

Towards Real-Time Agreement Protocols
For Many-Cores

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-120905

Version:

Date: 09-10-2012

Borislav Nikolic

Stefan M. Petters

Technical Report HURRAY-TR-120905 Towards Real-Time Agreement Protocols For Many-Cores

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Towards Real-Time Agreement Protocols For Many-Cores
Borislav Nikolic, Stefan M. Petters

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract
Demands for functionality enhancements, cost reductions and power savings clearly suggest the introduction of multi-
and many-core platforms in real-time embedded systems. However, when compared to uni-core platforms, the many-
cores experience additional problems, namely the lack of scalable coherence mechanisms and the necessity to perform
migrations. These problems have to be addressed before such systems can be considered for integration into the real-
time embedded domain. We have devised several agreement protocols which solve some of the aforementioned issues.
The protocols allow the applications to plan and organise their future executions both temporally and spatially (i.e.
when and where the next job will be executed). Decisions can be driven by several factors, e.g. load balancing, energy
savings and thermal issues. All presented protocols are analytically described, with the particular emphasis on their
respective real-time behaviours and worst-case performance. The underlying assumptions are based on the multi-kernel
model and the message-passing paradigm, which constitutes the communication between the interacting instances.

Towards Network-on-Chip Agreement Protocols

Borislav Nikolić and Stefan M. Petters ∗

CISTER/INESC-TEC, ISEP, IPP
Porto, Portugal

borni@isep.ipp.pt, smp@isep.ipp.pt

ABSTRACT
Demands for functionality enhancements, cost reductions and po-
wer savings clearly suggest the introduction of multi- and many-
core platforms in real-time embedded systems. However, when
compared to uni-core platforms, the many-cores experience addi-
tional problems, namely the lack of scalable coherence mechanisms
and the necessity to perform migrations. These problems have to
be addressed before such systems can be considered for integration
into the real-time embedded domain.

We have devised several agreement protocols which solve some
of the aforementioned issues. The protocols allow the applications
to plan and organise their future executions both temporally and
spatially (i.e. when and where the next job will be executed). Deci-
sions can be driven by several factors, e.g. load balancing, energy
savings and thermal issues. All presented protocols are analytically
described, with the particular emphasis on their respective real-time
behaviours and worst-case performance. The underlying assump-
tions are based on the multi-kernel model and the message-passing
paradigm, which constitutes the communication between the inter-
acting instances.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]: Real-time
and embedded systems

Keywords
Real-Time, Many-Core, Embedded Systems, Agreement Protocols,
Worst-Case Execution-Time

∗This work was partially supported by National Funds through FCT (Por-
tuguese Foundation for Science and Technology) and by ERDF (European
Regional Development Fund) through COMPETE (Operational Programme
’Thematic Factors of Competitiveness’), within REPOMUC project, ref.
FCOMP–01-0124-FEDER-015050, by FCT and the EU ARTEMIS JU
funding, within RECOMP project, ref. ARTEMIS/0202/2009, JU grant
nr. 100202 and by FCT and the ESF (European Social Fund) through
POPH (Portuguese Human Potential Operational Program), under PhD
grant SFRH/BD/81087/2011.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’12, October 7-12, 2012, Tampere, Finland.
Copyright 2012 ACM 978-1-4503-1425-1/12/09 ...$15.00.

1. INTRODUCTION
With the current improvements in technology, there is an ever in-

creasing need for embedded systems. So far these devices often had
limited capacities, performed only predefined set of functions and
operated in the conditions with explicitly posed constraints, such as
occupied space and/or consumed power. Additionally, many em-
bedded systems perform time-critical jobs (e.g. automotive indus-
try, avionics), where not only the correctness of the computation
is important, but also the duration of the execution itself. These
systems are called real-time embedded systems.

1.1 Single-core → Multi-core → Many-core
Current real-time embedded systems are mostly single-core de-

vices. However, there are several reasons which require a reassess-
ment of this concept. Firstly, there is an increasing demand for
functionality enhancements (i.e. more complex processing requires
more powerful devices). Secondly, significant cost reduction can be
achieved by integrating several of those devices into one. Very sim-
ilar trends apply for power conservation reasons. Finally, some ap-
plications, due to their distributed nature, clearly demand extensive
communication between interacting modules and can also benefit
from further integration (e.g. trading systems, air traffic control).

The platforms in the server and high performance computing ar-
eas were progressing from single-cores to multi-cores and finally
many-cores. The same evolution is visible in general purpose com-
puters, although with an offset in time. Embedded systems lag even
more behind the aforementioned technologies but the same trend
exists.

However, the application of many-core platforms in the real-time
embedded domain is far from trivial and brings new overheads.
Firstly, isolation has to be provided between different executing
applications (previously located on separate, independent devices).
For instance, failures or misbehaving of one shouldn’t influence the
execution of the other applications which share the same system.
Secondly, the concept of mixed criticalities has to be introduced
and proper isolation has to be assured between applications of dif-
ferent importance.

1.2 Message-passing scalability
�

predictability
Coherency

Finally, current cache coherency mechanisms used in multi-cores
are not applicable to many-core platforms, even for general purpose
computers, due to scalability issues [9]. Current cache policies even
cause performance drops when the number of cores increases to
more than a dozen. [15] claims that future commodity systems will
drop the idea of having a completely coherent system.

Sharing paradigm also imposes additional problems which are
common for both uni- and many-core platforms, namely unpre-
dictability and pessimism. Including the cache effects into the real-

Figure 1: Intel’s Single-Chip-Cloud (SCC)

time analysis presents a serious challenge even for single-cores as
can be seen from the following works: [3] presents the idea how
to incorporate the cache effects into the schedulability analysis by
taking a probabilistic approach, while [18] governs code analysis so
as to predict the cache misses. Performing the same in the many-
core environment is even more complex and one solution to this
outstanding problem is a methodology shift.

Although the message-passing paradigm was introduced many
years ago, it was largely neglected due to the efficiency of the shar-
ing paradigm when applied to the systems with small number of
cores. [13] and [12] show that two approaches are dual and the
dominance of one over another is highly dependant on the concrete
purpose.

Current many-core devices, such as [20] and [10] (Figure 1)
present experimental platforms which don’t facilitate cache coher-
ence mechanisms. The depicted system contains 24 tiles, each
shared by two cores. The cores have private caches and commu-
nicate with the environment through hardware built-in support for
message-passing called Message-Passing Buffer (MPB, see Fig-
ure 1).

Some operating systems, such as Barrelfish [2], advocate a multi-

kernel approach in which every core runs a light-weight version of
the OS. In such a system the kernel instances and respective appli-
cations running on top communicate with the corresponding enti-
ties located on other cores by utilising a message-passing paradigm,
not only to maintain the correct system-wide state, but also to dis-
cuss temporal and spatial properties of future executions. The ben-
efits of this approach are twofold; primarily the scalability is not an
issue anymore, since it is well known from distributed and cloud
computing areas that agreement protocols scale. Secondly, the mes-
sage-passing model is predictable and therefore suitable for real-
time analysis and, in our opinion, presents promising platform for
further investigation. Secondary benefits that come with the design
are the possibilities to perform load balancing, energy savings by
deliberately shutting down some of the cores, thermal management,
even wear out, etc.

