

XDense: A Dense Grid Sensor Network for

Distributed Feature Extraction

Conference Paper

CISTER-TR-150401

2015/05/15

João Loureiro

Raghu R.

Eduardo Tovar

Conference Paper CISTER-TR-150401 XDense: A Dense Grid Sensor Network for Distributed Feature ...

© CISTER Research Center
www.cister.isep.ipp.pt

1

XDense: A Dense Grid Sensor Network for Distributed Feature Extraction

João Loureiro, Raghu R., Eduardo Tovar

CISTER Research Center

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: joflo@isep.ipp.pt, raghu@isep.ipp.pt, emt@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract

We propose XDense, a wired mesh grid sensor network architecture tailored for scenarios that benefit from

thousands of sensors per square meter. XDense has a scalable network topology and protocol, customizable to

application specifics, that enables complex feature extraction in realtime from the observed phenomena by

exploiting the communication and distributed processing capabilities of such network topologies. We detail

XDense's node and network architecture, protocols, and principles of operation. To demonstrate XDense's

potentials, we evaluate it's response time, data traffic metrics and accuracy in the context of detecting fluid

dynamic features.

XDense: A Dense Grid Sensor Network for Distributed
Feature Extraction

João Loureiro, Raghuraman Rangarajan, Eduardo Tovar

CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto, Porto, Portugal

{joflo,raghu,emt}@isep.ipp.pt

Abstract. We propose XDense, a wired mesh grid sensor network architecture
tailored for scenarios that benefit from thousands of sensors per square meter.
XDense has a scalable network topology and protocol, customizable to applica-
tion specifics, that enables complex feature extraction in realtime from the ob-
served phenomena by exploiting the communication and distributed processing
capabilities of such network topologies. We detail XDense’s node and network
architecture, protocols, and principles of operation. To demonstrate XDense’s
potentials, we evaluate it’s response time, data traffic metrics and accuracy in
the context of detecting fluid dynamic features.

1. Introduction
The advent of MEMS has enabled new applications to be developed that rely on dense
deployments of sensors. In some applications, it has enabled deployments with very high
spatial and temporal requirements. That is, resolutions as small as few micrometers of
sensor inter space and sampling rates up to kHz. Application examples range from fluid
mechanics for flow control in aircrafts [Kasagi et al. 2009], to artificial skins for robotics
[Takei et al. 2010] and biomedical devices [Ohta et al. 2009]. For such dense deploy-
ments, which may be of thousands of nodes in a few square meters area, sensor network
technology faces scalability issues in some key aspects as such as cost, communication
time, processing time, power, and reliability. For example, collecting data from the entire
network can lead to a data explosion. Processing all this data for feature extraction be-
comes costly not only in terms of communication, but also computationally. Extraction
may also be difficult to achieve in real time, hence prohibiting its use in real time critical
applications like closed-loop actuation which leads to tight requirements.

We present XDense as a mesh grid sensor network architecture, tailored to address
the challenges of extremely dense sensor deployments. It enables efficient extraction
of complex features of the observed phenomena without the need of collecting the data
from each individual node centrally. Instead, it allows the user to program node’s feature
detection and extraction algorithms with respect to the application’s objectives. The data
is processed in the network in a distributed fashion, and only meaningful data is delivered
to the sink, thus reducing transmissions towards it, minimizing congestions, and leading
to faster response times.

XDense moves away from traditional contention prone wireless and wired sensor
network that uses shared medium to communicate. It resembles more closely Network-
on-Chip (NoC) architectures. This is especially true regarding aspects like network topol-
ogy (mesh grid based on regular structures), routing schemes, timing properties, and
on the distributed processing opportunities associated [Kumar et al. 2002]. On the other

hand, we believe that the key differentiating features of our architecture are: (a) the net-
work is not on a single chip, but built on a larger surface that is physically attached,
specific to each application scenario (b) the node count is much greater than that of NoC
applications, and (c) the network does not deal with shared memory due to a larger cov-
erage area (which imposes different restrictions and opportunities).

Roadmap We first conceptualized XDense with some preliminary simulation re-
sults in [Loureiro et al. 2013], and demonstrated its implementability in hard-
ware [Loureiro et al. 2015]. In this paper, we first present in Section 2 some relevant
related work, next we expand on that proof-of-concept by first reviewing the basics of the
application requirements (Section 3), and then (Section 4) describing the architecture and
protocol specifics of the proposed system. We then provide, in Section 5, evaluation re-
sults to validate our system by comparing our work with traditional approaches for feature
detection. Finally in Section 6 presents the conclusions.

