

Towards Certif iable Adaptive
Reservations for Hypervisor-based
Virtualization

Technical Report

CISTER-TR-140304

Version:

Date: 3/10/2014

Stefan Groesbrink

Luis Almeida

Mario de Sousa

Stefan M. Petters

Technical Report CISTER-TR-140304 Towards Certifiable Adaptive Reservations for

 Hypervisor-based Virtualization

© CISTER Research Unit
www.cister.isep.ipp.pt

1

Towards Certifiable Adaptive Reservations for Hypervisor-based Virtualization
Stefan Groesbrink, Luis Almeida, Mario de Sousa, Stefan M. Petters

CISTER Research Unit

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: , lda@det.ua.pt, , smp@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract
Hypervisor-based virtualization provides a natural way to integrate formerly distinct systems into a single
mixedcriticality multicore system by consolidating in separated virtual machines. We propose an adaptive
computation bandwidth management for such architectures, which is compatible with a potential certification
based on the guarantee of specified bandwidth minimums and the isolation of overruns of virtual machines. This
management uses periodic servers and an elastic task model to combine analyzability at design time with
adaptability at runtime. Mode changes or early termination of VMs trigger a resource redistribution that reassigns
spare capacity. In this paper we focus on the integration of an adaptive reservation policy into a virtualization
software stack and the co-design of hypervisor and paravirtualized guest operating system. In a concrete
implementation on a PowerPC 405, the bandwidthdistribution policy incurred in a memory footprint below 2.7KB
and a worst-case execution time for the redistribution function below 4 microseconds for realistic low numbers of
VMs. Simulations over synthetically generated sets of VMs with random mode changes showed a gain of 13% of
computation bandwidth when compared to an approach with fixed partitions and provided a relative error of
allocated bandwidth to desired bandwidth 4 times lower.

Towards Certifiable Adaptive Reservations for
Hypervisor-based Virtualization

Stefan Groesbrink
Heinz Nixdorf Institute

University of Paderborn
Paderborn, Germany
s.groesbrink@upb.de

Luis Almeida
IT - Faculty of Engineering

University of Porto
Porto, Portugal

lda@fe.up.pt

Mario de Sousa
INESC TEC

(formerly INESC Porto)
and Faculty of Engineering

University of Porto
Porto, Portugal
msousa@fe.up.pt

Stefan M. Petters
CISTER/INESC-TEC,

ISEP, IPP
Porto, Portugal
smp@isep.ipp.pt

Abstract—Hypervisor-based virtualization provides a natural
way to integrate formerly distinct systems into a single mixed-
criticality multicore system by consolidating in separated virtual
machines. We propose an adaptive computation bandwidth man-
agement for such architectures, which is compatible with a poten-
tial certification based on the guarantee of specified bandwidth
minimums and the isolation of overruns of virtual machines.
This management uses periodic servers and an elastic task model
to combine analyzability at design time with adaptability at
runtime. Mode changes or early termination of VMs trigger
a resource redistribution that reassigns spare capacity. In this
paper we focus on the integration of an adaptive reservation
policy into a virtualization software stack and the co-design
of hypervisor and paravirtualized guest operating system. In a
concrete implementation on a PowerPC 405, the bandwidth distri-
bution policy incurred in a memory footprint below 2.7KB and a
worst-case execution time for the redistribution function below 4
microseconds for realistic low numbers of VMs. Simulations over
synthetically generated sets of VMs with random mode changes
showed a gain of 13% of computation bandwidth when compared
to an approach with fixed partitions and provided a relative error
of allocated bandwidth to desired bandwidth 4 times lower.

I. INTRODUCTION

Hypervisor-based virtualization is a promising software
architecture to meet the high functionality and reliability
requirements of complex embedded systems. A hypervisor
separates operating system (OS) and hardware in order to
share the hardware among multiple virtual machines (VM),
each running an isolated instance of an OS that caters for
the execution of a subset of applications [1] (Fig. 1). The
resulting consolidation of multiple systems with maintained
separation and resource partitioning is well-suited to combine
independently developed software into a system of systems.

The rise of multicore embedded processors [2] is a major
enabler for virtualization, whose architectural abstraction eases
the migration from single-core to multicore platforms. The
replacement of multiple hardware units by a single multicore
system has the potential to provide the required computational
capacity with reduced size, weight, and power consumption.

Hypervisors support mixed-criticality systems by consol-
idating systems of different criticality levels in separated
VMs, each running an adequate OS, for example, an efficient
and highly predictive real-time executive for safety-critical

control tasks and a feature-rich general purpose OS for the
communication or human-machine interface. Moreover, the
addition of subsystems of low criticality to critical subsystems
can increase significantly the resource utilization, as critical
applications suffer from a more pessimistic worst-case resource
demand determination [3].

Key requirements for the consolidation of real-time systems
and particularly for certification are temporal isolation and a
guaranteed minimum bandwidth allocation to all VMs that
enables them to meet their timing constraints. Computing these
minimum bandwidths goes beyond the scope of this paper
and implies addressing topics such as inter-core memory and
bus interference that are orthogonal to our work. In this paper
we assume knowledge of the bandwidth requirements, even if
pessimistic, and we focus on the following aspects of temporal
isolation, as explicitly demanded by the standard for functional
safety of road vehicles ISO 26262 [4]:

• The hypervisor scheduling guarantees that all guest
systems receive sufficient computation time in order
to meet their real-time constraints.

• Overruns within a VM provoke under no circum-
stances that other VMs violate their real-time con-
straints.

Virtualization solutions including dynamic resource man-
agement are state of the art for computing servers. However,
these solutions are not applicable to embedded systems, as
compliance with real-time requirements cannot be guaranteed.
In order to ensure real-time behavior, existing virtualization
solutions for embedded systems apply a static computation
bandwidth allocation [5]. Typical solutions are a one-to-one
mapping of VMs to processors or a cyclic schedule with fixed
execution time slices if VMs share a processor. Static resource
allocation naturally leads to fragmentation of available re-
sources since reserved but unused capacity cannot be reclaimed
to improve the performance of other VMs. In addition, static
approaches are inappropriate for the varying resource require-
ments of adaptive and self-optimizing applications.

In this work, we propose an adaptive bandwidth manage-
ment based on dynamic budgets of periodic servers combined
with an elastic task model. A preliminary proposal with
just the conceptual idea was presented in [6]. Next to the

appropriate consideration of multiple criticality levels, one goal
is obtaining a desired distribution of spare capacity among
the VMs. This is particularly valuable for applications with
strongly variable execution time and which can take advantage
of higher capacity to produce improved results. The focus is on
the integration of an adaptive reservation policy into a software
stack and the co-design of hypervisor and paravirtualized
guest OS. The evaluation investigates the overhead regarding
execution time, memory footprint, and paravirtualization effort.
The benefits compared to a fixed-bandwidth allocation are
shown with simulations of synthetic workloads.

A. Contribution & Organization

The contribution of this work is the discussion of funda-
mental implications of hypervisor-based virtualization for the
design of an adaptive computation bandwidth management
for multi-mode mixed-criticality systems. This management
follows an elastic approach and we propose a new bandwidth
distribution algorithm that is non-iterative, being more pre-
dictable and faster than the existing iterative solutions in the
literature. Moreover, we address the co-design of hypervisor
and operating system, the argumentation that paravirtualization
is required, and a discussion of implementation issues for
both hypervisor and operating system. The overheads are
determined with an implementation on real low-performance
embedded hardware and highlight the feasibility of the ap-
proach. An experimental evaluation underlines the benefit
compared to a fixed-bandwidth allocation.

In the remainder of this paper we discuss related work (Sec.
II), present a motivating application example (Sec. III), make
a case for paravirtualization (Sec. IV), introduce the system
model (Sec. V), propose a dynamic bandwidth distribution
policy (Sec. VI), and finally evaluate the proposal (Sec. VII).

II. RELATED WORK

Feedback-control algorithms for adaptive reservations [7]
[8] measure the performance of the served tasks and adjust
the budgets according to a certain control law. Khalilzad et
al. introduced a hierarchical single-core scheduling framework
that modifies the budgets of periodic servers after a deadline
miss (overload situation) based on the amount of idle time [9].
Block et al. presented an adaptive multiprocessor scheduling
framework, which adjusts processor shares in order to maxi-
mize the quality of service (QoS) of soft real-time tasks [10].