The areas of networking, distributed and parallel computing study
agreement protocols with the emphasis on either security [1], [14]
or fault-tolerance [5], [7]. The performance of network-on-chip
synchronisation is discussed in [21] and [6]. Present many-core
scheduling algorithms [4], [11] assume instantaneous migrations
with negligible overhead. However, no work was done in calculat-
ing and incorporating the communication and the migration costs
into the schedulability analysis.

Based on the assumption of a non-coherent many-core platform
utilising message passing as a primary primitive, our contribution is
to present several agreement protocols that facilitate the task-level
job migrations. The protocols provide mechanisms to derive such
a decision but do not prescribe a specific policy for the migration
for e.g. load balancing purposes. All protocols are analytically
described and compared in terms of the amount of messages gener-

Kernel

CoreCoreCore Core

Kernel Kernel

d2

Kernel

d3

Application 1Application i

... ...

......
d1 da
.

db
.

Application j

dc
.

df
.

dg dh

Application n

Figure 2: Architectural structure of the assumed model

ated as well as their worst-case behaviour in successfully migrating
a given job.

In the next section we give an in-detail description of the as-
sumed model. Then, in Section 3 several agreement protocols are
described with particular emphasis on their real-time characteris-
tics. Section 4 focuses on the evaluation of the protocols. Finally,
Section 5 concludes the paper with the summary of the findings,
and the description of the future work.

2. MODEL

2.1 The Hardware
The platform of interest is one many-core device with network-

on-chip as an interconnection network, such as [20], [10] or [19].
The system is non-coherent, which means that assuring and main-
taining correct and coherent system-wide state is the responsibil-
ity of either the OS or the applications themselves. The transfer
on the mesh network is packet-based, utilising wormhole routing
technique [8] with the routes computed by dimensioned-ordered
routing algorithm XY (the packets always travel in the X direction
first) which is present in [10] and [19] platforms. Additionally we
assume the classification of the bus traffic on agreement protocol

messages (in subsequent text referred to as agreement messages)
and data messages transporting the context of a task between cores.
We assign different priorities to these two types of messages and al-
low preemptions on the bus between them, as is presented in [17].
Current many-core platforms, such as [10] have the facilities which
can be instrumented to implement this concept (e.g. virtual chan-
nels and message classes). The purpose of message classification
will be described later.

2.2 The Kernels
Every core in the system runs its own independent kernel in-

stance. All the kernels are mutually connected and constitute the
basic communication facility. The kernel exposes some of its func-
tionalities to the applications so that they can communicate with the
application instances on the other cores. The kernel instances per-
form local, on-core scheduling and give higher priority to protocol-
related OS operations such as sending/receiving agreement/data mes-
sages, and computations related to the agreement protocol, than to
the task execution which is preemptable at any point.

2.3 The Applications
The applications periodically or sporadically generate a sequence

of jobs. The execution of a job has to complete on the core where
it started, but the execution of the next job can commence on some
other core (task-level migrations). Every application a can execute
only on a subset of cores. On each of those cores, the execution
code exists, constituting an entity called dispatcher d. During one

protocol instance, the dispatchers of the same application, each lo-
cated on a different core, communicate between themselves and
agree on the location where the next job will be executed. The
dispatcher that performs the execution at current time instance is

called master dispatcher -
•
d and at any given point in time an ap-

plication has exactly one master. It is also responsible for initiating
the protocol once a job execution on its core is completed. The

other dispatchers are considered as slave dispatchers -
o

d and they
only participate in the protocol execution, until they are elected
master, at which point in time the former master becomes a slave
dispatcher. The example in Figure 2 follows the aforementioned
convention.

After a job execution is completed, a master initiates the pro-
tocol; i.e. it communicates with the slaves in order to select new
master. The messages exchanged by the dispatchers during this
stage are called agreement messages. They are light in size and
have a high priority on the mesh. The new master is selected by
some criteria (least utilised core, the core with the lowest tempera-
ture, the least used core, etc.). The actual policy is immaterial for
the discussion in this paper, but might be centred around e.g. load
balancing or likelihood of successful execution. If the newly se-
lected master is also the current one, then no further activities are
required and the protocol stops until the master executes the next
job and starts the protocol again. In the other case, when the newly
selected master is different from the current one, the migration oc-
curs. It is performed in the following way:

The current master sends the execution context to the new mas-
ter. The context is the state of a task used during the execution of
the next job. Its size depends on the application and may range
from minimal to rather large contexts (e.g. streaming applications).
For that reason the messages carrying the context are classified as
data messages, have lower priority on the mesh and therefore can be
preempted by agreement messages as described in [17]. The pre-
emption points are on the granularity of one packet - the size of the
agreement message mc. Therefore the agreement message can be
blocked on the mesh by data message m

a
d , belonging to some ap-

plication a, for at most one packet traversal time. Similarly, the OS
instructions related to the agreements messages (sending/receiving
of the agreement message l

a
s , l

a
r or protocol related computation

lc) are non-preemptable, serviced in fifo order and have higher pri-
ority than the OS instructions related to the data messages (send-
ing/receiving of the data lds , ldr) which are preemptable at any point.

The selection of the data for the context transfer can be the re-
sponsibility of either the kernels or the applications themselves. In
the first case the local kernel extracts the context from the data sec-
tion of the current master process and sends it to remote kernel
which stores it into the data section of the next master process. In
the latter case the programmers are responsible for classifying the
variables on those which are shared among all the dispatchers and
those which are purely local.

In this work, we assume no dispatcher failures, cross-applications
independence, the protocol is always of higher priority than the task
execution, which is preemptable at any point. In addition to previ-
ously described, we use the following variables:
- ad - the number of dispatchers belonging to application a

- a(d) - the application to which dispatcher d belongs
- c(d) - the core on which dispatcher d is located
- p(d) - the on-core protocol overhead of dispatcher d
- �ma - the maximum number of the agreement messages exchanged
by the dispatchers of the application a during one protocol execu-
tion
- rs - the latency of the router to switch to new port
- rt - the latency of the router to transfer the packet

Figure 3: Master-slave protocol

Algorithm 1 MS(a) The execution algorithm of the protocol MS
Input: a

1:
•
d.broadcast()

2: repeat
3: wait()
4: until (received == ad)

5: d =
•
d.calculate_next()

6: if d! =
•
d then

7:
•
d.send_context(d)

8: end if

- w - mesh width
- T (d) - the minimum inter-arrival time of the application to which
dispatcher d belongs
- C(d) - the execution time of one job of the application to which
dispatcher d belongs
- nh(i) - the number of hops the message i takes when traversing
from the source to the destination
- �nh(d) - the maximum distance in hops between the dispatcher d
and any other dispatcher of the same application

3. THE PROTOCOLS

3.1 Master-slave - MS

3.1.1 Protocol description

For easier comprehension, the protocol is illustrated with Algo-
rithm 1. Firstly, the master dispatcher requests the statuses from all
the slave dispatchers (the statuses can be system parameters such as
current cpu utilisation, temperature, hardware characteristics, line
1). Every slave responds with its current status. Once the master
receives all the replies (line 4) it selects the dispatcher which will
execute the next job and therefore become the new master (line
5). Then, if the master is changing, the migration occurs, so the
current execution context has to be transferred to the new master
(lines 6-8). The aim is to calculate the worst-case protocol duration
- WCPD.

