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Abstract 

This work deals with the study of artificial intelligence (AI) tools for purposes of vehicular wireless channel 

prediction. The objective is to test the ability of different types of AI and machine learning (ML) algorithms under 
different types of implementation constraints. We focus particularly in highly changing scenarios where the 

channel state information changes relatively fast and therefore the relevant measurements or long-term statistical 
models are therefore scarce. This means that the training of our models can be potentially inaccurate or 

incomplete and we need to investigate which AI algorithm behaves better in this challenging condition. In future 
work we aim to investigate also computation complexity constraints, real-time deadlines, and outdated/distorted 

or noisy data set samples. We also aim to correlate the main properties of the well-known Jakes' channel model 
with the effectiveness of the type of prediction and the parameters of the different algorithms being tested. The 

objective of channel prediction in vehicular networks is to reduce allocation and transmission errors, thereby 
reducing latency and improving message transmission reliability, which is crucial for future applications such as 

autonomous vehicles. Results show that even in situations with incomplete data sets, AI can provide good 
approximate predictions on the channel outcome, 
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Abstract—The work in this paper deals with the study of
artificial intelligence (AI) tools for purposes of vehicular wireless
channel prediction. The objective is to test the ability of different
types of AI algorithms under different types of implementation
constraints that will be typical of vehicular applications. We focus
particularly in scenarios where the channel changes relatively fast
and therefore the relevant measurements or long-term statistical
models are scarce. This means that the training of our models can
be potentially inaccurate or incomplete and we need to investigate
which AI algorithm behaves better in this challenging condition.
In future work we aim to investigate also computation complexity
constraints, real-time deadlines, and outdated/distorted or noisy
data set samples. We also aim to correlate the main properties of
the well-known Jakes’ channel model with the effectiveness of the
type of prediction and the parameters of the different algorithms
being tested. The objective of channel prediction in vehicular
networks is to reduce allocation and transmission errors, thereby
reducing latency and improving message transmission reliability,
which is crucial for future applications such as autonomous
vehicles. Results show that even in situations with incomplete
data sets, AI can provide good approximate predictions on the
channel outcome. LSTM in multi-step and CNN in single-step
between implemented algorithms have better performance and
lower error in prediction.

Index Terms—channel prediction, artificial intelligence, Jake’s
model.

I. INTRODUCTION

The proliferation of the Internet of Things (IoT) in industrial

applications has revealed the importance of a wireless layer

that provides ubiquitous, reliable and real-time connectivity.

One important aspect of this wireless layer is the ability

to detect/estimate/predict channel propagation variations and

respond effectively to such changes (adaptation). Channel

prediction can be used for a variety of purposes that range from

reduction of training bandwidth, improved channel estimation

or equalization, improved resource allocation, reduced latency,

anomaly detection, obstacle prediction, etc.

The majority of works on channel prediction has consid-

ered ideal scenarios with complete data sets that capture the

majority of statistics and variations of channel components.

However, in practice, particularly in vehicular networks with

high Doppler shifts, channel statistics can change too fast, and

therefore the amount of data to perform the correct scenario

detection, training model selection and/or training process are

incomplete and/or inaccurate.

The paper in [1] focused on multi-step prediction for

Rayleigh channels using convolutional neural networks (NNs)

and deep learning. The paper in [2] has focused on the existing

prediction schemes based on statistical modeling and neural

networks(NNs) for fading channels and impact of outdated

channel state information (CSI) on the performance of a

wide range of wireless systems. The authors not only investi-

gated the existing neural network(NN) algorithms for channel

prediction but they proposed a novel MIMO (multiple-input

multiple-output) channel predictor build on a deep recurrent

neural network(NN) that incorporates LSTM (long short-term

memory) or GRU (gated recurrent memory) cells. Deep learn-

ing channel prediction for railway MIMO communications has

been presented in [3]. Channel prediction based on NNs for

dedicated short range networks in real time is presented in [4].

Massive MIMO prediction for mm-wave channels has been

presented in [5].

This paper attempts a comparison between different types

of algorithms for channel prediction particularly when the data

sets for training are incomplete or when the only information

available is a few channel measurements collected by the ter-

minal. We provide bench marking with the conventional linear

regression tools. The channel used is the well-known Jake’s

model that consists of a sum of sinusoids which generates

an equivalent Rayleigh fading channel. The objective of our

work is to investigate complexity and practical implementation

issues. This means we look at practical constraints such as

reduced data sets, noisy samples, and under-sampled channel

functions. This paper reports the initial stage of this task in the

context of the European research project InSecTT (Intelligent

Secure Trustable Things) [6], which aims to bring realistic AI

tools for different applications of the Internet of Things, with

high emphasis on reliable and trusted AI layers.

