
Lúıs Miguel Pinho Nogueira

Time-Bounded Adaptive Quality of
Service Management for

Cooperative Embedded Real-Time
Systems

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto
2009

Lúıs Miguel Pinho Nogueira

Time-Bounded Adaptive Quality of
Service Management for

Cooperative Embedded Real-Time
Systems

Tese submetida à Faculdade de Ciências da Universidade do Porto

para obtenção do grau de Doutor em Ciência de Computadores

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto

2009

This thesis is dedicated to my family and friends, without whom none of

this would have been even possible

3

Acknowledgements

First and foremost, I would like to thank my advisor Prof. Lúıs Miguel Pinho for

his guidance, support, and dedication. This work would not be possible without his

extraordinary expertise in real-time systems, his impressive ability to solve problems,

and our friendship. I also wish to express my gratitude to my co-advisor Prof. Miguel

Filgueiras for his support throughout these years, valuable suggestions, and patiently

and meticulously reading of the draft version of this thesis. Needless to say, I alone

bear the responsibility for any errors in this current version.

I have benefited from many and varied interactions with fellows at the IPP-HURRAY!

research group. Eduardo Tovar, Mário Alves, Filipe Pacheco, Nuno Pereira, Björn

Andersson, Paulo Baltarejo, and Lúıs Ferreira all showed me how to conduct real-time

systems research from various angles and provided valuable personal and institutional

support which will always be treasured.

Jorge Coelho, long time friend and fellow at ISEP, has always offered stimulating

discussions on issues of interest to this work.

I also owe a special thanks to Sandra Almeida at IPP-HURRAY who kept things run

smoothly and who cheerfully and efficiently made all the administrative hassles went

way.

I must also acknowledge the valuable support given by the Portuguese Fundation for

Science and Technology (FCT) through the PhD grant SFRH/BD/30818/2006.

Finally, I am forever indebted to my parents and my brother for their love, under-

standing, endless patience, and encouragement when it was most required.

4

Abstract

As an increasing number of users runs both real-time and non-real-time applications

in an embedded system, the issue of how to provide an efficient resource utilisation

in dynamic, open, and heterogeneous environments becomes very important. The

need arises from the fact that independently developed services can enter and leave

the system at any time, without any previous knowledge about their real execution

requirements and tasks’ inter-arrival times but, nevertheless, response to events still

has to be provided within timing constraints in order to guarantee a desired level

of performance. Within this context, this thesis proposes a cooperative QoS-aware

framework which allows resource constrained devices to collectively execute services

in cooperation with more powerful neighbours.

The proposed framework allows devices to collectively execute services in order to

meet non-functional requirements that otherwise would not be met by an individual

execution. Devices dynamically group themselves into coalitions, establishing initial

service configurations which maximise the satisfaction of each users’ QoS preferences

associated with the new services and minimise the impact on the global QoS caused by

the new services’ arrival. At coalitions’ runtime, the dynamic QoS arbitration among

competing services is done under the users’ control, extending each user’s influence

not only to a coalition’s formation phase but also to its operation.

The traditional QoS optimisation approach, mainly concentrated on finding single

optimal or with a fixed sub-optimality bound solutions, is reformulated as a heuristic-

based anytime optimisation that can be interrupted at any time and still able to

provide a service solution, even when services exhibit unrestricted local and distributed

QoS inter-dependencies among their tasks. The proposed anytime approach is able to

quickly find a good initial service solution and effectively optimise the rate at which

the quality of the determined solution improves at each iteration of the algorithms.

Autonomous individual runtime adaptations are coordinated through an one-step

decentralised model based on an effective feedback mechanism, able to reduce the

5

complexity of the needed interactions among nodes until a collective adaptation be-

haviour is determined. Positive feedback is used to reinforce the selection of the new

desired global service solution, while negative feedback discourages nodes to act in a

greedy fashion as this adversely impacts on the provided service levels at neighbouring

nodes. By exchanging feedback on the desired self-adaptive actions nodes converge

towards a global solution, even if that means not supplying their individually best

solutions. As a result, each node, although autonomous, is influenced by, and can

influence, the behaviour of other nodes in a coalition.

