
Towards Comparable Simulations of Cooperating Objects
and Wireless Sensor Networks

Thiemo Voigt,
Joakim Eriksson,
Fredrik Österlind

Swedish Institute of Computer
Science

{thiemo,joakime,
fros}@sics.se

Robert Sauter,
Nils Aschenbruck,
Pedro J. Marrón
University of Bonn

{sauter,aschenbruck,
pjmarron}@cs.uni-

bonn.de

Vinny Reynolds,
Lei Shu

DERI, Galway,
Ireland

{vinny.reynolds,
lei.shu}@deri.org

Otto Visser
TU Delft

o.w.visser@tudelft.nl

Anis Koubaa
ISEP-IPP

aska@isep.ipp.pt

Andreas Köpke
TU Berlin

koepke@tkn.tu-berlin.de

ABSTRACT
Simulators are indispensable tools to support the development and
testing of cooperating objects such as wireless sensor networks
(WSN). However, it is often not possible to compare the results
of different simulation tools. Thus, the goal of this paper is the
specification of a generic simulation platform for cooperating ob-
jects. We propose a platform that consists of a set of simulators
that together fulfill desired simulator properties. We show that to
achieve comparable results the use of a common specification lan-
guage for the software-under-test is not feasible. Instead, we argue
that using common input formats for the simulated environment
and common output formats for the results is useful. This again
motivates that a simulation tool consisting of a set of existing sim-
ulators that are able to use common scenario-input and can produce
common output which will bring us a step closer to the vision of
achieving comparable simulation results.

1. INTRODUCTION
Cooperating Objects are, in the most general case, small comput-
ing devices equipped with wireless communication capabilities that
are able to cooperate and organize themselves autonomously into
networks of sensors, actuators and processing units to achieve a
common task. One instance of cooperating objects are wireless
sensor networks (WSN). The applications of cooperating objects
are numerous including industrial automation, home control, trans-
portation as well as healthcare and assisted living to name a few.

Simulators are indispensable tools to support the development and
testing of cooperating objects. Simulations are commonly used
for rapid prototyping which is otherwise very difficult due the re-
stricted interaction possibilities with this type of embedded sys-
tems. Simulators are also used for the evaluation of new network

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSNPERF 2009, October 23, 2009 - Pisa, Italy. Copyright 2009 ICST
978-963-9799-70-7/00/0004 $5.00.

protocols and algorithms and enable repeatability because they are
independent of the physical world and its impact on the objects.
Simulations also enable nonintrusive debugging at the desired level
of detail.

As shown in this paper, there exists a large number of simulators for
cooperating objects. Despite the large number of simulators, how-
ever, there is no single simulation environment that enables com-
parison of algorithms and applications on different sensor network
platforms such as TinyOS and Contiki.

Therefore, the goal of our work is to constitute a common simula-
tion platform that allows the community to share code and simula-
tion results, thus making them comparable to one another. We dis-
cuss the requirements on such a common simulation platform and
show that no current existing simulator fulfills all our requirements.
Therefore, the platform we propose consists of a set of simulators
that together fulfill desired simulator properties.

We stress that the use of a common simulation specification lan-
guage, as an alternative to achieve comparable results, is not fea-
sible in general, although it sounds attractive. One reason is that
simulators are specific, and in some simulators, it is not possible
to change parameters that are easy to change in other simulators.
Here, we provide some typical examples. For instance, in MSP-
Sim [17] – an instruction-level emulator for TelosB and related
mote types – it is not possible to run the CPU at a speed of 100
MHz since MSP430 processors do not run at this speed. Another
example for MSPSim is that it is not possible to simulate applica-
tions under the assumptions of more available memory since the
memory of the MSP430 is constrained. Hence, a simulation of
a larger memory requires a reprogramming of the emulator – in-
cluding defining an alternative emulated microcontroller architec-
ture – instead of changing an input parameter, which is possible
for simulators operating at a higher abstraction layer. As another
example, assume using a more generic MAC protocol simulator
framework (e.g., MAC Simulator from Delft [26]) to compare the
energy consumption of a MAC protocol simulated with this simula-
tor with X-MAC which is not available in Delft’s simulator. Thus,
consider COOJA/MSPSim to simulate X-MAC. However, previous
work has shown that a certain unicast optimization in X-MAC al-
most doubles performance [16]. In order to compare to the “right”

X-MAC version, a common simulation specification would have to
enable the user to somehow identify these low-level implementa-
tion alternatives – an almost impossible task.

The discussion above implies, in particular the last point, that in
general specifying simulations in a common specification language
is not possible since the number of detail required is far too exhaus-
tive.

Instead, we propose using common input formats for the simulated
environment and common output formats for the results. This moti-
vates that the simulation tool consists of a set of existing simulators
that are able to use common scenario-input and can produce com-
mon output which will bring us a step closer to the vision of achiev-
ing comparable simulation results. We hope that the community is
interested in participating in our effort to achieve this vision.

Our paper starts with an overview of existing simulations and eval-
uation tools in Section 2. Our goal is not to provide an exhaus-
tive survey of all existing tools but to focus on WSN simulators
and tools frequently used for the evaluation of cooperating objects.
After defining important simulator properties we discuss possible
information that can be described in common input and output for-
mats in Section 4. In Section 5 we discuss our proposal for a sim-
ulation tool. We present the progress we have made towards this
tool in the following sections before summarizing our conclusions
in Section 9.