The WCPD consists of several components, as depicted in Fig-
ure 3. It gives a graphical representation of one possible scenario,
with the main objective to recognise and emphasize all the delay
components. Note that in some other example the components
might appear in different order, while some of them might even
not exist. The first one is the execution of the protocol by the ap-
plication of interest in the isolation (without any interference from
the other applications) and we denote it by iso. Additionally, the
master dispatcher can suffer an on-core interference caused by the
other master and slave dispatchers while participating in their own
protocols. These delays we denote by Imm and Ims respectively.
Furthermore, the slave dispatchers can also suffer an on-core inter-
ference caused by the other on-core dispatchers and we recognise
these interferences as Ism and Iss. Finally, the application of inter-
est can suffer the interference from all the other applications within
the network, noted down as In.

The total number of the agreement messages exchanged by the
dispatchers of the application a can be calculated as the sum of
the broadcast messages from the master to all the slaves and their
respective responses:

�ma = 2(ad − 1) (1)
The master is involved in every communication step and there-

fore suffers the overhead of sending and receiving ad−1 messages
and performs a single computation. The slaves communicate with
the master (1 receive, 1 send) and perform 1 computation. It is
important to emphasize that at this stage only the agreement mes-
sages are under analysis. Consequently, the protocol execution on
the master core and on the slave cores causes the following over-
heads:

p(
•
d) = (ad − 1)las + (ad − 1)lar + lc (2)

p(
o
d) = las + lar + lc (3)

Since all the slave dispatchers process their messages in parallel,
it is sufficient to recognise only the one which causes the greatest
delay, while safely assuming that all the others have already fin-
ished their processing before.

Given this, the protocol latency when run in isolation - iso can
be described as the sum of several terms (Equation 4). The first and
the second are the protocol overheads on the master and only one
slave core along with the overheads of sending and receiving the
context, recognised as master delay and slave delay. The traversal
of the messages that two aforementioned dispatchers exchange (the
status request from the master and the response from the slave) is
described with the protocol delay. Since the master is sending out a
number of requests in rapid succession, we need to conservatively
assume that the slave we consider is receiving the message last and
that the reply is equally received last, that is, these two messages
can be blocked within the network by all the other �ma−2 messages
of the same protocol. That delay is described with the interference

delay. In order to analyse the worst-case, in this and all the subse-
quent protocols it is assumed that the context transfer is needed (i.e.
the migration always occurs). The overhead of performing said op-
eration is represented with the context transfer delay. Additional
safe assumption is that the slave of interest is located the furthest
away from the master, when compared to all the other slaves be-
longing to that application. Therefore, the traversal of the messages
that the slave of interest and the master exchange is described with

the term
�
nh(

•
d).

iso =

master delay
� �� �

p(
•
d) + lds +

slave delay
� �� �

p(
o
d) + ldr +

protocol delay
� �� �

2
�
nh(

•
d)

�
mc

w

�
(rs + rt)+

interference delay
� �� �

(�ma − 2)

�
mc

w

�
(rs + rt)+

context transfer delay
� �� �
�
nh(

•
d)

�
md

w

�
(rs + rt) (4)

Furthermore, a master and the slaves may suffer the on-core in-
terference caused by the masters and the slaves of the other appli-
cations, so these values also contribute to the WCPD.

In order to calculate the interference a master dispatcher of in-

terest
•
d suffers from the other on-core master dispatcher

•
d
� within

the time interval t, we firstly compute the maximum number of

protocol executions a master dispatcher
•
d
� can perform during the

interval t.

THEOREM 3.1. The number of protocol executions of any ap-

plication within the time interval t can be at most 1 +
�

t−C(d)
T (d)

�

PROOF. The theorem is proven by contradiction. Let us assume
that 2 +

�
t−C(d)
T (d)

�
protocol executions occurred within the time

interval t. There are
�

t−C(d)
T (d)

�
protocol executions surrounded by

the first and the last and we refer to them as to inner executions. All
the inner executions contribute to t with their entire application pe-
riod and therefore require time interval of at least

�
t−C(d)
T (d)

�
×T (d)

where only these can execute. Additionally, let us assume that � is
infinitesimally low but finite value representing the shortest pos-
sible duration of the protocol and that the first protocol execution
with the duration of � was delayed as much as possible and hence
completed just before the interval of the inner executions started.
Finally, the last protocol execution could not start before its appli-
cation execution time C(d) expires.

�+
�

t−C(d)
T (d)

�
×T (d)+C(d) ≥ �+

�
t−C(d)
T (d)

�
T (d)+C(d) = �+t ≤ t

The calculated value (see Theorem 3.1) is then multiplied by the
overhead of a single protocol execution. Additionally, due to the
higher priority that the protocol-related OS operations have over
data-related, the master dispatcher of interest can suffer the inter-

ference from the context transfer performed by
•
d
� only once (when

it tries to send its own context). The final value is represented with
Equation 5.

Iim(t) =

1 +

t − C(
•
d�)

T (
•
d�)

 p(
•
d�) + lds (5)

If we elevate the reasoning presented in Equation 5 from the sin-
gle on-core master to all the on-core masters, the interference a

master
•
d suffers can be calculated as:

Imm(t) =
�

∀
•
d�∈c(

•
d)∧

•
d� �=

•
d

Iim(t) =

�

∀
•
d�∈c(

•
d)∧

•
d� �=

•
d

1 +

t − C(
•
d�)

T (
•
d�)

 p(
•
d�) + lds

 (6)

The same logic applies for the interference caused by the on-core

slaves
o

d
� to

•
d, where Iis stands for the interference caused by an

individual on-core slave:

Ims(t) =
�

∀
o
d�∈c(

•
d)

Iis(t) =
�

∀
o
d�∈c(

•
d)

1 +

t − C(

o

d�)

T (
o
d�)

 p(
o

d�) + ldr

(7)
Similarly, for the slave dispatcher of interest

o

d we define the in-

terference it suffers from the masters
•
d
� and the slaves

o

d
� located

on its core.

Ism(t) =
�

∀
•
d�∈c(

o
d)

1 +

t − C(
•
d�)

T (
•
d�)

 p(
•
d�) + lds

 (8)

Iss(t) =
�

∀
o
d�∈c(

o
d)∧

o
d� �=

o
d

1 +

t − C(

o

d�)

T (
o
d�)

 p(
o

d�) + ldr

 (9)

Additionally, every existing application a
� can cause the inter-

ference to the application of interest a within the network. We
calculate the network interference delay in a very naïve and sim-
plistic way - Equation 10, i.e. by assuming that every application
can cause the interference.