Buttazzo et al. introduced an adaptive multicore resource
management for smartphones [11], which selects a service
level for each application by solving an integer linear pro-
gramming problem. Maggio et al. recently proposed a game-
theoretic approach for the resource management among com-
peting QoS-aware applications, which decouples service level
assignment and resource allocation [12]. Applications do not
have to inform the resource manager about the available
service levels, but about the start and stop time of each job.

Zabos et al. presented the integration of a spare reclamation
algorithm into a middleware layer [13] that is placed on top of
a real-time OS, and not underneath as a hypervisor. Dynamic
reclaiming algorithms such as GRUB [14] or BASH [15] take
advantage of spare bandwidth when tasks do not need their

WCET and distribute it in a greedy or weighted manner, as
proposed in this work.

Nogueira and Pinho proposed a dynamic scheduler for
the coexistence of isolated and non-isolated servers [16]. An
isolated server obtains a guaranteed budget, whereas budget
can be stolen from a non-isolated server. In order to avoid the
increased computational complexity of a fair distribution, the
entire slack is assigned to the currently executing server. Bernat
and Burns proposed as well a budget stealing server-based
scheduling [17]. Each server handles a single soft task and
can in overload situations steal budget from the other servers.
Temporal isolation is lost and a server of low priority might
receive less bandwidth than requested.

IRIS is a resource reservation algorithm that handles over-
load situations by spare bandwidth allocation among hard,
soft, and non-real-time tasks [18]. As it is the case for our
approach, minimum budgets are guaranteed and the remaining
bandwidth is distributed in a fair manner among the servers.
Conversely to the proposal in this paper, the scheduling is
based on an extension of CBS and EDF. In the context of the
ACTORS EU project, an adaptive reservation-based multicore
CPU management for soft real-time systems was developed,
as well based on CBS and EDF [19]. Similar to our work, a
partitioned hierarchical scheduler is proposed, however one for
the OS (implemented in Linux), handling groups of threads.

Su and Zhu proposed an elastic mixed-criticality task
model and an EDF-based uniprocessor scheduling [20]. Slack
is passed at runtime to low-criticality tasks, based on variable
periods. Anderson et al. presented the first work on server-
based mixed-criticality multicore scheduling [21]. On each
core, budget is specified for each criticality level and consumed
in parallel corresponding to the respective level. Mollison et
al. introduced the notion of higher-criticality tasks as slack
generators for lower-criticality tasks [22]. Herman et al. pre-
sented the first implementation of an OS’s mixed-criticality
multicore scheduler and discussed design tradeoffs [23]. Their
framework reclaims capacity lost to WCET pessimism.

All so far cited approaches are concerned with the OS’s
resource management among applications, and do not target
hypervisor-based virtualization. In contrast, Bruns et al. evalu-
ated virtualization to consolidate subsystems of mobile devices
on a single processor [24]. The software stack consists of an
L4/Fiasco microkernel and a paravirtualized Linux. Crespo et
al. designed XtratuM, a hypervisor for the avionics domain
with a fixed cyclic scheduling [25]. A redesign for multicore
processors was recently published [26]. Yang et al. proposed a
compositional scheduling framework for virtualization without
slack distribution based on the L4/Fiasco microkernel [27].
Cucinotta et al. examined hard reservations and an EDF-
based soft real-time scheduling policy to provide temporal
isolation among I/O-intensive and CPU-intensive VMs [28].
Their implementation is based on the Linux kernel module
Kernel-based Virtual Machine (KVM).

Closest to our work, Lee et al. presented a compositional
scheduling framework for the Xen hypervisor [29]. Resource
models are realized as periodic servers and enhancements to
the server design in order to increase the resource utilization
are introduced. Their work-conserving periodic server lets
one lower-priority non-idle server benefit when a high-priority

server idles. Their capacity reclaiming periodic server allows
idle time of a server to be used by any other server. Their
work was very influential for us and we use their results on
periodic resource model design for quantum-based platforms.
In contrast to this work, their slack distribution does not
consider fairness and they target application domains with
powerful hardware and timing requirements in the range of
milliseconds (scheduling quantum of 1ms), whereas our work
targets low-performance and memory-constrained embedded
hardware with timing requirements in the sub-millisecond
range. In addition, our approach includes the distribution of
structural and dynamic slack.

III. A MOTIVATING APPLICATION EXAMPLE

There is a trend reversal for automotive architectures:
functions are consolidated on multicore processors instead of
following the ”one function per ECU” design paradigm [30].
This leads in many cases to a coexistence of systems with
different criticality levels and resource requirement character-
istics. For example, safety-critical driver assistance systems are
integrated with QoS-aware infotainment and computer vision
systems within the center stack computer. There is an increased
potential to temporarily deactivate functionality that is not in
constant use while the car is operational [31]. Different oper-
ational modes could be defined by parking/driving/start-stop,
charging, or the use of navigation and different multimedia
functionality. Instead of turning off control units temporarily,
one can consolidate functionality in VMs and deactivate a VM.

Examples for computer vision applications are the detec-
tion of objects for a collision warning system or the detection
of lanes for a lane-departure warning system. The QoS is
directly related to the number of processed frames per second.
The execution time of the vision algorithms varies depending
on the situation and illumination/weather conditions. Such ap-
plications typically benefit from additional resource allocations
and both mode changes and task enabling/disabling can be
applied subject to the driving situation. The rear view camera
system must only be enabled when the car is reversing or the
control of an adjustable driver seat has a computation demand
only if the car is stopped.

The proposed bandwidth management approach meets the
requirements of such systems. Its key characteristics are a
flexible workload model, a guarantee of minimum bandwidths,
and a dynamic redistribution of bandwidth in the case of either
a short-term underutilization caused by varying execution time
or of a mode change within a VM to a mode with different
computation time demand. The resources of critical systems
are in general over-provisioned in a very pessimistic manner
to realize a great level of assurance against failures. As a
result, the reserved bandwidth is in practice often underutilized
and the critical VMs serve as generators of slack, of which
the dynamic distribution makes effective use. The guaranteed
minimum bandwidths, which are not touched by the dynamic
bandwidth management, are the basis for both the schedulabil-
ity analysis and a potential certification. This aspect is covered
in detail in Section VI-D.

The bandwidth allocation is realized cooperatively by guest
OS and hypervisor. The guest OS informs about changes
and triggers the hypervisor to evaluate whether a bandwidth

tasks tasks

OS OS

Hypervisor

Hardware

VM 1 VM 2

EABI

Hypercall API

System Call API

•
task enabling/disabling

•
task mode changes

•
VM mode changes

•
dynamic slack

•
VM enabling/disabling

•
total system utilization

Fig. 1: Availability of Scheduling Information on the
Different Levels of the Software Stack

adaptation is reasonable on the basis of the new situation.
The hypervisor informs the guest OS about the result. The
implementation requires therefore the awareness of a guest OS
that it is executing on top of a hypervisor, a technique known
as paravirtualization, discussed in detail in the next section.

IV. THE CASE FOR PARAVIRTUALIZATION

The capability to host virtualization-unaware operating
systems classifies hypervisors. If unmodified guest OSs can be
hosted, it is full (or transparent) virtualization. Conversely, if
the guest OS requires porting to the hypervisor’s application
programming interface (API), it is called paravirtualization
[32]. In this case, the guest OS is aware of being exe-
cuted within a VM and uses hypercalls to request hypervisor
services. Paravirtualization is the prevailing approach in the
embedded domain [5]. The need to modify the guest OS is
outweighed by the advantages in terms of efficiency (reduction
of the overhead [33]) and in terms of run-time flexibility of an
explicit communication and the hereby facilitated cooperation
of hypervisor and guest OS. The major drawback is the need
to port an OS, which involves modifications of critical kernel
parts. If legal or technical issues preclude this for an OS, it
is not possible to host it. For both kinds of virtualization, the
applications executed by the OS do not have to be modified.

The implementation of the proposed adaptive bandwidth
allocation requires modifications of the OS, and thereby para-
virtualization, since explicit communication between hypervi-
sor and guest OS is mandatory. The OS has to provide the
hypervisor a certain level of insight in order to support the
hypervisor’s bandwidth assignment. The hypervisor in turn
informs the guest OSs about the assigned bandwidth share,
since they need this information in order to distribute the
bandwidth among their tasks. Figure 1 illustrates the different
levels of the system stack, the interfaces between them, and the
availability of scheduling related information above and below
the border between hypervisor and guest OS. Paravirtualization
is mandatory to inform the hypervisor about adaptation trigger-
ing events such as a task enabling/disabling or mode change.
In addition, instead of running the idle task, a paravirtualized
guest OS can yield to allow the hypervisor to execute another
ready VM. Comparably, Kiszka paravirtualized Linux in order
to give the hypervisor (Linux with KVM) a hint about the
internal states of its guests [34].