2. EXISTING SIMULATION AND EVALU-
ATION TOOLS

In this section, we report on existing simulators for cooperating
objects and wireless sensor networks. We have a slight focus on
WSN simulators used within CONET but also present some sim-
ulators not used or developed within CONET. Furthermore, we
present generic simulators that can be used for simulating cooper-
ating objects, as well as emulators for cooperating objects. We do
not include application-specific cooperating object simulators used
for robotics such as Stage [2] and Gazebo [1] which are important
part of the general field of cooperating objects. Finally, we briefly
survey tools for modeling of cooperating object scenarios.

2.1 Generic Simulators
NS-2 [13] is a discrete event network simulator popular in aca-
demic research for simulation of routing and multicast protocols
over wired and wireless networks. A wide range of network appli-
cation, protocols and radio models is available from the core distri-
bution and 3rd party extension. However, the support for wireless
sensor network simulation is limited. GloMoSim [49] is a discreet
event network simulator, written in parsec. It enables simulations
of mobile ad hoc networks and wireless sensor networks and in-
cludes a variety of protocols and models for all the network layers.

OPNET Modeler [21] is a powerful discrete event network simula-
tor that supports a large library of communication protocols mainly
for computer networks. Although OPNET was not specifically
designed for cooperating objects, recent works have contributed
with new models for low-power wireless personal area networks
(WPANs) taking advantage of OPNET’s flexibility and modularity.
In [24, 22], the authors proposed a simulation model of the IEEE
802.15.4 standard protocol, which is available as a subset of the
open-ZB open-source toolset [3]. This model was mainly used to
evaluate the performance of the beacon-enabled mode of the IEEE

802.15.4 standard. On the other hand, OPNET Modeler provides a
simulation model of the IEEE 802.15.1/ZigBee stack starting from
version 14.

OMNeT++ [46] is a discrete event simulation package written in
C++, primarily developed for the simulation of computer networks
and other distributed systems. The OMNeT++ simulation models
are composed of hierarchically nested modules that intercommu-
nicate with message passing. The core of OMNeT++ contains for
example detailed IP, TCP, FDDI and Ethernet protocol models. A
significant number of 3rd party modules is available which allow
the use in WSN research by providing realistic wireless channel
models, radio models, mobility models and various protocols.

2.2 Cooperating Objects Simulators
UbiWise [7] is the original pervasive computing simulator enabling
the testing of pervasive services, implementation of protocols and
integration of devices in a virtual 3-d environment. As a human-
in-the-loop simulator, virtual devices can execute real application
code, interact with external services, and accept human input pro-
viding a powerful tool for simulating pervasive computing envi-
ronments. The Lancaster [31] simulator supports the integration
of third party simulators to evaluate location-based applications.
Network packets from applications under test are intercepted in a
modified kernel and redirected through the NS-2 thus providing
the network simulation functionality, whilst a web services inter-
face allows third party simulators, such as mobility models to be
integrated unto a unified simulation.

NetTopo [41] is an open source simulator and visualizer tool de-
signed to test and validate algorithms for wireless sensor networks.
This platform-independent tool provides a flexible architecture al-
lowing node, topology and algorithm components to be easily re-
placed and an additional suite of graphical components allowing
the visualisation and validation of experiments built using the Net-
Topo framework.

TOSSIM [28] is the simulator framework of TinyOS and the avail-
ability of the tailored compiler for this operating system is also used
to enable the simulation support. This allows to use the same source
code for simulation and deployment. TOSSIM’s focus is on code
written for the TinyOS operating system.

Castalia [9] is a generic WSN simulator not tied to a specific plat-
form and hence it does not run deployable code. Instead it is de-
signed to be highly tunable with realistic node behaviour for exam-
ple relating to access of the radio. Castalia is based on OMNeT++.

2.3 Cooperating Objects Emulators
ATEMU [39] (Atmel EMUlator) is a cycle-by-cycle emulator for
the the MICA2 platform except EEPROM and external data flash.
Since the last release 0.4 is dated March 31st, 2004 ATEMU can
be considered abandoned. Avrora [44] is written in Java and sup-
ports the Mica2 platform and has recently been extended to support
the MicaZ platforms including the CC2420 radio chip [14]. Avrora
provides also a wide range of monitors that automatically track, for
example, function calls, power consumption, I/O registers, mem-
ory, radio packets or stack and print changes during the execution
and/or generate a report after the program has completed execution.

2.4 COOJA and MSPSim
The COOJA simulator [36], a Java-based sensor network simula-
tor was originally designed to simulate networks of nodes running

the Contiki operating system. COOJA has the ability to mix simula-
tions of sensor devices at multiple abstraction levels. These levels
are application level, OS level, and hardware level. In the appli-
cation level the simulated nodes run the application logic reimple-
mented in Java – the native language of COOJA. In the OS level the
nodes use the same code as real nodes, but compiled for the host
machine running COOJA. Finally in the hardware level the nodes
run the same compiled code that can be used in real nodes, e.g.
the same system image. The hardware level is provided by MSP-
Sim that emulates systems based on the MSP430 processor family.
By using MSPSim underneath, COOJA allows simulated nodes to
execute the same system image as the one used on the real nodes.
The nodes at different abstraction levels communicate with each
other using one of the three radio propagation models available in
COOJA. COOJA uses an XML-based simulation configuration for-
mat, e.g., for specifying the topology.

MSPSim [17] is an instruction level emulator of MSP430-based
sensor network nodes. MSPSim targets cycle accurate emulation
of both the MSP430 CPU core and built-in peripherals such as
timers, serial communication and analog to digital converters. Fur-
thermore, MSPSim emulates external components such as the radio
chip CC2420, sensors, and flash memories. MSPSim also provides
emulation of complete sensor devices such as the Tmote Sky [38]
and Scatterweb ESB [40].

Plugin system

Simulation scheduler and control

COOJA Simulator Core

Radio Medium

...

