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Abstract 
The adoption of multi-cores for mixed-criticality systems has fueled research on techniques for providing 
scheduling isolation guarantees to applications of different criticalities. These are especially hard to provide in the 
presence of contention in shared resources of the system, such as buses and DRAMs. The state-of-the-art Single-
Core Equivalence (SCE) framework improves timing isolation by enforcing periodic memory access budgets per 
core, which allows computing safe stall delays for the cores as input to the schedulability analysis. In this work, we 
extend the theoretical toolkit for this state-of-the-art framework by considering EDF and server-based scheduling, 
instead of partitioned fixed-priority scheduling which SCE has assumed so far. A second extension to the theory of 
SCE consists in additionally allowing memory access budgets to be uneven and defined on a per-server basis, 
rather than just on a per-core basis, which is what was supported until now. This added flexibility allows better 
memory bandwidth efficiency, especially when servers with dissimilar memory access requirements co-exist on a 
given core, and this in turn improves schedulability. Finally, we also formulate an Integer-Linear Programming 
Model (ILP) guaranteed to find a feasible mapping of a given set of servers to processors, including their execution 
time and memory access budgets, if such a mapping exists. Our experiments with synthetic task sets confirm that 
considerable improvement in schedulability can result from the use of per-server memory access budgets under 
the SCE framework. 
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Abstract

The adoption of multi-cores for mixed-criticality systems has fueled research on
techniques for providing scheduling isolation guarantees to applications of differ-
ent criticalities. These are especially hard to provide in the presence of contention
in shared resources of the system, such as buses and DRAMs. The state-of-the-art
Single-Core Equivalence (SCE) framework improves timing isolation by enforcing
periodic memory access budgets per core, which allows computing safe stall delays
for the cores as input to the schedulability analysis. In this work, we extend the theo-
retical toolkit for this state-of-the-art framework by considering EDF and server-based
scheduling, instead of partitioned fixed-priority scheduling which SCE has assumed so
far. A second extension to the theory of SCE consists in additionally allowing memory
access budgets to be uneven and defined on a per-server basis, rather than just on a
per-core basis, which is what was supported until now. This added flexibility allows
better memory bandwidth efficiency, especially when servers with dissimilar memory
access requirements co-exist on a given core, and this in turn improves schedulability.
Finally, we also formulate an Integer-Linear Programming Model (ILP) guaranteed
to find a feasible mapping of a given set of servers to processors, including their exe-
cution time and memory access budgets, if such a mapping exists. Our experiments
with synthetic task sets confirm that considerable improvement in schedulability can
result from the use of per-server memory access budgets under the SCE framework.
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1 Introduction

Cyber-Physical Systems are getting increasingly complex, with the integration of more
functionalities and computationally intensive applications. To satisfy this increasing
demand for computational power, designers are turning to commercial-of-the-shelf
(COTS) multi-core processor architectures, which offer significant advantages in terms
of raw computing power, energy consumption, and weight over single-cores. This
has led to the wide adoption of multi-core platforms in many application domains,
including those that typically employ embedded computing systems.

The transition from single-core to multi-core systems implies that applications must
share resources, such as the cores themselves, caches, main memory and I/O devices.
While sharing resources reduces cost, it also makes the temporal behaviour of the
applications executing on the multi-core processors more complex and highly inter-
dependent. This poses problems in some industrial domains, such as avionics, where
many applications have stringent timeliness requirements and are safety-critical, which
means they must always execute correctly, both from the functional and temporal
perspectives (Nowotsch et al. 2014). As a result, their design, implementation and
testing must be done according to rigorous domain-specific certification guidelines
and standards (RTCA 2012a, b), which is both costly and time-consuming. To manage
this effort, the strategy of Integrated Modular Avionics (IMA) development (RTCA
2005) is to isolate applications from each other to minimise their interactions. A recent
position paper from the certification authorities (Certification authorities software team
(cast) 2014) provides guidelines for certification of safety-critical avionics systems on
multi-core platforms and discusses the issues of resource sharing.

The most prominent approach to address this problem is the Single-Core Equiva-
lence (SCE) framework (Sha et al. 2014), which combines software-based interference
mitigation mechanisms for cores, caches, off-chip memory, and I/O. The SCE approach
assumes fixed-priority scheduling, which is a well-understood and predictable schedul-
ing policy, but which still falls short of providing the desired degree of isolation, unless
used in conjunction with servers. Mancuso et al. (2015) provide a schedulability analy-
sis which assumes that the memory bandwidth of the platform is evenly divided among
the cores. Recently, Pellizzoni and Yun (2016) relaxed this assumption by considering
uneven per-core budgets. However, even so, all tasks on a given core share the same
budget, even if their memory access requirements are very dissimilar, and this may
create inter-dependency in their timing behaviour, e.g., when one task “monopolises”
the memory access budget to the detriment of other tasks on the same core. The use
of servers with separate budgets might mitigate such effects, but this has not been
supported until now.

In this paper, we therefore extend the SCE framework to address the issues of
isolation and very dissimilar memory bandwidth requirements. The three main con-
tributions of this paper are:

Contribution 1 A stall time computation for the general case of uneven (arbitrary)
bandwidth allocation among cores and tasks scheduled using the EDF (Earliest-
Deadline-First) scheduling policy for better memory bandwidth usage efficiency and
improved schedulability, for the memory system model presented in Mancuso et al.
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(2015) that considers the two limits Lmax and Lmin (for upper and lower bound,
respectively) on the access time of a single memory transaction.

Contribution 2 A schedulability analysis for server-based scheduling that enables
isolation between IMA applications, each scheduled within a corresponding server.
This analysis relies on the previous contribution and adapts the stall-term calculation
to periodic, partitioned servers. This analysis assumes that each server has its own
per-server memory access budget, which is implemented by adjusting the memory
access budget associated with the core where it is assigned, at run time and that the
memory arbitration policy is round robin.

Contribution 3 An integer-linear programming (ILP) formulation that computes exe-
cution and bandwidth budgets for every IMA application, such that the requirements
of all tasks are satisfied. This ILP formulation can be applied to other server-based
scheduling approaches used in the IMA-domain, such as fixed-priority scheduling,
with fairly straight-forward changes. We evaluate our approach through simulations
with synthetic workload and show that uneven and server-based memory access band-
width allocation indeed increases schedulability. The trade-off between schedulability
and computation time for the ILP formulation is also quantified.

The rest of this paper is organized as follows. Section 2 discusses related work
before our system model is introduced in Sect. 3. An overview of our approach is then
provided in Sect. 4, followed by the derivation of the stall time in Sect. 5. Section 6 then
shows how the stall time is integrated with the schedulability analysis for server-based
scheduling and Sect. 7 presents the ILP formulation. We experimentally evaluate our
approach in Sect. 8, before conclusions are drawn in Sect. 9.

2 Related work

Recent years have witnessed the emergence of several software-based approaches
for mitigating memory interference in multi-core platforms (Yun et al. 2012, 2013;
Nowotsch et al. 2014; Flodin et al. 2014; Behnam et al. 2013). All of them consider
a periodic server implemented in software that manages the memory budgets of the
cores. This is combined with run-time monitoring through performance counters that
keep track of the number of memory accesses and with an enforcement mechanism
that suspends tasks whenever they exhaust their budget. Our work is similar in this
respect. Practical issues related to the implementation of such mechanisms on COTS
multi-core platforms are discussed in Inam et al. (2014).

An implication of adding memory regulation to mitigate interference is that it
invalidates existing work on schedulability analysis, unless it is adapted to account
for the new stalls that can occur. This is done for partitioned fixed-priority preemptive
scheduling in Yun et al. (2012), Mancuso et al. (2015) and for hierarchical schedul-
ing in Behnam et al. (2013). The hierarchical scheduling in Behnam et al. (2013) is
server-based and provides isolation between independent applications. It uses fixed-
priority preemptive scheduling as the local scheduler in the server, and provides a
per-core schedulability analysis. By comparison, our approach is also server-based,
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but uses EDF as the internal server scheduling policy and its schedulability analysis
incorporates holistic consideration of memory requirements of all cores.

Once the effects of the regulation mechanism on the schedulability of a task set have
been established, the next problem is to allocate execution time budgets such that all
tasks meet their deadlines. An algorithm addressing this problem under fixed-priority
preemptive scheduling is proposed in Yun et al. (2012), although it only considers the
timing requirements of tasks on a single critical core.

Mancuso et al. (2015), on the other hand, target multi-cores, with the problem
of preserving schedulability guarantees when porting applications from single-core
to multi-core platforms. Under their Single-Core Equivalence (SCE) framework Sha
et al. (2014), the task set is partitioned onto the available cores, with fixed-priority
scheduling being used on each core. Additionally, the periodic software-based memory
regulation mechanism MemGuard Yun et al. (2013), (an intrinsic part of the SCE
framework) ensures that, over the regulation interval (or period), all cores get an
equal share of the overall memory bandwidth and never more. This assumes that
all cores access the main memory through the same memory controller. MemGuard
forces a stall of whichever core exceeds its share, until the start of the next regulation
period. Such stalls, resulting from the memory regulation, need to be accounted for
in the schedulability analysis, in addition to the conventional stalls that occur due to
contention between different cores at the memory controller.

The stall-aware schedulability analysis by Mancuso et al. (2015), in addition to
the relative deadline and inter-arrival time, characterises each task by its Worst-Case

Execution Time (WCET) in isolation and its worst-case number of residual memory

accesses. These correspond to the WCET of the task when no other task is present in
the system and an upper bound on the number of memory accesses by the task that are
not cache hits, i.e., that go all the way to main memory. It is additionally assumed that
each task has its most frequently accessed pages locked in place in the shared last-level
cache; specifically, Colored Lockdown (Mancuso et al. 2013) is the mechanism used to
guarantee this. Such a design arrangement promotes determinism by eliminating inter-
task interference in the cache and Mancuso et al. use this information to characterise
the WCET in isolation and the number of residual memory accesses more tightly. Both
quantities decrease as the number of locked pages increases; for details see Mancuso
et al. (2015). Using these derived task attributes for each task, Mancuso et al. are
able to calculate stall terms for the tasks that add to their response time assuming
a round robin memory arbitration policy. Their analysis also assumes DRAM Bank

Partitioning via the OS-level memory allocator PALLOC (Yun et al. 2014).
Although the fair sharing of memory bandwidth among cores under SCE has the

benefit of simplicity and of facilitating porting applications from a single-core to a
multi-core platform by making the analysis akin to that of a uniprocessor problem
case, it is inefficient if the memory requirements of tasks on different cores are too
diverse. Therefore, Yao et al. (2016), and Pellizzoni and Yun (2016) generalise the
arrangement (and its analysis) to uneven memory budgets per core. Whereas Yao et al.
(2016) considers round-robin memory arbitration, fixed-priority scheduling algorithm
assuming constant memory access time without any servers, Pellizzoni and Yun (2016)
proposes a new analysis for First-Ready First Come First Served (FR-FCFS) memory
scheduling. By comparison, our work improves on the theory for the SCE model
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Mancuso et al. (2015) by considering periodic server-based scheduling with EDF and
uneven per-server memory budgets by assuming upper and lower bounds on the access
time of a single memory transaction. This means that our stall time analysis works
with per-core memory budgets that are variable at run time and can provide inter-
server isolation on the same core. We also propose an ILP formulation to find a budget
assignment that satisfies the timing requirements of the tasks.