2. Related work
Our work has similarities to boundary estimation and tracking techniques using collab-
orative sensors found in literature, and a good review of such techniques can be found
in [Srinivasan et al. 2012]. Many of such techniques often construct an hierarchical struc-
ture, and apply data aggregation functions as the data travels up the hierarchy. Other
works (e.g. [Li and Liu 2010]), employ techniques that, similarly to us, rely on local com-
munication between neighbours to detect contours, however were projected for shared
medium link layers, and opportunities are limited due to concurrency issues.

Wireless sensor networks (WSN) are suitable for large scale deployments, and
effort have gone towards minimizing communication by distributively processing data.
For example, in [Luo et al. 2009], the authors explore distributed data compression. Al-
though wireless sensor nodes exceed in complexity, power constraints, size, latency and
overhead, and therefore does not meet the application temporal requirements.

Closer to our architecture, a multi modal sensor network was proposed
in [Lifton et al. 2002]. The authors present a sensor network with an embedded processor
dedicated to each sensor node. Node communicate using an infrared transceiver, with its
surrounding neighbors, using a single full-duplex serial. The authors presents a scalable
sensor network deployment and propose solutions for data management, localization, data
aggregation and routing. But, due to link contentions and collisions, in other words, cost
of communication, their research leans more towards WSNs, which are not suitable for the
applications we are focused on. The concept was extended, and an alternative topologies
were presented in [Paradiso et al. 2004]. Although the network is a wired grid, master-
slave communication is utilized, decreasing distributed processing opportunities due to
shared links. The number of slaves is also limited, which is not scalable.

3. Dense sensor networks in fluid dynamics
An important objective in fluid dynamics is to characterize airflows and determine its
laminar and turbulent characteristics. For example, in an aircraft, a high speed airflow
over a wing can present both laminar and turbulent characteristics at the same time at
different points of it. Turbulence can be highly undesirable on aircrafts since it increases
drag and noise, and consequently fuel expended [Blake 2012].

Figure 1. Example scenario: Air flow over a wing exhibiting separation phenom-
ena by switching from laminar to turbulent.

Figure 1 shows an airflow phenomena over a wing surface and illustrates the tran-
sition from laminar to turbulent flow. This transition separates laminar flow (which has a
more homogeneous speed profile distribution) from turbulent flows (which is composed of
coherent structures, such as vortices of chaotic evolution) [Robinson 1991]. An increase
in the turbulent region consequently increases drag on the surface of the wing.

There are various techniques available, and being developed, that allow to study
a flows’ properties by extracting profile data such as speed and temperature distribu-
tion [LaRue 1974]. For such profiles, large deployments of sensors may require sen-
sors’ inter-space to be smaller than that of the spatial granularity of the observed phe-
nomena (for example, of 100 µm or less) and have high sampling rates (in excess of
10 kHz) [Buder et al. 2008]. Kasagi and others [Kasagi et al. 2009] surveyed micro flow
sensors that attempt to meet such requirements. However, despite the effort gone to-
wards sensor development, to the best of our knowledge, no interconnection solutions
are found in the literature. Validations are usually done by individually connecting
each sensor to channels of an analogue-to-digital converter (ADC) [Buder et al. 2008,
Bruinink et al. 2009]. However, due to the dynamic and complex nature of the data in
the above discussed approaches, data-processing is usually done offline and is limited to
laboratory controlled conditions. This makes their use in real applications difficult.

Based on the above discussion, we state the following requirements of such a
system, as being of interest to us, in sensing such phenomena in real time: (a) Efficient
data extraction: The network infrastructure should allow efficient extraction of complex
information about the phenomena. This should be done without the need of centralized
data collection or processing. (b) Real time behaviour: Along with efficiency, the network
infrastructure should also be able to respond in a timely manner such that actions can be
taken based on the extracted data.

4. Proposed Architecture
The selection of a good topology is a job of fitting network requirements to available tech-
nology. A trade-off between cost and performance should always be considered when
specifying many aspects, including connection density and length, and the number of
GPIOs utilized for communication and signaling. Considering the requisites from Sec-
tion 3, with the considerations above, we present our architecture in more detail in the
following subsections.