User interface

COOJA/MSPSim sensor network simulator

C
C

24
20

C
C

24
20

MSPSim

Contiki OS

MSPSim

Contiki OS
Power ProfilingPower Profiling

Figure 1: The architecture of the COOJA/MSPSim simulator.
MSPSim is integrated into the COOJA simulator.

2.5 MiXiM
MiXiM is an integration effort that combines several OMNeT++
simulators. One of them is the Mobility Framework (MF) [15],
the others are a MAC simulator [26], Positif (a simulator for local-
ization) [27] and ChSim (a simulator targeting radio propagation
models) [29].

Although different in goal, these four simulators were all running
on OMNeT++ and had a lot in common so the idea was born to
merge them all into one new simulator called MiXiM [23]. As
the simulators had different foci, there was a limited amount of
duplicate code to be dealt with and with the help of some glue code
most of the code could be merged in a newly designed framework.

MiXiM simulations are specified using NED (network description
language), the omnetpp.ini and an xml configuration file.

Figure 2: Illustration of a MiXiM Simulation

MiXiM is a modular framework, so the user can for example select
a simple basic module for the MAC, choose a specific mobility
model with waypoints and then focus testing on his/her new routing
layer. Modules can be changed in the configuration without the
need to recompile. There is a wide choice of modules available
already, especially in mobility, localization and MACs.

The library of MAC protocol ranges from simple CSMA to IEEE
802.11. MiXiM inherits from the MAC Simulator wireless sensor
network protocols including SMAC [48], TMAC [12] and Crank-
shaft [19]. There is also a wide choice on mobility models, includ-
ing BonnMotion (see Section 2.6) support.

To ease the process of making new modules, all a user has to do
is inherit from the appropriate base module and override a hand-
ful of methods. An overview of a MiXiM simulation, combining
multiple radio frequencies and objects that influence radio propa-
gation can be seen in Figure 2. For statistical analysis, modules
can publish parameters in the utility module of a node. Other mod-
ules can then subscribe to the published data and transform this into
readable and usable statistics. There is ongoing development in the
area of placing objects/obstacles in the world and their effect on the
radio propagation as well as battery models.

2.6 Tools for Scenario-Modeling
Simulation and emulation are techniques frequently used for per-
formance evaluation of cooperating objects. If the objects are mo-
bile, the movement patterns of these objects are found to have sig-
nificant impact on the simulation and emulation results. This is
quite obvious as the movements influence the topology of the net-
work.

In the last decade, various synthetic models were proposed. There
have been several general surveys [10, 8, 5, 33] as well as some
specific ones for vehicular models [20]. Instead of providing de-
tails concerning the different models, a table of tools to generate
synthetic mobility traces is provided (cf. Table 1). For all the tools
listed it is possible to download a version on the respective website.

Tool Models
Toilers-Code-Base [10] Random-Waypoint (sev. variants), Random-Walk, Prob. Random-Walk,

[35, 34] Random-Direction, RPGM, Gauss-Markov, Column
BonnMotion [45] Random-Waypoint, Gauss-Markov, Manhattan-Grid, RPGM
Important [6] Random-Waypoint, RPGM, Freeway, Manhattan-Grid
MobiSim [32] Random-Waypoint, Random-Walk, RPGM, Gauss-Markov, Freeway, Manhattan
CanuMobiSim [43] Brownian-Motion, Random-Waypoint, Meta-Model

[42] Obstacles
SUMO [25] Urban Vehicular Traffic

Table 1: Tools for generating synthetic mobility traces

In the rest of this section, we provide a brief overview on BonnMo-
tion [45]. Within the simulation framework the tool BonnMotion
was extended so that it could be integrated in different cooperat-
ing object simulators. Further details on this integrations will be
described later.

BonnMotion is an open-source Java software which creates and
analyzes mobility scenarios. It is developed at the University of
Bonn, Germany, where it serves as a tool for the investigation of
cooperating object scenario characteristics. The scenarios can also
be exported for the network simulators ns-2, GloMoSim/QualNet,
COOJA, and MiXiM.

Currently, there are five mobility models publicly available: Static,
Random-Waypoint, Gauss-Markov, Manhattan-Grid, Reference Point
Group Mobility (RPGM). Further scenarios such as the disaster
area model [4] will be published shortly. For scenarios analysis dif-
ferent metrics can be calculated as overall statistics (averaged over
the simulation time) and as progressive statistics (values of metrics
for certain points in time). The following metrics are supported:
relative mobility, average node degree, number of partitions, degree
of separation, average link duration, average time to link break.

3. IMPORTANT PROPERTIES FOR SIMU-
LATORS

We have identified the following requirements for cooperating ob-
jects simulators. Many requirements are derived from the CONET
roadmap [30] while others are generally important simulator prop-
erties. We consider the following properties:

• Heterogeneity: it is important to enable the simulation of het-
erogeneous networks with respect to node platforms, simu-
lated application codes and possibly operating systems,

• Integration: it is required to have an integrated support for
high-fidelity radio propagation models, antenna models and
physical-layer simulation. In addition, the integration of mo-
bility models or the possibility to use traces generated by ex-
ternal mobility model tools is also important.

• Scalability: it is extremely important to support scalable sim-
ulations, due the large-scale nature of cooperating objects
networks,

• Extensibility: it is mainly achieved by clearly defined APIs,
scripting support and modular composition, and is a key de-
sign issue due to the fast evolving hardware and software
used for cooperating objects. Additionally, a connection to
robotics simulators requires a flexible basis to enable ad-
vanced integration.