In summary, existing works on memory regulation rely on evenly shared per-core
memory budgets. Our work hence goes beyond the state-of-the-art by proposing an
ILP formulation supporting uneven bandwidth allocation for an arbitrary number of
servers that determines the memory budget and execution budget such that all tasks
are schedulable under server-based scheduling. This brings important schedulability
improvements over existing approaches.

3 Systemmodel

This section presents the system model used in this paper. First, we describe the
platform, followed by the applications.

3.1 Platform

This work assumes a multi-core platform composed of m identical physical cores that
access main memory via a shared memory controller. The cores are allowed to have
more than one outstanding memory request each, but their prefetchers and speculative
execution units are disabled. Our assumptions are inspired by those of the Single-Core
Equivalence (SCE) framework Sha et al. (2014), but are less restrictive as we explain
next.

1. The last-level cache is shared among the cores. A mechanism like Colored Lock-
down Mancuso et al. (2013) that mitigates interference between tasks by locking
their most frequently accessed pages is compatible with our model, but is not
strictly required1. It would make the number of residual memory accesses for tasks
more deterministic (and hence facilitate upper-bounding the number of residual
memory accesses per task). However, our work only requires (i) some mechanism
for ensuring that the worst-case number of residual memory accesses per task
does not depend on the other tasks and the scheduler, and (ii) upper bounds for
these numbers to be provided as input. We do not prescribe the way these bounds
are computed, but leave it up to the designer to determine the required level of
accuracy and what is considered reasonable computation time to achieve it.

2. Partitioning of DRAM banks among the cores using a bank-aware OS-level mem-
ory allocator like PALLOC Yun et al. (2014) to reduce interference in the shared
DRAM may be desirable, but is not required. What is assumed is that both a lower
bound, Lmin , and an upper bound, Lmax , for the access time of a single memory

1 For example, one could alternatively consider partitioning the cache among the tasks without locking
their pages in place, but instead allowing the cache partitions to be populated dynamically.
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transaction are known. Such bounds can be determined as described in Mancuso
et al. (2015).

3. The DRAM memory controller uses a round-robin scheduling policy. Just as it
is assumed in Mancuso et al. (2015), “the DRAM controller, as well as the bus
arbiter, implement a round-robin scheduling policy”. Such features are indeed sup-
ported by modern COTS platforms such as the Freescale MPC56xx and MPC57xx
(Mancuso et al. 2015).

Just like in the SCE framework, we also assume an OS-level memory bandwidth
regulation mechanism, similar to MemGuard (Yun et al. 2013), to mitigate contention
in the memory controller and interconnect. MemGuard uses the worst-case mem-
ory access time Lmax to determine the maximum guaranteeable number of memory

accesses, K , during a regulation period P , as K
def
= P

Lmax
. Under the SCE framework

(Mancuso et al. 2015), this memory budget is subdivided into individual memory bud-
gets per core, where each core gets an even share. If a core exhausts its memory budget,
the regulation mechanism stalls that core until the end of the current regulation period,
when the budget is replenished. We also follow this arrangement and generalise it to
allow per-core memory budgets to be (i) uneven and (ii) variable at run time, with
their adjustment possible at the start of each new regulation period (by resetting the
performance monitoring counter).

3.2 Applications and scheduling

Following the terminology used in the IMA context, we assume a set of N

applications, each of which comprises a set of sporadic independent tasks. A task

τi
def
= 〈Ti , Di , Ci , μi 〉 is characterised by its minimum inter-arrival time Ti , relative

deadline Di , a worst-case execution time (WCET) Ci and a worst-case number of
residual memory accesses μi . Task deadlines are arbitrary, i.e., it does not necessarily
hold that Di ≤ Ti . Ci is the WCET in isolation, i.e., when the task is the only task exe-
cuting in the system, but is still limited to using only the memory resources assigned
to it: for example, the cache lines and DRAM banks assigned to it via the Colored
Lockdown or PALLOC, respectively, if those mechanisms are used. Similarly for μi ,
which only depends on the allocated cache lines. This means that, in essence, Ci and
μi are functions of the mentioned memory resources, even if in this paper, we assume
that the memory resources are allocated a priori, allowing Ci and μi to be treated as
constants.

All IMA applications are scheduled hierarchically, using EDF, inside periodic,
fixed-budget servers. This approach aims for fairness and isolation among different
IMA applications. EDF offers better schedulability than Fixed-Priorities 2 while also
being priority-based, as expected by the safety standards (Avionics Application 2010).
Note that preemptions do not necessarily occur at the regulation period boundary.

For simplicity, we create one EDF server for each IMA application, even if in prac-
tice an application could be split to multiple servers. These servers are then partitioned

2 With Fixed-Priority Scheduling, designers sometimes have to artificially shorten periods to make them
harmonic, to match EDF’s utilisation bound, however this still entails performance loss, from the artificial
task utilisation increase.
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offline to the available cores and the servers assigned to each core are scheduled using
a form of cyclic executive. The period of the different server-level cyclic schedules
on all cores is common and denoted by S. This repeating interval of length S on each
core is divided into contiguous time windows, one for each server mapped to that core.
Tasks can only execute within the confines of the respective server they were assigned
to. A server must be appropriately sized to ensure that its tasks meet all their deadlines
at run time.

A server P̃i
def
= (Ki , X i ) is characterised by its memory budget Ki , i.e., its number

of memory accesses within a memory regulation period P , and its execution (time)
budget X i within the server period S. Additionally, the execution budget X i and the
server period S are integer multiples of the regulation period P and synchronized with
it.

4 Overview of the approach

We consider the problem of mapping IMA applications to a multicore platform with
periodic-server-based EDF scheduling, in the presence of contention over shared hard-
ware resources such that all deadlines are satisfied. In terms of the system model
described earlier, this means mapping the servers corresponding to IMA applications
to the platform cores and assigning appropriate execution and memory access budgets
to these servers, in a holistic process, in order to ensure schedulability. In more detail:

In this work, each server corresponds to one IMA application, whose underlying
tasks are given a priori and thus form part of the problem instance. However, the
designer has control over the execution budget X i and the memory access budget Ki

assigned to each server. These two server attributes should be considered together
for each server because a tradeoff exists. For example, consider a server with a pair
(Ki , X i ) that guarantees the schedulability of its tasks. If the designer chooses to
shrink the memory budget Ki , the execution budget X i might need to be increased
to preserve the schedulability of the servers’ tasks, as compensation for the increased
number of stalls that those tasks may face. On a higher level, the (Ki , X i ) budget pairs
of all servers need to be considered together, because the overall processing capacity
and memory bandwidth of the platform are finite.

To solve this complex problem we use Integer Linear Programming as described in
Sect. 7. Our ILP formulation takes as inputs, in addition to the platform parameters, a
set of many candidate budget pairs (Ki , X i ) for every server and selects one such pair
(Ki , X i ) per server, if a solution is found. Furthermore, it produces the periodic server
schedule for each core, as exemplified in Fig. 1. Figure 2 illustrates our approach on a
high-level. For every given server, the computation of each candidate (Ki , X i ) pair that
is provided as input to the ILP problem is a process with two steps, in which Ki is an
input. In the first step, described in Sect. 5, we compute for each Ki the maximum stall
time that each task of a server may suffer as a result of sharing the memory bus among
cores and of the memory regulation mechanism used. In the second step, described in
Sect. 6, we use the stall time of each task computed in the first step to determine the
minimum value of X i that ensures that all server tasks meet their deadline, for each
memory budget Ki , by carrying out a schedulability analysis.
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core 2

core 1

P̃3 = (K3, X3) P̃4 = (K4, X4)

0

P̃1 = (K1, X1) P̃2 = (K2, X2)

S

time

Fig. 1 Example of schedule output by the ILP solver. Server i is represented by a rectangle with width Xi ,
its execution budget, and height Ki , its memory budget

Per task

stall time

analysis

(Section 5)

Per server

schedulability

analysis

(Section 6)

ILP-based

server

scheduling

(Section 7)

KK, Ki

stalli(Ki, rmax) set of (Ki, Xi)

Server-level

schedule

(e.g., Fig. 1)

Lmin

Lmax

m

µi, rmax

IMA-application task set

{(Ci, Di, Ti, µi), . . .}

Fig. 2 High-level illustration of the proposed approach. By design the per-task stall time analysis is inde-
pendent from other tasks and their mapping to servers

5 Stall analysis for uneven assignment

Mancuso et al. (2015) provide a worst-case regulation-induced stall-time for a task
i performing μi residual memory accesses with even memory bandwidth assign-
ment among different cores when the policy for scheduling DRAM transactions at
the bus arbiter and at the DRAM controller is round-robin. (In the remainder of this
paper, for the sake of conciseness, when we mention the policy for scheduling DRAM
transactions, we omit the reference to the bus arbiter and the DRAM controller.) We
generalise their analysis for an uneven memory bandwidth assignment, i.e., not nec-
essarily assuming that Ki = K/m, but simply that the memory bandwidth is not
overcommitted, i.e.

∑
i Ki ≤ K .

In this section, we analyze the maximum stall that a task may suffer when it executes
μi (residual) memory accesses in at most rmax regulation periods in a core with
memory budget Ki . This analysis is rather abstract, as rmax is just an input parameter.
It derives an upper bound for the memory stall for any value of rmax , even for values
of rmax that can occur only if the task under analysis is preempted, independently of
where preemptions occur3. In Sect. 6, we integrate this analysis in the schedulability
analysis under our model assumptions.

Our analysis distinguishes between two kinds of stalls: (1) the regulation stall which
is the stall that arises upon enforcement of a core’s memory budget by the memory
bandwidth regulation mechanism, e.g., MemGuard, and (2) the contention stall which

3 In Mancuso et al. (2015) and Yao et al. (2016) the stall analysis implicitly assumes no preemption.
However, by using the concept of a synthetic equivalent task, comprising the task under analysis as well as
higher priority tasks, the schedulability analysis is valid regardless of whether or not there are preemptions.
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Table 1 List of stall analysis symbols

Symbol Description

m No. of cores

Lmax Maximum latency of a memory transaction

Lmin Minimum latency of a memory transaction

μi No. of residual memory transactions per job of task i

rmax Maximum number of regulations periods with residual memory transactions

P Memguard regulation period

K No. of memory transactions guaranteed by the memory system in P

Ki Memory budget per P of core i (in Sect. 5.1) or of task i’s core (in Sect. 5.2).

a0 Minimum number of memory transactions per regulation period by one core for the
upper bound of the stall time per regulation period of that core given in Lemma 1
to be tighter than the upper bound given by Observation 1. (See Sect. 5.1.)

is the stall that arises from the sharing of memory system resources among the different
cores, or, more precisely, among tasks running on different cores.

For ease of reference, Table 1 lists the main symbols used in this analysis.