V. SYSTEM MODEL

A. Workload Model

Our workload is composed of a set V of n virtual machines
as defined in Expression 1, where each virtual machine V

i

is
defined by a set of tasks ⌦(V

i

), a task scheduler �(V
i

), a
criticality level �(V

i

), and a QoS parameter 0 < qos(V
i

) 1.

V ⌘ {V
i

: V
i

(⌦(V
i

),�(V
i

),�(V
i

), qos(V
i

)), i = 1..n} (1)

From the point of view of the hypervisor, we consider the
VMs to be schedulable entities that we represent combining the
traditional periodic real-time task model of Liu and Layland
[35] and the elastic resource distribution framework of Marau
et al. [36]. In particular, each V

i

will be taken as a task that
requires a minimum computation bandwidth U

min

(V
i

) to carry
out the timely execution of its internal task set ⌦(V

i

). However,
it may benefit from additional bandwidth, if available, up to
U

lax

(V
i

) � 0. The distribution of the currently available extra
bandwidth, i.e., processing slack, among the active VMs is
carried out firstly according to the criticality level �(V

i

) in a
greedy manner (highest criticality first). The criticality levels
denote different severity of failure and might be associated
with a concrete certification level. Secondly, among VMs of the
same criticality level, the distribution is weighted with qos(V

i

)
following the elastic framework in [36]. In this work we adapt
this framework to system virtualization. A similar model that
combines mandatory requirements with QoS aspects was used
by Emberson and Bate [37], however, in the context of fault-
tolerance-focused task allocation.

The required minimum utilization U

min

(V
i

) and the max-
imum extra bandwidth U

lax

(V
i

) are dependent on the task set
⌦(V

i

) and on the task scheduling policy �(V
i

) and derived
in the context of the periodic resource model design (Section
V-B). The flexibility of this workload model allows accom-
modating safety-critical VMs that have a constant resource
requirement (U

min

(V
i

) > 0, U
lax

(V
i

) = 0), VMs that demand
a certain guaranteed bandwidth and can benefit from addi-
tional computation capacity (U

min

(V
i

) > 0, U
lax

(V
i

) > 0),
and background VMs that have no guaranteed bandwidth
(U

min

(V
i

) = 0, U
lax

(V
i

) > 0). We assume independent VMs
with neither shared resources except from the processor, nor
data dependencies, nor inter-VM communication.

B. Resource Model

The target platforms are homogeneous multicore systems,
consisting of identical cores of equal computing power. This
implies that each task has the same execution speed and
utilization on each processor core. A virtual processor is a
representation of a share of the physical processor to a VM
and multiple virtual processors can be mapped onto a single
physical processor and receive a fraction of the available
bandwidth. If so, a continuous progress of multiple VMs
cannot be achieved in practice, but approximated.

The periodic resource model �(⇧,⇥) of Shin and Lee
[38] provides a formal abstraction of the resource supply by
a virtual processor. It models a resource that is available at
its full capacity at times and not available at all otherwise.
A guaranteed execution budget of ⇥ time units is allocated
every period ⇧ (0 ⇥ ⇧). The minimum computation time

allocation that a virtual processor provides in a time interval
of length t is specified in terms of the supply bound function
sbf(t). This function can be designed to enforce schedulability
of the task set within a VM (⌦(V

i

)) by forcing it to be at
least as high as the demand bound function dbf(t) of the
task set for all t [38]. Moreover, a real implementation must
deal with scheduling quantum and temporal granularity. Lee
et al. provided an extension of the compositional scheduling
frameworks for quantum-based platforms [29]. The server
design problem is, however, beyond the scope of this paper.

Each virtual processor �
i

(⇧
i

,⇥
i

) is implemented as a
periodic server, characterized by a period and an execution
time budget. At the beginning of each period, the budget
is replenished by the hypervisor. If scheduled and therefore
active, a server’s budget is used to execute the computation
time demand of the associated VM. The budget is consumed
at the rate of one per time unit and once exhausted, the server
is not ready for execution until the next period. There is no
cumulation of budget from period to period. Such a server
enforces a guaranteed, but bounded computation time a VM
receives in a specified time span, even in the presence of
overloads internal to the VM.

The parameters of the resulting periodic resource model
�
i

(⇧
i

,⇥
i

) determine the minimal bandwidth of a VM:

U

min

(V
i

) =
⇥

i

⇧
i

(2)

C. Partitioned Hierarchical Scheduling

There are two main multiprocessor scheduling approaches,
partitioned and global scheduling [39]. Under partitioned
scheduling, the tasks are statically allocated to a processor,
whereas global scheduling uses a global ready queue to
dynamically map the jobs to any of the processors. Hypervisor-
based virtualization consolidates entire software stacks includ-
ing an OS, resulting in scheduling decisions on two levels
(hierarchical scheduling [40], [41]). The hypervisor schedules
the VMs and the hosted OSs schedule their tasks according to
their own local scheduling policies. This is irreconcilable with
a scheduling based on a global task ready queue.

In the context of this work, VMs are statically assigned
to processors. Although a dynamic mapping is conceptually
and technically possible, a static solution is the option taken
by the AUTOSAR consortium [30] and eases certification
significantly, due to the lower run-time complexity, the higher
predictability, and the wider experience of system designer and
certification authority with uniprocessor scheduling. Next to
assuring schedulability of the VM set assigned to a processor,
the partitioning of the VMs focuses on two goals. Minimizing
the overall required computation bandwidth is the first goal,
since it determines the number of processors required to host
the set of VMs. In addition, a distribution of high-criticality
VMs among the processors is targeted. If VMs of differing
criticality share a processor, there are in general more possi-
bilities to apply an adaptive bandwidth management, since the
low-criticality VMs can benefit from unused reservations of
the high-criticality VMs.

After the partitioning, verified scheduling techniques from
the uniprocessor domain can be reused. On each core, the
hypervisor schedules the assigned servers by static priorities

according to the Rate Monotonic (RM) policy: the higher the
request rate of a server (the smaller ⇧), the higher its priority
[35]. Starvation of lower-priority servers is nevertheless pre-
cluded, since the budget limits the execution time of the higher-
priority servers. For the same reason, a criticality-disregarding
priority assignment may be made.

The schedulability of the VMs is guaranteed if the resource
capacity U

R

is equal to or greater than the least upper bound
of the processor utilization U

lub

of the used scheduling policy.
For n servers with arbitrary periods scheduled according to the
RM policy, U

lub

= n(21/n � 1) [35]. Therefore, for the sake
of VMs schedulability, we consider that:

nX

i=1

U

min

(V
i

) U

lub

 U

R

(3)

Using the RM server scheduler has the significant advan-
tage of a low runtime overhead, but the major drawback of
a low utilization bound. This, however, can be tackled using
harmonic periods, i.e. the period of each server is an exact
multiple of the periods of every other server with a shorter
period. In this case, RM can utilize the processor up to 100%
(U

lub

= U

R

). This choice is a realistic one and, in fact, the
server design approaches [38] [42] allow the server period to be
chosen within a range of possible values with minimal impact
on the schedulability of the internal task set, in particular
without violating the largest possible VM service delay.

The overhead of VM context switches is not negligible and
therefore added to the execution time requirement of the VM.
With the applied fixed-priority assignment, each VM preempts
at most one VM, since VMs do not perform self-blocking and
resume later. The overhead is included by adding the execution
time for two context switches, one at the start and one at the
completion of a VM’s execution. If a VM is preempted, the
context switch overhead is accounted for through the execution
time of the preempting VM. This approach is pessimistic but
safe, since it assumes that every instance of an executing VM
causes preemption, which is not necessarily the case.

D. Summary

The system model includes the following aspects:

• Partitioned RM scheduling of VMs based on periodic
servers with fixed period, but variable budget

• VMs characterized by minimum and maximum com-
putation bandwidth (flexible workload model), criti-
cality level, QoS parameter

• Periodic resource model as an abstraction of the
supply by a shared processor (Shin and Lee [38])

VI. DYNAMIC BANDWIDTH DISTRIBUTION

The bandwidth adaptation is realized by a dynamic setting
of the servers’ replenishment budgets. Their harmonic periods
are always kept fixed, though, which simplifies analysis and
enhances schedulability. Moreover, since VMs are statically
assigned to the processors, bandwidth redistribution has to be
handled separately for each processor.