The organization of this document is as follows. Section II

describes the vehicular scenario with constrained data sets for

channel prediction. Section III introduces the channel model

to be used. Section IV presents the summary of the different

algorithms used for channel prediction and preliminary results.

Finally, Section V provide the final view and discussion of the

presented results as well as future problems to be addressed

with the the research project InSecTT.

Notation. Scalar variables are denoted by lower case letters.
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The variable i represents the imaginary number
√
−1, E[·] is

the statistical average operator, CN (µ, σ2) denotes a complex

circular Gaussian distribution with mean µ and variance σ2.

II. SCENARIO DESCRIPTION

We consider a vehicular networking scenario with one base

station and a constant speed vehicle as shown in Fig. 1. It

is assumed that the channel samples are measured by the

receiver at a given sampling rate fs = 1/Ts. Fig. 1 shows two

options to achieve channel prediction. The more conventional

approach (show on the left hand side of the figure) consists

of a feature extraction mechanism that allows us to select a

long term channel statistics and thus use a pre-trained neural

network or machine learning model. The second approach

which involves less computational complexity is to use the

available channel samples to perform the training of the model.

The intention is to achieve a prediction with only a few

samples and without the need to select the pre-trained model.

The argument is that the first option is optimum for channels

that do not change rapidly in time, while the second option

can be used in highly changing scenarios that are typical

of vehicular networks with high vehicle speeds. This paper

focuses on the second option, where the available channel

samples are used instantly to train an AI model that is used

to predict future samples.

Fig. 1. Scenario for vehicular channel prediction using AI.

III. CHANNEL MODEL

The Jakes’ channel model is perhaps one of the most basic

channel models used in the literature of wireless communica-

tions. It consists of a sum of sinusoids (complex) with random

phase, mimicking an environment with isotropic and uniform

scattering [7].

h(t) =

Ns∑

k=1

Cke
iπFd cos(αk)t+θk , (1)

where Fd is the maximum Doppler frequency, θk is a random

phase, Ns is the number of scatterers, Ck is a normalization

Fig. 2. Channel model

factor, t is the time domain variable (real number), and αn is

the angle of arrival of the signal of the kth ray (See Fig. 2).

Thanks to the central limit theorem, when the number of

scatterers is high, the received signal in the Jakes’ model

tends to a circular Gaussian complex random variable, which

is also known as Rayleigh fading channel. This means h(t) ∼
CN (0, 1). This model generates a cross-correlation function

given by the Bessel function of order zero R(τ) = E[h∗(t−
τ)h(τ)] = J0(Fdτ). The spectral characteristics of the Jake’s

model provide us with the first hint on the performance of

channel prediction. If the channel process is under-sampled or

below the maximum Doppler frequency, errors in the recovery

of the waveform will start to arise. In general, communica-

tion systems are designed for packet and training sequence

transmission that correlate with the channel coherence time.

This ensures that the sampling frequency is enough to recover

the waveform. However, high Doppler scenarios could lead to

the problem of under-sampling and thus prediction errors will

increase. In all the results of this paper we assume a vehicle

speed of 30 km/hr using an operational frequency of 6GHz

and a sampling period of 2 ms. In all cases, it is assumed

that the terminal only has a handful of channel measurements

to perform the prediction operation using either conventional

regression of artificial intelligence algorithms.

The properties of the data set are given in table I. In

the remainder of this paper, the sampled channel amplitude

h(nTs) can be simply regarded as the variable y and the time

variable t as the x variable to simplify representation on the

Cartesian coordinates.

TABLE I
DATASET SETTING

Parameter Value(unit)

vehicle speed 30 (km/hr)

frequency 6 (GHz)

sampling period 2 (ms)

number of scatterers 20

number of samples 29
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IV. PREDICTION ALGORITHMS

A. Linear and polynomial regression

Linear regression is a basic and widely use type of pre-

dictive analysis which usually works on continuous data [8].

The model assumes a linear relationship between the input

variables x and the single output variable y = |h(t)|2. Input

variables are independent of each other. Linear and polynomial

regression are used to predict channel values in Fig. 3. In this

case, the polynomial regression with 10 degree can follow the

train data better, and the MSE (mean square error) achieved

by this algorithm is 0.2781 for training data and 241.3399 for

testing data. Due to the error being too much, the regression

cannot be used to predict the next step of the channel.