5.1 Worst-case regulation-induced stall

We begin by presenting one observation and a simple lemma4 that are used in the
proofs of subsequent lemmas.

Observation 1 In a platform with m cores and a round-robin policy for scheduling

DRAM transactions, (m − 1)Lmax is an upper-bound on the contention stall time per

memory access by any core. This is because, in the worst case, a core will have to wait

for one memory access by each of the other cores.

Lemma 1 In a regulation period where core i does not incur a regulation stall and

performs a total of a memory accesses, it holds that 1) (K − Ki )Lmax is an upper

bound on the stall time suffered by core i , and 2) this bound is at least as tight as the

bound (i.e., a · (m − 1) · Lmax ) derived from Observation 1, if the number of accesses

a in that period is at least a0 =
⌈

K−Ki

m−1

⌉
.

Proof In a regulation period, cores other than i may perform at most K − Ki memory
transactions. In the worst case, each of these transactions causes a contention stall on
core i . Therefore, the maximum stall time that core i may suffer in a period where it
does not suffer a regulation stall is (K − Ki )Lmax .

By Observation 1, if DRAM transactions are scheduled using the round-robin pol-
icy, then the maximum stall per memory access is (m −1)Lmax . Thus, an upper bound
of the stall determined by the round robin policy is a · (m − 1) · Lmax , where a is the
number of accesses by core i during the regulation period in consideration.

4 We start the numbering of lemmas at 0, so that lemmas corresponding to those in Mancuso et al. (2015)
have matching numbers.
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So the bound ((K − Ki )Lmax ) proven earlier in this lemma is tighter than the latter
bound, if and only if:

a · (m − 1)Lmax > (K − Ki )Lmax

or equivalently

a >
(K − Ki )

m − 1

⊓⊔

The next two lemmas are the lemmas with matching number of Mancuso et al.
(2015). (The phrasing of these lemmas is the one used in Mancuso et al. (2015),
except for the changes required by the different policies in the assignment of the
memory bandwidth to the different cores: even vs. uneven.)

Lemma 2 Consider a system with memory bandwidth regulation, where Ki is the

number of DRAM accesses of core i during a regulation period of length P. If the policy

for scheduling DRAM transactions at the bus arbiter and at the DRAM controller is

round-robin, then each core i is guaranteed to always perform up to Ki memory

transactions within a regulation period P .

This lemma follows trivially from the properties of the bandwidth regulation system,
e.g. MemGuard Yun et al. (2013), which, by definition, stalls any core that exhausts
its memory budget in a regulation period P .

Lemma 3 For any single regulation period P, P − Ki Lmin is an upper bound on the

amount of stall suffered by core i .

Proof The total stall time in a regulation period can be expressed as st = stc + str ,
where stc is the (contention) stall time before the completion of memory transaction
Ki of core i , and str is the (regulation) stall time after the completion of that memory
transaction. Thus, stc arises from concurrent memory transactions on behalf of other
cores, whereas str arises from the action of the regulation system. We consider 2 cases
depending on whether or not str is zero.

Case 1 str = 0: In this case, by Lemma 1, an upper bound of the stall is (K −Ki )Lmax ,
thus:

(K − Ki )Lmax =

(
P

Lmax

− Ki

)
Lmax by definition of K

= P − Ki Lmax

≤ P − Ki Lmin by Lmin ≤ Lmax

Case 2 str �= 0: In this case, core i performs Ki memory transactions. Therefore,
st ≤ P − Mem(Ki ), where Mem(Ki ) is the time it takes for core i to perform Ki

memory transactions. That is, we bound the stall of core i by deducting from the
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regulation period the time core i takes to perform the Ki memory transactions. Thus,
the faster core i performs its memory transactions, the higher the upper bound for its
stall time may be. So, for any regulation period in which the regulation mechanism
stalls core i , the stall time of core i cannot be larger than P − Ki Lmin . ⊓⊔

Lemma 4 in Mancuso et al. (2015) states that the worst-case regulation-induced
stall on a given task occurs when all the accesses of that task are clustered. However,
under uneven memory bandwidth assignment, this is not the case as shown by the
following lemma.

Lemma 4 Under uneven memory bandwidth assignment, the clustering of memory

accesses does not always lead to the worst-case regulation-induced stall-time.

Proof Consider an uneven memory bandwidth assignment. Let Kmin be the minimum
bandwidth assigned to any core. Let Ki ≥ K/(m −1) be the memory budget assigned
to core i , and Kmin < a0.

Consider Ki memory accesses by a given task on core i . These accesses may be
clustered in a single regulation period or spread over several regulation periods.

In the latter case, if the accesses are evenly distributed over a number of regulation
periods equal to ⌈Ki/Kmin⌉, then each one of the Ki transactions can suffer the
maximum contention stall under round robin, (m − 1)Lmax . Therefore the total stall
time will be:

Ki (m − 1)Lmax ≥
K

m − 1
(m − 1)Lmax by Ki ≥

K

m − 1
= K Lmax = P by definition of K

> P − Ki Lmin

Thus, by Lemma 3, under uneven memory bandwidth assignment, the total stall time
incurred by the Ki transactions when spread evenly over ⌈Ki/Kmin⌉ rounds is larger
than the stall time of the same transactions when clustered in a single period. ⊓⊔

5.2 Stall term

A corollary of Lemma 4 is that the stall term analysis in Mancuso et al. (2015),
which assumes that the total stall time is maximum when the regulation stall time is
maximum, is not applicable to unenven assignment of memory bandwidth. Thus, in
this section, we derive an upper bound for the memory regulation induced stall term
of a task under uneven assignment of the memory bandwidth across the cores.

Our approach is to determine the distribution of the μi residual memory accesses
of task i by up to rmax that leads to the maximum stall, under the restriction that such
a job cannot perform more than Ki DRAM accesses per regulation period. (Without
loss of generality, we assume that task i executes on core i , thus avoiding cluttering
some symbols with subscripts or superscripts.)

In the previous section, we determined three upper-bounds on stall-time per regu-
lation period of a core whose memory budget is Ki DRAM accesses per regulation
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period: one upper bound for regulation periods with regulation stalls, P − Ki Lmin ,
see Lemma 3, and two upper bounds for regulation periods without regulation stalls,
a(m − 1)Lmax and (K − Ki )Lmax , depending on whether or not the total number of
DRAM accesses, a, in a regulation period is smaller than a0, see Lemma 1. There-
fore, our analysis is case based. First, we consider the case when the upper bound for
regulation periods with regulations stalls is larger than or equal to the upper bounds
for regulation periods without regulation stalls, and then the opposite. Obviously, the
two cases combined are exhaustive. Before that, we make an observation that applies
to all cases:

Observation 2 A job of a task i may suffer a regulation stall on its first memory access.

Indeed, consider a job of task i that is scheduled to run when its core has already

performed Ki − 1 memory accesses in the current regulation period. Upon the first

memory access by that job, the core will exhaust its memory budget for the regulation

period, and therefore it will suffer a regulation stall.

Although a job needs to perform one memory access in order to stall, we assume
that a job suffers a regulation stall when it is first scheduled, even though it does not
perform any memory access. This is safe, and makes the mathematical expressions
slightly shorter.

We now present the upper bounds for the two cases mentioned above as lemmas,
which are used in deriving an upper bound of the regulation-induced stall-term of a
task under uneven assignment of the memory bandwidth across the cores. The proofs
of these lemmas are also case based, and both of them are lengthy and require attention
to details. To allow the reader to focus on the main ideas, we present these proofs in
Appendix A.

For ease of reference, Table 2 lists the main symbols, in addition to those defined in
Table 1, used in these lemmas. We use a for the number of memory accesses, r , for the
number of regulation periods and Δ for the additional per memory access stall time
on specific memory accesses. As for the subscripts, we use 0 for variables related to
a0, defined in Lemma 1, r for parameters related to regulation periods with regulation
stalls, r̄ for parameters related to periods without regulation stalls. All these symbols
are per task, i.e. each parameter may have a different value depending on the task, and
may also depend on the memory budget of the core on which the task runs. However,
they do not depend on the parameters of other tasks or other cores, therefore, to prevent
clutter we do not use subscripts or superscripts identifying the task or the core.

Figure 3 illustrates the total stall time per regulation period as a function of the
number of memory accesses, when the stall time upper bound in a regulation period
with a regulation stall is larger than or equal to the upper bounds in a regulation period
without a regulation stall, assuming Ki > a0. (In the proof in Appendix A, we consider
also the case when Ki ≤ a0.) The P − Ki Lmin bound applies only if the number of
accesses in a regulation period is Ki . For a smaller number of accesses we apply the
lowest of the a(m − 1)Lmax and the P − Ki Lmax bounds, since they are both upper
bounds when there is no regulation stall and we want to derive the tightest upper
bound for the stall term. Thus, by applying a case analysis to the distribution of the
μi (residual) memory accesses by up to rmax regulation periods during which a job of
task i may execute, we determined the following upper bound for the stall term.
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Table 2 List of symbols used in
the stall term analysis in
Sect. 5.2

Symbol Description

ar̄ Number of memory accesses in periods without regulation
stall, when the number of regulation stalls is maximum

a
r0 Number of memory accesses in periods both without

regulation stall that have less than a0 memory accesses.

r0 Number of regulation periods without regulation stalls that
have at least a0 memory accesses

rr Number of regulation periods with regulation stalls that
have at least a0 memory accesses

rmax Maximum number of regulation periods in an execution of a
job of task i

rr̄ max Maximum number of regulation periods without regulation
stall

Δ0 Additional stall upon the a0th access on a regulation period
P

Δr Average additional stall per memory access after the
(a0 − 1)th access in a regulation period with a regulation
stall

a(m − 1)Lmax

P − KiLmin

Ki

stall per P

a

(K − Ki)Lmax

a0a0 − 1

Fig. 3 Stall time in a regulation period as a function of the number of memory accesses, when P−Ki Lmin ≥

Ki (m − 1)Lmax

Lemma 5 Let μi ≤ Ki · rmax . If P − Ki Lmin ≥ Ki (m − 1)Lmax , then the worst-case

stall time of a job of task i that executes for up to rmax regulation periods, ignoring

any regulation stall upon its first memory access, is upper bounded by:

stallr
i (Ki , rmax ) =

⌊
μi

Ki

⌋
(P − Ki Lmin) + r0(K − Ki )Lmax

+ min(ar̄ , (rr̄ max − r0)(a0 − 1))(m − 1)Lmax (1)
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(K − Ki)Lmax

a(m − 1)Lmax

P − KiLmin

Kia0a0 − 1

stall per P

a

∆0

∆r

Fig. 4 Stall time in a regulation period as a function of the number of memory accesses, when P−Ki Lmin <

Ki (m − 1)Lmax and Δ0 > Δr

where:

a0 =

⌈
K − Ki

m − 1

⌉

ar̄ = μi −

⌊
μi

Ki

⌋
Ki

r0 =

{
0 if Ki ≤ a0

max(min(ar̄ − (a0 − 1)rr̄ max , rr̄ max ), 0) otherwise

rr̄ max = rmax −

⌊
μi

Ki

⌋

Proof See Appendix A. ⊓⊔

Note that each term on the right-hand side of (1) factors in one of the three bounds
presented earlier. For each term, the other factor is the number of times the respective
bound should apply to maximize the total stall time of a job of task i that executes for
up to rmax regulation periods.