Two situations lead (potentially) to a bandwidth adaptation:

• Distribution of Structural Slack:
Many events have a significant and lasting impact
on the resource utilization and trigger therefore a
redistribution of the spare bandwidth U

spare

. Those
events are an enabling or disabling of a task or VM,
or a mode change to a mode with differing resource
demand (we assume that modes differ regarding U

lax

).

• Distribution of Dynamic Slack:
Task execution times are bounded by the static WCET
but vary at runtime. When the actual execution time
of a task is considerably smaller than the WCET,
the difference is termed dynamic slack. Especially
in the case of critical tasks, the pessimistic WCET
is often not reached, but has to be reserved. In-
stead of wasting bandwidth when a VM does not
demand the allocated share, the guest OS yields and
the hypervisor reassigns the reserved but no longer
required bandwidth. However, this bandwidth needs
to be recovered by the respective VM upon its next
periodic reactivation. Thus, dynamic slack distribution
is carried out whenever VMs yield and when they are
periodically re-triggered.

Nevertheless, bandwidth adaptations incur in a certain
overhead and thus, the guest OSs trigger the hypervisor upon
every potential adaptation to evaluate whether it is reasonable.
The adaptation is taken only if the slack compensates the
overhead cost. This cost can be determined for each specific
hardware platform and used at runtime as a threshold.

Moreover, the two bandwidth reassignments differ regard-
ing timescale. Structural changes have a long term impact
and are reflected in the system by updating the VM set V

accordingly, e.g., adding/removing VMs or updating their U
lax

parameter. The dynamic slack distribution is a short term
measure, potentially occurring at every server termination and
reactivation. Since it uses the current set V , dynamic and
structural slack are distributed jointly.

A. Distributing Bandwidth

At each bandwidth distribution point the hypervisor subdi-
vides the set V into two sets: V 0 with all currently ready/run-
ning VMs; and V with the VMs that already terminated
their current instance. Moreover, the hypervisor computes how
much bandwidth U

act

was actually used by the VMs in V .
The current slack, which we call spare bandwidth U

spare

,
is finally defined as in Eq. 4. Note that

P
8Vj2V

U

act

(V
j

)
accounts for the bandwidth already spent at this point andP

8Vi2V

0 U
min

(V
i

) accounts for the minimum bandwidth we
want to guarantee.

U

spare

= max(0, U
lub

�(
X

8Vj2V

U

act

(V
j

)+
X

8Vi2V

0

U

min

(V
i

)))

(4)

The actual bandwidth distribution among the VMs in set
V

0 is carried out in two steps. First, the minimum requirement
U

min

is allocated to each VM. Second, the spare bandwidth

U

spare

is distributed according to an elastic policy (Sec. VI-B)
with the objective to satisfy U

lax

of the ready/running VMs.

The use of U
lub

when computing U

spare

allows us enforc-
ing continued schedulability of the VMs in V

0. Nevertheless,
there are a few aspects to account for. Consider V

a

yields with
relatively small U

act

(V
a

), this will lead to a large slack. It is
possible that V

b

in V

0 uses the entire slack and terminates,
moving to V with large U

act

(V
b

), close to its maximum
U

min

(V
b

) +U

lax

(V
b

). At the same time, it is possible that V
a

that created this slack originally becomes ready again, moving
to V

0 and requesting at least U
min

(V
a

) bandwidth.

This is a pessimistic situation, since V

b

while executing
the large U

act

(V
b

), did so on behalf of V

a

that yielded soon.
Consequently, Eq. 4 may generate values for U

spare

that are
smaller than the real ones, which are always positive. On
the other hand, the use of actually measured values of U

act

precludes generating U

spare

values that are larger than the real
ones. Thus, Eq. 4 is safe.

Another aspect to consider is when to apply the capacity
changes that result from the bandwidth management. When
reducing capacities, the new capacity can replace the current
one immediately. If the VM has already executed in the current
instance for more than the new assigned capacity, the VM is
terminated and moved to V . When increasing capacities, the
new capacity can be applied immediately if the VM is still in
V

0, i.e., ready/running. If it is already idle, i.e., in V , the new
capacity is applied in the next instance, only.

Finally, note that when a VM executes its capacity to
completion, i.e., not yielding, the bandwidth distribution that
would result from applying Eq. 4 is exactly the same as before
and thus there is no need to invoke a bandwidth redistribution.

B. Distribution Policy

The distribution policy considers two factors, namely criti-
cality level and weight, in this order. Thus, the criticality level
� is the dominant factor and the bandwidth is assigned in a
greedy manner in order of decreasing criticality. The highest
criticality level obtains as much bandwidth as possible, limited
by either the distributable amount U

spare

or the maximum
bandwidth requirement of its VMs (typically, the higher the
criticality of a VM, the more likely a large U

min

and a low
U

spare

, since critical systems are rarely QoS-driven). If there is
spare bandwidth left, the next lower criticality level is served
and so on. The weights influence the bandwidth assignment
among VMs of the same criticality level, since a greedy
strategy lacks fairness. The determination of the weight of a
VM w(V

i

) is based on the normalization of its QoS parameter
qos(V

i

) considering the current set of VMs V

0 among which
U

spare

will be distributed:

w(V
i

) =
qos(V

i

)P
Vj2V

0 qos(V
j

)
(5)

Assuming the bandwidth U

spare

is to be distributed among
VMs of similar criticality level (VM set V

0), the individual
shares U

add

(V
i

) are set to:

U

add

(V
i

) = w(V
i

) · U
spare

(6)

This results in a total bandwidth assignment of:

U(V
i

) = U

min

(V
i

) + U

add

(V
i

) (7)

This value determines the new server bandwidth and the
replenished budget follows as ⇥

i

= U(V
i

) ·⇧
i

.

However, using the above distribution may result in a value
of U

add

greater than U

lax

for some VMs. In this case, their
U

add

is truncated to U

lax

, and the remaining bandwidth is
distributed among the other VMs in the same proportion of
their weights. The additional bandwidth distribution may result
in more VMs reaching their U

lax

limit, causing more trunca-
tions. This process may continue until there is no remaining
bandwidth, resulting in the iterative algorithms proposed in
[43] and [36] for the elastic bandwidth management.

C. The Algorithm and its Computational Complexity

The typical iterative approaches followed by elastic man-
agement algorithms introduce significant overhead and vari-
ations in their execution time. Therefore, in this paper we
propose a new non-iterative algorithm that results in a similar
bandwidth distribution but with significant benefits in overhead
and we compare it with the approach in [36]. The new
algorithm takes advantage of the fact that, if any VM will reach
its U

lax

limit by using Equation 6, then the first to reach that
limit will be the VM with the lowest value of U

lax

(V
i

)/w(V
i

)
(see [36]). By setting the U

add

values for all VMs, starting
with the VM with lowest U

lax

(V
i

)/w(V
i

) and ending with the
largest, it is guaranteed that the first m VMs (m may be 0)
will reach their U

lax

limit, while all subsequent VMs will not
reach this limit. A single iteration through all VMs is sufficient
to achieve the same bandwidth distribution as the previously
proposed algorithms with several iterations.

Algorithm 1 presents the pseudocode of the proposed band-
width distribution. Only VMs that are enabled (not depicted)
and could benefit from additional bandwidth are considered
(Line 7). At the beginning of the distribution among VMs of
the same criticality level we compute the sum of the weights
(w⌃) and U

lax

(U⌃
lax

) of the considered VMs (Lines 9-10).
If the available U

spare

exceeds U

⌃
lax

all VMs can be satisfied
immediately (Lines 12-15). Otherwise, the algorithm iterates
over all VMs in the order provided in V and assigns utilization
shares based on the normalized weights (Lines 17-18). U

add

is bounded to U

lax

(Line 19-20).

The basic bandwidth distribution formula (Equation 6) is
O(n), but since the algorithm requires the VMs to be sorted,
the computational complexity becomes O(n · logn). Neverthe-
less, note that an initial sorting can be done at design time. If
we take into account that this algorithm needs to be re-executed
every time the bandwidth distribution parameters change, and
that in most (if not all) cases only the parameters of a single
VM changes between one execution of the algorithm and the
next, then the re-ordering algorithm merely needs to correct the
previous order, which may be done in a single iteration through
all VMs, resulting in an algorithm complexity of O(n). Finally,
note that the number of VMs assigned to the same core is
determining, not the total number of VMs executed on the
multicore processor. This implies a relatively low number of
VMs per processor, e.g., n 6.