In(t) =

agreement messages
� �� �
�

a� �=a

�
1 +

�
t − C(a�)

T (a�)

��
�ma�

�
mc

w

�
(rs + rt)+ (10)

data messages (contexts)
� �� �
�

a� �=a

�
1 +

�
t − C(a�) − lds − ldr

T (a�)

���
ma�

d

w

�
(rs + rt)

For every existing application, different than the application of
interest, we calculate the maximum number of protocol occurrences

during the time interval t (Theorem 3.1) and multiply it by the num-
ber of the agreement messages that the dispatchers of that applica-
tion produce within the time of a single protocol execution. This
value represents the maximum number of agreement messages that
can utilise the network in the given time and that can belong to all
the applications a� different than the application of interest a. Fur-
ther, we conservatively assume that every one of those messages
may block the application of interest. Finally, we calculate the max-
imum number of context transfers that can happen in a given time
interval (the proof is a slight modification of the Theorem 3.1 and
is therefore omitted). The same reasoning used for the agreement
messages applies here; we assume that the context transfer of every
application a

� different than the application of interest a may block
the context transfer of a within the network and hence causes the
interference.

Therefore, the total delay WCPD for the master m and the
slave s is represented as the sum of all the aforementioned com-
ponents:

WCPD(m, s) =

isolation
����
iso +

master core interference
� �� �
Imm(WCPD) + Ims(WCPD)+

slave core interference
� �� �
Ism(WCPD) + Iss(WCPD)+

network
� �� �
In(WCPD) (11)

Due to the space constraints, inefficiency of this protocol and
general non-applicability to the real-time domain, which will be
discussed in the subsequent section, the process of finding the crit-
ical slave s (one that induces the greatest latency) for which the
calculation would be performed is of no importance. Additionally,
the solutions to the Equations 6-9 require a concrete classification
of the on-core dispatchers (i.e. the exact information about which
will be assumed as masters and which as slaves), so as to produce
the greatest interference. This step of finding that particular setup
is also omitted. Still, this protocol is presented because, given its
simplicity, it is useful for the introduction of basic analytic parame-
ters and helps the reader to develop an intuition about the assumed
model, which will be helpful when reasoning about subsequent,
more complex protocols.

3.1.2 Protocol limitations

The decision made on the master core is based on the data re-
ceived from every individual slave. However, in the moment the
master makes a decision, there are no guarantees that the state of the
system on all the slave cores is identical as in the moment of their
individual observations. One extreme, yet possible scenario occurs
when one slave reports very high likelihood of accommodating the
next execution on its core (e.g. the core is low utilised). Addition-
ally, many other dispatchers from the same core might have also
reported low utilisation during their protocol executions. As a re-
sult many of the applications might elect that particular core for
the next execution and hence overload it, i.e. the sum of the in-
dividual utilisations of the applications might exceed the capacity
of the core. We recognise the race condition as the greatest flaw
of this approach. The protocol performance will receive additional
attention in Section 4.

3.2 List
3.2.1 Protocol description

One approach in solving the aforementioned problem would be
to change the topology of the connections between the dispatchers
of the same application. Forming a linked list of dispatchers, be-
sides reducing the total number of the messages, presents a concept
that also excludes parallel processing through atomicity and as such
is not prone to race conditions. Every dispatcher communicates
only with its predecessor and successor in the list. The behaviour

Figure 4: List protocol

Algorithm 2 LIST(a) The execution algorithm of the protocol LIST
Input: a
1: a.scheduled = false

2: d =
•
d

3: repeat
4: if (c(d).can_schedule(a)) then
5: a.scheduled = true

6: if (d =
•
d) then

7: {master stays the same}
8: else
9: d.request_context(

•
d)

10: end if
11: else
12: d = d.next
13: end if
14: until (a.scheduled = true)||(d = null)

of the protocol is described with the Algorithm 2. When the pro-
tocol starts, firstly the master checks whether it can continue the
execution and if so, stops the protocol (lines 4-7). In the other case,
a master sends the message to the next dispatcher to try to schedule
the application (line 12). If one of the slaves can do that, it rec-
ognizes itself as the new master and requests the context from the
previous master dispatcher (lines 8-9). If during the whole traversal
of the list none of the dispatchers can fit the execution on its core,
the application is considered as not scheduled.

�ma = ad (12)

p(
•
d) = p(

o
d) = lc + las + lar (13)

The maximum number of the messages is equal to the total num-
ber of slave dispatchers ad − 1 (in order to reach the tail of the list
all of them have to be traversed) and 1 to request the context from
the old master. The protocol overhead a master and all the slaves
suffer is the same (1 send, 1 receive and 1 compute operation), how-
ever the master and only one of the slaves may additionally have to
perform the transfer of the context. As stated in the description of
the previous protocol, the worst-case analysis will assume that the
migration occurs and therefore will incorporate that overhead into
the calculation of the WCPD. Additional conservative assumption
we exploit is that only the last dispatcher in the list will announce
the possibility to schedule the application and hence the traversal
of the entire list is required. For easier comprehension the WCPD
is decomposed into several components, as depicted in Figure 4.
Similarly to Figure 3, note that it illustrates only one possible sce-
nario and that the ordering of the components is purely example
specific.

iso =

master delay
� �� �

p(
•
d) + lds +

slaves delay
� �� �
�

∀
o
d∈a

p(
o
d) + ldr +

protocol delay
� �� �
�ma�

i=1

nh(i)

�
mc

w

�
(rs + rt)+

context transfer delay
� �� �
�
nh(

•
d)

�
md

w

�
(rs + rt) (14)

Algorithm 3 MMD(
•
d, t) Maximum master delay over period t

Input:
•
d, t

Output: delay
1: lmm = lms = Ø

2: for all d ∈ c(
•
d) do

3: if (size(lmm) < �dm − 1) then
4: ADD(lmm, d)
5: else
6: if (Iim(t) > min(lmm)) then
7: MOVE(lms, min(lmm))
8: ADD(lmm, d)
9: else
10: ADD(lms, d)
11: end if
12: end if
13: end for
14: for all d ∈ c(

•
d) do

15: if (d ∈ lmm) then
16: delay+ = Iim(t)
17: else
18: delay+ = Iis(t)
19: end if
20: end for
21: RETURN delay

The protocol overheads of the master and all the slaves con-
tribute to the delay of the execution performed in isolation (see
Equation 14). They are described with the terms master delay and
slaves delay respectively and also include the on-core overheads of
context transfer. Note that only one slave dispatcher (future mas-
ter) receives the context. The traversal of the messages within the
network is denoted by protocol delay. In this protocol the messages
are sequentially sent and hence can not mutually interfere. There-
fore the term interference delay described in the previous protocol
does not exist here but at the same time all the messages contribute
to the protocol delay with their entire traversal times. The last term
accounts for the transmission of the context.

For the on-core interferences Imm, Ism, Ims, Iss and for the net-
work interference In the Equations 6-10 hold. Therefore, WCPD

can be expressed by the Equation 15, where
�

d presents the next
master.