By Lemma 4, with uneven bandwidth assignment, the worst-case stall time does
not necessarily occur when the regulation stall time is maximum. Figure 4 illustrates
the total stall time per regulation period as a function of the number of memory
accesses, when the stall time upper bound in a regulation period with a regulation
stall may be smaller than the stall time upper bounds for a regulation period without
a regulation stall, assuming Ki > a0 and Δ0 > Δr . Although Fig. 4 appears very
similar to Fig. 3, there are several more cases to consider. On the one hand, because
P − Ki Lmin ≥ Ki (m − 1)Lmax does not hold any more, it may happen that the
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µi > rmaxar0
(Case 2)

Ki < a0
(Case 2.1)

Ki > a0
(Case 2.2)

Ki = a0
(Case 2.3)

Lemma 5

∆0 > ∆r
(Case 2.2.1)

∆0 ≤ ∆r
(Case 2.2.2)

µi ≤ rmaxar0
(Case 1)

Fig. 5 Overview of the cases used to prove Lemma 6

worst-case stall time occurs when all μi residual memory accesses are distributed
over up to rmax regulation periods in such a way that no regulation stall ever occurs, as
shown in the proof of Lemma 4. On the other hand, if μi > (a0 − 1)rmax , the worst-
case stall time may occur when the additional μi − (a0 − 1)rmax are distributed in
such a way that the number of regulation periods with regulation stalls is maximized.
Thus, although the goal of the case analysis, like for Lemma 5, is to determine the
distribution of the μi memory accesses over up to rmax regulation periods that leads
to the worst-case stall time, the number of cases almost doubles. Figure 5 summarizes
the different cases considered in the proof, see Appendix A, of the worst-case stall
time upper-bound presented in the following lemma:

Lemma 6 Let μi ≤ Ki · rmax . If P − Ki Lmin < Ki (m − 1)Lmax , the worst-case stall

time of a job of task i that executes for up to rmax regulation periods, ignoring any

regulation stall upon its first memory access, is upper bounded by:

stallc
i (Ki , rmax ) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

μi (m − 1)Lmax if μi ≤ rmax ar0

(rmax − r0 − rr )ar0(m − 1)Lmax

+r0(K − Ki )Lmax

+rr (P − Ki Lmin) otherwise

(2)

where:

a0 =

⌈
K − Ki

m − 1

⌉

ar0 = min(Ki , a0) − 1

Δ0 = (K − Ki )Lmax − (a0 − 1)(m − 1)Lmax

Δr =
(P − Ki Lmin) − (a0 − 1)(m − 1)Lmax

Ki − (a0 − 1)

rr =

⎧
⎪⎪⎨
⎪⎪⎩

max(0, μi − rmax (Ki − 1)) if Ki < a0 or (Ki > a0 and Δ0 > Δr )

max
(

0,

⌊
μi −rmax (a0−1)

Ki −(a0−1)

⌋)
if Ki > a0 and Δ0 ≤ Δr

0 if Ki = a0
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r0 =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if Ki < a0

max(0, min(μi − rmax (a0 − 1), rmax − rr ))

if Ki > a0 and Δ0 > Δr

max(0, min(μi − (rmax − rr )(a0 − 1) − rr Ki , rmax − rr ))

if (Ki > a0 and Δ0 ≤ Δr ) or Ki = a0

Proof See Appendix A. ⊓⊔

Note that the first case in (2) corresponds to the case where the bound given by
Observation 1 provides the tightest worst-case upper bound. The second case in (2)
is similar to (1), in that it has three terms each of which has one of the three upper
bounds derived in Sect. 5 as a factor.

By using Lemmas 5 and 6, we derive the worst-case memory stall time for a job of
task i that runs for at most rmax regulation periods on a core whose memory budget is
Ki .

Theorem 7 In a system that uses round-robin to schedule memory transactions, the

worst-case regulation-induced stall-time for a job of task i that performs at most μi

memory accesses, and runs for at most rmax regulation periods on a core that was

assigned a budget of Ki memory accesses per regulation period, P, withμi ≤ Ki ·rmax ,

is upper bounded by:

stalli (Ki , rmax ) =(P − Ki Lmin)

+

{
stallr

i (Ki , rmax ) if P − Ki Lmin ≥ Ki (m − 1)Lmax

stallc
i (Ki , rmax ) otherwise

(3)

where:

stallr
i (Ki , rmax ) is given by (1)

stallc
i (Ki , rmax ) is given by (2)

Proof By Observation 2, a job of task i may suffer a regulation stall upon its first
memory access, which may occur immediately after being scheduled. By Lemma 3,
this stall time is upper bounded by the first term in (3).

If P − Ki Lmin ≥ Ki (m − 1)Lmax , by Lemma 5, stallr
i (Ki , rmax ), see (1), is an

upper bound on the worst-case stall time suffered by a job of task i that runs for at most
rmax regulation periods, ignoring the regulation stall upon the first memory access.

If P − Ki Lmin < Ki (m − 1)Lmax , by Lemma 6, stallc
i (Ki , rmax S), see (2), is an

upper bound of the worst-case stall time suffered by job of task i that runs for at most
rmax regulation periods, ignoring the regulation stall upon the first memory access. ⊓⊔
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6 Schedulability analysis

In this section, we integrate the stall-time term, derived in the previous section, into
the schedulability analysis. In Sect. 6.1, we consider the schedulability of a task under
EDF. This is then used in Sect. 6.2 to size the execution time budgets of the periodic
EDF servers. We choose EDF, because it allows us to apply readily the approach by
Sousa et al. (2014). However, the stall analysis in the previous section is independent
of EDF and can be integrated with other scheduling policies such as fixed priority.

6.1 Demand bound function and preemptions

Exact schedulability analysis for sporadic tasks scheduled on a uniprocessor using
EDF can be done using the demand bound function (Baruah et al. 1990):

db f (t) =

n∑

i=1

db f (τi , t) =

n∑

i=1

max

(
0, 1 +

⌊
t − Di

Ti

⌋)
· Ci

On a multi-core platform, we also need to take into account the maximum memory
stall time that a job can incur and that arises from sharing the memory system among
the cores. Since this stall time may be incurred on every job, it can be viewed as part of
the computation demand of the respective task; indeed, while a job on core i is stalled,
no other job on the same core may execute. Thus the effective computation demand
of task i is:

Ci + stalli

(
Ki ,

⌈
Di

Pi

⌉
+ 1

)
(4)

where stalli

(
Ki ,

⌈
Di

Pi

⌉
+ 1

)
is given by (3) derived in the previous section, and is the

worst-case stall time of a job of task i that completes by its deadline, since the execution
window of such a job, i.e. the time interval between its release and its deadline, spans

over at most
⌈

Di

Pi

⌉
+ 1 regulation periods.

Thus, given a set of n tasks τi mapped to a core with a memory bandwidth Ki , if:

n∑

i=1

max

(
0, 1 +

⌊
t − Di

Ti

⌋)
·

(
Ci + stalli

(
Ki ,

⌈
Di

Pi

⌉
+ 1

))
≤ t,∀t

then the task set is schedulable under EDF. Indeed, if this inequality is satisfied,
all jobs of all tasks in the set will meet their deadlines even when each of these

jobs suffers stalli

(
Ki ,

⌈
Di

Pi

⌉
+ 1

)
, given by (3), which upper bounds the regulation-

induced stall of any job of task i , assuming that the job completes by its deadline.
If the above inequality is not satisfied, then some job may miss its deadline, and

stalli

(
Ki ,

⌈
Di

Pi

⌉
+ 1

)
may underestimate the regulation-induced stall of that job,

because its execution might span over more that
⌈

Di

Pi

⌉
+ 1 regulation periods. In fact,
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this case is not an issue, as dbf-based uniprocessor EDF analysis is sustainable, the
task set is not schedulable anyway.

Actually, the derivation of (3) does not consider all the stall time that a task i

may suffer upon being preempted by of other tasks running on the same core. Under
(partitioned) EDF, a job can be preempted by jobs on the same core whose deadlines
are earlier. With memory regulation, every preemption may lead to one additional
regulation stall, which occurs if the core’s memory budget is exhausted immediately
before resumption of a preempted job. A common approach, see e.g. Liu (2000),
Brandenburg (2011), Souto et al. (2015), to take into account overheads that occur on
every preemption of a preempted task is to add them to every job of the preempting
task. Thus, by Lemma 3, we add P−Ki Lmin to (4), obtaining the effective computation
demand of task i :

C ′
i (Ki ) = Ci + stalli

(
Ki ,

⌈
Di

Pi

⌉
+ 1

)
+ (P − Ki Lmin) (5)

where the last term in (5)’s right-hand side upper bounds the stall that job i can cause
when it preempts.

6.2 Server sizing

As discussed, the execution budget Xk of a periodic EDF server P̃k should be large
enough to ensure the schedulability of the tasks it serves, but ideally, no larger than that,
or else this would be wasteful of processing capacity. In this subsection we discuss our
approach to the optimal sizing of these execution budgets. It extends the approach by
Sousa et al. (2014), which considered the exact same problem of sizing a periodic EDF
server, albeit in the absence of memory access regulation and without consideration
of the effects of memory contention—and in the different context of semi-partitioned
scheduling.

Sousa et al.’s approach was a form of sensitivity analysis and relied on the classic
dbf-based analysis (Baruah et al. 1990), with the following twist. To equivalently model
the execution of tasks inside a fixed-budget server as execution on a uniprocessor [i.e.,
without the use of servers, which is the model in Baruah et al. (1990)], the time intervals
corresponding to the idleness of the server (which are periodic and of fixed length)
are modelled as jobs by an interfering periodic high-priority task. The attributes of
this “fake task” τ f [(as called in Sousa et al. (2014)] were C f = D f = S − Xk (i.e,
the portion of the server period that the server is idle) and T f = S (i.e, equal to the
server period). These attributes jointly ensure that τ f always has priority over any
real task under pure EDF scheduling rules, which allow reuse of the schedulability
test from Baruah et al. (1990). Then, consistently with the fact that uniprocessor
EDF is a sustainable algorithm (Baruah and Burns 2006), sizing the server becomes
equivalent to maximizing the execution time of the fake task, in the modified task
set, without compromising schedulability, under some form of sensitivity analysis. In
further adapting the schedulability testing technique by Sousa et al., for all the actual
tasks served by P̃k we consider the effective computation demand of each task, C ′

i

(rather than the WCET in isolation Ci ). Additionally, since we impose/assume that
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both the slot size and the servers’ sizes are multiples of the regulation period P , the
reservation of the fake task C ′

f , must also be a multiple of the regulation period. For
the same reason, and given that the start and end of every server is synchronised with
the regulation period, switching from one server to another one does not cause any
stall.