4.1. Architecture
Network The architecture consists of a 2D mesh network of sensor nodes and sinks,
with point-to-point connections with up to four neighboring nodes, physically located in

(a) (b)

NDND

Sw

µC

S

SN

Sw

Hw

(c)

P0 P1

Tx Rx

ND

(d)

Figure 2. (a) A 5×5 network with a sink in the center; (b) The node’s pinout; (c)
Node’s model architecture: a software layer, which is the application, and the
hardware layer, which includes the switch (Sw), the net-device (NE) and the sen-
sor (S); (d) The net-device architecture, with two queues with different priorities
in the output channel (Tx), and the input channel on the right (Rx)

four directions (north, south, east, west). Figure 2(a) shows an example scenario of a 5×5
network (24 nodes and one sink) with the sink located in the center. Figure 2(b) shows
the node’s layout. Figures 2(c) and 2(d) shows in detail the internal architecture of the
sensor node. Any set of nodes is a potential communication link from any node to the
sink, enabling fault tolerant protocols. Multiple sinks are supported, and any node can
be configured to be a sink while deploying and setting up and the network. Each node
requires at least one sink in its address space to operate, but multiple sinks can be deployed
to increase number addressable nodes (and network size), or to increase redundancy on
data collection.

Node: Figure 2(b) shows the main functional blocks of a sensor node (SN). Each node
can be seen as a system on chip (SoC), with dedicated hardware peripherals and a CPU.
The Switch (Sw) and the Net-Devices (NE) are responsible for communication on the
network. The Sensor (S) element is the interface with the physical world, and they are the
sources of data. These peripherals are interconnected by the software layer, or application
layer, which handles the communication protocol and the application specific algorithms.

The network is homogeneous, apart from the sinks, whose sensor interface gives
place to an external connection to another communication link. This extra link can be,
for example, to a wireless connection to a supervisory system, or even more, to a local
actuator for closed loop distributed actuation. Detailed information of each peripheral is
provided in the sequence.

Net-device: At the bottom layer in the node’s architecture (Figure 2(c)), Net-Devices
(NE) are the node’s hardware peripherals responsible for connecting two distinct nodes
through the channel interface. Each node contains four NEs that connects them to their
four immediate neighbors in the grid. It consists of a full-duplex serial port, with two
output queues with different priorities, with fixed sizes. It’s design is in Figure 2(d).
Different queues are used for different protocols to minimize interference of one over the
other. No input queues are used, since packets are processed immediately after being
received.

Switch: The switch (Sw) is the interface between NE and the application layer. It con-
nects n NEs to the application and allows individual or parallel access to any NE. The
switch works on the basis of analysing the packet headers, and is able to not only send
packets from application to NE, but also it is able to store and forward packets among NEs

ND

DS DA

Is sink

Event detected

Wait for ND
ND receivedIs SN

ND done

Data announced

Figure 3. Operational states of the network

without interference of application layer. This should be implemented in hardware, and
allows for connection establishment and message forwarding, for better response times.
The packets have fixed size for the ease of in-hardware processing.

Sensor: Another of the node’s peripheral are the sensors, connected to the Microcon-
troller (µC) through an analogue-to-digital interface. It is the network data input located
at each node in the network. Each node can contain one or more sensors of any nature,
according to the phenomena to be observed.

Microcontroller: This where the user’s applications run. The micro controller also
executes the communication, routing and the operational protocols discussed in the next
section. In general, the application layer is responsible for reading from the sensor and
deciding what to do with that information, and when, how and to whom to transmit its
data through the net-devices. Another basic functionality is to enable the user to program
all nodes in the network through a sink by broadcasting the new applications to this layer.

4.2. Protocol

Our protocol is designed using mainly three operational states. Initially, nodes wait until
they receive a network discovery packet by the sink. After that, (i) each node collects
and distributes sensor’s data within its neighborhood, (ii) processes the collected data,
and depending on computed results and event detection algorithm policies, (iii) send its
results to the closest known sink, in order to announce its findings. These operational
states are named: Network discovery, local data-sharing, and remote data-announcement
respectively, and from now on referred simply as ND, DS and DA. Figure 3 is a diagram
of the principles of operation.

Network discovery: Network discovery (ND) is executed once at initialization of the
network by the sinks, which sends an ND packet carrying the system’s settings about
sink location (or packet origin), baudrate, sampling rate, and the algorithms used for data
processing. Nodes will wait for at least until they get an announcement from at least one
sink, which is then added to the know sinks list.

Local data-sharing: After receiving the announcement packet from the sink, the nodes
continuously sense the environment for phenomena of interest. They communicate these
sensed values with their neighborhood, of size defined by parameter nhops. The neighbor-
hood is a system defined parameter which plays an important role in the system operation.
That is, all nodes initially send their values in all four directions, which is then stored and
forwarded by the immediate neighboring nodes up to the nhops neighbor.

