

Towards Certifiable

Multicore-based Platforms for Avionics

Conference Paper

CISTER-TR-150702

2015/04/13

Muhammad Ali Awan

Patrick Meumeu Yomsi

Konstantinos Bletsas

Vincent Nélis

Eduardo Tovar

Pedro Souto

Conference Paper CISTER-TR-150702 Towards Certifiable Multicore-based Platforms for Avionics

© CISTER Research Center
www.cister.isep.ipp.pt

1

Towards Certifiable Multicore-based Platforms for Avionics

Muhammad Ali Awan, Patrick Meumeu Yomsi, Konstantinos Bletsas, Vincent Nélis, Eduardo Tovar,

Pedro Souto

CISTER Research Center

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: muaan@isep.ipp.pt, pamyo@isep.ipp.pt, ksbs@isep.ipp.pt, nelis@isep.ipp.pt, emt@isep.ipp.pt, pfs@fe.up.pt

http://www.cister.isep.ipp.pt

Towards Certifiable Multicore-based Platforms for
Avionics

M. Ali Awan∗, P. Meumeu Yomsi∗, K. Bletsas∗, V. Nélis∗, E. Tovar∗, P. Souto†
∗CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto, Portugal

{muaan, pamyo, ksbs, nelis, emt}@isep.ipp.pt
†University of Porto, FEUP-Faculty of Engineering

pfs@fe.up.pt

MOTIVATION AND CHALLENGES

The demand for extra functionality in modern applications
is a never ending trend. The hardware vendors are actively im-
proving the design of processors to accommodate these com-
plex applications. The increase in clock speed to enhance the
performance of the processor has hit its limits. This is driven
by the fact that the performance per watt became costly at high
frequencies. Hence, Moore’s law is no longer sustained with
increasing frequencies but with additional cores [1]. Therefore,
in the last decade, the semiconductor industry has experienced
a paradigm shift from single processor design to multicore
processors (MCP). Cores in MCP share many resources like
caches, main memory, I/O devices and interconnects. This
sharing, which does not exist in single core processors, makes
the temporal behavior of MCPs rather complex and highly
unpredictable as these platforms are designed to improve the
average-case performance. Consequently, their use in safety-
critical applications such as avionics domain is extremely
challenging. The certification authorities are very skeptical in
the use of MCP platforms in avionics applications.

In May 2014, the North and South American aviation au-
thorities together with their European and Asian counterparts,
more specifically the “Certifications Authorities Software
Team (CAST)” published a position paper CAST-32 [2] where
they express their concerns w.r.t. the use of two-core proces-
sors in the implementation of safety-critical avionics systems.
Therein, they identify different sources of non-determinism in
modern MCPs and suggest guidelines to overcome them.

In order to secure the certifiability of MCPs for avionics,
we believe there are three different ways to handle these
sources of non-determinism: 1) developing a predictable MCP
hardware; 2) providing an extra hardware support to existing
MCPs with FPGA(s) (field programmable gate arrays) to
circumvent non-deterministic paths and 3) propose software-
based mechanisms to mitigate the effect of non-determinism
in current MCPs. Although there is a strong industrial drive

This work was partially supported by National Funds through FCT/MEC (Portuguese
Foundation for Science and Technology) and when applicable, co-financed by ERDF
(European Regional Development Fund) under the PT2020 Partnership, within project
UID/CEC/04234/2013 (CISTER Research Centre); also by FCT/MEC and the EU
ARTEMIS JU within project(s) ARTEMIS/0001/2013 - JU grant nr.621429 (EMC2)
and ARTEMIS/0003/2012 - JU grant nr.333053 (CONCERTO); and also by FCT/MEC
and ERDF through COMPETE (Operational Programme ’Thematic Factors of Compet-
itiveness’), within project FCOMP-01-0124-FEDER-020447 (REGAIN).

towards developing hardware-based solutions to the problem,
we also firmly believe on the merits of software-based mecha-
nisms being used to mitigate the non-determinism arising from
resource sharing in currently available MCPs. Therefore in this
paper we focus on some of those software-based mechanisms.
In particular, we are exploring timing models that would:
(i) accurately incorporate the cache related preemption and
migration delays (CRPMD), (ii) mitigate the non-deterministic
effect of interconnects, and (iii) consider the interference
caused by I/O subsystem on memory, interconnect and caches.