The previous and the next master can suffer the interference
two times (see Figure 4); when performing the protocol routine and
when sending/receiving the state. Note that these intervals are not
of the same duration. The exact analysis, which requires the con-
sideration of said intervals as well as the distance between them
when calculating potential interferences, is cumbersome, computa-
tionally demanding and in our opinion unjustifiable approach. On
the other hand, treating these intervals independently (i.e. not tak-
ing the distance into account) and assuming all the potential in-
terferences that might occur in any of said intervals is very pes-
simistic and still computationally demanding. We obtain less pes-
simistic values and save the computation time by considering the
entire WCPD as a single interval of interest during which both pre-
vious and next master may suffer the interference. The calcula-
tion performed for the current master is trivial, however in order to
compute the worst-case delay of the future master, the slave which
might suffer the greatest interference in the given period has to be
recognised and used in further calculations.

WCPD(
•
d,

�
d) =

isolation
����
iso +

master core interference
� �� �
Imm(WCPD) + Ims(WCPD)+

network
� �� �
In(WCPD)+

interference on slave cores /
�
d

� �� ��

∀
o
d∈a∧�=

�
d

�
Ism(t�) + Iss(t

�)
�
+

next master core interference
� �� �
Ism(WCPD) + Iss(WCPD) (15)

Algorithm 4 MSD(
o
d, t) Maximum slave delay over period t

Input:
o
d, t

Output: delay
1: lmm = lms = Ø

2: for all d ∈ c(
o
d) do

3: if (size(lsm) < �dm) then
4: ADD(lsm, d)
5: else
6: if (Iim(t) > min(lsm)) then
7: MOVE(lss, min(lsm))
8: ADD(lsm, d)
9: else
10: ADD(lss, d)
11: end if
12: end if
13: end for
14: for all d ∈ c(

o
d) do

15: if (d ∈ lsm) then
16: delay+ = Iim(t)
17: else
18: delay+ = Iis(t)
19: end if
20: end for
21: RETURN delay

All the other slaves can suffer the interference from all the other
dispatchers residing on their respective cores only once - when they
are performing their protocol routine (receive the message from the
predecessor l

a
r , unsuccessfully try to schedule the application lc,

send the message to the successor in the list las). Therefore, for
every slave the greatest possible interference from the on-core dis-
patchers (Ism, Iss) within that time interval t� has to be calculated.
The relationship between the time t

� and the interference suffered
within that time is expressed with Equation 8 and Equation 9.

Note that some of the terms that constitute the WCPD are cal-
culated by solving the Equations 6-10, which have a recursive no-
tion and the calculation of the exact values requires an iterative
approach. Also note that these Equations assume that for all the on-
core, potentially blocking dispatchers it is already known whether
they are masters or slaves, which is not true at the beginning of the
calculation process. In order to solve this problem we firstly intro-

duce two helper functions MMD(
•
d, t) and MSD(

o

d, t) presented
by Algorithm 3 and Algorithm 4 respectively.

Algorithm 3 calculates the maximum delay a master dispatcher
can suffer from the other on-core dispatchers within the time inter-

val t: MMD(
•
d, t) = Imm(t)+Ims(t), and similarly Algorithm 4

calculates the maximum delay a slave dispatcher might suffer from

the on-core dispatchers within the time interval t: MSD(
o

d, t) =
Ism(t) + Iss(t). Every dispatcher residing on the core of interest
can be either master or slave. The aim is to find the assignment (i.e.
which dispatchers should be considered as masters and which as
slaves) that will lead towards the greatest possible interference suf-
fered by the master (for MMD) or the slave (for MSD) dispatcher
of interest. Both algorithms exploit the strategy of finding the dis-
patchers that can induce the most protocol-related overhead within
observed time and assume them as the masters, while considering
all the others as the slaves. Note that the only difference is that
MMD already assumes one preselected master - the master of in-
terest, while that is not the case with the MSD.

Firstly, the lists of the on-core masters lmm and the on-core
slaves lms are cleared (line 1). Then, the iterations cover all dis-
patchers residing on that core. If the number of currently assumed
master dispatchers is less than the maximum allowed number of the
masters per core �dm, the dispatcher is declared as one and added to
the list (lines 3, 4, 5). If the master list is full, but the dispatcher,

Algorithm 5 WCPD(
•
d) The worst-case delay of the protocol List

Input:
•
d

1: delay = 0

2: for all
o
d ∈ a(d) do

3: t� = lar + lc + las
4: repeat
5: t� = MSD(

o
d, t�)

6: until balanced(t�)
7: end for
8: repeat

9: MMD(
•
d, delay)

10: wc_slave_delay = 0

11:
�
d = null

12: for all
o
d ∈ a(d) do

13: if (MSD(
o
d, delay) > wc_slave_delay) then

14: wc_slave_delay = MSD(
o
d)

15:
�
d =

o
d

16: end if
17: end for
18: delay = WCPD(

•
d,

�
d)

19: until fix_point(delay)
20: RETURN delay

acting as a master, can incur the delay greater than the minimum
of all the existing masters, it will automatically be assumed as one,
causing the master with the minimum delay to be demoted to the
slave group (lines 6, 7, 8). Otherwise, the dispatcher is added to the
slave group (line 10). Therefore, the calculation of the total delay
is a cumulative process and includes the summation of the master
delay of all the dispatchers belonging to lmm and the slave delay of
the dispatchers belonging to lms (lines 14-20). The complexity of
the algorithm is O(�dc × �dm × log(�dm)), where �dc stands for the
maximum number of the dispatchers per core (the number of itera-
tions performed), while �dm × log(�dm) presents the computational
complexity of keeping the master list sorted. Algorithm 4 behaves
in very similar way, has the same complexity and does not require
further discussion.

Finally, the Algorithm 5 performs the calculation of the WCPD.
Firstly, for all the slaves the interference they suffer during their

protocol routine MSD(
o

d, t
�) = Ism(t�) + Iss(t

�) is calculated
(lines 2-6). Then, the maximum interference a master may locally
suffer within the observed time is computed (line 9). In order to find
the future master, the maximum interference is calculated for all
the slaves and their respective cores (lines 10-17). The aim of this
computation is to find the critical slave (one suffering the greatest
interference within the observed time) and recognise it as the next
master dispatcher, while conservatively assuming that it is posi-
tioned at the end of the list. For all the other slaves the interference
they suffer from the on-core dispatchers is already calculated (lines
2-6). Then, the total delay is augmented (line 18) and fed back into
the calculation of the individual terms. The procedure repeats un-
til the equation reaches the fix point (line 19). The computational
complexity of the algorithm is O(ad × C × n), where C stands
for the complexity of the algorithm MSD (calculated above), and n

corresponds to the number of performed iterations before comple-
tion.