The dynamic changes of services’ requirements is handled in a predictable fashion,

enforcing timing constraints with a certain degree of flexibility, aiming to achieve the

desired tradeoff between predictable performance and an efficient use of resources.

The proposed CSS (Capacity Sharing and Stealing) dynamic server-based scheduler

supports the coexistence of guaranteed and non-guaranteed bandwidth servers to

efficiently handle soft-tasks’ overloads by making additional capacity available from

two sources: (i) residual capacity allocated but unused when jobs complete in less

than their budgeted execution time; (ii) stealing capacity from inactive non-isolated

servers used to schedule aperiodic best-effort framework’s management tasks.

The effectiveness and reduced complexity of CSS in managing unused reserved capac-

ities without any previous complete knowledge about the tasks’ runtime behaviour,

makes it appropriate to be used as the basis of a more powerful scheduler able to handle

dependent tasks sets which share access to some of the system’s resources and exhibit

precedence constraints. The proposed CXP (Capacity Exchange Protocol) integrates

the concept of bandwidth inheritance with the greedy capacity sharing and stealing

policy of CSS. Rather than trying to account borrowed capacities and exchanging them

later in the exact same amount, CXP focus on greedily exchanging extra capacities

as early, and not necessarily as fairly, as possible in order to effectively minimises

the degree of deviation from the ideal system’s behaviour caused by inter-application

blocking.

6

Resumo

À medida que um número crescente de utilizadores pretende executar simultâneamente

aplicações com e sem restrições de tempo real no mesmo dispositivo computacional

a questão de como fornecer uma utilização eficiente de recursos num tal ambiente

dinâmico, aberto e partilhado é cada vez mais importante. A necessidade surge

do facto de aplicações independentemente desenvolvidas poderem entrar e sair do

sistema a qualquer momento sem que exista um conhecimento prévio das suas reais

necessidades em termos de recursos e periodicidade de chegada das suas tarefas mas,

mesmo assim, ser necessário responder aos eventos dentro de determinadas restrições

temporais de modo a garantir um ńıvel desejado de performance. Dentro deste con-

texto, esta tese propõe uma framework cooperativa de gestão da qualidade de serviço

(QoS), denominada CooperatES (Cooperative Embedded Systems), que permite que

dispositivos com restrições computacionais possam executar colectivamente serviços

com os seus vizinhos.

A framework proposta permite satisfazer requisitos não funcionais que de outra forma

não poderiam ser garantidos através de uma execução individual. Os dispositivos

agrupam-se dinamicamente em novas coligações, definindo configuração iniciais de

serviço que maximiza a satisfação das restrições de qualidade impostas pelo utilizador

para o novo serviço e minimizam o impacto da chegada desse serviço no ńıvel de

qualidade global. Durante a execução da coligação, a gestão dinâmica da qualidade

de serviço dos diversos serviços que concorrem entre si pelos recursos do sistema é

feita sob o controlo do utilizador, estendendo a sua influência não só à formulação da

coligação mas também à sua operação.

A abordagem tradicional de optimização da QoS, centrada na procura de uma única

solução óptima ou com um ńıvel de qualidade não óptimo pré-definido, é reformulada

como uma optimização anytime baseada em heuŕısticas que pode ser interrompida a

qualquer momento e, mesmo assim, capaz de devolver uma solução, mesmo quando

quando os serviços exibem relações de interdependência entre as suas tarefas. A

abordagem anytime proposta é capaz de encontrar rapidamente uma boa solução

7

inicial e optimiza o incremento da qualidade dessa solução a cada iteração, com um

custo que pode ser negligenciado quando comparado com os benef́ıcios introduzidos.