In Sect. 6.1, the upper bound on the stall time assumes that a job may execute in
every regulation period from its release until its deadline. Since a job may execute
only inside the confines of its server, it follows that the value of rmax used as second
argument of the stall() term in (5) should be adjusted to the value given by the
following lemma.

Lemma 8 The maximum number of regulation periods during which a schedulable

job of task i of server k executes is:

rmax =

⌊
Di

S

⌋
Xk

P
+ min

(⌊
Di mod S

P

⌋
+ 1,

Xk

P

)
(6)

Proof The maximum number of regulation periods contained within the time window
of execution of server k during any interval of duration Di occurs when the interval
begins in the first regulation period of that server’s execution time window.

The number of whole server periods contained in this interval is
⌊

Di

S

⌋
. Because the

length of a server’s time window of execution is a multiple of the regulation period,
the number of regulation periods of server P̃k in each of these time windows is Xk

P
.

The number of regulation periods in the last time window for the server’s execution is:⌊
Di mod S

P

⌋
+ 1. Out of these, server k can execute for at most Xk

P
regulation periods.

Therefore, the maximum number of regulation periods during which a schedulable
job of task i of server k is rmax as given by (6). ⊓⊔

Because (6) depends on Xk , and the latter depends on the stall term of each task of
server k, which depend on rmax —see (1) in Lemma 5 and (2) in Lemma 6,—to size
server k for a given number of memory accesses Kk per regulation period P , we use
a fixed point computation. In the first iteration, Xk is computed using, for each task
of server k, its maximum regulation stall computed assuming that task i of server k

may execute for rmax =
⌈

Di

P

⌉
+ 1 regulation periods, which is an upper bound on

the number of regulation periods a job of task i that meets its deadline may execute.
In each of the following iterations, we compute Xk using the maximum stall of each
task computed with rmax as given by (6) for the value of Xk computed in the previous
iteration. We stop the computation in the first iteration when the Xk value computed
is equal to that computed in the previous iteration.

6.3 Per server memory budgets

For better resource utilisation, it is important to be able to assign different memory
budgets to different servers independently of the core where they execute. For example,
this is necessary to implement schedules as the one illustrated in Fig. 1. This means
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that one may be able to, on the same system, run more applications, or, for a given set
of applications, buy a cheaper platform.

The schedulability analysis and the server sizing presented earlier in this section is
oblivious to the memory budgets assigned to the other servers assigned to the same
core. Thus, supporting per server memory budgets is only an implementation issue.
In the remainder of this section, we outline a possible implementation.

Without memory regulation, a server k may be implemented using (1) the data
structures, e.g. the runnable tasks queue, typically used in the implementation of the
scheduling policy on a uniprocessor; and (2) a timer, to switch from one server to the
next, that is set to Xk when server k becomes active. Upon expiration of the timer,
the scheduler preempts the currently running job, if any, switches from the runnable
queue of the current server to the runnable queue of the next server, resets the timer
to that server’s size, and picks the runnable job of the new server according to the
scheduling policy of the server. An implementation similar to this one for EDF servers
in the context of semi-partitioned scheduling is described in Souto et al. (2015).

This implementation can be easily extended to support memory regulation, when the
size of the servers is an integer multiple of the regulation period, P , and synchronized
with it, by using an approach similar to that of MemGuard (Yun et al. 2013). MemGuard
uses a per-core regulator that relies on hardware performance monitoring counters. At
the beginning of each regulation period, MemGuard configures the hardware counter
of each core to generate an exception when the core completes some threshold DRAM
memory accesses. Upon such an exception, MemGuard idles the respective core until
the end of the regulation period. Thus by using different thresholds for different cores,
it is possible to assign the memory bandwidth unevenly across the cores. Likewise,
by configuring at the beginning of each regulation period the hardware performance
monitoring counter of a given core with a different threshold, depending on the server to
which the regulation period belongs, it is possible to assign different memory budgets
to different servers on the same core.

7 ILP formulation

In this section, we develop an ILP formulation of our server scheduling problem.
We assume that each IMA application is mapped to a corresponding server to ensure
isolation.

The k-th server, P̃k , has a budget (Kk, Xk), where Kk is the server’s memory budget
per regulation period, P , and Xk is the server’s execution budget per server period S.
Kk is the independent variable and Xk is determined by Kk , i.e. Xk = f (Kk)

5, so that
all tasks in server k meet their deadlines when the memory bandwidth assigned to the
server is Kk .

Our problem is, for each server, to choose a value of Kk (and therefore Xk) and to
map it to one of the system’s m cores, such that both the execution demand and the
memory bandwidth demand of all servers do not exceed the system’s capacity.

5 We do not know whether there is a closed-form expression for function f (Kk ).
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Table 3 List of all decision
variables

Symbols Decision variable description

qi jk qi jk = 1 (binary), if server k is mapped to a core j on
quantum i , and 0 otherwise.

c jk c jk = 1 (binary), if server k is mapped to core j , and 0
otherwise.

fik fik = 1 (binary), if i is the first execution quantum of
server k, and 0 otherwise.

lik lik = 1 (binary), if i is the last execution quantum of
server k, and 0 otherwise.

Kk Kk (ranges between 1 and K ) is the memory budget
allocated to server k (i.e. is the number of memory
accesses allowed in MemGuard’s replenishment
period).

Xk Xk (ranges between 1 and Q) is the execution budget
allocated to server k.

xkv xkv = 1 (binary), if the vth point of the Xk = f (Kk )

function is selected for server k, and 0 otherwise.

Table 4 Range of all indices
used in decision variables

Index Represents Range

i Time quantum i ∈ {0, 1, . . . , Q − 1}

j Core j ∈ {0, 1, . . . , m − 1}

k Server k ∈ {0, 1, . . . , N − 1}

v Sampled point v ∈ {0, 1, . . . , β − 1}

Objective function We formulate this problem as a feasibility problem because
it is not clear which objective should be used in this context. Indeed, roughly, the
smaller a server’s memory budget, the larger its execution budget, i.e. the smaller Kk

the larger Xk . Thus, minimising the memory bandwidth may lead to “maximising”
the execution budget, which may not be appropriate in all scenarios. The converse is
also true. Nevertheless, the designer may pick any objective function that matches the
needs of the particular system.

Constraints In the rest of the section, we explain the different constrains used to
map the servers on the given platform. All decision variables used in this formulation
are presented in Table 3. The notation and range of the indices used in the decision
variables are given in Table 4 for quick reference.

Two key issues in the formulation are:

1. Time representation, i.e. whether discrete or continuous;
2. Representation of the Xk = f (Kk) function.

Regarding (1), we have chosen to quantize the length S of the server period in Q

fixed-duration time quanta. The time quantum is represented with an index i in this
section. Furthermore, the size of each server, Xk , is a multiple of a time quantum.
The reason for this choice is to allow a fairly straightforward implementation of the
model, more specifically of the constraints related to the system’s memory bandwidth,
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in commonly available ILP-tools. To prevent interference among servers, the duration

of each time quantum,
S

Q
, is a multiple of the memory regulation period, P , and is

synchronised with that period.
Regarding (2), since we have not derived a closed form expression of Xk = f (Kk),

we sample a set of Kk values6 in a given interval, and, for each value of this set,
we compute the corresponding Xk , using the server sizing technique described in
Sect. 6.2. This set of sampled values is provided as an input to the ILP solver and it
outputs a single budget pair (Kk, Xk) for each server k. In order to find a single budget
pair, we use a binary variable xkv defined as follows.

xkv =

⎧
⎪⎨
⎪⎩

1, if the vth point of the f (Kk)function is

selected for server k

0, otherwise

By using this binary variable, we derive the following set of constraints;

Kk =
∑

∀v

xkv Kkv, ∀k (7)

Xk =
∑

∀v

xkv Xkv, ∀k (8)

∑

∀v

xkv = 1, ∀k (9)

where, Kkv is a constant and Xkv = f (Kkv) is also a constant and is computed from
Kkv ∈ [0, K ], using the server sizing technique described in Sect. 6.2. Basically, the
constraints (7) (8) (9) ensure that, for each server k, the ILP solver will output one
point of the set of points (Kkv, Xkv) provided as inputs, if a solution is found.

We need to ensure that the servers are allocated to different cores in such a manner
that the total memory budget at any time and the execution budgets on any core do not
exceed the memory system’s bandwidth and the timeslot length, respectively. Because
of time quantization, we define another set of key decision variables as follows.

qi jk =

{
1, if server k is mapped to core j on quantum i

0, otherwise

The values of these variables determine which servers are mapped to which cores
at which quanta of a time slot. For the sake of clarity, in the following we use i, j and k

as indices over the time quanta, the cores and the servers, respectively, as summarized
in Table 4.

The solution space is defined by two sets of constraints, in addition to the one
described above to represent the dependence of Xk on Kk . The first set ensures that

6 For simplicity, we use equally spaced samples in a given interval. However, our approach does not depend
on this assumption and will work with any set of input samples (integers) within a given interval.
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the scheduling of the servers and their bandwidth allocation is such that at any quantum
of a time slot the memory bandwidth demand does not exceed the system’s memory
bandwidth. The second set ensures that all servers are allocated their execution budget,
Xk , i.e. a set of consecutive quanta, on a single core.

The first set of constraints is composed of constraints:

∑

∀ j

∑

∀k

qi jk Kk ≤ K , ∀i (10)

Essentially, this set of constraints states that, for any time quantum, the sum of the
memory bandwidth allocated to each core

( ∑

∀k

qi jk Kk

)
does not exceed the bandwidth

of the memory system.
Although the use of discrete time simplifies the first set of constraints, ensuring that

each server is allocated its execution budget becomes less intuitive. First, we define
binary variables fik to identify the first and lik to identify the last quantum of each
server;

fik =

{
1, if i is the first execution quantum of server k

0, otherwise

lik =

{
1, if i is the last execution quantum of server k

0, otherwise

and add the following constraints.

∑

∀i

fik = 1, ∀k (11)

∑

∀i

lik = 1, ∀k (12)

∑

∀i

(i × lik) −
∑

∀i

(i × fik) + 1 = Xk, ∀k (13)

These constraints ensure that each server has only one first quantum (11) and one
last quantum (12), and that the number of quanta between them is equal to the server’s
execution budget (13). Since a quantum should not be allocated to a server before its
first quantum or after its last quantum, we add these additional constraints.

fik = 1 ⇒

i−1∑

ℓ=0

qℓ jk = 0, ∀i, j, k (14)

lik = 1 ⇒

Q−1∑

ℓ=i+1

qℓ jk = 0, ∀i, j, k (15)
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Finally, we need to ensure that each server is mapped only to one core and that it
is allocated its execution budget on that core. Thus, we add yet another set of binary
variables, c jk :

c jk =

{
1, if server k is mapped to core j

0, otherwise

and the following set of constraints:

∑

∀ j

c jk = 1, ∀k (16)

c jk = 1 ⇒
∑

∀i

qi jk = Xk, ∀ j, k (17)

∑

∀i

∑

∀ j

qi jk = Xk, ∀k (18)

∑

∀k

qi jk ≤ 1, ∀i, j (19)

In this set of constraints, (16) ensures that a server is mapped to just one core.
Constraint (17) ensures that the number of time quanta allocated for a server on the
core where it is mapped is equal to that server’s execution budget. Constraints (17)
and (18) together ensure that a server is not allocated any time quanta on any core
other than the one it is mapped to. Finally, (19) disallows sharing among servers of
any time quanta on any core. In other words, a single time quantum of a core cannot
be allocated to more than one server.