3.2.2 Protocol limitations

The execution stops at the moment when one of the traversed
dispatchers announces the possibility to perform the execution. In
most cases that dispatcher might not be the optimal option, e.g.
some other core yet not traversed might have better characteristics.
As implicitly stated, the greatest limitation of this protocol is that

Algorithm 6 HYBRID(a) The execution algorithm of the protocol HYBRID
Input: a

1:
•
d.broadcast()

2: repeat
3: wait()
4: until (received == ad)

5: list =
•
d.calculate_list()

6: a.scheduled = false
7: d = list.next()
8: repeat
9: if (c(d).can_schedule(a)) then
10: a.scheduled = true
11: else
12: d = list.next()
13: end if
14: until (a.scheduled)

15: if (d =
•
d) then

16: {master stays the same}
17: else
18: d.request_context(

•
d)

19: end if

it always traverses the list in predefined, non-intelligent order and
therefore is unable to easily perform any selective scheduling for
load balancing, power management or any other purpose. If those
issues are of no importance, then this concept presents one of the
most suitable options, due to its low complexity. The performance
of the protocol is additionally analysed in Section 4.

3.3 MS + LIST = HYBRID
3.3.1 Protocol description

In order to solve the aforementioned problems, a protocol named
HYBRID is presented. It combines two already covered approaches
with the primary objective of gaining the benefits of their respective
positive sides.

The protocol is described with the Algorithm 6. The execution
can be divided into two phases. The first one is similar to the MS
protocol - the master broadcasts the request for the statuses of all
the slave dispatchers and waits for corresponding responses (lines
1-4). Upon receiving all the messages, the master generates the list
where all the dispatchers are ordered by the preference and likeli-
hood of accommodating the next execution (line 5). Then, the sec-
ond phase begins and it is similar to the execution of the List proto-
col. The dispatchers are being sequentially traversed according to
their position in the generated list. The first one which announces
the possibility to schedule the application stops the protocol (lines
7-14). We further apply the same conservative assumption used in
the List protocol; the last dispatcher in the list is the only one that
announces the possibility to schedule the application, and hence the
list is entirely traversed.

�ma =

�ma(ms)
� �� �
2(ad − 1)+

�ma(list)
����
ad (16)

p(
•
d) = (ad + 1)las + (ad + 1)lar + 2lc (17)

p(
�
d) = 2(lar + lc + las) (18)

p(
o
d) = lar + lc + las (19)

The total number of the messages is equal to the sum of the mes-
sages exchanged during the execution of the MS protocol: �ma(ms)
and the List protocol: �ma(list). The number of the messages a
master and all the slaves exchange is also equal to the sum of the

individual terms from both algorithms. Dispatcher
�
d represents the

one whose first phase (master-slave part of the protocol) executed
with the greatest latency when compared to all the other dispatchers
and we refer to it as to the critical slave. Due to the parallel nature

of this process, for all the other slaves it can be assumed that their
master-slave part finished before that of critical slave. Therefore,
only the messages they exchange during the second phase (list part
of the protocol) directly contribute to the delay, while the messages
they exchange during the first phase contribute only indirectly (can
interfere with the two messages the critical slave exchanges with
the master, also in the first phase of the protocol).

The protocol execution when running in isolation is described
with Equation 20. Firstly, the overhead of executing the protocol
by the master, the critical slave and all the other slaves are recog-

nised as master delay, critical slave delay and all slaves /

�
d delay,

respectively. Then, the latency of the two messages a master and
the critical slave exchange during the first phase of the protocol is
denoted by MS delay. Additionally, all the messages exchanged by
the other dispatchers during this phase (�ma(ms)− 2) could poten-
tially block the aforementioned two messages within the network
and that delay is recognised as interference delay. In the second
stage the messages are sequentially sent and processed so no fur-
ther interferences can be caused by the messages of the same pro-
tocol. LIST delay stands for the latency of their traversal. Finally,
the context transfer additionally augments the calculated value.

iso =

master delay
����

p(
•
d) +

critical slave delay
� �� �

p(
�
d) +

all slaves /
�
d delay

� �� �
�

∀
o
d∈a∧�=

�
d

p(
o
d) +

MS delay
� �� �

2
�
nh(

•
d)

�
mc

w

�
(rs + rt)+

interference delay
� �� �

(�ma(ms) − 2)

�
mc

w

�
(rs + rt)+

LIST delay
� �� �
�ma(list)�

i=1

nh(i)

�
mc

w

�
(rs + rt)+

context transfer delay
� �� �

lds + ldr +
�
nh(

•
d)

�
md

w

�
(rs + rt)

(20)

By
�

d we denote the future master. Although it is of no im-
portance for the calculation of iso, it has a huge impact on the
WCPD and has to be recognised. There are several additional fac-
tors which also contribute, namely the interferences a master and
the slaves suffer from the other on-core master and slave dispatch-
ers (Imm, Ism, Ims, Iss). Additionally, all the applications may
block the messages of the application of interest within the network
(In). For all of these terms the Equations 6-10 hold.

In order to calculate the interferences the current master
•
d and

the next master
�

d may suffer we apply the same reasoning as for
the List protocol; assume that the entire WCPD is an interval where
the interferences might occur.

The critical slave
�
d may suffer the interference at most twice

(once during both phases of the protocol). Since the exact analy-
sis is computationally demanding and the intervals are of the same
length, we take an slightly modified approach: 1) calculate the in-
terference during one interval and double it so as to assume two
independent intervals of equal length, 2) calculate the interference
during entire WCPD treating it as a single interval 3) take the min-
imum of those two, which represents a less pessimistic value.

All the other slaves may suffer the interference only once (dur-
ing the second phase of the protocol), since the interference they
suffer in the first phase of the protocol is already incorporated in
the interference the critical slave suffers. The term t

� has the same
meaning as in the List protocol.

The solution to the Equation 21 requires an iterative approach.
The calculation steps are described with the Algorithm 7. Firstly,
for every slave the minimum interval t� and the interference suf-

Algorithm 7 WCPD(
•
d) The worst-case delay of the protocol Hybrid

Input:
•
d

1: delay = 0

2: for all
o
d ∈ a(d) do

3: t� = lar + lc + las
4: repeat
5: t� = MSD(

o
d, t�)

6: until balanced(t�)
7: end for
8: repeat

9: MMD(
•
d, delay)

10: next_master_delay = 0

11:
�
d = null

12: for all
o
d ∈ a(d) do

13: if (MSD(
o
d, delay) > next_master_delay) then

14: next_master_delay = MSD(
o
d)

15:
�
d =

o
d

16: end if
17: end for
18: crit_sl_delay = 0

19:
�
d = null

20: for all
o
d ∈ a(d)∧ �=

�
d do

21: if (min{2 × MSD(
o
d, t�),MSD(

o
d, delay)} > crit_sl_delay)

then
22: crit_sl_delay = min{2 × MSD(

o
d, t�),MSD(

o
d, delay)}

23:
�
d =

o
d

24: end if
25: end for

26: delay = WCPD(
•
d,

�
d,

�
d)

27: until fix_point(delay)
28: RETURN delay

fered during that time are calculated (lines 2-7). Then, the delay a
master suffers during the observed time interval is computed (line
9). The next master is found such that it causes the maximum pos-
sible delay within observed time (lines 10-17). Then, the critical
slave is recognised (lines 18-25). For all the other slaves the maxi-
mum interference is already computed (lines 2-7). Finally, the cal-
culation of the WCPD is performed with the selected dispatchers
and their respective roles (current master, next master and critical
slave, line 26). Note that in order to elaborate the scenario which
causes the greatest delay, it is required to assume that the next mas-
ter and the critical slave are not the same dispatcher, although in the
actual execution it may happen. The process repeats until WCPD
reaches fix point (line 27). The computational complexity is twice
of that for List protocol.