The value of nhops is selected according to the expected characteristics of the phe-
nomena to observe, in such a way that, each node will send and receive data from up
to N nodes around it. The greater the value of nhops, the larger is the neighborhood N .

(a) Original image (b) Binarization and con-
tour tracing

(c) Contour smoothing

Figure 4. Process steps for boundary computation described in
[Westerweel et al. 2009].

This allows more detailed detections to be made but at the cost of increased overhead and
latency. Using nhops, the neighborhood size N is computed as:

N = 4×∑nhops

i=1 i = 2× nhops × (nhops + 1)

If the node computes data of interest, it immediately switches to the remote data-
announcement (DA) state and communicates to the sink its detection. Packets exchanged
at the DS phase are queued in the lower priority queue P0.

Remote data-announcement: On switching to the DS state, a node forwards the packet
with information detected towards the closest sink. In turn, the sink receives data from
different origins, allowing it to reconstruct the observed phenomena with increasing ac-
curacy and coverage (after each DS reception). Packets exchanged during this state are
queued in the higher priority queue (p1).

5. Evaluation
In [Westerweel et al. 2009] the authors use a camera setup to indirectly measure the speed
distribution of an air-jet flow on free air by applying tracers on the flow. They apply im-
age processing techniques to detect such bounding interfaces on captured images. These
processing techniques are applied sequentially on an image as follows: First, the image
is binarized using a fixed threshold, then all the contours are traced, and finally, only the
contour with the greatest area is chosen, with its indentations removed. This process is
shown in Figures 4 (a) to (c).

This image processing approach for feature detection is commonly used, and con-
sidering that our feature detection goals are the same, we use this approach as a reference
to compare our results. We do that as follows: first, we use the same flow image from
[Westerweel et al. 2009] as an input to our XDense simulation (this is, the data is super-
imposed in the simulation of our sensor network grid, and is sampled by each node’s
sensor). We detect the separation layer, or envelope, which is then compared with the
envelope previously computed by processing the same snapshot, and applying the pro-
cessing steps from [Westerweel et al. 2009].

We utilize an adaptation of the Sobel operator for edge detec-
tion [Vincent and Folorunso 2009], widely used the image processing domain. Using this
algorithm, nodes performs a 2-D spatial gradient measurement on it’s neighboring data,
and so emphasizes regions of high spatial frequency that correspond to edges.

(a) Original data (b) Envelope detection (c) Contour smoothing

Figure 5. Processing steps of our network. (a) Is the phenomena as seem by our
network, after downsampling the full resolution image to 101 × 101 pixels. (b) is
the envelope detection by the SN with nhops = 3, and (c) is the contour smoothing
post processing done by the sink in black, compared to 4(c) in gray.

To perform the evaluation, we implemented our network using the Network Sim-
ulator 3 (NS-3) that implements all the abstraction of our architecture, for a matrix of
sensor nodes with arbitrary parameters. The density of the deployment is chosen accord-
ing to scales of the phenomena (turbulent structures) that we want to observe. The size of
the network is chosen accordingly to the area to be observed. In this case, our region of
interest is covered by a network with size 101×101−1 = 10200 SN, and one sink on the
center. Our communication protocol uses fixed packet sizes of 7 bytes, and baudrate of
10 Mbps. We vary the neighborhood size of nhops from 1 to 7. Figure 5 shows the results
of our simulation, depicting the original snapshot(Figure 5(a)), the events sensed by our
setup (Figure 5(b)), and the resulting bounding interface (Figure 5(c)) superimposed with
the original output from Figure 4(c). Comparing the two results gives us a measure of the
accuracy of our computation.

Using this process, we evaluate the behavior of our system under varying neigh-
borhood size (nhops). We are interested in observing: (i) the accuracy of our bounding
interface detection; (ii) the total number of transmissions and (iii) the total time needed
to acquire this bounding interface. We then compare it to centralized data acquisition
approach.

The CDF in Figure 6 gives a measure of the effect of dimensioning different sys-
tem parameters (density, neighborhood size). Figure 6 shows that for 2 < nhops < 4, more
that 80% of the snapshot has an error under 3%. Moreover, increasing neighborhood size
does not necessarily implies in greater accuracy, but in smaller number of detections. The
other way around, the minimum neighborhood size (nhops = 1) presents noisy detections,
and an intermediate values of nhops might provide the best trade-off.