• Energy modeling: Detailed estimation of power consumption
and possibly simulation of battery models

• Simulation of deployable code: This is connected to the avail-
able support for the simulation of WSN platforms and oper-
ating systems, respectively. This is also an essential prereq-
uisite for a tight integration between simulators and testbeds.

• Ease of use: it includes GUIs, introspection and debugging
support and – although not core functionality of a simulator –
is a very important element for the success with developers.

There is currently no simulator that is able to fulfill all these re-
quirements. Therefore, a combination of existing approaches is
necessary. TOSSIM is popular because of its tight integration with
and the inclusion in the TinyOS distribution. However, the impossi-
bility to simulate code for other operating systems limits TOSSIM’s
applicability. General network simulators such as ns-2 and projects
built on top usually lack the possibility to simulate deployable code.
From the available simulators, COOJA provides a very good ba-
sis as its core design supports the simulation of nodes at differ-
ent abstraction levels ranging from emulation to abstract models
implemented in JAVA. Additionally, within CONET, we have re-
cently added support for using mobility traces. MiXiM provides
more advanced support for mobility and for high-fidelity physical-
layer simulation including detailed radio propagation models and
antenna models.

Our experience of integrating different simulators into MiXiM and
COOJA and MSPSim into one simulator has shown that the inte-
gration of simulators is a hard and tedious task. We therefore dis-
cuss in the next sections how we can in a useful way couple several
simulation tools to make their results comparable.

4. COMMON INPUT/OUTPUT
In this section, we discuss several simulation environment parame-
ters and simulation results that can be specified in a common format
for several simulators. These formats can then either be translated
to the formats of the individual simulators of the simulators can be
adapted to the proposed formats. Using a common specification of
these parameters is an important step towards archieving compara-
ble results.

4.1 Common scenario-specific simulator input
As discussed above, a common simulation specification for a wide
range of different simulators is not feasible. However, it would be
useful to specify common scenario input where it is feasible. We
identified the following issues as doable:

Topologies A description of the topology would help to make sim-
ulations more comparable in that nodes would be placed in

the same way in different simulation runs.

Node Movement In a cooperating objects scenario, nodes might
move around, for example, robots might move or people might
carry their mobile phones, sensors etc. with them. There are
a number of mobility models for this task and there are also
tools such as BonnMotion described in Section 2.6 that gen-
erate traces and log-files. As we will show later, both MiXiM
and COOJA are able to read these log files and hence move
nodes in simulations according to certain mobility models
supported by BonnMotion. Node movement produced by the
same tool based on the same mobility model reduces one un-
certainty when comparing simulation results. One could see
the description of node movement as an extension of topol-
ogy description.

Sensor Readings There are a number of tools that can generate
maps of physical phenomena, for example, fire simulators
that predict how fire spreads in landscapes [11]. From these
simulators a landscape with sensor inputs can be generated
that can provide sensor nodes (or rather locations) with sen-
sor input for any given instant. Combining this information
with topology description of the node placement is useful.

Communication Models The communication/radio models are also
useful. This might include transmission and interference ranges,
but also more complex radio models or behaviour is desir-
able.

Radio Noise Radio noise is a special case of sensor reading and it
can be treated in the same way as sensor readings.

Node failure Simulating node failure, which can result in holes
forming in networks, dropped packets, incomplete algorithms,
etc. is an important part of evaluating the robustness of proto-
cols and algorithms implemented at various layers in cooper-
ating objects. The accuracy of comparing simulation results
generated using several tools is improved by ensuring that
this can be modeled consistently within the simulation tools.

While at the first glance it sounds attractive to treat packet gener-
ation by the application for each node as something that could be
specified, this is indeed problematic for some types of simulators
even for simple applications. It might work for high-level simula-
tors but is not always possible for simulators that simulate deploy-
able code because it is seldom possible to generate the code for
a given application behaviour. In more complex applications, the
generation of packets from the application-level is a consequence
of complex interactions that are not foreseeable before the simula-
tion.

4.2 Common Output
There are a number of interesting output parameters that would
make simulation results more comparable. These include but are
not limited to the following:

Energy Consumption Energy is one of the primary concerns in
cooperating objects and hence the energy consumption is of
high interest. The output could be specified as energy con-
sumption per node as average, minimum, maximum etc., as
energy consumption per coverage area etc.

Packets The transmitted and received packets per node at the dif-
ferent layers are very interesting. It is also interesting to de-
tail these for the different layers such as application, MAC
and physical layer. The same is true for the received packets.
Moreover, lost packets are of interest. This output may for
example simplify comparisons between the energy-efficiency
of different MAC protocols.

Channel utilization The usage of the channel over both time and
space.

Based on these and other statistics interesting information can be
inferred, e.g. preferred routing paths. An other important issue is
that by having common output formats, the same tools can be used
to analyze and process the simulation results.

In MiXiM, producing the common output format could be done us-
ing the publish/subscribe scheme in the utility module. The data is
published by the protocol stack, and a specialized subscriber could
be used to convert it into the common output format. We will eval-
uate this possibility in future work.

4.3 Common Input and Output
While common input and common output are useful, it is the com-
bination of common input and output that can help to make simu-
lation results comparable. If only the input is common, it is cum-
bersome and maybe even invalid to compare the results. If only
the output is common, then there can be a lot of redundant work
required to set up the simulations in a way that make the results
comparable. If, however, both input and output are common, we
expect that in many cases we will be able to directly compare re-
sults achieved with different simulators. It will also be possible to
define common input scenarios and compare the results. We expect
that in many cases the results of executions in different simula-
tors will differ far more than expected. In such cases, the common
output might help to understand why the results differ. For exam-
ple, we might discover that the number of messages sent by the
applications running on the nodes in a certain area might differ,
although the sensor readings in the area are the same. In this ex-
ample, common input will ensure that the sensors receive the same
inputs whilst the common outputs will provide users with a means
to discover and potentially debug any problems. For example, that
a node has a reduced power level.