Table 5 summarizes all constraints for quick reference. Note that, constraints (10),
(14), (15) and (17) are not linear. The first because it comprises products of decision
variables, whereas the remainder because they include an implication. Thus, strictly,
this formulation is not a MILP. However, there are well known transformations (Coelho
2013; Grant 2015) to linearise these kinds of non-linear constraints. We chose to
present the non-linear versions above for the sake of clarity and ease of readability. In
Appendix B, we present the linearisation of these constraints.

8 Evaluation

For evaluation, we compare the schedulability of our proposed approach with the even
bandwidth allocation7 described in Mancuso et al. (2015). We also evaluate the effect
of memory and time quantization in the ILP model both on the schedulability and on
the time needed to find a schedule, if one exists.

7 The memory bandwidth is equally divided among cores and stall analysis is performed through our
proposed approach.
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Table 5 List of all constraints with their description

Iterated variables Expression for the constraint Description of constraints

∀k Kk =
∑

∀v

xkv Kkv

∀k Xk =
∑

∀v

xkv Xkv Select a single budget pair (Kkv, Xkv), from
a set of input budget pairs

∀k
∑

∀v

xkv = 1

∀i
∑

∀ j

∑

∀k

qi jk Kk ≤ K For any time quantum, the sum of memory
budgets allocated to each core does not
exceed the total memory bandwidth

∀k
∑

∀i

fik = 1 Each server has only one first time quantum

∀k
∑

∀i

lik = 1 Each server has only one last time quantum

∀k
∑

∀i

(i × lik ) −
∑

∀i

(i × fik ) + 1 = Xk For each server, the number of time quanta
between the first and the last quantum
(including first and last) is equal to the
server’s execution budget

∀i, j, k fik = 1 ⇒

i−1∑

ℓ=0

qℓ jk = 0 A server is not allocated any time quantum
before first quantum

∀i, j, k lik = 1 ⇒

Q−1∑

ℓ=i+1

qℓ jk = 0 A server is not allocated any time quantum
after last quantum

∀k
∑

∀ j

c jk = 1 A server is mapped to just one core

∀ j, k c jk = 1 ⇒
∑

∀i

qi jk = Xk A server is allocated its execution budget on
the server it is mapped to

∀k
∑

∀i

∑

∀ j

qi jk = Xk Each server is allocated to at most one core
(this is ensured together with the previous
constraint)

∀i, j
∑

∀k

qi jk ≤ 1 A single time quantum cannot be allocated
to more than one server

8.1 Experimental setup

For this evaluation, we developed a two-module Java tool. Its source code can be
found at Awan (2016). The first module generates a synthetic task-set, which it uses
to construct the IMA applications or servers, and computes the server budgets. The
second module generates an ILP model for these servers on a multi-core platform and
invokes an ILP solver to map the servers on the cores and to generate a cyclic schedule
for each core, as shown in Fig. 1.

The task-set is generated for a given target normalised utilisation (in isolation) using
the UUnifast-discard algorithm (Bini and Buttazzo 2009; Davis and Burns 2009)
to allow unbiased distribution of the target utilisation. We limit the utilisation of
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individual tasks, ui , to 0.5, by halving the utilisation value output by UUnifast-discard,
to avoid too many infeasible task-sets.8 Task periods are generated with a log-uniform
distribution in the range 20-200 ms. The deadline is set equal to the period, even
though our analysis holds for arbitrary deadlines. A task’s WCET Ci is derived by
multiplying its utilisation ui and period Ti .

The residual memory accesses of a task are computed by multiplying its Ci with
a uniformly distributed random number generated in the range [0.2Ξα, 1.8Ξα].
The “referenced ratio” Ξ = 7.97μs−1 is empirically computed from the data of the
tracking applications used by Mancuso et al. (2015)9. It means that, on average, those
applications generate up to Ci · Ξ memory accesses per job. The memory intensity

factor, α, is a variable that affords us some control on the memory bus bandwidth
utilisation: the higher α the larger that utilisation.

The generated tasks are distributed to applications in a round-robin fashion to
construct a set of applications. To compute the applications’ execution budgets, we
define a memory quantization factor β. For each application, we compute a set of
execution budgets corresponding to β different values of the memory budget that are
equidistant in (0, K ]. The memory subsystem parameters, taken from Mancuso et al.
(2015), are: P = 1000 µs, Lmin = 0.0238 µs, Lmax = 0.0497 µs, K = 20132.

For each set of input parameters, we generate 100 task sets and compute their
respective budgets. We use independent pseudo-random generators for the utilisations,
minimum inter-arrival time/deadlines and residual memory accesses, and reuse the
seeds in successive replications.

The second module implements the ILP formulation for an input task-set on
IBM ILOG CPLEX v12.6.3 and interfaces it with the Java tool using Concert
technology. We have control over the number Q of quanta per server period, allow-
ing us to trade off computation time with pessimism. The server period is set to

S =
⌊

min∀τi ∈τ min(Ti ,Di )

Q

⌋
∗ Q. The module can be set to either find an optimal solu-

tion, by specifying an appropriate objective function, for example with respect to
memory resources, or stop at any feasible solution that satisfies all constraints of the
ILP model.

In all experiments, the defaults for the number of cores (m), number of applications
(N ), number of tasks, target utilisation (without interference), α, β and Q, are 4, 2×m,
2× N , 0.3, 1, 50 and 15, respectively. We used a 2.2 GHz 6-core/12-thread Intel Xeon
E5-2420 v2 system with 32 GB of RAM to run all experiments presented below. We
have also summarized all the parameters in Table 6.

8.2 Experimental results

The first experiment compares the schedulability ratio of our uneven (general) memory
bandwidth allocation policy with that of the even policy. The latter divides the available

8 For the parameter set values used in our experiments, most applications with tasks whose utilisation is
greater than 0.5 cannot be scheduled on a single core, even when allocated the full memory bandwidth.
9 The progressive lockdown curve of the tracking application in Mancuso et al. (2015) shows that 18
locked-down pages offer the best trade-off against the WCET in isolation. The ratio of residual memory
accesses (1067882) to the WCET in isolation (133, 989.029 μs) at this point gives Ξ = 7.97 μs−1.
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Table 6 Overview of parameters

Parameters Values Default

Inter-arrival time Ti 20–200 ms N/A

Referenced ratio (Ξ ) 7.97μs−1 7.97μs−1

Memory intensity factor (α) {0.25 : 0.25 : 2} 1

Number of cores (m) {2, 4} 4

Number of applications/servers {2 × m} 8

Task-set size {2, 4} per server 2 per server

Memory quantization factor (β) {20, 40, 50, 60, 80} 50

Quanta (Q) {5, 10, 15, 20} 15

Utilisation {0.3 × m} 1.2

bandwidth equally to all cores. The applications inside a server are scheduled with the
EDF scheduling policy irrespective of whether the server is assigned an even or uneven
memory bandwidth. Separate instances of the ILP are run for the two policies (even
and uneven), to decide the allocation of servers to cores and, in the case of the uneven
policy, also the allocation of bandwidth to the servers. Figures 6 and 7 present the results
for platforms composed of two and four cores, respectively. Assuming a balanced
platform, we have halved the memory bandwidth of the two core platform. This leads
to the following parameters being altered for a two core platform: Lmin = 0.0477μs,
Lmax = 0.0993μs, K = 10066. The line plots in Figs. 6 and 7 show the schedulability
ratio against different values of memory intensity factor (α). In both cases, the uneven
policy leads to improved schedulability over the even policy. For extreme values of
α in the four core platform, there is no major difference between the two policies:
if the bandwidth utilisation is low (i.e., small α), both policies can schedule most
applications, whereas if the bandwidth utilisation is high, both policies are unable to
schedule most applications. However, in two core platform, the schedulability ratio
of even and uneven approaches tend to depart with an increase in memory intensity
factor. In our simulations, we have significant improvements over the even policy. For
α = 1 and m = 2, 99% of the task sets are found feasible with uneven policy vs. 77%
with even policy. Similarly, for α = 1 and m = 4, 61% of the task sets are found
feasible with uneven policy vs. 37% with even policy.

Figures 6 and 7 also show the distribution of the time required to find the feasi-
ble solutions for the uneven policy via a boxplot drawn with MatLab (MathWorks
Box plots documentation. http://www.mathworks.com/help/stats/box-plots.html) for
platforms that consist of two cores and four cores, respectively. The red ‘+’ show the
outliers. All times presented are the wall-times reported by CPLEX. The time to com-
pute the feasible solution is negligible for the two core platform as the search space
for the ILP formulation is very small. In all cases, the system was able to find the
feasible solution within two and half seconds. For a four core platform (Fig. 7), in the
majority of cases, the ILP solver needs a few minutes (less than twenty minutes) to find
a feasible solution except one outlier (not shown in Fig. 7) that takes less than three
hours to complete. The computation time increases with the memory intensity factor,
as it becomes harder to meet the memory bandwidth and computation time constraints.
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Fig. 6 Effect of the memory intensity factor α on schedulability and the distribution of time to find feasible
solutions for uneven policy (β = 50, Q = 15, m = 2 and 2 tasks per server)
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Fig. 7 Effect of the memory intensity factor α on schedulability and the distribution of time to find feasible
solutions for uneven policy (β = 50, Q = 15, m = 4 and 2 tasks per server)

However, after a given value of α (1 in our experiments), the solver efficiently prunes
the search space and the time to find a feasible solution starts to decrease. It spikes
again at α = 1.75 though.

These results show that the uneven policy improves the schedulability with respect to

the even policy. Furthermore, they show that our ILP model is practical for platforms

with up to 4 cores. However, it is likely not to be computationally tractable for platforms
with 8 cores, and hence heuristics may be required. An alternative, is to explore the
specifics of each platform and use a hybrid approach. For example, in the case of
platforms that use two memory controllers, such as the Freescale P4080, one might
partition the cores in two sets of 4 cores and map each controller to a different set of
4 cores. Furthermore, the set of IMA applications might be partitioned in two, using
some heuristic, and a feasible schedule for each one of these sets of IMA applications
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Fig. 8 Effect of the memory quantization parameter β on schedulability and the distribution of time to find
feasible solutions (α = 1, Q = 15, m = 4 and 2 tasks per server)

could be found using the ILP model. By the way, there is no indication that platforms
with more than 4 cores per memory controller will become the norm.