Figure 7(a) shows the trade-off between the maximum end-to-end delay in terms
of transmission time slots (TTS), and mean square error (MSE) of the envelope found.
This gives an idea of how responsiveness varies for the different values of nhops, and the
impact on the accuracy. With nhops = 3 MSE is minimum, with a minimum cost in
time, when compared to nhops = 2 which presents the best response time, but with higher
MSE. Figure 7(b) presents the number of transmissions, therefore providing a picture of
the actual load on the network. It shows that, with increase in neighborhood size, the
number of global transmissions (DA) goes down (although the local transmissions (DS)
increases accordingly). This in turn affects the total transmissions time (as can be seen

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Error

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
ul
at
iv
e
de

ns
ity

n_hops=7
n_hops=6
n_hops=5
n_hops=4
n_hops=3
n_hops=2
n_hops=1

Figure 6. Cumulative density function for different values of nhops, of the error
between the reference envelope, and the detected envelope.

back in Figure 7(a)).

In another simulation, considering that centralized data acquisition and processing
is utilized (nhops = 0), we obtained the time required for all the nodes to send their data
to the sink, which can be computed as (101 × 101 − 1)/4 ∗ tpck = 2550 TTS. Which
correspond the number of nodes in each quadrant, times the packet duration. The same
results would be achieved if any kind of shared medium with ideal TDMA was utilized to
interconnect one quarter of the nodes located at one quadrant.

Maximum end-to-end delay dropped in the order of magnitude of 10, when dis-
tributed data processing is utilized for complex data extraction, compared to simple cen-
tralized raw data extraction.

6. Conclusion

Dense sensor networks, like our proposed XDense, are going to be increasingly used
in application scenarios which require realtime data. Combined with novel feature de-
tection techniques systems can then recreate the phenomena, present in the application
scenarios, and use this information for actuations. We evaluated the XDense architecture
and protocols work with performance metrics on accuracy, timeliness and network usage
and showed the tradeoffs that have to be made among the parameters (such as, larger
neighborhood leads to increased accuracy but also increased traffic). It is important to
understand the underlying issues that affect the performance of XDense. One issue is that
of dimensioning XDense based on the requirements imposed by the application scenario.
We showed that dimensioning issues such as node density and neighborhood size affect
the performance of the system and depend closely on the application scenario.

Another issue are the feature detection techniques which strongly affects the per-
formance. We used one base technique for evaluation and we intend to investigate fur-
ther techniques for comparative analysis. It is important to note that the simplicity of
the algorithms utilized, allow for practical construction of such networks using currently
technology, as demonstrated earlier in [Loureiro et al. 2015]. For example, with COTS
microcontrollers 1 ,or a SoC solution could be developed for it, to be low cost.

1Atmel ATSAM4N8A [Atmel] is a low powered Cortex-M4-based microcontroller, that runs at up to
100MHz and features 512KB of Flash and 64KB of SRAM. Peripherals include five USARTs, for fast serial
communication, as well as an 8-channel 12-bit ADC, More than 8 DMA channels allows fast receiving and
transmitting at each port.

1 2 3 4 5 6 7
Neighborhood size (nhops)

190

200

210

220

230

240

M
ax

. e
nd

-to
-e
nd

 d
el
ay

 (T
TS

)

delay

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

M
SE

 (1
e-
3)

MSE

(a)

1 2 3 4 5 6 7
Neighborhood size (nhops)

0

500

1000

1500

2000

2500

EM
 p

ac
ke

t c
ou

nt
 (1

0-
e3

) EM

600

700

800

900

1000

1100

1200

EA
 p

ac
ke

t c
ou

nt

EA

(b)

Figure 7. (a) Trade-off between mean square error (MSE) and maximum end-
to-end delay (TTS) for different values of nhops, and (b) is the total number of
transmissions for the different protocols, for the same values of nhops

Acknowledgments
This work was partially supported by National Funds through FCT/MEC (Portuguese
Foundation for Science and Technology) and when applicable, co-financed by ERDF
(European Regional Development Fund) under the PT2020 Partnership, within project
UID/CEC/04234/2013 (CISTER Research Centre); also by FCT/MEC and ERDF through
COMPETE (Operational Programme ’Thematic Factors of Competitiveness’), within
project FCOMP-01-0124-FEDER-020312 (SMARTSKIN); by FCT/MEC and the EU
ARTEMIS JU within project ARTEMIS/0004/2013 - JU grant nr. 621353 (DEWI,
www.dewi-project.eu); by the government of Brazil through CNPq, Conselho Nacional
de Desenvolvimento Cientı́fico e Tecnológico.