5. SPECIFICATION OF THE SIMULATION
PLATFORM

Based on the discussion above, we propose a simulation tool that
consists of common scenario-specific input and common output
formats for existing cooperating object simulators.

Figure 3 shows the simulation platform we propose. Note that the
simulation platform is generic enough to include most of the ex-
isting simulators. We hope that as many simulator developers as
possible will join us to define useful formats and make their sim-
ulators part of the platform. Nevertheless, we have highlighted
COOJA/MSPSim and MiXiM since these simulators together are
able to fulfill the important properties outlined in Section 3. In par-
ticular, they are useful for the simulation of non-functional proper-
ties identified in the CONET Roadmap [30]. Furthermore, MiXiM
and COOJA/MSPSim are both simulators that themselves integrate
a number of simulators: MiXiM combines several simulation frame-
work into one, namely the mobility framework [15], radio prop-

Common Output

E
x
istin

g
: C

O
O

JA
/M

S
P

S
im

E
x
istin

g
: M

iX
iM

O
th

er ex
istin

g
 sim

u
lato

rs

Scenario−specific Input

(e.g. from BonnMotion)

Figure 3: Specification of the Simulation Platform

agation models from the CHannel SIMulator (ChSim) [29], the
MAC simulator [26], and the Positif framework [27]. COOJA in-
tegrates COOJA, MSPSim, Avrora [44] and has been made com-
pliant with BonnMotion output. The latter is also true for MiXiM.
COOJA/MSPSim’s ability to run Contiki and TinyOS nodes in the
same simulation runs enables also the comparison of the perfor-
mance of the same application developed for these different oper-
ating systems [18].

5.1 Fulfillment of requirements and Steps To-
wards Realization

In this section we provide a table that shows that the specified sim-
ulation tool with MiXiM and COOJA/MSPSim fulfills the require-
ments and give an overview on the progress of the implementation
that will be described later in more details.

5.1.1 Fulfillment of Requirements
Requirement Simulator fulfilling
Heterogeneous networks COOJA/MSPSim
High fidelity radio models
antenna models MiXiM
physical layer simulation
Mobility models MiXiM and COOJA/MSPSim

via BonnMotion
Accurate power consumption COOJA/MPSim
Scalability MiXiM
Simulation of deployable code COOJA/MSPSim
Extensibility MiXiM and COOJA/MSPSim

Table 2: The specified tool fulfills the requirements

Table 2 shows that the specified simulation tool with MiXiM and

COOJA/MSPSim fulfills the requirements that we have outlined in
Section 3. As stated above, COOJA/MSPSim is able to execute
simulations of Contiki and TinyOS nodes in the same simulation
runs [18]. MiXiM’s advanced capabilities of physical-layer simu-
lations are discussed in the next section. Section 7 and 8 present
the integration of BonnMotion output into COOJA and MiXiM.
Another important related feature is that using COOJA/MSPSim
and Contiki we can perform sensor network checkpointing [37]. In
this approach every node exists both in testbed and simulation so
that we can checkpoint and transfer network state between the two
domains. This approach benefits from advantages of both simula-
tion and testbeds: nonintrusive execution details, repeatability, and
realism.

Again, we want to stress that we hope that also other simulator
developers are interested in defining formats and making their sim-
ulators compatible.

6. MIXIM: ADVANCED PHYSICAL-LAYER
SIMULATIONS

Simulating the physical layer of wireless communication remains
a challenge. Communication standards like 802.11b and Bluetooth
systems go beyond the simple single narrow frequency band, single
antenna model used in popular simulators. Yet, these technologies
gain popularity, since they provide researchers with a plethora of
possibilities that can be explored to invent new protocols or im-
prove existing ones. However, building a detailed and sufficiently
accurate model for such complex systems is a tremendous task that
takes a lot of time.

Sender MAC Receiver MAC

bitrate, TX power,
antenna, channel

SDU

Physical layer

SDU

Signal

Wireless channel

Delay
Path loss
Fading
Interference

SDU

Signal

Physical layer

RSSI

SDU

Figure 4: Aspects of a wireless transmission

In order to gain a deeper understanding of the complexity of the
problem, let us start with the main components that are responsi-
ble for the transmission process, shown in Figure 4. In this figure,
we consider the transmission of a single packet, concentrating on
the interaction of the components. Assume, the sending Medium
Access Control (MAC) protocol as handed a packet that shall be
transmitted. After packing this into a Service Data Unit (SDU),
the MAC protocol hands this packet down to the physical layer for
transmission, together with some information on how the packet
shall be transmitted. The physical layer uses this information to
compute a signal that represents the packet. This signal is trans-
mitted via the wireless medium, where it gets distorted by multiple
influences, starting from attenuation due to various causes as well
as other interfering transmitters. The physical layer of the receiver
receives this distorted signal and has to derive a binary represen-

tation that hopefully resembles the original SDU. This is passed to
the receiving MAC layer, together with some meta information like
the Received Signal Strength Indicator (RSSI) of the packet.

While many popular simulators only model single frequency, sin-
gle antenna systems, such models are not sufficient anymore. The
physical layer of MiXiM is designed with flexibility in mind with-
out sacrificing efficiency. It can be used for simple single fre-
quency, single bit rate systems used for instance in sensor network
simulations, as well as for multiple channels, multiple bitrate sys-
tems like IEEE 802.11b that sends the header and the payload of
the packet with different bit rates. It can be used for systems that
change the transmission frequency between each packet like Blue-
tooth, Orthogonal Frequency Division Multiplexing (OFDM) sys-
tems like 802.11a that transmit in parallel on multiple frequencies
and Multiple Input Multiple Output (MIMO) systems that use mul-
tiple antennas for the transmission and the reception.