I. CRPMD

Assuming a preemptive and migrative scheduler and MCPs,
a premier source of unpredictability stems from sharing
caches. This results in an increase in the WCETs of the
tasks, unfortunately. We plan to circumvent this issue as
follows. First, we strongly believe that by reasoning about
the subset of potentially conflicting cache blocks for every
pair of preempting/preempted tasks, and bounding the number
of preemptions and migrations suffered by each task, we
can derive tighter bounds on the WCET for every given
scheduling policy. Hence, we opt for such a fully analytical
approach for CRPMD estimation [3]–[5]. We will consider
two different scheduling approaches: NPSF [6] and C=D [7].
These schedulers are chosen for their ability to achieve high
utilization bounds. Upon deriving sound analysis, tweaks to
the scheduling algorithms will be needed so that they perform
well. One idea to hybridize them is to allow some tasks to
migrate only at the job boundary to mitigate the number of
migrations. This approach has two advantages: (1) It simplifies
the analysis on the one hand and (2) reduces the pessimism
on the other. Another idea with potential involves identifying
opportunities for deviation from the standard policy at runtime,
when it would be safe and provable to reduce CRPMD over-
heads. Delaying some preemptions/migrations or swapping the
task execution order are some ideas in that direction. Finally,
on a more practical front, we plan to implement all of this
in a real system. Although it is not an architecture for safety
critical systems, we plan to target x86Linux for two reasons: to
leverage our existing native implementations based on NPSF
and C=D and also as a proof of concept. If these techniques
work for x86Linux multiprocessors, then we can be confident
that the same will apply to predictable platforms.

II. INTERCONNECTS

In MCP system-on-chip, the interconnect is a key com-
ponent. Its timing behavior impacts virtually any operation
at the architectural level. Some efforts have been devoted to
derive a timing model for this component in the avionics
domain. However, most of the available techniques are based
on assumptions which are not met in modern MCPs. Our goal
is to develop a model of the CoreNet as used in Freescale’s
P4080 for example, and more recently, in its P5020 multicores.
A risk that can prevent us from reaching this objective may be
the non-disclosure of essential information by Freescale [8].
However, we were told by sources in Airbus [9] that Freescale
has recently been more forthcoming in providing implementa-
tion details. Hence, we expect to have access to the necessary
information. As a fall-back plan, we will analyze a wormhole
Network-on-Chip (NoC) using virtual channels. NoC is the de
facto technology that is meant to become mainstream in future
multi/manycore processor chips, because it has been proven
through extensive experiments over the last years that any bus
topology performs poorly when the number of cores exceeds
8 [10]. Thus any bus-based technology is not a scalable
solution. Independently of the interconnect used, we plan to
validate the model developed experimentally. To this end, we
will use embedded systems benchmarks that are known to be
representative of the kinds of applications in avionics [11]. In
addition, we will try to obtain from Airbus and Embraer [12]
a characterization of novel avionics applications. The novelty
of the contribution in this section will be to shift and put
the focus on the practicality of the solution proposed. This
will inherently make our work different from most works in
the state of the art as we will give more importance to the
simplicity, practicality, and safety of the solution rather than
its efficiency.

III. I/O SUBSYSTEM

Most safety-critical applications in avionics require the I/O
devices to interact with the environment on one front and
perform some functions on the other. Among aforementioned
resources, I/O devices are also shared among cores on MCPs.
The generated traffic from different shared resources (cache,
memory, I/O, core) may interfere with each other. For exam-
ple, CoreNet Coherency Fabric in Freescale P4080 platform
connects cores with last-level cache, memory and I/O devices.
One of the major issues in such MCP platforms is to develop
timing models to tackle the effect of traffic generated from all
shared resources. We intend to explore different aspects of the
I/O subsystem interference on various shared resources. More
precisely, we will address the following two issues.

