with MAST. TASTE has also been extended
for generating Xtratum configuration files [4].

The main di↵erences between these toolsets and the presented toolset are:



– It generates a valid partitioning, which is compliant with the input models.
– It uses industrial standards, instead of ad-hoc adaptions of UML. It relies

on UML2, MARTE, and open and free tools and languages (Eclipse, QVT,
MTL and Ada).

– It integrates the schedulability analysis, code generation, partitioning gen-
eration and XtratuM configuration artefacts generation.

6 Conclusions

This paper describes a toolset for supporting the development of mixed-criticality
multi-core embedded systems. It relies on the XtratuM hypervisor that provides
spatial and temporal isolation, as well a number of additional features suitable
for the development of this type of systems. The presented toolset has been
designed according to a set of requirements produced by experts from academia
and industry, with knowledge on a number of application domains.

The toolset supports a number of fundamental activities, including system
modelling, system partitioning, validation, and final artefacts generation. System
description allows for the specification of non-functional requirements that are
considered along the development process. An innovative aspect of the tool is the
support for system partitioning that is compliant with system model and that
can be validated with suitable external tools. The generation of code skeletons,
hypervisor configuration files and system building files simplifies the construction
of the final executable code.

Currently, the toolset provides most of the mentioned functionality, but for
simple systems. Support for more complex systems is gradually being included.
Future work includes the integration of improved support for safety and security
and the design of a more complex partitioning algorithm.

Acknowledgment

The work in this paper is partially funded by FP7 STREP MultiPARTES
project, no 287702 (www.multipartes.eu). The MultiPARTES consortium com-
prises: Ikerlan-IK4 (E), Universitat Politécnica de Valencia (E), Technische Uni-
versitt Wien (A), Universidad Politécnica de Madrid (E), TRIALOG (F), FEN-
TISS (E), TELETEL (Gr), Visual Tools (E), ALSTOM Wind (E). The work in
this paper has also been funded by the Spanish Ministerio de Educación, Cultura
y Deporte, project HI-PARTES (High Integrity Partitioned embedded systems),
TIN2011- 28567-C03-01 in the Plan Nacional de I+D+i.

References

1. Bordin, M., and Vardanega, T., ”Correctness by construction for high-integrity real-
time systems: A metamodel-driven approach.” Reliable Software Technologies–Ada
Europe. Springer Berlin Heidelberg, 2007.



2. Burns, A., Dobbing, B., Vardanega, T.: Guide for the use of the Ada Ravenscar
profile in high integrity systems. Ada Letters XXIV, 1–74 (June 2004)

3. de Miguel, M.A., Salazar, E., Model-based development for RTSJ platforms. In:
Proceedings of the 10th Int. Workshop on Java Technologies for Real- time and
Embedded Systems. pp. 175–184. JTRES ’12, ACM, New York, NY, USA (2012)

4. Delange, Julien, Christophe Honvault, and James Windsor. ”Model-Based Engi-
neering Approach for System Architecture Exploration.”

5. G. Eran, D. Harel, and E. Palachi. ”Rhapsody: A complete life-cycle model-based
development system.” Integrated Formal Methods. Springer Berlin Heidelberg, 2002.

6. González Harbour, M., Gutiérrez, J.J., Palencia, J.C., Drake, J.M.: ”MAST model-
ing and analysis suite for real time applications”. In: Proceedings of 13th Euromicro
Conference on Real-Time Systems,(June 2001).

7. Hugues, Jerome, et al. ”From the prototype to the final embedded system using the
Ocarina AADL tool suite.” ACM Transactions on Embedded Computing Systems
(TECS) 7.4 (2008): 42.

8. ISO/IEC DTR 15942, ”ANSI Programming Languages - Guide for the Use of the
Ada Programming Language in High Integrity Systems”

9. Lanusse, Agnes, et al. ”Papyrus UML: an open source toolset for MDA.” Proc.
of the Fifth European Conference on Model-Driven Architecture Foundations and
Applications (ECMDA-FA 2009). 2009.

10. M. Masmano, I. Ripoll, A. Crespo, S. Peiro. XtratuM for LEON3: an OpenSource
Hypervisor for High-Integrity Systems. Embedded Real Time Software and Systems
(ERTS2 2010), May 2010.

11. MultiPARTES: Multi-cores Partitioning for Trusted Embedded Systems, Avail-
able: www.multipartes.eu

12. MultiPARTES project, ”Requirements Platform and Methodology Viewpoint”,
Deliverable D2.2, http://www.multipartes.eu.

13. MultiPARTES project, ”Specification and Models of Platform”, Deliverable D5.1,
http://www.multipartes.eu.

14. Ocarina: http://aadl.enst.fr/ocarina/#ocarina
15. OMG Unified Modeling Language (2011), http://www.omg.org/spec/UML/2.4.1/
16. OMG UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded

Systems (2011), http://www.omg.org/spec/MARTE/, version 1.1
17. Panunzio, M. and Vardanega, T., ”A metamodel-driven process featuring advanced

model-based timing analysis.” Reliable Software Technologies–Ada Europe 2007.
Springer Berlin Heidelberg, 2007. 128-141.

18. S. Peiro, M. Masmano, I. Ripoll, and A. Crespo. ”PaRTiKle OS, a replacement of
the core of RTLinux”, in Proc. of the Real-Time Linux Workshop, 2007.

19. Perrotin, M., et al. ”TASTE: a real-time software engineering tool-chain overview,
status, and future.” SDL 2011: Integrating System and Software Modeling. Springer
Berlin Heidelberg, 2012. 26-37.

20. E. Salazar, A. Alonso, M.A. de Miguel, J.A. de la Puente. ”A Model-Based Frame-
work for Developing Real-Time Safety Ada Systems”. In H.B. Keller, et al (eds.),
Reliable Software Technologies — Ada-Europe, LNCS 7896, Springer-Verlag, 2013.

21. Schmidt, Douglas C. ”Guest editor’s introduction: Model-driven engineering.”
Computer 39.2 (2006): 0025-31.


