

### **CISTER** – Research Centre in **Real-Time & Embedded Computing Systems**

## 1. Background

- **Guaranteeing** that Cyber-Physical System trivial problem, especially with the ac solutions;
- **□Formal Methods** (rigorous mathemati in the task of obtaining proofs about
- Runtime Verification (RV) uses mon during runtime, validate a set of pro

## 2. The Problem

- The deployment of RV solutions caus system;
- If not correctly deployed, RV solution safety requirements of a system;
- **Lack of formalism** in the current state integration of monitoring solutions in
- **Performing formal verifications is a te**

## **3. Proposed Solution**

- **Opply formal methods** to guarantee the total states the second states and the second states are the second states and the second states are the second st solutions comply with the target syst
- **ODE ADDATES AND ADDATES AND ADDATES A** Specific Language (DSL) and a set of t
- **Centralize** and **automate** formal verifi deployment of monitors in a given tak

# A DSL for the safe deployment of Runtime Monitors in Cyber-Physical Systems

|                                                                                                                           | 4      |
|---------------------------------------------------------------------------------------------------------------------------|--------|
| <b>stems (CPS)</b> do <b>not fail</b> is a non-<br>doption of <b>complex software</b>                                     |        |
| ical and logical techniques) can aid<br>the <b>correctness</b> of CPS<br>itors and formal specifications to,<br>operties. |        |
|                                                                                                                           |        |
| ses an inevitable <b>overhead</b> in the                                                                                  |        |
| ns can <b>compromise</b> the <b>security</b> and                                                                          |        |
| e-of-the-art when it comes to the CPS;                                                                                    | B      |
| edious and <b>time-consuming</b> task.                                                                                    |        |
|                                                                                                                           | n      |
| hat deployed software monitoring<br>em's <b>safety requirements</b> ;<br>s developer by creating a <b>Domain-</b>         |        |
| tools to support it;<br>ication procedures for the correct<br>rget system.                                                | }<br>n |
|                                                                                                                           | }      |

Giann Spilere Nandi, David Pereira, José Proença, Eduardo Tovar {giann, drp, pro, emt}@isep.ipp.pt

## . Proposed DSL and Associated Toolset

Our proposed DSL, and its associated toolset, must allow the developer to: **J**Express **functional** and **non-functional** properties to be verified during runtime;

**Werify**, statically, the **schedulability** of a system

- □ We plan to leverage the literature on the topic of mode-change schedulability analysis to enforce better use of system resources;
- □ We plan on supporting a **broad set** of **scheduling algorithms** and hardware architectures;
- **JAutomate** the code generation of the monitors and monitoring architectures following a Correct-by-Construction approach (i.e., complying with a set of formally defined requirements)
- Leverage state-of-the-art formal tools like model checkers, SMT solvers, and proof-assistants.

Bellow, we illustrate our initial efforts to design the DSL syntax using an **utomotive** electric/electronic architecture as a **use case** example:

| DSL Syntax – Initial Design                                                                                                                                                                                                                   |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <pre>ode DC_1(scheduler = rm, cores = 2, alloc_policy = global){   mode m_1 {     task tsk_1{T = 10 ms, D = 10 ms, WCET = 5 ms};     task tsk_2{T = 5 ms, D = 3 ms, WCET = 2 ms};     monitor mon_1{T = 5 ms, D = 3 ms, WCET = 2 ms}; }</pre> |  |
| <pre>mode m_2 {   task tsk_1{T = 30 ms, D = 20 ms, WCET = 15 ms};   task tsk_2{T = 5 ms, D = 3 ms, WCET = 2 ms};   monitor mon_1{T = 3 ms, D = 2 ms, WCET = 1 ms}; }</pre>                                                                    |  |
| <pre>ode ECU_1 (scheduler = rm, cores = 1){   mode m_1 {     task tsk_3{}; task tsk_4{}; task tsk_5{};   }   mode m_2_ {     task tsk_5{}; task tsk_6{}; monitor mon_2 {}; }</pre>                                                            |  |

| Centre | +351 228 340 502          |   |
|--------|---------------------------|---|
| Porto  | 🕋 www.cister-labs.pt      |   |
| a, 431 | 🔀 info@cister-labs.pt     |   |
| rtugal | facebook.com/cisterlabspt | . |



## 5. Benefits

**DEnhanced** security and safety of monitored systems;

- **Reduced** development and testing time
- Description Potential overall project cost reduction;
- **Centralized** tool for the deployment of monitoring solutions.

P.PORTO