We next evaluate the effect of quantization of the server budgets on the schedulabil-
ity and on the time to find a feasible solution for a platform with four cores. Figure 8
considers the memory quantization parameter β (x-axis). As seen, the schedulabil-
ity ratio (right y-axis) increases with finer quantization granularity. For β = 20, the
schedulability is relatively low because the low resolution of the memory bandwidth
assignment leads to some over-allocation of this resource, which is only partially
compensated for by the possibility of a lower memory stall (and consequently a lower
WCET) afforded by the over-allocation of memory bandwidth. As β increases, and
the memory bandwidth over-allocation drops, the schedulability improves rapidly, but
then levels off at around 60%. We conjecture that for this value the schedulability ratio
approaches the schedulability ratio without memory quantization. The time to find a
feasible solution is also in the order of a few minutes, except for some outliers, which
still take less than one hour. The boxplots show no tractability issues as β increases,

despite the increase in the search space.

Figure 9 shows the effects of time quantization, i.e. the number of quanta Q per
server period (x-axis) for a platform composed of four cores. The schedulability ratio
(right y-axis) increases with Q, like it did with β in Fig. 8. Indeed, as Q increases, the
granularity of the servers’ execution budgets becomes finer, and the over-allocation
is reduced. However, this comes at a cost of more computing time to find a feasible
solution, as shown by the boxplots. The increase in the time to find a solution is
clearly super-linear on the value of Q, but the time needed is still below two and half
hour per instance for the parameters’ ranges considered. The rate of increase of the
schedulability is much smaller for Q > 10 than for lower values, but the plot shows no
levelling-off, for the range of values of Q considered. Hence, the schedulability ratio

along the computation time increases with an increase in Q. The fact that declaring a
task-set infeasible may take more than ten times longer (see Fig. 10) and that we are
running 100 repetitions for each set of parameter values, prevented us from showing
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Fig. 9 Effect of Q (number of quanta per server period) on the schedulability ratio and the distribution of
time to find feasible solutions (α = 1, β = 50, m = 4 and 2 tasks per server)
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Fig. 10 Effect of Q (number of quanta per server period) on the distribution of time to find infeasible
solutions (α = 1, β = 50, m = 4 and 2 tasks per server)

results for higher Q values. In practice, where one needs a feasible solution for one

particular set of servers, higher Q values are still tractable and it may be worth to

trade-off the time to find a solution for the utilisation of the system resources.

We also present the distribution of the time to find infeasible solutions for all
experiments in Figs. 10, 11, 12 and 13. The dependence on the different factors is
similar to that of the time required to find a feasible solution. The main difference is
that the ILP solver takes much longer to declare a task-set infeasible, because it must
explore the entire search space rather than stop at the first solution.

Finally, we have performed another set of experiments in which we increases the
number of tasks per server to 4. In contrast to previous case (2 tasks per server), dou-
bling the number of tasks per server increases the memory accesses in each server. This
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Fig. 11 Effect of the memory intensity factor α on the distribution of time to find infeasible solutions for
uneven policy (β = 50, Q = 15, m = 2 and 2 tasks per server)
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Fig. 12 Effect of the memory intensity factor α on the distribution of time to find infeasible solutions for
uneven policy (β = 50, Q = 15, m = 4 and 2 tasks per server)

increase affects the schedulability of the system as it becomes harder for ILP to find
the feasible solution with increased memory bandwidth requirement. Consequently,
the time to compute the feasible solutions on average also increases.

The effect of variation in memory intensity factor on schedulability analysis and
computation time of feasible solutions is presented in Figs. 14 and 15 for 2 and 4 cores,
respectively. It is evident that the schedulability ratio decreases and the computation
time increases due to increase in overall memory bandwidth requirements. The effect
of decrease in schedulability is more prominent in 2 cores case as the possibilities of
packing the servers is limited. The effect of variation in memory quantization (Fig. 16)
and quanta (Fig. 17) on schedulability ratio and computation time of feasible solutions
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Fig. 13 Effect of the memory quantization parameter β on the distribution of time to find infeasible solutions
(α = 1, Q = 15, m = 4 and 2 tasks per server)
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Fig. 14 Effect of the memory intensity factor α on schedulability and the distribution of time to find feasible
solutions for uneven policy (β = 50, Q = 15, m = 2 and 4 tasks per server)

in this experiment shows similar trends except that former is scaled down and latter is
scaled up due to the aforementioned reasons. The computation time of the infeasible
solutions also scales up in this set of experiments.

9 Conclusions and future work

Sharing memory efficiently among cores in a multi-core platform while ensuring
isolation among applications is of utmost importance for the adoption of multi-cores
in real-time safety-critical application domains, such as avionics.

This work improves on the state-of-the-art by extending the memory bandwidth
reservation mechanism proposed in the scope of Single Core Equivalence (SCE) to
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Fig. 15 Effect of the memory intensity factor α on schedulability and the distribution of time to find feasible
solutions for uneven policy (β = 50, Q = 15, m = 4 and 4 tasks per server)
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Fig. 16 Effect of the memory quantization parameter β on schedulability and the distribution of time to
find feasible solutions (α = 1, Q = 15, m = 4 and 4 tasks per server)
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Fig. 17 Effect of Q (number of quanta per server period) on the schedulability ratio and the distribution of
time to find feasible solutions (α = 1, β = 50, m = 4 and 4 tasks per server)
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allow uneven memory bandwidth among cores, and variable bandwidth at run time on
each core. We formulate new stall time analysis for this memory management arrange-
ment and incorporate it into a schedulability analysis for a server-based approach,
which manages both the cores and the memory bus in an integrated way. We assume
EDF as the internal server policy, but our approach is easily adaptable to fixed-priority
scheduling as well.

Another main contribution of this paper is an ILP model that we developed in
order to find a feasible mapping of servers to cores, if one exists, while satisfying the
platform’s resource capacities. This ILP model relies on our analysis for sizing of the
servers’ execution and memory budgets. It assumes a single memory controller, but
it can be easily generalised for the case of multiple memory controllers partitioned
among sets of cores.

Experiments with the ILP model confirm the tractability of the approach for plat-
forms with up to 4 cores and show that the uneven and per-server memory bandwidth
allocation can significantly improve the schedulability of sets of applications with
realistic resource demand when compared with an even memory bandwidth alloca-
tion.

In the future, we would also like to extend our approach to other bus arbitration
policies common in COTS platforms such as FR-FCFS.

Acknowledgements This work was partially supported by National Funds through FCT/MCTES (Por-
tuguese Foundation for Science and Technology) within the CISTER Research Unit (CEC/04234).

Proofs of Lemmas in Sect. 5.2

In this section we present the proofs of Lemmas 5 and 6 (For notation, see Table 7.)

Table 7 List of symbols used in
the stall term analysis in
Sect. 5.2

Symbol Description

ar̄ No. of memory accesses in periods without regulation stall,
when the number of regulation stalls is maximum

a
r0 No. of memory accesses in periods both without regulation

stall and with less than a0 memory accesses.

r0 Number of regulation periods without regulation stalls with
at least a0 memory accesses

rr Number of regulation periods with regulation stalls with at
least a0 memory accesses

rmax Maximum number of regulation periods in an execution of a
job of task i

rr̄ max Maximum number of regulation periods without regulation
stall

Δ0 Additional stall upon the a0th access on a regulation period
P

Δr Average additional stall per memory access after the
(a0 − 1)th access in a regulation period with a regulation
stall
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a(m − 1)Lmax

P − KiLmin

Ki

stall per P

a

(K − Ki)Lmax

a0a0 − 1

Fig. 18 Stall time in a regulation period as a function of the number of memory accesses, when P −

Ki Lmin ≥ Ki (m − 1)Lmax

Lemma 9 Let μi ≤ Ki · rmax . If P − Ki Lmin ≥ Ki (m − 1)Lmax , then the worst-case

stall time of a job of task i that executes for up to rmax regulation periods, ignoring

any regulation stall upon its first memory access, is upper bounded by:

stallr
i (Ki , rmax ) =

⌊
μi

Ki

⌋
(P − Ki Lmin) + r0(K − Ki )Lmax

+ min(ar̄ , (rr̄ max − r0)(a0 − 1))(m − 1)Lmax (20)

where:

a0 =

⌈
K − Ki

m − 1

⌉

ar̄ = μi −

⌊
μi

Ki

⌋
Ki

r0 =

{
0 if Ki ≤ a0

max(min(ar̄ − (a0 − 1)rr̄ max , rr̄ max ), 0) otherwise

rr̄ max = rmax −

⌊
μi

Ki

⌋
(21)

Proof If P − Ki Lmin ≥ Ki (m −1)Lmax , then the worst case occurs for the maximum
number of regulation stalls as illustrated by Fig. 18, which plots the stall per regulation
period as a function of the number of memory accesses in that period. Note that, by
definition of K and given that Lmin ≤ Lmax , it is always the case that P − Ki Lmin ≥

(K − Ki )Lmax .
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The maximum number of periods with regulation stalls in any job of task i is⌊
μi

Ki

⌋
. Let rmax be the maximum number of regulation periods over which the job

can execute. Therefore, when the number of regulation stalls is maximum, (1) the

maximum number of periods without regulation stalls is: rr̄ max = rmax −
⌊

μi

Ki

⌋
, if

μi ≤ Ki · rmax ; and 2) the number of memory accesses in periods without regulation

stalls is: ar̄ = μi −
⌊

μi

Ki

⌋
Ki .

These ar̄ accesses will be distributed over several regulation periods. Let r0 be
the number of these regulation periods with at least a0 memory accesses. Then, by
Lemma 1 and Observation 1, the total contention stall time in all periods without
regulation stalls is:

r0(K − Ki )Lmax +

⎛
⎝ar̄ −

r0∑

j=1

a j

⎞
⎠ (m − 1)Lmax (22)

where a j is the number of memory accesses in regulation period j with at least
a0 memory accesses. To determine the maximum of (22), we consider two cases,
depending on whether a0 is smaller or larger than Ki . Note that, it cannot be a0 = Ki ,
since in this case, we would have a regulation stall upon the a0th access, and therefore
all these accesses would be in periods with regulation stalls.
case 1 If a0 > Ki , then the value of (22) is maximum when r0 is 0.

Indeed, if a0 > Ki then the core stalls before it performs a0 accesses. Thus, (22)
becomes:

ar̄ (m − 1)Lmax by r0 = 0

= min(ar̄ , (rr̄ max − r0)(a0 − 1))(m − 1)Lmax by a0 > Ki and r0 = 0

Indeed:

(rr̄ max − r0)(a0 − 1)

= rr̄ (a0 − 1) by r0 = 0

≥ rr̄ Ki by a0 > Ki

> ar̄

since, otherwise, there would be at least one regulation stall in the rr̄ regulation peri-
ods without regulation stalls. Thus, (20) provides an upper bound on the worst-case
contention stall time.

Case 2 If a0 < Ki . We consider two further cases depending on the number of memory
accesses in periods without regulation stalls.

Case 2.1 If ar̄ ≤ rr̄ max (a0 − 1), then it is possible to distribute all the ar̄ memory
over the rr̄ regulation periods in such a way that there is less than a0 memory accesses
in each regulation period, which by Lemma 1 leads to the worst-case contention stall
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time. Thus, r0 = 0, and therefore, by the same arguments as in Case 1, (20) provides
an upper bound on the worst-case contention stall time.