Fig. 3. Channel pred. by using Linear and Polynomial Regression.

B. B-Spline interpolation method

B-spline or basis spline is a curve approximation method

based on given coefficients. Any spline function of given

degree can be expressed as a linear combination of B-splines

of that degree, as shown in y(x) =
∑n−1

j=0 cjBj,k,t(x), where

Bj,k,t(x) are B-spline basis functions with k degree and knots

t, and cj are the spline coefficients or control points. The

result of implementation of B-Spline interpolation algorithm

is depicted in Fig. 4. In this method, the MSE obtained was

0.0611 for training data and 1.9517 for testing data.

Fig. 4. Channel prediction by using B-Spline interpolation algorithm.

C. Convolutional Neural Network (CNN)

In the following we use the forecasting time series idea by

implementing CNN algorithm, built through the TensorFlow

library in Python.

CNNs are very similar to ordinary Neural Networks(NNs).

They are made up of neurons that have learnable weights

and biases. Each neuron receives some inputs, performs a dot

product and optionally follows it with a non-linearity.

Fig. 5. Prediction with NNs

In forecasting time series, it is possible to employ two type

of models: single and multi-time step. In single step model,

only a single future point is predicted but a multi-step model

predicts a sequence of the future values. The first can use a

single feature or all features, and the second can use single-

shot, i.e. make predictions all at once or use auto-regressive,

where one prediction is obtained at a time and its value is fed

to the model. AN example with single step is shown in Fig.

5.

We use CNN and a traditional fully connected layers archi-

tecture with ReLu as activation function in all neurons. First,

the CNN was implemented using single step. By compiling

the model and fitting it to our train data, we can predict the

next window as shown in Fig. 6. In this case, the MSE is

0.1144, and the loss is 0.0132.

Fig. 6. Prediction with CNN by using single step

D. Recurrent Neural Networks (RNN),k (LSTM)

RNN is a good choice because this architecture has the

capability to process sequential data by storing indefinite

historical information in its internal state [9]. The key of RNNs

is to apply the same type of operations (weight sharing) at each
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time instant (recurrence) by involving the state as well as the

currently available input vectors. LSTM architecture introduce

special units called memory cells in the recurrent hidden

layer and multiplicative gates that regulate the information

flow. The result of implementing RNN-LSTM algorithm with

TensorFlow library in Python is shown in Fig. 7 with 100

epoch (number of iterations over the entire training set), where

the loss is 2.5856 and has 1.2737 of mean absolute error. Fig. 8

shows that if we increase the epoch, prediction becomes more

accurate, but we see overfitting (the model does not generalize

well from training data to unseen data) in our training data.

Fig. 7. Prediction by using RNN-LSTM single step with 100 epoch.

Finally, we do the simulation by implementing CNN and

RNN-LSTM algorithms with multiple step. The results are

shown in Figs 9 and 10. The loss and the MSE for CNN

was 0.7852 and 0.6930 respectively, while for RNN was

0.3915 and 0.5320, respectively. Being demonstrated that the

algorithm that offers better predictions of the channel behavior

is RNN-LSTM in multiple step, based on the evaluated param-

eters. Also, it is possible to get better prediction by increasing

the number of epoch, but again the overfitting problem is

present.

Fig. 8. Prediction by using RNN-LSTM single step with 150 epoch.

V. DISCUSSION ON RESULTS

In this study, some NNs and forecasting algorithms were

implemented for predicting channel behavior in vehicular

Fig. 9. Prediction by using CNN multiple step with 50 epoch

networks using the well known Jakes’ model. Some regression

algorithms for predicting channel in the future, were examined.

It was concluded that the B-spline had better performance and

higher accuracy in comparison with polynomial regression.

Also, based on the error computation of CNN and RNN

algorithms which were also implemented for prediction of

the channel, CNN in single-step and LSTM in multi-step

forecasting, have shown better performance. The mean squared

error of implemented algorithms compares in table II. As for

future work, the number of layers and some main parameter

of the neural network(NN) could be evaluated considering the

real conditions, to find the best approach for predicting.

TABLE II
MSE COMPARISON OF DIFFERENT ALGORITHMS

Algorithm MSE

polynomial regression 241.3399

B-spline 1.9517

CNN (single step) 0.1144

LSTM (single step) 1.2737

CNN (multiple step) 0.6930

LSTM (multiple step) 0.5320

Fig. 10. Prediction by using RNN-LSTM multiple step with 100 epoch
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