a) I/O and traffic generated from cores: Most of the
peripherals are based on buffered data. In this case, the
requests received over a period of time are buffered before
initiating the direct memory access (DMA) transfer from the
peripheral to the main memory. In this context, a request may
not suffer the same delay as the previous one. On the other
hand, every core requests to fetch data from the main memory
on a cache miss. The size of the requests is usually few bytes

(e.g., cache line size, typically 64bytes), so hardware pre-
fetchers sometimes may combine requests for multiple cache
lines. However, the size of the request is still small (perhaps
two or three cache lines) when compared to a DMA transfer.
On top of this, speed of the core is too high when compared to
the main memory. Hence, the pipeline is likely to stall when
a core retrieves a cache line from main memory. So, the delay
suffered by the requests made by a core is cumulative (each
request delays the next one), while it is not necessarily the
case for peripherals (if there is enough buffer). This should
fundamentally change the way the analysis is performed. By
considering the difference between buffered and non-buffered
traffic, we can achieve better bound in the timing analysis.

b) I/O devices and caches: I/O devices also affect the
cache traffic in several ways. For instance, some of the
MCP platforms (such as Freescale P4080) allow the DMA
units in the peripherals to write directly to cache instead of
transferring data to main memory. On one side, this feature
(called cache stashing) allows cores to directly read the data
from the cache instead of generating any memory requests
and loading the contents in the cache. On the other side, this
mechanism complicates the cache analysis as designer needs
information about the instructions of such transfers. There is
a need to develop the timing analysis to cope with this issue
by providing a mechanism to differentiate between the DMA
transfer bounded to memory or cache. There is a possibility
in some MCP platforms to configure some memory as either
cache or scratchpad. I think that using scratchpad for allocating
I/O data (which has to be managed through a driver, so we
have some direct control over buffers and addresses) could be
a good way to avoid some of the aforementioned problems
(interference, coherency, etc.).

REFERENCES

[1] D. Geer, “Chip makers turn to multicore processors,” Computer, vol. 38,
no. 5, pp. 11–13, 2005.

[2] “Certification authorities software team (cast), position paper (cast-
32) multicore processors,” Certification authorities in North and South
America, Europe, and Asia, May 2014.

[3] W. Lunniss, S. Altmeyer, G. Lipari, and R. I. Davis, “Accounting for
cache related pre-emption delays in hierarchical scheduling,” in 22st
RTNS, ser. RTNS ’14. ACM, 2014, pp. 183–192.

[4] W. Lunniss, R. I. Davis, C. Maiza, and S. Altmeyer, “Integrating cache
related pre-emption delay analysis into edf scheduling,” in 19th RTAS,
ser. RTAS ’13. IEEE Computer Society, 2013, pp. 75–84.

[5] S. Altmeyer, R. Davis, and C. Maiza, “Cache related pre-emption delay
aware response time analysis for fixed priority pre-emptive systems,” in
32nd RTSS, Nov 2011, pp. 261–271.

[6] K. Bletsas and B. Andersson, “Preemption-light multiprocessor schedul-
ing of sporadic tasks with high utilisation bound,” in 30th RTSS, Dec
2009, pp. 447–456.

[7] A. Burns, R. Davis, P. Wang, and F. Zhang, “Partitioned edf
scheduling for multiprocessors using a c=d task splitting scheme,”
J. Real–Time Syst., vol. 48, no. 1, pp. 3–33, 2012.

[8] F. Semiconductor. [Online]. Available: http://www.freescale.com
[9] A. c. Airbus. [Online]. Available: http://http://www.airbus.com/

[10] B. Nikolic and S. M. Petters, “Real-time application mapping for many-
cores using a limited migrative model,” J. Real–Time Syst., 1 2015.

[11] J. Nowotsch, M. Paulitsch, D. Buhler, H. Theiling, S. Wegener, and
M. Schmidt, “Multi-core interference-sensitive wcet analysis leveraging
runtime resource capacity enforcement,” in 26th ECRTS, July 2014, pp.
109–118.

[12] E.-E. B. de Aeronautica. [Online]. Available: http://www.embraer.com