WCPD(
•
d,

�
d,

�
d) =

isolation
����
iso +

master core interference
� �� �
Imm(WCPD) + Ims(WCPD)+

network
� �� �
In(WCPD)+

latest slave
�
d core interference

� �� �
min

�
2
�
Ism(t�) + Iss(t

�)
�
, (Ism(WCPD) + Iss(WCPD))

�
+

next master
�
d core interference

� �� �
Ism(WCPD) + Iss(WCPD) +

slave cores interference / {
�
d,

�
d}

� �� ��

∀
o
d∈a∧�=

�
d∧�=

�
d

�
Ism(t�) + Iss(t

�)
�

(21)

3.3.2 Protocol limitations

During the master-slave part of the protocol, all the dispatch-
ers are queried for their current statuses, while during the list part
they sequentially try to schedule the application. The strategy of
the protocol is to firstly attempt to assign the execution to those
dispatchers which reported the best possible environment for the

accommodation of the next execution. Due to its optimistic nature,
when compared to the other protocols, this one has higher probabil-
ities of completing before the WCPD, but at the expense of greater
number of messages. In fact, since the most suitable candidates are
checked firstly, it is reasonable to expect that they will be able to
accommodate the execution and therefore stop the protocol at early
stages. Note that the race condition still exists but its effect is mit-
igated. The behaviour of the protocol is the focus of subsequent
section.

4. EVALUATIONS
The experiments were performed on the extended version of the

simulator SPARTS [16]. The 2D-mesh characteristics have been
chosen to be equivalent to those available for SCC [10], while for
OS operations we assume latencies valid for present micro-kernels
(OS calls for accessing the local router to send/receive the mes-
sage). The aim is to observe the relations between the predicted and
the measured WCPD for different protocols under a given work-
load. Additionally, by varying the number of dispatchers we inves-
tigate how this protocol parameter and the amount of traffic influ-
ence aforementioned relations and affect the overall protocol be-
haviour. We allow the mapping of the dispatchers to the cores to
be a random process, since dispatcher placement is not in the scope
of this paper. We test three presented protocols, each of them with
synchronous and asynchronous application releases. In the former
case, the idea is to trigger and observe the state where all the appli-
cations in the system try to communicate at the same time (i.e. to
generate significant network contention), while the latter models a
more realistic scenario.

WCET of protocol-related OS operations (las , l
a
r , lc, l

d
s , l

d
r) 100.000 cycles

Router switch time (rs) 1 cycle
Router transfer time (rt) 3 cycles

2D mesh width (w) 16 bytes
Agreement message size (mc) 4 bytes

Data message size (ma
d) 1024 bytes

4.1 Observing the pessimism
We simulate the execution of 200 applications on a 10×10 plat-

form. The applications are represented with 5 dispatchers each,
have the utilisation of 25% and constitute the workload with the
overall system utilisation of 50%.

In Figure 5 the horizontal axis represents the measured WCPD,
expressed as the fraction of the analytical (theoretical) WCPD. The
vertical axis stands for the amount of the applications which fall
into given category (certain ratio between observed and calculated
WCPD), expressed as the percentage of the total application-set
size.

Since the MS protocol always generates the constant amount of
messages, it induces the least amount of pessimism. As a conse-
quence, measured WCPD represents greater fraction of calculated
WCPD than in other protocols.

As expected, the List protocol overestimates the number of mes-
sages (always assumes the traversal of the entire list while in real
cases it does not occur often) and hence induces greater pessimism.

The Hybrid protocol consists of the messages of the both afore-
mentioned approaches. Since the messages exchanged in the first
phase of the protocol follow the logic explained for the MS proto-
col (are constant), and since they constitute 2/3 of the maximum
number of messages, it is reasonable to expect that the pessimism
induced by the Hybrid protocol will place it in between of two
aforementioned approaches. However, the fact that the Hybrid ap-
proach sorts the dispatchers and traverses them according to desired
criteria has a significant impact. As a consequence, the number
of visited dispatchers is small and hence the protocol is efficient,

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

18

20

Ratio between measured and calculated WCET, in %

Q
u
a
n
tit

y
o
f
a
p
p
lic

a
tio

n
s,

 in
 %

 o
f
th

e
 a

p
p
lic

a
tio

n
−

se
t
si

ze

MSSync
MSNon−Sync
ListSync
ListNon−Sync
HybridSync
HybridNon−Sync

Figure 5: Distribution of pessimism

which results with low execution times and high pessimism. On
the other hand, the List protocol pays the price of non-intelligent
pre-determined traversing order, causing many long routes which
eventually result with longer execution times and lower level of
pessimism. Due to aforementioned facts, the amount of pessimism
is greater in the Hybrid than in the List protocol.

As expected it holds for all the protocols that the synchronous
releases create additional overhead as a result of the extensive amo-
unt of traffic generated in short periods of time and hence cause
longer execution times and less pessimism.

4.2 Parameter variations
The aim is to observe how parameter changes influence the be-

haviour of the protocols. The simulation inputs are equal to ones
used in the previous experiment, with the only difference that the
number of the dispatchers that form an application is not constant
and ranges from 2 to 15.

In Figure 6 and Figure 7 the horizontal axis represents the num-
ber of dispatchers per application. The vertical axis in Figure 6
stands for the measured WCPD, expressed as the percentage of the
analytic WCPD, while in Figure 7 the absolute values of the afore-
mentioned terms are presented.

The MS protocol with non-synchronised releases shows approx-
imately constant level of pessimism on the whole domain. The in-
crease of the pessimism in the beginning of the graph is explained
with low saturated network and the overestimation of the network
congestion. As the number of the dispatchers and hence messages
increase, the pessimism slowly starts decreasing. Very similar rea-
soning applies for MS protocol with synchronised releases; fewer
messages and simultaneous protocol executions cause low amount
of pessimism. Until certain point, the network successfully copes
with the increased amount of the dispatchers and the messages,
hence causing the raise of the pessimism. Near the end of the graph,
the traffic congestion becomes more significant and similar trend of
slight pessimism decrease is noticeable.