Algorithm 1 Bandwidth Distribution

Require: V (sorted regarding increasing U

lax

/w)
1: U

spare

 COMPUTE U SPARE(V)
2: for all � (descending order) do
3: if U

spare

= 0 then
4: exit()
5: end if
6: w

⌃[�] 0, U⌃
lax

[�] 0
7: V [�] {V

i

|V
i

2 V ^ �(V
i

) = � ^ U

lax

(V
i

) > 0}
8: for all V

i

2 V [�] do
9: w

⌃[�] w

⌃[�] + w(V
i

)
10: U

⌃
lax

[�] U

⌃
lax

[�] + U

lax

(V
i

)
11: end for
12: if U

spare

� U

⌃
lax

[�] then
13: for all V

i

2 V [�] do U

add

(V
i

) U

lax

(V
i

)
14: end for
15: U

spare

 U

spare

� U

⌃
lax

[�]
16: else
17: for all V

i

2 V [�] do
18: U

add

(V
i

) U

spare

· w(V
i

)/w⌃[�]
19: if U

add

(V
i

) > U

lax

(V
i

) then
20: U

add

(V
i

) = U

lax

(V
i

)
21: w

⌃[�] w

⌃[�]� w(V
i

)
22: U

spare

 U

spare

� U

add

(V
i

)
23: end if
24: end for
25: exit()
26: end if
27: end for

D. Temporal Isolation and Minimum Bandwidth Guarantee

In Section I, key requirements for hypervisor-based con-
solidation of real-time systems and their certification were in-
troduced. The presented computation bandwidth management
approach fulfills this level of temporal isolation:

• The hypervisor’s scheduling guarantees that all guest
systems receive sufficient computation time to meet
their timing requirements. Schedulability is enforced
by the appropriate server design (the server’s supply
bound function is equal or greater than the guest’s
demand bound function for all t, see Section V-B).

• Overruns within a VM provoke under no circum-
stances that other VMs violate their timing require-
ments, since a VM is never executed if the associated
server ran out of budget (see Section V-B).

The approach does not realize a completely uninfluenced
execution of the guest systems, since this strong degree of
temporal isolation is irreconcilable with a dynamic transfer of
budget among VMs.

A specified minimum bandwidth allocation is guaranteed
for all VMs. The online bandwidth allocation for a VM V

i

is realized as an addition of a dynamic part (U
add

(V
i

)) to
a static part (U

min

(V
i

)). Algorithm 1 computes under all
circumstances for all VMs a U

add

(V
i

) that satisfies 0
U

add

(V
i

) U

lax

(V
i

). These bounds are a direct implication
of Equation 6. From an implementation perspective, U

min

(V
i

)
and U

add

(V
i

) are realized as different parameters in the VM

control block and only the latter is modified at runtime.
Therefore, it is precluded that the allocated bandwidth falls
below U

min

(V
i

), implying that an execution time budget of
at least ⇥

i

= U

min

(V
i

) ·⇧
i

is allocated every period ⇧
i

. This
minimum budget is not touched by the dynamic bandwidth
management. The adaptive bandwidth distribution might just
add budget.

The combination of the provided degree of temporal iso-
lation and the guaranteed minimum bandwidth allocations
ensures the correct execution of the guests in terms of their
timing constraints, independent from the execution of other
VMs on the same core. Therefore, these guaranteed minimum
bandwidths and the described temporal isolation are the basis
for both the schedulability analysis and a potential certification.
An actual certification would imply other complementary
aspects such as the proper determination of the minimum
bandwidths needed for guaranteed timely execution of each
VM in due consideration of the inter-core interferences through
shared memory and bus interference, but these aspects are
orthogonal aspects with respect to this work and beyond the
scope of this paper. Very pessimistic minimum bandwidths
can be expected if these interferences are considered, but our
approach has the benefit of reclaiming unused capacity at
runtime, thus making an efficient use of the processor even
in such a situation.

VII. EVALUATION

A. Evaluation Platform

The approach was implemented on an IBM PowerPC 405
multicore processor [44], a 32-bit RISC core for low-cost
and low-power embedded systems clocked at 300 MHz. It
features a scalar 5-stage pipeline with single-cycle execution of
most instructions, separate instruction and data caches (16KB
each) as well as a memory management unit with a software-
managed translation lookaside buffer.

The execution times were determined with the IBM
PowerPC Multicore Instruction Set Simulator [45], which al-
lows for cycle-accurate evaluations with low effort on different
hardware configurations. The simulator models all processor
resources including caches. Many components of the simulated
hardware can be configured, for example, the number of cores
or cache sizes. If the program does not perform external mem-
ory accesses, the execution is identical to execution on real
hardware. In order to ensure this, the caches are pre-loaded:
the examined software routines are executed completely out
of instruction cache and use the data cache for data storage,
resulting in completion of loads and stores in one cycle.
The instruction set simulator includes a trace tool for WCET
analysis, which shows all the instructions executed and keeps
track of the number of cycles used.

B. Prototype

We integrated the approach into the real-time multicore
hypervisor Proteus [46] and the real-time operating system
ORCOS 1 for 32-bit multicore PowerPC 405 architectures.

1Proteus and ORCOS are free software, released under the GNU General
Public License. The source code can be downloaded from http://orcos.cs.uni-
paderborn.de/orcos/browser/ProteusMC .

TABLE I: Memory Footprint (2 VMs)

Feature Memory Footprint [bytes]
text data total

Base Hypervisor 8224 2980 11204
Paravirtualization 252 148 400
Bandwidth Redistribution 1996 292 2288
Total 10472 3420 13892

Proteus is a symmetric hypervisor: all cores have the same role
and execute guest systems. When the guest traps or calls for a
service, the hypervisor takes over control and its own code is
executed on that core. Different guests on different cores can
perform this context switch from guest to hypervisor at the
same time. The hypervisor’s scheduler can as well be executed
on different cores at the same time. The hypervisor supports
both kinds of virtualization and the concurrent hosting of
paravirtualized and fully virtualized guests is possible without
restriction. The dynamic bandwidth adaptation is however
confined to paravirtualized guests. Fully virtualized guests
receive a constant bandwidth allocation (U

lax

= 0).

Depending on the requirements of the application, Proteus
can be configured statically. The base configuration requires
a total of about 11KB.2 The required addition of paravirtu-
alization support accounts for 400B. The dynamic bandwidth
redistribution functionality consisting of scheduler and module
for the communication between hypervisor and OS add 2.3KB.
If all features required for dynamic bandwidth management are
enabled, the memory requirement of the hypervisor hosting
two VMs sums up to about 14KB (see Table I). For each
additional VM the memory requirement increases by 56B.

C. Paravirtualization Effort

In order to paravirtualize an OS for the presented adaptive
approach, the scheduler has to be modified and a protocol-
compliant communication with the hypervisor has to be added.
The required communication between guest OS and hypervisor
is realized by both hypercalls and shared memory communica-
tion. For the latter, a memory region within the memory space
that is assigned to a VM is dedicated to paravirtualization com-
munication. It is accessible by hypervisor and corresponding
VM, however not by any other VM. The hypervisor informs
the guest OS about bandwidth allocation changes via shared
memory. Hypercalls are used by the guest OS to immediately
invoke communication and pass control when it does not need
the remaining assigned computation bandwidth in the current
period and would otherwise idle or to inform the hypervisor
about a change of U

lax

.

The communication functionality is provided by a library.
Main modification is the addition of the protocol-compliant
passing of scheduling information to the hypervisor. Instead
of idling, the guest OS should yield. In case of a task mode
change, the guest OS has to inform the hypervisor. In order to
detect whether the hypervisor changed the bandwidth alloca-
tion, the control flow has to be adapted: after a context switch
from hypervisor to OS, the OS has to check a processor flag
and if the allocation was modified read out the shared memory.

2All executables are generated with option -O2 for the GNU C compiler,
which focuses on the performance and not primarily on the code size.

Fig. 2: Execution Times of Scheduler Routines Subject to the
Number of Virtual Machines (PowerPC 405 @300 MHz)

2 3 4 5 6
0

2

4

6

8

10

12

Number of Virtual Machines (n)

Ex
ec

ut
io

n
Ti

m
e

in
µ
s

init
schedule
distribute
distribute (iterative)

In case of ORCOS, the paravirtualization effort accounted for
50 lines of C++ code.