In addition to the wide range of different transmission standards,
there are many different models for the wireless channel, each con-
centrating on a different effect in a certain environment. There are
path loss models that attenuate the transmitted signals according to
the traveled distance, abstract models for shadowing effects due to
obstacles like the log-normal fading, models for fast fading due to
the mobility of the nodes like Rice and Rayleigh fading and many
more.

To complicate things further, standards like 802.11g include For-
ward Error Correction (FEC) and the design of the physical layer of
MiXiM should not prevent research on the influence of such codes.
This means that all the attenuation effects should be computable on
a sub-packet time scale.

To address these issues, the physical layer of MiXiM was redesigned
to support the modeling of complex signals in both time, frequency
and space. Further details can be found in [47].

7. INTEGRATION OF BONNMOTION WITH
COOJA AND MIXIM

The native format in which BonnMotion saves the movement traces
is node-by-line waypoint based. This means that there is one line
for each node. This line contains all the waypoints. A waypoint is a
position at which the movement of a node (e.g. direction, velocity)
changes. A waypoint consists of:

• the simulation time in seconds at which the waypoint is reached
by the node

• the x and y coordinates of the position of the waypoint

This format implies that during the simulations for each event the
current node positions have to be calculated based on the way-
points. If there are many events, this may have a negative impact
on the runtime of a simulation. An alternative is to use an interval
based approach. The nodes are regarded as stationary for an inter-
val. The positions of the nodes are updated periodically after each
interval by a specific position update event. By doing so, the current
node positions do not have to be calculated for each event. How-
ever, the number events is increased, which may also influence the
runtime of a simulation negatively. A factor that has a major impact
in this context is the interval length. Smaller intervals yield higher

accuracy but also more events. Overall, it is a trade-off between the
number of events and the runtime per event.

Within CONET, BonnMotion was extended to support the interval
based trace format. Trace files in the BonnMotion’s native trace
format can be transformed to an interval-based format using the
IntervalFormat option. The interval length can be specified using
the -I option. The default value is one second. The interval trace
format is an interval-by-line based. This means that there is one
line for each interval of each node. A line consists of:

• the node number

• the simulation time in seconds (in intervals)

• the x and y coordinates of the position of the node for the
interval

The interval based trace format is used by COOJA and MiXiM.

8. EVALUATION OF THE INTEGRATION
OF BONNMOTION AND COOJA

The COOJA/BonnMotion integration is implemented as an optional
COOJA plugin. The full code will be available for public use in the
next Contiki/COOJA release.

The COOJA plugin accepts BonnMotion output files, which con-
tains mote-time specific locations. A BonnMotion location file
is parsed by COOJA at simulation setup, and the resulting node
moves are scheduled in the COOJA simulation loop.

The execution time overhead of adding mobility to COOJA majorly
depends on two factors: how often nodes move, and the graphical
COOJA setup. When running COOJA in graphical mode, the node
positions are reflected in visualizers allowing a user to see how
and where nodes move. In contrast, when COOJA is running in
non-graphical batch-mode, the execution time overhead of moving
nodes is reduced due to the lack of active visualizers.

We evaluate the mobility execution time overhead with respect to
both the simulation size and the interval at which nodes have moved.
We simulate Contiki networks at the operating system level, in con-
trast with emulating nodes using MSPSim. Since emulated nodes
are more computationally demanding, emulated networks will have
a lower relative mobility overhead than in our test setup. All tests
are run in COOJA’s batch-mode.

The simulated Contiki application is simple: all nodes broadcast
a radio packet every two seconds. We simulate network sizes be-
tween 100 to 1000 nodes, and mobility intervals on the order of
milliseconds. At each mobility interval, all simulated nodes are
moved according to the specified BonnMotion file.

The execution overhead of mobility is low, even when the nodes
are moved once every second. Figure 5 shows the execution times
with and without mobility for a 100-node network simulated for
one minute. The mobility interval is one second: all nodes move
every second. As shown in the figure, the execution duration of
simulating 600 nodes for 60 simulated seconds is around 60 sec-
onds, and the mobility overhead is negligible. The exponential in-
crease in execution time is due to COOJA’s current event queue
implementation: the linked list implementation is not optimized
for large queue sizes.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 100 200 300 400 500 600 700 800 900 1000

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of nodes

Mobile nodes
Static nodes

Figure 5: Impact on number of mobile nodes on performance

 55000

 60000

 65000

 70000

 75000

 0 5 10 15 20 25 30

E
xe

cu
tio

n
tim

e
(m

s)

Update interval (ms)

Mobile nodes
Static nodes

Figure 6: Impact on mobility rate update on performance

To further study the execution overhead, we gradually increase the
mobility update rate. Each simulated network consists of 100 nodes
and runs for 10 simulated minutes. The execution time without
mobility is 55.8 seconds. As seen in Figure 6, the execution time
increases as the mobility update interval decreases. The overhead is
still low (1.43%) with a 10 ms update interval, but greatly increases
at higher update rates. It should be noted that such high update
rates - hundreds of moves per second - are typically not necessary
in simulations of cooperating objects.

Comparable results could be shown for MiXiM, but since this does
not add additional insight, they are not shown here. The main limits
for simulation speed is IO load, since the file has to be transferred
from the disk into memory and parsing overhead.