As expected, both the List protocol runs (with and without syn-
chronous releases) show the decrease of the pessimism when the
number of the dispatchers increases. The explanation is that in
many cases the dispatchers placed near the end of the list are not
traversed, while the analysis always assumes the traversal of the en-
tire list. Figure 7 demonstrates that on the most of the domain addi-
tional dispatchers cause a barely noticeable increase of the WCPD,
confirming previous statement that the dispatchers positioned in the
list far from the master are in most of the cases not used. However,
after a certain point, the protocol starts to pay the price of predeter-
mined, non-intelligent traversing, hence causing long routes as a re-

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

The number of dispatchers per application

R
a
tio

 b
e
tw

e
e
n
 m

e
a
su

re
d
 a

n
d
 c

a
lc

u
la

te
d
 W

C
P

D
,
in

 %

MS−Sync
MSNon−Sync
List−Sync
ListNon−Sync
Hybrid−Sync
HybridNon−Sync

Figure 6: The impact of the number of the dispatchers on the
protocol delay

2 3 4 5 6 7 8 9 10 11 12 13 14 15

10
6

10
7

10
8

10
9

The number of dispatchers per application

M
e
a
su

re
d
 a

n
d
 c

a
lc

u
la

te
d
 W

C
P

D
,
in

 lo
g
a
ri
th

m
ic

 s
ca

le

MS predicted
MS−Sync measured
MSNon−Sync measured
List predicted
List−Sync measured
ListNon−Sync measured
Hybrid predicted
Hybrid−Sync measured
HybridNon−Sync measured

Figure 7: The impact of the number of the dispatchers on the
protocol delay

sult of frequent visits to the dispatchers which can’t accommodate
the execution. Therefore, significant decrease of the pessimism
near the end of the graph is visible, leading to a counter-intuitive
conclusion that this protocol does not scale when the number of
dispatchers is more than a dozen.

Finally, when compared to the List, the Hybrid protocol shows
similar behaviour and due to the safe assumption of the entire list
traversal causes steady decrease in the pessimism as the number of
the dispatchers increases. However, after a certain point, the Hy-
brid protocol pays the price of the extensive communication, causes
network congestion and shows steady but only temporary increase
in WCPD in the middle of the graph. One surprising conclusion
drawn from the Figure 7 is that there exists an interval (between 3
and 8 dispatchers) where the Hybrid protocol has a shorter WCPD
than MS protocol, despite the fact that it always induces more mes-
sages. The explanation is that Hybrid efficiently selects the next
master dispatcher, while MS protocol due to race conditions causes
fragmentation and highly loaded cores, where on-core overhead of
the communication becomes a predominant factor. Additional sur-
prising fact is that the Hybrid protocol successfully copes with the
network congestion by drastically minimising the duration of its
second phase (i.e. efficiently finding the next master dispatcher,
unlike the List protocol). As is visible in Figure 6 and Figure 7, the
Hybrid protocol scales well, shows good average and worst-case
performance in both relative and absolute values, but causes high
pessimism which is a price paid for more complex analysis.

5. CONCLUSIONS AND FUTURE WORK
In this paper we presented the model for incorporation of many-

core platforms into the real-time domain. It is based on the multi-
kernel paradigm and utilises message-passing as a communication
primitive. We devised several agreement protocols and analytically
described their characteristics. Through simulations, we tested said
protocols and compared the measured WCPD against analytical
predictions, so as to evaluate the pessimism of the analysis. Finally,
we gave a head-to-head comparison of all the protocols, where we
compared corresponding WCPDs and elaborated on the individual
potentials for scalability.

The future work can include further simulations of concrete ap-
plications and protocols, in order to observe the deviations between
the WCPD and the average cases, but also for the comparison be-
tween the measured and theoretically predicted WCPD. The sim-
ulations can also be used to give head-to-head comparison of dif-
ferent protocols in terms of efficiency, e.g. when analysing gener-
ated traffic, power management or load balancing. The model and
the respective protocol overheads can be integrated in the schedul-

ing analysis. Furthermore, new protocols can be devised with the
characteristics which fit some particular requirements: strong guar-
antees, good average-case behaviour, limited communication, dis-
patcher failure, etc. Finally, the placement of the dispatchers be-
longing to one application (locality) is of great importance and
tighter bounds could be derived with some assumptions which are
addressing that issue.

6. REFERENCES
[1] Y. Amir, Y. Kim, C. Nita-Rotaru, and G. Tsudik. On the performance of group

key agreement protocols. In 22th ICDCS, 2002.
[2] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe,

A. Schüpbach, and A. Singhania. The multikernel: A new os architecture for
scalable multicore systems. In SOSP, 2009.

[3] G. Bernat, A. Colin, and S. M. Petters. WCET analysis of probabilistic hard
real–time systems. In 24th RTSS, pages 279–288, Austin, Texas, USA, Dec 3–5
2002.

[4] K. Bletsas and B. Andersson. Preemption-light multiprocessor scheduling of
sporadic tasks with high utilisation bound. In 30th RTSS, 2009.

[5] S. Chakravorty and L. Kale. A fault tolerance protocol with fast fault recovery.
In PDPS, 2007.

[6] X. Chen and S. Chen. Dsbs: Distributed and scalable barrier synchronization in
many-core network-on-chips. In TrustCom, 2011.

[7] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira. Hq replication: a
hybrid quorum protocol for byzantine fault tolerance. In 7th OSDI, 2006.

[8] W. Dally and C. Seitz. The torus routing chip. Distr. Comput., 1986.
[9] N. Eisley, L.-S. Peh, and L. Shang. In-network cache coherence. J. Comp. Arch.

Lett., 2006.
[10] Intel. Single-Chip-Cloud Computer.

http://techresearch.intel.com/ProjectDetails.aspx?Id=1.
[11] S. Kato, N. Yamasaki, and Y. Ishikawa. Semi-partitioned scheduling of sporadic

task systems on multiprocessors. In 21st ECRTS, 2009.
[12] H. C. Lauer and R. M. Needham. On the duality of operating system structures.

SIGOPS Oper. Syst. Rev., 1979.
[13] T. LeBlanc and E. Markatos. Shared memory vs. message passing in

shared-memory multiprocessors. In PDPS, 1992.
[14] P. Lee, J. Lui, and D. Yau. Distributed collaborative key agreement protocols for

dynamic peer groups. In Int. Conf. Netw. Protocols, 2002.
[15] T. G. Mattson, R. Van der Wijngaart, and M. Frumkin. Programming the intel

80-core network-on-a-chip terascale processor. In Int. Conf. Supercomp., 2008.
[16] B. Nikolić, M. A. Awan, and S. M. Petters. SPARTS: Simulator for power

aware and real-time systems. In 8th IEEE Int. Conf. Emb. Softw. & Syst.,
Changsha, China, Nov 2011. IEEE.

[17] Z. Shi and A. Burns. Real-time communication analysis for on-chip networks
with wormhole switching. In Int. Symp. Netw.-on-Chip, 2008.

[18] F. Stappert and P. Altenbernd. Complete worst-case execution time analysis of
straight-line hard real-time programs. J. Syst. Arch., 46:339–355, Feb 2000.

[19] Tilera. TILEPro64 Processor.
http://www.tilera.com/products/processors/TILEPRO64.

[20] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan,
A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts, Y. Hoskote, N. Borkar,
and S. Borkar. An 80-tile sub-100-w teraflops processor in 65-nm cmos. J.

Solid-State Circ., 2008.
[21] O. Villa, G. Palermo, and C. Silvano. Efficiency and scalability of barrier

synchronization on noc based many-core architectures. In CASES, 2008.