As adaptações autónomas de cada dispositivo durante a execução são coordenadas

por um modelo descentralizado baseado num mecanismo de feedback para reduzir a

complexidade das interacções necessárias entre os nós até que um comportamento de

adaptação global seja determinado. Feedback positivo é usado para reforçar a selecção

de um novo ńıvel de qualidade desejado, enquanto que o feedback negativo desencoraja

os nós a actuar de modo egóısta uma vez que essa atitude tem um impacto negativo

no ńıvel de qualidade fornecido pelos nós vizinhos. Através da troca de feedback às

acções de adaptação individuais os nós convergem para uma solução global, mesmo

que isso signifique não fornecer as suas soluções individuais óptimas. Como resultado,

cada nó, apesar de autónomo, é influenciado, e pode influenciar, o comportamento de

outros nós numa coligação.

As mudanças dinâmicas dos requisitos dos serviços é gerida de um modo previśıvel,

impondo restrições temporais com um certo grau de flexibilidade, obtendo o desejado

equiĺıbrio entre performance previśıvel e um uso eficiente dos recursos do sistema.

O escalonador CSS (Capacity Sharing and Stealing) proposto, um algoritmo dinâmico

baseado em servidores com prioridades dinâmicas, suporta a coexistência de servidores

com reservas garantidas e não garantidas de tempos de computação de modo a gerir

eficientemente as sobrecargas computacionais usando capacidade computacional extra

a partir de duas fontes: (i) capacidade residual alocada mas não usada quando as tare-

fas terminam antes do seu tempo de execução pré-reservado; (ii) roubando capacidade

aos servidores não isolados inactivos, usados para escalonar tarefas não periódicas de

gestão da framework baseadas numa poĺıtica de melhor esforço.

A eficiência e reduzida complexidade do CSS na gestão de capacidades reservadas

em ambientes onde não existe um conhecimento prévio das reais necessidades dos

serviços em execução torna-o apropriado a ser usado como base de um escalonador

mais poderoso, capaz de gerir interdependências entre tarefas, nomeadamente partilha

de recursos e restrições de precedência. Esta tese propõe o escalonador CXP (Capacity

Exchange Protocol), um protocolo que integra o conceito de herança de capacidades

com a gestão egóısta de partilha e roubo de capacidades computacionais do CSS.

Em vez de tentar contabilizar as capacidades obtidas por empréstimo e restitúı-las

mais tarde exactamente na mesma medida, o CXP centra-se na troca egóısta das

capacidades extra dispońıveis tão cedo, e não necessariamente tão equitativamente,

quanto posśıvel de modo a minimizar o grau de desvio em relação ao comportamento

ideal do sistema causado pelo bloqueio entre tarefas.

8

Resumé

Comme un nombre croissant d’utilisateurs tourne à la fois en temps réel et non

tempsréel des applications dans le même système, la question de savoir comment

fournir une utilisation efficace des resources dynamiques ouvertes et dans un evi-

ronment partagé est très importante. La nécessité découle du fait que des services

indépendants développés peuvent entrer et sortir du système à tout moment sans

aucune connaissance de leurs véritables besoins et l’exécution des táches inter-les

heures d’arrivée mais, néanmoins, la résponse à des événements doit encore être fournie

dans un timing contraint afin de garantir un certain niveau de performance.

Cette thèse propose un cadre QoS-aware coopératif, appelé COOPERATES (Cooper-

ative Embedded Systems), qui permet à des dispositifs limités d’exécuter collective-

ment des services avec de plus puissants voisins et qui rencontre les exigences non-

fonctionnelles qui, autrement, ne seraient pas atteints par une exécution. Des nœuds

d’un environnement distribué de coopération dynamique s’associent eux-mêmes dans

une nouvelle coalition, en allocant des ressources pour chaque nouveau service et en

établissant une première configuration qui maximise la satisfaction des contraints QoS

que s’associe à ce nouveau service et minimise l’impact sur le QoS global causé par

l’arrivée du nouveau service.