Note also that in this case, ar̄ ≤ rr̄ max (a0 − 1), the first argument of the min()

function in the second case of (21) is negative, and therefore, (21) takes value 0, as it
should.

Case 2.2 If ar̄ > rr̄ max (a0 − 1), then there must be regulation periods without regu-
lation stalls and with at least a0 memory accesses.

In this case, the value of (22) is maximum when all regulation periods have at least
a0 − 1 memory accesses and we maximize the value of r0. Indeed, as illustrated in
Fig. 18, in regulation periods without regulation stalls and at least a0 memory accesses,
additional memory accesses do not increase the stall time upper bound. On the other
hand, the total stall time on a regulation period increases upon the a0th access.

Thus, in this case, the worst case occurs when each memory access above (a0 −

1)rr̄ max occurs in a different regulation period of the rr̄ max regulation periods without
regulation stalls. However, there are only rr̄ max of these regulation periods, hence the
second argument of the min() function in the second case of (21). Furthermore, in this
case, ar̄ > rr̄ max (a0 − 1), the min() function takes a positive value, and therefore r0
takes the value of the min() function, as it should.

Finally, the first factor of the second term of (22), that is the number of accesses in
periods with less than a0 memory accesses is given by (rr̄ max − r0)(a0 − 1), which
is smaller than ar̄ in this case, ar̄ > rr̄ max (a0 − 1), since r0 ≥ 0. Therefore, (20)
provides an upper bound for the worst-case stall-time also in this case. ⊓⊔

Lemma 10 Let μi ≤ Ki · rmax . If P − Ki Lmin < Ki (m − 1)Lmax , the worst-case

stall time of a job of task i that executes for up to rmax regulation periods, ignoring

any regulation stall upon its first memory access, is upper bounded by:

stallc
i (Ki , rmax ) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

μi (m − 1)Lmax if μi ≤ rmax ar0

(rmax − r0 − rr )ar0(m − 1)Lmax

+r0(K − Ki )Lmax

+rr (P − Ki Lmin) otherwise

(23)

where:

a0 =

⌈
K − Ki

m − 1

⌉

ar0 = min(Ki , a0) − 1

Δ0 = (K − Ki )Lmax − (a0 − 1)(m − 1)Lmax

Δr =
(P − Ki Lmin) − (a0 − 1)(m − 1)Lmax

Ki − (a0 − 1)

rr =

⎧
⎪⎪⎨
⎪⎪⎩

max(0, μi − rmax (Ki − 1)) if Ki < a0 or (Ki > a0 and Δ0 > Δr )

max
(

0,

⌊
μi −rmax (a0−1)

Ki −(a0−1)

⌋)
if Ki > a0 and Δ0 ≤ Δr

0 if Ki = a0
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r0 =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if Ki < a0

max(0, min(μi − rmax (a0 − 1), rmax − rr ))

if Ki > a0 and Δ0 > Δr

max(0, min(μi − (rmax − rr )(a0 − 1) − rr Ki , rmax − rr ))

if (Ki > a0 and Δ0 ≤ Δr ) or Ki = a0

Proof If P −Ki Lmin < Ki (m−1)Lmax , then the worst-case scenario occurs when the
number of contention stalls outside periods with 1) regulation stalls or, by Lemma 1,
2) at least a0 memory accesses, is maximum.

The maximum number of memory accesses per regulation period outside periods
with (1) or (2) is given by ar0 = min(Ki , a0) − 1.

Case 1 μi ≤ rmax ar0 : In this case, all memory accesses may occur outside periods
with (1) or (2) and, by Observation 1, an upper bound of the worst-case stall time is:

μi (m − 1)Lmax (24)

case 2 μi > rmax ar0 : In this case, at least one period will have either a regulation
stall or at least a0 memory accesses. Let rr and r0 be the number of periods of each,
respectively. Then, by Observation 1 and by Lemmas 3 and 1, an upper bound of the
stall time is:

(rmax − r0 − rr )ar0(m − 1)Lmax

+ r0(K − Ki )Lmax + rr (P − Ki Lmin) (25)

To complete the proof, we need to derive the values of r0 and rr . We do that by case
analysis, in which we use the following two parameters:

Δ0 = (K − Ki )Lmax − (a0 − 1)(m − 1)Lmax

Δr =
(P − Ki Lmin) − (a0 − 1)(m − 1)Lmax

Ki − (a0 − 1)

Δ0 denotes the additional stall time upon the a0th memory access, whereas Δr is the
average stall time per memory access after the a0 − 1th, when core i has a regulation
stall. Figure 19 illustrates the meaning of these parameters.

We consider three cases, depending on the relative values of Ki and a0, and we
divide one of these cases in two subcases, depending on the relative values of Δ0 and
Δr .

Case 2.1Ki < a0 : If Ki < a0 then the core will stall before it performs a0 memory
accesses. Therefore r0 is always 0, and, by P − Ki Lmin < Ki (m − 1)Lmax , (25) will
be maximum when rr is minimum. This occurs when all memory accesses are spread
by the rmax periods in such a way that a regulation stall will occur only when all rmax

periods have (Ki − 1) memory accesses. Thus, rr = max(0, μi − rmax (Ki − 1)), if
μi ≤ Ki (⌈Di/P⌉ + 1).
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∆0
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Fig. 19 Stall time in a regulation period as a function of the number of memory accesses, when Δ0 > Δr

Case 2.2 Ki > a0 : By P − Ki Lmin < Ki (m − 1)Lmax and by Lemma 1, (25) will
be maximum when each regulation period has at least (a0 − 1) accesses and either
(1) r0 is maximum, or (2) rr is maximum. This is shown next, using a case analysis
depending on the relative values of the parameters Δ0 and Δr defined above.

Case 2.2.2Δ0 > Δr : This case is illustrated by Fig. 19, which plots the per regulation
period stall as a function of memory accesses per period. By the definition of Δ0 and
Δr , the worst case occurs when the accesses above rmax (a0 − 1) are spread over the
rmax regulation periods so as to maximize r0. In this case, r0 is given by:

r0 = max(0, min(μi − rmax (a0 − 1), rmax − rr ) (26)

Indeed, r0 cannot be lower than 0, and cannot be larger than rmax − rr .
To ensure that r0 is maximum, rr must be minimum and, if μi ≤ Ki (⌈Di/P⌉+ 1),

is given by:

rr = max (0, μi − rmax (Ki − 1)) (27)

Indeed, rr cannot always be 0. Once a job performs Ki − 1 memory accesses in every
regulation period, each additional memory access leads to one additional regulation
stall, thus increasing rr by one.

Note that although Fig. 19 illustrates the case of P − Ki Lmin > (K − Ki )Lmax ,
by definition of Δ0 and Δr , Δ0 > Δr also when P − Ki Lmin = (K − Ki )Lmax and
Ki > a0. (Note that, as shown in the proof of Lemma 3, P−Ki Lmin ≥ (K −Ki )Lmax .)
Case 2.2.1 Δ0 ≤ Δr : This case is illustrated in Fig. 20, which plots the per regulation
period stall as a function of memory accesses per period. By the definition of Δ0 and
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Fig. 20 Stall time in a regulation period as a function of the number of memory accesses, when Δ0 < Δr

Δr , the worst case occurs when the accesses above rmax (a0 − 1) are distributed over
the rmax regulation periods so as to maximise rr . Thus, if μi ≤ Ki (⌈Di/P⌉ + 1), the
maximum number of regulation periods with regulation stalls is:

rr = max

(
0,

⌊
μi − rmax (a0 − 1)

Ki − (a0 − 1)

⌋)
(28)

When all regulation periods have at least (a0 − 1) memory accesses and rr is
maximum (as given by (28)), (25) will be maximum, if r0 is also maximised. This
means, if there are additional memory accesses that are not enough to cause one
additional regulation stall, by Lemma 1, the stall will be maximum if these additional
memory accesses are spread over as many regulation periods as possible, rather than
clustered into a single regulation period. Thus, if μi ≤ Ki (⌈Di/P⌉ + 1), the value of
r0 that maximises (25) is:

r0 = max(0, min(μi − (rmax − rr )(a0 − 1) − rr Ki , rmax − rr )) (29)

Case 2.3Ki = a0 : In this case, every access above rmax (a0 − 1) both causes a
regulation stall and is the a0th access of one regulation period. Thus, for each of
these regulation periods, we have two upper bounds on the per regulation period stall:
(K −Ki )Lmax , by Lemma 1, and P−Ki Lmin , by Lemma 3. Since we want the tightest
upper bound of the total stall, we must use the smallest of these values. Nevertheless,
we can still use (25), as for the other cases, as long as we set r0 and rr to the appropriate
values, derived below.

As shown in Case 2 of Lemma 3, (K − Ki )Lmax ≤ K − Ki Lmin . Therefore,
we consider each additional access as leading to the a0th access, i.e. rr = 0 and
r0 = max(0, μi − rmax (a0 − 1)), if μi ≤ Ki (⌈Di/P⌉ + 1).
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Note that for rr = 0, the expression of r0 in Case 2.2, see (29), reduces to the
expression of r0 in this case. Therefore, we also use (29) for this case in the formulation
of this lemma, thus avoiding to introduce yet another case in the expression of r0. ⊓⊔

Linearisation of constraints

In this section, we present a linearisation of constraints (10), (14), (15) and (17), thus
making the ILP model presented in Sect. 7 strictly linear.

∑

∀ j

∑

∀k

qi jk Kk ≤ K , ∀i (10)

or,
∑

∀ j

∑

∀k

zi jk ≤ K , ∀i

Kk − K (1 − qi jk) ≤ zi jk, ∀i, j, k

zi jk ≥ 0, ∀i, j, k

zi jk ≤ Kk, ∀i, j, k

zi jk ≤ K qi jk, ∀i, j, k

zi jk ∈ [0, K ]

Xk ∈ [0, Q]

Kk ∈ [0, K ]

The zi jk decision variables are the artefacts of the linearisation of (10)—each prod-
uct qi jk Kk is replaced by a variable zi jk—and therefore it is not defined earlier. The
linearisation of constraints (14) and (15) are presented as follows.

fik = 1 ⇒

i−1∑

ℓ=0

qℓ jk = 0, ∀i, j, k (14)

or, (i × fik) +

i−1∑

ℓ=0

qℓ jk ≤ i, ∀i, j, k

lik = 1 ⇒

Q−1∑

ℓ=i+1

qℓ jk = 0, ∀i, j, k (15)

or, (Q − i − 1)lik +

Q−1∑

ℓ=i+1

qℓ jk ≤ Q − i − 1, ∀i, j, k

Similarly, we present the linearisation of (17). Similar to previous case (10), the bi jk

decision variables results from the linearisation of (17) and denote the each product
qi jkc jk .
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c jk = 1 ⇒
∑

∀i

qi jk = Xk, ∀ j, k (17)

or,
∑

∀ j

∑

∀i

qi jkc jk = Xk, ∀k

or,
∑

∀ j

∑

∀i

bi jk = Xk, ∀k,

bi jk ≤ c jk, ∀i, j, k

bi jk ≤ qi jk, ∀i, j, k

bi jk ≥ c jk + qi jk − 1, ∀i, j, k
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