D. Execution Times

Figure 2 depicts the execution times of the implemented
routines from two to six VMs. The init function initializes
the data structure for the server management and performs
already an initial bandwidth distribution. It is called once at
system start. schedule implements the scheduling policy: it
determines (1) which VM to execute next and (2) for how long.
distribute computes the additional bandwidth allocations
based on the current resource requirements (Algorithm 1).
The execution times are all in the range of about 1 to 8
microseconds. init requires the longest execution time. The
most frequently called routine schedule is characterized by
a low execution time below 2 microseconds. The execution
time of distribute is for six VMs about 4 microseconds.
For comparison purposes, we also show the execution times
of an iterative version of the elastic bandwidth distribution
referred as distribute (iterative). A lower execution time for
the new non-iterative algorithm can be observed; the larger n,
the larger the difference (up to 58% for six VMs).

The execution time of all functions is dependent on the
number of VMs n assigned to the same core. init and
distribute have a computational complexity of O(n·logn)
(see Section VI-C), however, this is not observable for these
small numbers of VMs, while it is O(n) for schedule.

The hypercall vm_yield (voluntarily release the pro-
cessor) has an execution time of 507 ns, measured until
the start of the hypervisor’s schedule routine. By calling
sched_set_param, the guest OS passes information to the
hypervisor’s scheduler, e.g. to inform about a mode change.
The execution time of this hypercall is 793 ns, with the mea-
surement stopped when the calling VM resumes its execution.
The worst-case execution times for a shared memory read and
write are 2.193 µs and 1.809 µs, respectively.

TABLE II: Thresholds for Distribution of Dynamic Slack
(PowerPC 405 @300 MHz)

Slack Threshold [µs]

number of virtual machines
n=2 n=3 n=4 n=5 n=6

2.250 4.493 5.123 5.707 6.287

E. Overhead vs. Benefit

The overhead of a bandwidth redistribution is the same
for structural and dynamic slack. However, the frequency
of the latter is much higher than for the former, since it
is potentially invoked every time a VM yields and in the
following VM capacity replenishment. Conversely, structural
slack is expected to change possibly in a scale of seconds.
Therefore, the bandwidth redistribution costs are crucial for
taking advantage of the dynamic slack.

The total overhead consists of the overhead of a regular
OS-to-hypervisor context switch plus the additional overhead
of the hypercall vm_yield, the execution time of the function
distribute, and the readout of the shared memory. Both
the call to the hypervisor function schedule and the check
of the processor flag by the guest OS have to be performed
regardless of whether the hypervisor redistributes or not. With
an execution time for a context switch from guest OS to
hypervisor of 450 ns, the additional overhead of the hypercall
vm_yield is only 57 ns. The costs for calling distribute
and accessing shared memory dominate.

Table II lists the thresholds for the redistribution of dy-
namic slack as a function of the number of VMs: if the amount
of dynamic slack is greater than the threshold, the benefits
of a redistribution exceed the costs. In case of two VMs, the
dynamic slack can be passed directly to the other VM, without
having to call the distribute function, resulting in a significantly
lower threshold. For the redistribution among three to six VMs,
the amount of dynamic slack has to be greater than 4.5µs to
6.3µs, respectively. We believe these are still low values to
allow taking effective advantage of dynamic slack in many
practical circumstances.

F. Comparison with other Approaches

There are three main approaches to provide temporal
isolation of multiple VMs with real-time constraints:

1) dedicated processor for each real-time VM
2) static cyclic schedule with fixed execution time slices
3) execution-time servers

In the following, these three solutions are compared qual-
itatively. Subsequently, two kinds of the third solution are
compared quantitatively, namely, servers with static bandwidth
allocation and servers managed with the introduced adaptive
approach.

In the first solution, a processor core hosts a single VM
with real-time requirements. Other VMs without real-time re-
quirements can execute in the background, not jeopardizing the
response times of the real-time VM. This restricted approach
does not use the full potential of virtualization and often leads

to both a low utilization of the processors and a high number
of required processors.

In the second approach, a static cyclic schedule [47] is
designed by analyzing the guests’ task sets and assigning
execution time windows within a repetitive major cycle to the
VMs based on the required utilization and execution frequency.
This static scheduling approach is for example part of the
software specification ARINC 653 [48] for avionics systems.
It is well-analyzable but lacks run-time flexibility, thus being
inadequate for cases with dynamic changes of the demands,
since a reaction is only possible by redesigning the schedule.
Such a redesign can seldom be computed online due to the
high computation time overhead involved.

Finally, our work follows the third solution: the compu-
tation requirements of the VMs are abstracted as execution
time servers, which are scheduled by the hypervisor as pe-
riodic tasks. The hypervisor’s scheduler enforces the server
bandwidths. Anyway, a periodic server with a fixed bandwidth
[49] cannot react to mode changes and remains active when
the associated guest system idles until its budget is exhausted.

In the following, the performance of two server-based
approaches is compared, namely periodic servers with fixed
and with adaptive bandwidth distribution as proposed in this
work. The comparison is carried out through simulation with
synthetically generated workloads. The real-time scheduling
simulator RTSIM is used, developed at Retis Lab of the
Scuola Superiore Sant’Anna [50]. However, RTSIM had to
be extended for the purpose of our work, namely with server-
based scheduling of virtual machines, the compared scheduling
algorithms, criticality levels, and the possibility to generate
synthetic workloads in addition to the existing manual input.

We used Brandenburg’s toolkit SchedCAT [51], which
is based on Emberson et al.’s [52] method for workload
generation, to generate unbiased synthetic server sets with a
given total utilization Ū =

P
n

i=1 Umin

(V
i

). As the proposed
approach is a partitioned multicore scheduling solution, we
analyze the scheduling of a set of servers assigned to one core.
1000 sets of VMs were generated according to the following
parameter ranges:

• n uniformly distributed over [2, 6]
• Ū uniformly distributed over [0.1, 0.2, ..., 0.7]
• U

min

(V
i

) uniformly distributed over [0, Ū]

• ⇧
i

generated as harmonic within [10µs, 1000µs]
(⇥

i

follows as ⇥
i

= U

min

(V
i

) ·⇧
i

)
• U

lax

(V
i

) uniformly distributed over [0, 0.20]
• p(V

i

) uniformly distributed over [0.05, 0.20]
• bdf(V

i

) uniformly distributed over [0.50, 1.00]

A VM has randomly generated either only one or two
modes. A U

lax

(V
i

) is assigned to each mode. For simplicity,
the weights are based on U

lax

(V
i

). p(V
i

) denotes the prob-
ability of a mode change at the beginning of each period
of V

i

. The bandwidth demand factor bdf(V
i

) represents a
variable demand of the server budget within one specific server
period, assuming a value in the interval [bdf(V

i

) ⇤ ⇥
i

,⇥
i

]. If
bdf(V

i

) = 1, V
i

needs the worst-case demand in this server
period. A smaller value results in idle time, which might be

TABLE III: Virtual Machine Set I

VM Period U
min

U
lax

Criticality p bdf
[us] mode 1 mode 2

VM1 1000 0.23 0.20 0.13 HI 0.2 0.87
VM2 100 0.05 0.12 0.04 HI 0.2 0.94
VM3 1000 0.14 0.03 0.11 HI 0.2 0.59
VM4 500 0.18 0.09 0.15 HI 0.2 0.72

TABLE IV: Virtual Machine Set II

VM Period U
min

U
lax

Criticality p bdf
[us] mode 1 mode 2

VM1 100 0.17 0.20 0.0 HI 0.2 1.00
VM2 900 0.38 0.12 0.17 LO 0.05 1.00
VM3 300 0.25 0.08 0.12 LO 0.15 1.00

redistributed by the adaptive approach, but not by the fixed
bandwidth management. Every configuration was simulated for
ten hyperperiods, but limited to 10s of simulated time.

As it was shown in Section VI-D, the specified minimum
bandwidths are guaranteed and this was confirmed in these
multiple simulation runs. The bandwidth requirements of all
virtual machines were fulfilled in all test scenarios.

The figures Fig. 3 and Fig. 4 show plots from actual
execution traces based on the VM sets of Table III and Table IV
in order to illustrate the adaptive distribution policy. In Fig. 3,
the allocated bandwidths to four VMs over ten hyperperiods
are plotted. In addition, dashed horizontal lines indicate the
guaranteed minimum bandwidths. The probability of mode
change was not generated randomly but set for alls VM
to 0.2 in order to obtain a scenario with many bandwidth
redistributions, resulting in 21 mode changes.