Cette thèse reformule l’approche d’une optimisation traditionnelle QoS, concentrée

surtout sur la recherche optimale seule ou sur des solutions sous-optimalisé liées,

comme une base heuristique sur l’optimisation que à tout moment peut être inter-

rompue et réagir rapidement aux changements de l’environnement, en adaptant le

service distribué à la délibération du temps disponible qui est imposée dynamiquement

en raison des nouvelles conditions environnementales. Les algorithmes sont proposés à

tout moment en mesure de trouver rapidement une bonne solution initiale au service de

manière à optimiser la vitesse dans laquelle la qualité de la solution actuelle s’améliore

à chaque itération de l’algorithme, avec un tableau qui puisse être considéré comme

négligeable quand comparé contre les avantages introduites.

9

Cette thèse propose une démarche décentralisée, un modèle de coordination sur la

base d’un mécanisme de rétroaction efficace pour réduire la complexité des interactions

nécessaires entre les noeuds jusqu’à ce que l’adaptation du comportement collectif est

déterminée. La rétroaction positive est utilisé pour renforcer la sélection de la nouvelle

solution globale des services souhaités, tandis que la rétroaction négative décourage

les nœuds d’agir d’une manière vorace effets négatifs sur les niveaux de service fournis

à des noeuds voisins. En échangeant des informations sur les actions auto-adaptative,

les noeuds convergent vers une solution globale, même si cela implique de ne pas

fournir de meilleures solutions individuelles. En conséquence, chaque nœud, malgré

que autonome, est influencé et peux influer sur le comportement des autres noeuds du

système.

Au même temps, une nouvelle approche de planification est nécessaire pour gérer

l’évolution dynamique des services et les besoins d’une façon prévisible, en exécutant

de contraintes temporelles avec un certain degré de flexibilité, visant à réaliser les

compromis entre les performances prévisibles et l’utilisation efficace des ressources. Par

conséquent, cette thèse intègre et prolonge des avances récents en deadline dynamique,

en planifiant avec des ressources de réservation, en proposant le gestionnaire CSS

(Capacity Sharing and Stealing), un gestionnair basé sur serveur dynamique basé qui

supporte la coexistence des serveurs de bande passante, garanties et non-garanties,

de manière à traiter de une forme efficace les tâches-soft surchargées en permettant

une capacité supplémentaire de deux sources: (i) capacité résiduelle alloués mais non

utilisés lors de l’emploi complet en moins de leur temps d’exécution, (ii) la capacité

des serveurs inactifs, non-isolés de voler utilisé pour planifier les meilleurs efforts de

gestion des tâches apériodiques.

L’efficacité et la diminution de la complexité des CSS en manipulant les capacités

réservées et inutilisées sans aucune connaissance préalable sur les tâches d’exécution

de comportement, sont appropriés pour être utilisé comme la base d’un gestionnaire

puissant capable de gérer des ensembles de tâches dépendantes qui partagent l’accès

entre certaines ressources du système et d’exposer les contraintes précédentes. Le

proposé CXP (Capacity Exchange Protocol) intègre le concept d’héritage des bandes

passantes avec la capacité vorace de partager et voler la politique des CSS. Plutôt que

d’essayer d’emprunter les capacités et de les échanger plus tard dans le même montant,

CXP se concentre sur les capacités extra voraces d’échange au plus tôt possible. Cet

approche réduit effectivement le degré de déviation du comportement idéal du système

causé par le blocage inter-application.

