1. Motivation

- Multicore processors use a shared system bus to fetch data/instructions from main memory.
- This sharing can cause non-deterministic variations in the tasks’ execution times due to inter-task bus blocking.
- Phased execution models, e.g., 3-phase task model, are promising candidates to circumvent the problem of inter-task bus blocking.
- State-of-the-art bus contention analyses for 3-phase tasks only focus on global scheduling.

2. Contributions

- Bus blocking-aware WCRT analysis for the 3-phase task model under partitioned non-preemptive scheduling.

3. Level-i Busy Window

- Level-i busy window \(W_{li} \) of core \(\pi_i \) is given by:
 \[
 W_{li} = C_{pi}^{\text{Max,li}} + B_{pi}^{\text{Max,li}}(W_{li}) + \sum_{j \in \text{hep}_{pi}} \left(\eta_j(\pi_i)(W_{li}) \right) C_{pi}
 \]
- Max. blocking from \(I_{pii} \)
- Max. interference from \(\text{hep}_{pi} \)
- Max. number of jobs of task \(\tau_i \) that can execute in \(W_{li} \):
 \[
 \eta_i(\pi_i)(W_{li})
 \]

4. Computing Bus Blocking

- The maximum bus blocking \(B_{\text{bus}}(W_{li}) \) suffered by the tasks of local core \(\pi_i \) from the tasks of remote core \(\pi_r \) in any time window of length \(W_{li} \) depends on:
 - The maximum number of times the jobs released on the local core \(\pi_i \) can suffer bus blocking in \(W_{li} \), i.e., \(N_{\pi_i}(W_{li}) \).
 - The maximum number of times the jobs released on the remote core \(\pi_r \) can suffer bus blocking in \(W_{li} \), i.e., \(N_{\pi_r}(W_{li}) \).
- There are three possible cases:

 Case 1: \(N_{\pi_i}(W_{li}) > N_{\pi_r}(W_{li}) \)
 - \(B_{\text{bus}}(W_{li}) \) is given by the sum of the execution time of all memory phases of all jobs released on core \(\pi_r \) in \(W_{li} \).

 Case 2: \(N_{\pi_i}(W_{li}) = N_{\pi_r}(W_{li}) \)
 - \(B_{\text{bus}}(W_{li}) \) is given by the sum of all memory phases of all jobs (except the smallest A- or R-phase) of core \(\pi_r \) in \(W_{li} \).

 Case 3: \(N_{\pi_i}(W_{li}) < N_{\pi_r}(W_{li}) \)
 - Extract \(N_{\pi_i} \) number of A- and R-phases with higher memory demand from the jobs of core \(\pi_i \) released in \(W_{li} \).
 - **Sub-case 1:** If the total number of jobs associated to extracted memory phases is greater than \(N_{\pi_i} \), then \(B_{\text{bus}}(W_{li}) \) is given by the sum of all the extracted memory phases.
 - **Sub-case 2:** If the total number of jobs associated to extracted memory phases is equal to \(N_{\pi_i} \), then one A- or R-phase cannot participate in the bus blocking (similarly to Case 2).
 - For sub-case 2, \(B_{\text{bus}}(W_{li}) \) is given by the sum of all the extracted memory phases and then remove the smallest A- or R-phase from the extracted memory phases and add the largest A- or R-phase from the remaining memory phases of core \(\pi_r \) released in \(W_{li} \).

5. Bus-aware WCRT Analysis

- Latest start time of R-phase of \(k^{th} \) job of task \(\tau_i \), of core \(\pi_i \):
 \[
 s_{R_{ki}}^{\text{R}} = C_{pi}^{\text{Max,li}} + \sum_{j \in \text{hep}_{pi}} \left(\eta_j(\pi_i)(W_{li}) \right) C_{pi} + B_{\text{bus}}(W_{li}) + \left(K - 1 \right) C_i + \left(C_i^A + C_i^R \right)
 \]

- WCET of \(\tau_i \):
 \[
 \text{WCET of } \tau_i = \text{Previous jobs of } \tau_i + \text{Bus Blocking until start time of R-phase of } \tau_i
 \]

- Response time of \(k^{th} \) job of task \(\tau_i \), of core \(\pi_i \):
 \[
 R_{ki} = s_{R_{ki}}^{\text{R}} + C_i
 \]

- WCRT of task \(\tau_i \), of core \(\pi_i \):
 \[
 R_{\text{max}} = \max_{k \in [1, \eta_i(\pi_i)(W_{li})]} \left\{ R_{ki} \right\}
 \]

6. Future Work

- Experimental evaluation and comparison with the state of the art.

References