References
Atmel. http://www.atmel.com/devices/sam4n8a.

Blake, W. K. (2012). Mechanics of Flow-Induced Sound and Vibration V2: Complex
Flow-Structure Interactions, volume 2. Elsevier.

Bruinink, C., Jaganatharaja, R., de Boer, M., Berenschot, E., Kolster, M., Lammerink,
T., Wiegerink, R., and Krijnen, G. (2009). Advancements in technology and design of
biomimetic flow-sensor arrays. In Micro Electro Mechanical Systems, 2009. MEMS
2009. IEEE 22nd International Conference on, pages 152–155.

Buder, U., Petz, R., Kittel, M., Nitsche, W., and Obermeier, E. (2008). Aeromems poly-
imide based wall double hot-wire sensors for flow separation detection. Sensors and
Actuators A: Physical, 142(1):130–137.

Kasagi, N., Suzuki, Y., and Fukagata, K. (2009). Microelectromechanical systems-based
feedback control of turbulence for skin friction reduction. Annual review of fluid me-
chanics, 41:231–251.

Kumar, S., Jantsch, A., Soininen, J.-P., Forsell, M., Millberg, M., Oberg, J., Tiensyrja,
K., and Hemani, A. (2002). A network on chip architecture and design methodology.
In VLSI, 2002. Proceedings. IEEE Computer Society Annual Symposium on, pages
105–112. IEEE.

LaRue, J. C. (1974). Detection of the turbulent-nonturbulent interface in slightly heated
turbulent shear flows. Physics of Fluids (1958-1988), 17(8):1513–1517.

Li, M. and Liu, Y. (2010). Iso-map: Energy-efficient contour mapping in wireless sensor
networks. IEEE Transactions on Knowledge and Data Engineering, 22(5):699–710.

Lifton, J., Seetharam, D., Broxton, M., and Paradiso, J. (2002). Pushpin computing sys-
tem overview: A platform for distributed, embedded, ubiquitous sensor networks. In
Pervasive Computing, pages 139–151. Springer.

Loureiro, J., Gupta, V., Pereira, N., Tovar, E., and Rangarajan, R. (2013). Xdense: A sen-
sor network for extreme dense sensing. Proceedings of the Work-In-Progress Session
at the 2013 IEEE Real-Time Systems Symposium - RTSS, pages 19–20.

Loureiro, J., Rangarajan, R., and Tovar, E. (2015). Demo abstract: Towards the devel-
opment of xdense, a sensor network for dense sensing. 12th European Conference on
Wireless Sensor Networks - EWSN, page 23.

Luo, C., Wu, F., Sun, J., and Chen, C. W. (2009). Compressive data gathering for large-
scale wireless sensor networks. In Proceedings of the 15th annual international con-
ference on Mobile computing and networking, pages 145–156. ACM.

Ohta, J., Tokuda, T., Sasagawa, K., and Noda, T. (2009). Implantable cmos biomedical
devices. Sensors (Basel, Switzerland), 9(11):9073.

Paradiso, J. A., Lifton, J., and Broxton, M. (2004). Sensate media-multimodal electronic
skins as dense sensor networks. BT Technology Journal, 22(4):32–44.

Robinson, S. K. (1991). Coherent motions in the turbulent boundary layer. Annual Review
of Fluid Mechanics, 23(1):601–639.

Srinivasan, S., Dattagupta, S., Kulkarni, P., and Ramamritham, K. (2012). A survey of
sensory data boundary estimation, covering and tracking techniques using collaborat-
ing sensors. Pervasive and Mobile Computing, 8(3):358–375.

Takei, K., Takahashi, T., Ho, J. C., Ko, H., Gillies, A. G., Leu, P. W., Fearing, R. S.,
and Javey, A. (2010). Nanowire active-matrix circuitry for low-voltage macroscale
artificial skin. Nature materials, 9(10):821–826.

Vincent, O. and Folorunso, O. (2009). A descriptive algorithm for sobel image edge
detection. In Proceedings of Informing Science & IT Education Conference (InSITE),
pages 97–107.

Westerweel, J., Fukushima, C., Pedersen, J. M., and Hunt, J. (2009). Momentum and
scalar transport at the turbulent/non-turbulent interface of a jet. Journal of Fluid Me-
chanics, 631:199–230.