10

Contents

Abstract 5

Resumo 7

Resumé 9

List of Tables 15

List of Figures 18

1 Introduction 19

1.1 Main concepts . 19

1.2 Motivation . 23

1.3 Contributions . 25

1.4 Outline . 26

2 Adaptive real-time systems 29

2.1 Introduction . 29

2.2 Quality of Service (QoS) management 31

2.3 Adaptive middleware . 38

2.4 Real-time scheduling . 43

2.5 Summary . 50

3 Cooperative embedded systems 51

11

3.1 Introduction . 51

3.2 Problem description and system model 53

3.3 Expressing Quality of Service . 55

3.4 The CooperatES framework . 59

3.5 Coalition formation . 63

3.6 Service proposal formulation . 66

3.7 Supporting runtime QoS adaptation and stability 69

3.7.1 Promised stability periods . 71

3.7.2 Determine possible upgrades of previously downgraded Service

Level Agreements (SLAs) . 72

3.8 Summary . 74

4 Time-bounded service configuration 75

4.1 Introduction . 75

4.2 Anytime algorithms . 77

4.2.1 An anytime QoS optimisation approach 78

4.3 Anytime coalition formation . 81

4.3.1 Formal description of the algorithm’s anytime behaviour 82

4.3.2 Conformity with the desirable properties of anytime algorithms 84

4.4 Anytime service proposal formulation 87

4.4.1 Formal description of the algorithm’s anytime behaviour 90

4.4.2 Conformity of with the desirable properties of anytime algorithms 91

4.5 Anytime upgrade of previously downgraded SLAs 94

4.5.1 Formal description of the algorithm’s anytime behaviour 95

4.5.2 Conformity with the desirable properties of anytime algorithms 97

4.6 Summary . 99

5 Scheduling tasks in open systems 101

5.1 Introduction . 101

12

5.2 System model . 103

5.3 The Capacity Sharing and Stealing (CSS) approach 104

5.3.1 The CSS scheduler . 108

5.3.2 Handling overloads with CSS 109

5.4 Theoretical validation for independent tasks 111

5.5 Summary . 114

6 Handling QoS inter-dependencies 115

6.1 Introduction . 115

6.2 Local QoS inter-dependencies . 117

6.2.1 Anytime service proposal formulation for inter-dependent task

sets . 119

6.2.2 Anytime re-upgrade of previously downgraded levels of service

for inter-dependent task sets . 121

6.3 Distributed QoS inter-dependencies . 123

6.3.1 A one-step decentralised coordination model 125

6.3.2 Properties of the proposed decentralised coordination model . . 129

6.3.2.1 Coordinating upgrades 130

6.3.2.2 Coordinating downgrades 132

6.3.3 Number of exchanged messages 134

6.4 Summary . 135

7 Scheduling inter-dependent task sets 137

7.1 Introduction . 137

7.2 System model . 138

7.3 Sharing resources in open systems . 140

7.4 The Capacity Exchange Protocol (CXP) 142

7.4.1 Minimising the cost of blocking with CXP 143

7.5 Handling precedence constraints in open systems 144

7.5.1 Handling tasks’ precedences with CXP 146

13

7.6 Theoretical validation for dependent tasks 147

7.6.1 Blocking time computation . 152

7.7 Summary . 153

8 Evaluation 155

8.1 Introduction . 155

8.2 Evaluated scenario . 156

8.3 Anytime approach’s behaviour and overhead 158

8.3.1 Coalition formation . 158

8.3.2 Service proposal formulation . 160

8.3.3 Services’ runtime adaptation . 163

8.4 Coordinating distributed inter-dependent adaptations 166

8.5 Efficiency of the proposed scheduling algorithms 169

8.5.1 Residual capacity reclaiming . 169

8.5.2 Allowing capacity stealing . 171

8.5.3 Sharing resources among tasks 173

8.5.4 Imposing precedence constraints among tasks 177

8.6 Summary . 178

9 Conclusion 179

9.1 Introduction . 179

9.2 General conclusions . 181

9.3 Summary of the main contributions . 181

9.4 Future research directions . 185

Bibliography 187

14

List of Tables

4.1 Iterative QoS optimisation . 90

8.1 Possible characteristics of nodes . 157

15

16

List of Figures

3.1 Framework structure . 60

3.2 Resource managers’ layering . 62

3.3 QoS Provider . 62

3.4 Acceptable service quality . 63

5.1 State transitions of CSS servers . 105

5.2 Handling overloads with CSS . 110

7.1 BWI’s drawbacks . 141

7.2 Sharing resources with CXP . 144

7.3 Handling tasks’ precedences with CXP 147

8.1 Coalition formation: Anytime behaviour 159

8.2 Coalition formation: Anytime vs Traditional 159

8.3 Proposal formulation: Anytime behaviour with spare resources 161