9. CONCLUSION AND FUTURE WORK
In this paper, we have specified a simulation platform that aims
at fulfilling the vision of enabling comparable simulation results
for cooperating objects’ simulators. We have shown that the use
of a common specification language to describe the scenario con-
figuration, the input parameters and the output statistics is a very
promising alternative to achieve comparable results on different
simulation platforms. Our next goal is to show that we can actu-
ally achieve more comparable simulation results. In addition, we
expect that the community is interested in participating in our ef-
fort.

Acknowledgments
This work has been partially supported by CONET, the Cooperat-
ing Objects Network of Excellence, funded by the European Com-
mission under FP7 with contract number FP7-2007-2-224053.

10. REFERENCES
[1] http://playerstage.sourceforge.net/doc/gazebo-manual-0.8.0-

pre1-html/.
[2] http://playerstage.sourceforge.net/doc/stage-3.0.1/.
[3] Open-source ieee 802.15.4 opnet simulation model.
[4] N. Aschenbruck, E. Gerhards-Padilla, M. Gerharz, M. Frank,

and P. Martini. Modelling Mobility in Disaster Area
Scenarios. In Proc. of the 10th ACM-IEEE International
Symposium on Modeling, Analysis and Simulation of
Wireless and Mobile Systems, pages 4–12, 2007.

[5] F. Bai and A. Helmy. A survey of mobility models, 2004.
http://nile.usc.edu/~helmy/important/
Modified-Chapter1-5-30-04.pdf.

[6] F. Bai, N. Sadagopan, and A. Helmy. IMPORTANT: A
framework to systematically analyze the Impact of Mobility
on Performance of RouTing protocols for Adhoc NeTworks.
In Proc. of the IEEE Infocom, pages 825–835, 2003.

[7] J. Barton and V. Vijayaraghavan. UBIWISE, A simulator for
ubiquitous computing systems design. Hewlett-Packard
Laboratories Palo Alto,âĂİ HPL-2003-93, 2003.

[8] C. Bettstetter. Mobility modeling in wireless networks:
categorization, smooth movement, and border effects. ACM
SIGMOBILE Mobile Computing and Communications
Review, 5(3):55–66, 2001.

[9] A. Boulis. Castalia: revealing pitfalls in designing distributed
algorithms in WSN. In Proceedings of the 5th international
conference on Embedded networked sensor systems (Demo
session), Nov. 2007.

[10] T. Camp, J. Boleng, and V. Davies. A Survey of Mobility
Models for Ad Hoc Network Research. Wireless
Communication and Mobile Computing (WCMC): Special
issue on Mobile Ad Hoc Networking: Research, Trends and
Applications, 2(5):483–502, Sep. 2002.

[11] J. Coleman and A. Sullivan. A real-time computer
application for the prediction of fire spread across the
Australian landscape. Simulation, 67(4):230, 1996.

[12] T. van Dam and K. Langendoen. An adaptive energy-efficient
MAC protocol for wireless sensor networks. In 1st ACM
Conf. on Embedded Networked Sensor Systems (SenSys
2003), pages 171–180, Los Angeles, CA, USA, Nov. 2003.

[13] DARPA. The network simulator, ns-2.
[14] R. de Paz Alberola and D. Pesch. AvroraZ: extending Avrora

with an IEEE 802.15. 4 compliant radio chip model. In
Proceedings of the 3nd ACM workshop on Performance
monitoring and measurement of heterogeneous wireless and
wired networks, 2008.

[15] W. Drytkiewicz, S. Sroka, V. Handziski, A. Koepke, and
H. Karl. A mobility framework for OMNeT++. In 3rd
International OMNeT++ Workshop, 2003.

[16] A. Dunkels, F. Österlind, N. Tsiftes, and Z. He.
Software-based on-line energy estimation for sensor nodes.
In Proceedings of the Fourth Workshop on Embedded
Networked Sensors (Emnets IV), Cork, Ireland, June 2007.

[17] J. Eriksson, A. Dunkels, N. Finne, F. Österlind, F. T. Voigt,
and N. Tsiftes. Demo abstract: MSPsim - an extensible
simulator for MSP430-equipped sensor boards. In European

Conference on Wireless Sensor Networks (EWSN 2008),
Demo Abstract, Bologna, Italy, Jan. 2008.

[18] J. Eriksson, F. Österlind, N. Finne, N. Tsiftes, A. Dunkels,
T. Voigt, R. Sauter, and P. J. Marrón. Cooja/mspsim:
Interoperability testing for wireless sensor networks. In
Proceedings 2nd International Conference on Simulation
Tools and Techniques (SIMUTOOLS’09), Rome, Italy, Mar.
2009.

[19] G. Halkes and K. Langendoen. Crankshaft: An
energy-efficient MAC-protocol for dense wireless sensor
networks. In 4th European conference on Wireless Sensor
Networks (EWSN’07), pages 228–244, Delft, The
Netherlands, Jan. 2007.

[20] S. P. Hoogendoorn and P. H. L. Bovy. State-of-the-art of
vehicular traffic flow modelling. Journal of Systems and
Control Engineering - Special Issue on Road Traffic
Modelling and Control, 215(4):283–304, 2001.

[21] O. T. Inc. Opnet Modeler - ver. 11.5a.
[22] P. Jurcik, A. Koubaa, M. Alves, E. Tovar, and Z. Hanzalek.

Simulation model for the IEEE 802.15.4 protocol:
Delay/throughput evaluation of the GTS mechanismİ. In
15th IEEE International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication
Systems (MASCOTSÂt’07), Istanbul, Turkey, Oct. 2007.

[23] A. Köpke, M. Swigulski, K. Wessel, D. Willkomm, P. Klein
Haneveld, T. Parker, O. Visser, H. Lichte, and S. Valentin.
Simulating Wireless and Mobile Networks in OMNeT++:
The MiXiM Vision. In First International OMNeT++
Developers Workshop, Marseille, France, Mar. 2008.