Fig. 4 allows for a closer look at the adaption process
triggered by three mode changes (there is no dynamic slack
in this experiment), both the point in time of enforcement
and the influence of criticality and weight. At the beginning,
VM1 and VM2 are in mode 1 and VM3 is in mode 2. VM1
receives the entire spare bandwidth of 0.2, since it is of higher
criticality than VM2 and VM3 and it can use an additional
bandwidth of 0.2 in its current mode. At t=700us (marked as
(1) in the diagram), VM1 switches to mode 2, characterized
by U

lax

= 0, so that the spare bandwidth becomes available to
VM2 and VM3. Both get a share of 50%, since their current
modes have an equal U

lax

and the weights are directly related
to these values in this experiment. Both VMs idle already at
this point in time, for which reason the additional bandwidth
is not assigned until the next periods. At t=1400 (marked as
(2) in the diagram), VM3’s change from mode 2 to 1 results
in a new balance between the weights and consequently in an
increased bandwidth for VM2 at the expense of VM3. When
VM1 changes back to mode 1 at t=2500 (marked as (3) in the
diagram), the entire spare bandwidth is immediately assigned
to this VM.

To assess the effectiveness of our mechanism of distributing
slack bandwidth according to the presented policy, we define
the relative error � of the budget allocation, defined for the
k

th period of the server that executes V
i

based on the assigned

Fig. 3: Trace of the Bandwidth Assignment to 4 VMs over
10 Hyperperiods

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

t in us

To
ta

lB
an

dw
id

th
Sh

ar
e

VM1 VM2 VM3 VM4

Fig. 4: Trace of the Bandwidth Assignment to 3 VMs:
Detailed Look at Redistribution Triggered by Mode Changes

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(1) (2) (3)

t in us

To
ta

lB
an

dw
id

th
Sh

ar
e

VM1 VM2 VM3

execution budget ⇥k

i

and the actually desired budget ⇥k⇤
i

:

�(V
i

, k) =
⇥k

i

�⇥k⇤
i

⇥k⇤
i

(8)

The desired budget ⇥k⇤
i

is defined by U

max

(V
i

) =
U

min

(V
i

)+U

lax

(V
i

) of the current mode and therefore not to
be mistaken with the required budget U

min

(V
i

) that guarantees
schedulability. Including the bandwidth demand factor bdf(V

i

)
as well, the desired budget is a random value within the
following interval:

⇥k⇤
i

2 [bdf(V
i

) · U
max

(V
i

) ·⇧
i

, U

max

(V
i

) ·⇧
i

] (9)

In case of a negative �(V
i

, k), the desired budget was not
saturated. A positive �(V

i

, k) denotes idle time of V

i

in the
considered period and therefore unused budget. Finally, �(V

i

)

TABLE V: Relative Error � of Allocated Bandwidth and
Desired Bandwidth and Unused Bandwidth U

unused

for
Fixed Distribution and Adaptive Distribution

Policy Average(�)[%] Uunused[%]
Fixed 9.6 25.2
Adaptive (Structural Slack) 4.1 16.7
Adaptive (Structural + Dynamic Slack) 2.1 12.4

is the average over all |�(V
i

, k)| for all periods k of VM V

i

2
V . We keep track of the average values of each �(V

i

) and
define � as the average over all �(V

i

).

In a nutshell, the metric for this experiment is the relative
error of allocated budget and desired budget. The desired
budget changes constantly during runtime, based on both mode
changes and a bandwidth demand that varies per period, that
is to say that the VMs might not need the worst-case demand
in a specific period. The smaller the relative error, the more
effective the bandwidth allocation, since the relative error
indicates either a non-saturated desired budget or an unused
budget. The experiment with synthetically generated workloads
investigates whether the adaptive approach is able to follow the
varying computation bandwidth demands.

Table V lists the average values of � and of the total
unused utilization (U

unused

= U

lub

� U

allocated

). In the fixed
bandwidth policy, U

spare

was distributed with a one-time static
allocation based on the weights of the first mode. Adaptive
(Structural) denotes the adaptive distribution of structural slack
only, whereas Adaptive (Structural + Dynamic) includes both
kinds of slack.

For any VM in all periods, the fixed bandwidth distribution
results in an average � difference of 9.6% between desired
budget and allocated budget and a total unused computation
bandwidth of 25.2%. When using the proposed adaptive band-
width distribution, but redistributing structural slack only, the
average � and unused bandwidth fall significantly to 4.1% and
16.7%. As expected, these values fall even further when using
in addition the adaptive bandwidth distribution of dynamic
slack to 2.1% and 12.4%, respectively. These low values of
� confirm that the actual distribution of bandwidth follows
closely the desired bandwidths, showing the effectiveness of
our approach in enforcing an elastic distribution.

VIII. CONCLUSION

Hypervisor-based virtualization gained significant interest
in the embedded domain in the last years, but with static
resource management policies. An adaptive management of
the computation bandwidth is an approach of great and so far
untapped potential. This work proposed an adaptive bandwidth
management for such systems, providing temporal isolation
among virtual machines, defined not as an uninfluenced be-
havior, but as the guarantee that all guests are able to meet
their timing constraints. Periodic execution time servers and
the elastic task model combine analyzability at design time
with adaptability at runtime. The correct execution of a virtual
machine depends only on the server parameters and not on the
behavior of other virtual machines, and is thus protected from
potential overloads within another virtual machine.

This work explored dynamic budget replenishment as
an efficient way to realize adaptive bandwidth reallocation
in a multi-criticality setting, taking advantage of the slack
generated by mode changes of virtual machines and shorter
execution times than the declared worst-case. The bandwidth
distribution is carried out with fine-grained control according
to the elastic model, benefiting selected applications that can
take advantage of higher computational bandwidth to produce
improved results.

We claim that the use of the periodic resource model, Rate-
Monotonic scheduling and a bandwidth distribution mecha-
nism that ensures a guaranteed minimum bandwidth for all
VMs is compatible with certification and thus the use of more
efficient adaptive techniques in safety-critical settings. The
proposed mechanisms were implemented and a quantification
of the incurred overheads was carried out, showing their prac-
ticality and effectiveness in building more efficient embedded
systems.

In future work, we plan to remove the constraint that only
independent virtual machines are considered. If systems that
have to communicate are consolidated, inter-VM communica-
tion is required. In addition, the influence of shared resource
usage should be investigated.

ACKNOWLEDGMENT

This work was partially supported by the Portuguese
Government through FCT grants CodeStream PTDC/EEI-
TEL/3006/2012, Serv-CPS PTDC/EEA-AUT/122362/2010,
EXPL/EEI-AUT/2538/2013, and SMARTS - FCOMP-01-
0124-FEDER-020536 and by the German Federal Ministry
for Education and Research within the project ARAMiS with
the funding ID 01IS11035. The responsibility for the content
remains with the authors. We thank Yuan Gao for supporting
the work on the simulator.

REFERENCES

[1] J.E. Smith and R. Nair, Virtual Machines. San Francisco, CA: Elsevier,
2005, pp. 369–443.

[2] A. Monot et al., “Multicore Scheduling in Automotive ECUs,” in Proc.
Embedded Real Time Software and Systems (ERTSS), 2010.

[3] S. Baruah et al., “Mixed-Criticality Scheduling: Improved Resource-
Augmentation Results,” in Proc. Conference on Computers and Their
Applications (CATA), 2010, pp. 217–223.

[4] International Organization for Standardization, “ISO 26262 — Road
vehicles — Functional safety, Part 1 - 10,” Nov. 14, 2011.

[5] Z. Gu and Q. Zhao, “A State-of-the-Art Survey on Real-Time Issues
in Embedded Systems Virtualization,” Journal of Software Engineering
and Applications, vol. 5, no. 4, pp. 277–290, Jan. 2012.

[6] S. Groesbrink et al., “Fair Bandwidth Sharing among Virtual Machines
in a Multi-criticality Scope,” in Proc. Workshop on Adaptive and
Reconfigurable Embedded Systems (APRES), 2013.

[7] L. Abeni et al., “QoS Management through Adaptive Reservations,”
Real-Time Systems, vol. 29, pp. 131–155, 2005.

[8] R. Santos et al., “On-line Schedulability Tests for Adaptive Reservations
in Fixed Priority Scheduling,” Real-Time Systems, vol. 48, pp. 601–634,
June 2012.

[9] N. Khalilzad et al., “Bandwidth Adaption in Hierarchical Scheduling
Uzing Fuzzy Controllers,” in Proc. Symposium on Industrial Embedded
Systems (SIES), 2012, pp. 148–157.