8.4 Proposal formulation: Anytime behaviour with limited resources 161

8.5 Proposal formulation: Anytime vs Traditional with spare resources . . 162

8.6 Proposal formulation: Anytime vs Traditional with limited resources . . 163

8.7 QoS re-upgrade: Anytime behaviour 164

8.8 QoS re-upgrade: users’ influence . 164

8.9 QoS re-upgrade: Anytime vs Traditional 165

8.10 Average number of exchanged messages 166

8.11 Needed time until the global adaptation result is determined 167

17

8.12 Relative solution’s utility as a function of available resources 168

8.13 Performance in dynamic scenarios . 170

8.14 Small variation in execution times . 172

8.15 Large variation in execution times . 172

8.16 Capacity consumed by the SP task . 174

8.17 Capacity consumed by the LP task . 174

8.18 Performance in dynamic scenarios . 175

8.19 Overhead using BWI as reference . 176

8.20 Overhead of handling precedence constraints 177

18

Chapter 1

Introduction

Traditionally, most real-time systems were built to achieve a specific set

of goals and the set of tasks to be executed was well known at design

time. In contrast to this, real-time systems are undoubtedly becoming

more open and increasingly support a broader spectrum of soft real-time

applications characterised by strongly varying resource requirements only

known at runtime. Nevertheless, a timely answer to events must still be

provided in order to guarantee a desired level of performance.

The challenge is how to efficiently execute applications in these new open

real-time systems while meeting non-functional requirements arising from

the operating environment, the users, and applications. This thesis advo-

cates that such demands are adequately addressed through a cooperative

decentralised QoS-aware execution model, supported by anytime QoS op-

timisation algorithms and effective flexible scheduling mechanisms.

This chapter discusses some important concepts referred to throughout

this document, introduces the problem it aims to solve, presents its main

contributions, and outlines the rest of the document.

1.1 Main concepts

Throughout this thesis, the concepts of open real-time system, embedded system, and

Quality of Service appear very frequently. Considering the broad use of these terms

in different research and industrial communities, we decided to provide a number of

definitions that, hopefully, will help the reader to better understand the rest of this

document.

19

20 CHAPTER 1. INTRODUCTION

Real-time system. A real-time system is a system whose performance depends not

only on the values of its outputs, but also on the time at which these values are

produced [Sta88].

Real-time systems span a large spectrum of activities. Examples include nuclear plants

supervision, military command and control, medicine and emergency response, avion-

ics and air traffic control, multimedia, mobile phone networks, real-time databases,

robotics, and agile manufacturing systems. In all these scenarios, time is the basic

constraint to deal with.

A common misconception is to consider a real-time system as a fast system. The time

scale may vary largely. Its magnitude can be a microsecond in a radar, a second in

a human-computer interface, a minute in an assembly line, or an hour in a chemical

reaction.

No matter how fast a computer is, its performance must always be guaranteed against

the characteristics of the environment. The most important feature for a real-time

system is not speed but predictability. Typically, in a system with several concurrent

activities, high-speed tends to maximise the average performance of the task set,

whereas a predictable behaviour aims at guaranteeing the individual timing constraints

of each task.

Depending on the consequences of missing timing constraints, real-time tasks are

usually distinguished into hard and soft 1. A real-time task is said to be hard if missing

a single deadline may cause catastrophic consequences on the controlled system. A

real-time task is said to be soft if missing one or more deadlines does not jeopardise

the correct system behaviour, but only causes a performance degradation. For soft

real-time systems, the goal is typically to meet some Quality of Service requirements.