[24] A. Koubaa, M. Alves, and E. Tovar. A comprehensive
simulation study of slotted CSMA/ca for IEEE 802.15.4
wireless sensor networks. In 6th IEEE Workshop on Factory
Communication Systems (WFCS’06), Torino (Italy), pages
183–192, June 2006.

[25] D. Krajzewicz, G. Hertkorn, C. Rössel, and P. Wagner. Sumo
(simulation of urban mobility); an open-source traffic
simulation. In Proceedings of the 4th Middle East
Symposium on Simulation and Modelling (MESM2002),
pages 183–187, 2002.

[26] K. Langendoen et al. Mac simulator.
[27] K. Langendoen et al. Positif localization simulation

framework.
[28] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: accurate

and scalable simulation of entire TinyOS applications. In
Proceedings of the first international conference on
Embedded networked sensor systems, pages 126–137, 2003.

[29] H. Lichte and S. Valentin. Implementing MAC protocols for
cooperative relaying: A compiler-assisted approach. In
Proceedings of the 1st international conference on
Simulation tools and techniques for communications,
networks and systems (SIMUTools), 2008.

[30] Marron et al. Research roadmap on cooperating objects,
2009. in print.

[31] R. Morla and N. Davies. Evaluating a location-based
application: A hybrid test and simulation environment. In
Proceedings of 2nd International Conference on Pervasive
Computing, 2004.

[32] S. M. Mousavi, H. R. Rabiee, M. Moshref, and
A. Dabirmoghaddam. Mobisim: A framework for simulation
of mobility models in mobile ad-hoc networks. In Third
IEEE International Conference on Wireless and Mobile
Computing, Networking and Communications, 2007.

[33] M. Musolesi and C. Mascolo. Mobility models for systems
evaluation. State of the Art on Middleware for Network
Eccentric and Mobile Applications (MINEMA), 2008.

[34] W. Navidi and T. Camp. Stationary distributions for the
random waypoint mobility model. IEEE Transactions on
Mobile Computing, 3(1):99–108, Jan-Feb 2004.

[35] W. Navidi, T. Camp, and N. Bauer. Improving the Accuracy
of Random Waypoint Simulations through Steady-State
Initialization. In Proceedings of the 15th International
Conference on Modeling and Simulation, pages 319–326,
2004.

[36] F. Österlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt.
Cross-level sensor network simulation with cooja. In
Proceedings of the First IEEE International Workshop on
Practical Issues in Building Sensor Network Applications
(SenseApp 2006), Tampa, Florida, USA, Nov. 2006.

[37] F. Österlind, A. Dunkels, T. Voigt, N. Tsiftes, J. Eriksson,
and N. Finne. Sensornet checkpointing: Enabling
repeatability in testbeds and realism in simulators. In
Proceedings of the 6th European Conference on Wireless
Sensor Networks, EWSN 2009, Cork, Ireland, Feb. 2009.

[38] J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling
ultra-low power wireless research. In Proc. IPSN/SPOTS’05,
Los Angeles, CA, USA, Apr. 2005.

[39] J. Polley, D. Blazakis, J. McGee, D. Rusk, and J. Baras.
Atemu: A fine-grained sensor network simulator. In
Proceedings of the First IEEE Communications Society
Conference on Sensor and Ad Hoc Communications and
Networks, 2004.

[40] J. Schiller, H. Ritter, A. Liers, and T. Voigt. Scatterweb - low
power nodes and energy aware routing. In Proceedings of
Hawaii International Conference on System Sciences,
Hawaii, USA, 2005.

[41] L. Shu, C. Wu, Y. Zhang, J. Chen, L. Wang, and
M. Hauswirth. Nettopo: Beyond simulator and visualizer for
wireless sensor networks. In The Second International
Conference on Future Generation Communication and
Networking (FGCN 2008), Hainan, China, December 13-15,
2008.

[42] A.-K. Souley and S. Cherkaoui. Advanced mobility models
for ad hoc network simulations. In Proceedings Systems
Communications, pages 50–55, 2005.

[43] I. Stepanov, J. Hähner, C. Becker, J. Tian, and K. Rothermel.
A Meta-Model and Framework for User Mobility in Mobile
Networks. In Proc. of the 11th Int. Conf. on Networking 2003
(ICON 2003), pages 231–238, 2003.

[44] B. Titzer, D. Lee, and J. Palsberg. Avrora: scalable sensor
network simulation with precise timing. In Proceedings of
the 4th international symposium on Information processing
in sensor networks (IPSN), Apr. 2005.

[45] University of Bonn. BonnMotion - a mobility scenario
generation and analysis tool, 2005.
http://bonnmotion.iv.cs.uni-bonn.de/.

[46] A. Varga. Using the OMNeT++ discrete event simulation
system in education. IEEE Transactions on Education,
42:372, 1999.

[47] K. Wessel, M. Swigulski, A. Köpke, and D. Willkomm.
MiXiM - the physical layer: An architecture overview. In
Proceeding of the 2. International Workshop on OMNeT++,
Rome, Italy, Mar. 2009.

[48] W. Ye, J. Heidemann, and D. Estrin. Medium access control
with coordinated, adaptive sleeping for wireless sensor

networks. IEEE/ACM Trans. on Networking, 12(3):493–506,
2004.

[49] X. Zeng, R. Bagrodia, and M. Gerla. GloMoSim: a library
for parallel simulation of large-scale wireless networks. ACM
SIGSIM Simulation Digest, 28(1):154–161, 1998.

