Motivation

Development of a sensor network architecture tailored for high sampling rate applications and high density of sensor node deployments

Application example: Active Flow Control (AFC)

![AFC Image]

Scales of 100 µm for the sensor size and its interspacing

Sampling rates of 100 kHz or more

Large number of sensors required for capturing the phenomena.

Objectives and System Architecture

Objectives

- Investigate architectural and communication issues for a large-scale dense sensor network, addressing issues like network topology, medium access control, routing and in-network data processing.
- Design of distributed processing strategies for detecting events with low latency which is essential to meet the requirements of RT control systems.

2D mesh sensor network:

- Distributed event detection, without the need of central data acquisition and processing;
- Regular structures resembles the architecture of a NoC.

Node Pinout:

- Full duplex serial ports: input and output data pins
- Handshaking: input and output control pins

Node architecture

- Consists of one switch and one microcontroller connected to the sensor through one ADC.

Preliminary Results and Future Work

The principle of operation is based in 3 different states:

1st Network Discovery
Each node discovers its neighbors and the closest path to the sink(s)

2nd Event Monitoring
Sense the environment and communicate the values with their n-hops. (Ex: in figure n = 2)

3rd Event Announcement
A connection path to the sink is established and data is sent by the nodes who detected any event.

Simulation Scenario

- Grid of 21 x 21 nodes, with one sink in center
- Grid is superimposed on a pressure distribution snapshot
- Neighborhood size is two (n = 2)
- Only 13% of the nodes transmitted
- Information enough to provide an accurate picture of phenomenon with low latency

References

[3] FOCAP, Florida Center for Advanced Aero-Propulsion Projects:
 - FCMP01.01.24.FEDE0.07281 (CISTER);
 - FCMP01.01.24.FEDE0.023212 (SANTRISAN);
 - FCMP01.01.24.FEDE0.012988 (SENODS);
 - FCMP01.01.24.FEDE0.028950 (PATTERN), Co-financed by:

João Loureiro, Vikram Gupta, Nuno Pereira, Eduardo Tovar, Raghuraman Rangarajan
(joflo, vigup, nap, emt, raghu)@isep.ipp.pt

CISTER Research Centre/INESC-TEC
ISEP, Polytechnic Institute of Porto
Rua Dr. António Bernardino de Almeida, 431
4200-072 PORTO Portugal
tel: +351.228340502
fax: +351.228340509
http://www.cister.isep.ipp.pt
cister.info@isep.ipp.pt