Open real-time system. A real-time system is defined “open” if independently de-

veloped applications can be activated and terminated at any moment, generating

a time-varying workload [DLS97].

One challenge facing the real-time systems community is how to build and deliver

open real-time systems where a dynamic mix of independently developed applications

with different timeliness constraints can coexist. Some of the difficulties arise from the

fact that both resource availability and the mix of applications and their aggregate

1More complete classifications can be found in the literature. However, this simple classification

suffices to explain the point in question

1.1. MAIN CONCEPTS 21

resource and timing requirements are unknown until runtime, but, still, a timely answer

to events must be provided in order to guarantee a desired level of performance.

This calls for a somewhat different and more flexible approach than those typically

used today for building fixed-purpose real-time systems. Classical methodologies for

real-time systems design are hardly applicable, because they assume a prior knowledge

both on the applications’ requirements and on the availability of resources.

A promising approach is to design open systems using Quality of Service negotiation

and runtime adaptation techniques in order to ensure that, despite the uncertain

factors that trigger the occurrence of changes in the environment, service is still

provided within contracted levels.

Quality of Service. The collective effect of service and performances that determine

the degree of the user’s satisfaction [MR02].

QoS is apparent at all layers in any architecture, but is “viewed” differently by each

layer. The end user is concerned with perceptual QoS that essentially defines how

“good” a service appears to the user, together with non-performance related QoS such

as cost. This satisfaction is usually associated with a number of non-functional require-

ments or QoS characteristics, such as dependability, reliability, timeliness, robustness,

throughput, etc.

User QoS is also the least service specific representation (in terms of how dependent

upon the type of service the QoS characteristic is) and is produced as a direct effect

of application performance and the supporting environment.

There is a fine line between Application QoS and User QoS, but it is probably best

differentiated by the fact that the former is usually in terms of computational concepts

where User QoS is not.

System QoS defines the QoS expected by the application of the underlying system

and incorporates everything between the application and the hardware devices. It is

more service specific since its QoS characteristics are directly relevant to the type of

service.

Finally, at the lowest level, QoS is specified with respect to device capabilities, either

peripheral or network. These QoS specifications, termed Device QoS, are usually very

detailed and often concerned with the performance a particular device can offer.

Quality of Service management. The process of controlling the performance of a

system as a function of workload variations [ART04].

22 CHAPTER 1. INTRODUCTION

QoS management is the complete set of activities related to the control and ad-

ministration of QoS within a system. Often the term is used in close relation to

resource management, since QoS is often some complex function of end-to end resource

utilisation.

Resource allocation mechanisms are typically activated during the establishment phase.

However, resources may be subject to re-allocation as a result of QoS violations

and degradation, or re-negotiations in response to changing service requirements.

Admission control mechanisms limit the acceptance of requests in order to ensure that

resources are not overloaded or that existing timing constraints are not disrupted.

Embedded system. A device (and its software) is considered embedded if it is an

integral component of a larger system [Emb].

Traditionally, an embedded system was a special-purpose computer system designed

to perform one or a few dedicated functions, often with real-time computing con-

straints. It was usually embedded as part of a complete device including hardware

and mechanical parts.

Nowadays, embedded systems span all aspects of modern life and there are many ex-

amples of their use. Telecommunications systems employ numerous embedded systems

from telephone switches to mobile phones at the end-user. Computer networking uses

dedicated routers and network bridges to route data.

Consumer electronics include personal digital assistants (PDAs), mp3 players, mo-

bile phones, video-game consoles, digital cameras, DVD players, GPS receivers, and

printers. Many household appliances, such as microwave ovens, washing machines

and dishwashers, are including embedded systems to provide flexibility, efficiency

and features. Advanced air conditioning systems use networked thermostats to more

accurately and efficiently control temperature that can change by time of day and

season. Home automation uses wired and wireless networking that can be used

to control lights, climate, security, audio/visual, surveillance, etc., all of which use

embedded devices for sensing and controlling.