[10] A. Block et al., “An Adaptive Framework for Multiprocessor Real-
Time Systems,” in Proc. Euromicro Conference on Real-Time Systems
(ECRTS), 2008, pp. 23–33.

[11] G. Buttazzo et al., “Resource Management on Multicore Systems: The
ACTORS Approach,” IEEE Micro, vol. 31, pp. 72–81, 2011.

[12] M. Maggio et al., “A Game-Theoretic Resource Manager for RT
Applications,” in Proc. Euromicro Conference on Real-Time Systems
(ECRTS), 2013, pp. 57–66.

[13] A. Zabos et al., “Spare Capacity Distribution Using Exact Response-
time Analysis,” in Proc. International Conference on Real-time and
Network Systems (RTNS), 2009, pp. 97–106.

[14] G. Lipari and S. Baruah, “Greedy Reclamation of Unused Bandwidth
in Constant Bandwidth Servers,” in Proc. Euromicro Conference on
Real-Time Systems (ECRTS), 2000, pp. 193–200.

[15] M. Caccamo et al., “Efficient Reclaiming in Reservation-based Real-
time Systems With Variable Execution Times,” IEEE Transactions on
Computers, vol. 54, pp. 198–213, 2005.

[16] L. Nogueira and L. Pinho, “Capacity Sharing and Stealing in Dynamic
Server-based Real-Time Systems,” in Proc. Parallel and Distributed
Processing Symposium (IPDPS), 2007, pp. 1–8.

[17] G. Bernat and A. Burns, “Multiple Servers and Capacity Sharing for
Implementing Flexible Scheduling,” Real-Time Systems, vol. 22, pp.
49–75, 2002.

[18] L. Marzario et al., “IRIS: A New Reclaiming Algorithm for Server-
based Real-time Systems,” in Proc. Real-time and Embedded Technol-
ogy and Applications Symposium (RTAS), 2004, pp. 211–218.

[19] K. Arzen et al., “Adaptive Resource Management Made Real,” in
Proc. Workshop on Adaptive and Reconfigurable Embedded Systems
(APRES), 2011.

[20] H. Su and D. Zhu, “An Elastic Mixed-Criticality Task Model and Its
Scheduling Algorithm,” in Proc. Design, Automation and Test in Europe
(DATE), 2013, pp. 147–152.

[21] J. Anderson et al., “Multicore Operating-System Support for Mixed
Criticality,” in Proc. Workshop on Mixed Criticality: Roadmap to
Evolving UAV Certification, 2009.

[22] M. Mollison et al., “Mixed-Criticality Real-Time Scheduling for Mul-
ticore Systems,” in Proc. International Conference on Computer and
Information Technology (CIT), 2010, pp. 1864–1871.

[23] J. Herman et al., “RTOS Support for Multicore Mixed-Criticality
Systems,” in Proc. Real-Time Technology and Applications Symposium
(RTAS), 2012, pp. 197–208.

[24] F. Bruns et al., “An Evaluation of Microkernel-based Virtualization for
Embedded Real-time Systems,” in Proc. Euromicro Conference on Real-
Time Systems (ECRTS), 2010, pp. 57–65.

[25] A. Crespo et al., “Partitioned Embedded Architecture based on Hypervi-
sor: the XtratuM Approach,” in Proc. European Dependable Computing
Conference (EDCC), 2010, pp. 67–72.

[26] E. Carrascosa et al., “XtratuM Hypervisor Redesign for LEON4 Mul-
ticore Processor,” in Proc. Workshop on Virtualization for Real-time
Embedded Systems, 2013.

[27] J. Yang et al., “Implementation of Compositional Scheduling Frame-
work on Virtualization,” SIGBED Review, vol. 8, pp. 30–37, March
2011.

[28] T. Cucinotta et al., “Providing Performance Guarantees to Virtual
Machines Using Real-Time Scheduling,” Euro-Par Parallel Processing
Workshops (Lecture Notes in Computer Science), vol. 6586, pp. 657 –
664, 2011.

[29] J. Lee et al., “Realizing Compositional Scheduling Through Virtualiza-
tion,” in Proc. Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2011, pp. 13–22.

[30] N. Navet et al., “Multi-source and Multicore Automotive ECUs -
OS Protection Mechanisms and Scheduling,” in Proc. International
Symposium on Industrial Electronics (ISIE), 2010, pp. 3734 – 3741.

[31] T. Liebetrau et al., “Energy Saving in Automotive E/E Architectures,”
Infineon Technologies, www.infineon.com, Tech. Rep., Dec. 2012.

[32] P. Barham et al., “Xen and the Art of Virtualization,” in Proc. Sympo-
sium on Operating Systems Principles (SOSP), 2003, pp. 164–177.

[33] S. King et al., “Operating System Support for Virtual Machines,” in
Proc. USENIX Annual Technical Conference, 2003.

[34] J. Kiszka, “Towards Linux as a Real-Time Hypervisor,” in Proc. Real
Time Linux Workshop, 2011.

[35] C. Liu and J. Layland, “Scheduling Algorithms for Multiprogramming
in a Hard-Real-Time Environment,” Journal of the ACM, vol. 20, pp.
44–61, 1973.

[36] R. Marau et al., “Efficient Elastic Resource Management for Dynamic
Embedded Systems,” in Proc. Conference on Trust, Security and Pri-
vacy in Computing and Communications (TrustCom), 2011, pp. 981–
990.

[37] P. Emberson and I. Bate, “Extending A Task Allocation Algorithm for
Graceful Degradation Of Real-Time Distributed Embedded Systems,”
in Proc. Real-Time Systems Symposium (RTSS), 2008, pp. 270–279.

[38] I. Shin and I. Lee, “Compositional Real-Time Scheduling Framework
with Periodic Model,” ACM Transactions on Embedded Computing
Systems, vol. 7, no. 3, pp. 30:1–30:39, 2008.

[39] R.I. Davis and A. Burns, “A Survey of Hard Real-Time Scheduling for
Multiprocessor Systems,” ACM Computing Surveys, vol. 43, pp. 35:1–
35:44, 2010.

[40] G. Lipari and E. Bini, “Resource Partitioning Among Real-Time
Applications,” in Proc. Euromicro Conference on Real-Time Systems
(ECRTS), 2003, pp. 151–158.

[41] I. Shin and I. Lee, “Periodic Resource Model for Compositional Real-
Time Guarantees,” in Proc. Real-Time Systems Symposium (RTSS),
2003, pp. 2–13.

[42] L. Almeida and P. Pedreiras, “Scheduling within Temporal Partitions:
Response-time Analysis and Server Design,” in Conference on Embed-
ded Software (EMSOFT), 2004, pp. 95–103.

[43] G. Buttazzo et al., “Elastic Scheduling for Flexible Workload Manage-
ment,” IEEE Transactions on Computers, vol. 51, pp. 289–302, 2002.

[44] IBM, PowerPC 405 Processor Core - Manual, www.ibm.com, 2005
[Jan. 6, 2014].

[45] IBM Research, “IBM PowerPC 4XX Instruction Set Simulator,”
https://www-01.ibm.com/chips/techlib/techlib.nsf/products/PowerPC
4XX Instruction Set Simulator (ISS), Oct 2012 [Jan. 6, 2014].

[46] K. Gilles et al., “Proteus Hypervisor: Full Virtualization and Paravir-
tualization for Multi-Core Embedded Systems,” in Proc. International
Embedded Systems Symposium (IESS), 2013, pp. 293–305.

[47] T. Baker and A. Shaw, “The Cyclic Executive Model and Ada,” Real-
Time Systems, no. 1, pp. 7–25, 1989.

[48] P. Prisaznuk, “ARINC 653 Role in Integrated Modular Avionics (IMA),”
in Proc. Digital Avionics Systems Conference (DASC), 2008, pp.
1.E.5:1–1.E.5:10.

[49] L. Sha et al., “Solutions for Some Practical Problems in Prioritized Pre-
emptive Scheduling,” in Proc. Real-Time Systems Symposium (RTSS),
1986, pp. 181–191.

[50] C. Bartolini and G. Lipari, “RTSIM,” http://rtsim.sssup.it/, 2012 [Jan.
6, 2014].

[51] B. Brandenburg, “Schedcat: the Schedulability Test Collection
and Toolkit,” 2013 [Jan. 6, 2014]. [Online]. Available: https:
//github.com/brandenburg/schedcat

[52] P. Emberson et al., “Techniques for the Synthesis of Multiprocessor
Tasksets,” in Proc. Workshop on Analysis Tools and Methodologies for
Embedded and Real-time Systems, 2010.