Transportation systems from flight to automobiles increasingly use embedded systems

to reduce costs, maximise efficiency, and reduce pollution. New air-planes contain

advanced avionics such as inertial guidance systems and GPS receivers that also have

considerable safety requirements. Automotive safety systems, such as anti-lock braking

system (ABS), Electronic Stability Control (ESC/ESP), traction control (TCS), and

automatic four-wheel drive are increasingly using microprocessors as a core system

component instead of using dedicated hardware.

1.2. MOTIVATION 23

Medical equipment is continuing to advance with more embedded systems for vital

signs monitoring, electronic stethoscopes for amplifying sounds, and various medical

imaging systems for non-invasive internal inspections.

Most of these embedded systems share a number of important properties, such as:

(i) limited resources, due to cost constraints related with mass production and strong

industrial competition. In order to make devices cost-effective, it is mandatory to make

a very efficient use of the computational resources; (ii) demanding quality requirements.

Users of consumer electronics products, home appliances, and mobile devices are

accustomed to robust and well behaving devices. It is obvious that this requirement

will not be relaxed because of the usage of processors in their construction; and a

(iii) tight interaction with the environment. An embedded system acts within, and in

many cases on, the physical environment, which requires the system to react to events

within timing constraints.

1.2 Motivation

Traditionally, embedded systems have been able to rely on their closed environments

to limit the possible inputs and on static resource management techniques to supply

pre-defined Quality of Service (QoS) levels [KRP+93].

However, nowadays’ embedded systems combine the stringent QoS requirements of

traditional closed embedded systems with the challenges of an open, heterogeneous,

and dynamic environment [HLR01, GRHL04]. Open systems are inherently uncertain

and dynamic and accurate optimisation models are difficult to obtain and quickly

become outdated. Nevertheless, despite their uncertainty, responses to events still

have to be provided within timing constraints in order to guarantee a desired level

of performance. Achieving the necessary predictable real-time behaviour relies on

the ability to dynamically manage resources by adapting and reconfiguring the set of

provided levels of service to the dynamically changing environmental conditions.

However, even if the system has this ability, an individual embedded device may not

have sufficient resources to deliver the minimum desired quality to every application

along each of its QoS characteristics [SCZ05, EEGL03, SLSL05]. A redistribution

of the computational load across a set of computational devices (hereafter called

neighbour nodes) would then enable the execution of far more complex and resource-

demanding services that otherwise would be able to be executed on a stand-alone

basis.

24 CHAPTER 1. INTRODUCTION

With the rapid development of embedded technology, cooperative computing, which

enables large-scale resource sharing and collaboration, emerges as a promising dis-

tributed computing paradigm to face the stringent demands on resources and per-

formance of new embedded real-time systems. Service partitioning and offloading to

a remote machine has been successfully proposed for power and performance gains

[GMG+04, KHR01, LWX01, OH98, RRPK98, WL04]. These works conclude that

the efficiency of an application execution can be improved by careful partitioning the

workload between a resource constrained device and a fixed, more powerful, neighbour.

Nevertheless, it is known that users might tolerate different levels of service, or could

be satisfied with different quality combination choices [RLLS97] and, to the best of our

knowledge, none of the works on computation offloading takes that into consideration.

We believe that supporting each user’s specific QoS preferences while offloading com-

putation is a key issue but there is still no method for distributing a resource intensive

service by the subset of neighbour nodes which offers the best QoS according to a

particular user’s service request.

In addition, QoS optimisation techniques have traditionally been mainly concentrated

on finding single optimal or with a fixed sub-optimality bound solutions. However,

the increased complexity of open real-time environments may prevent the possibility

of computing both optimal local and global resource allocations within an useful

and bounded time. Anytime algorithms have shown themselves to be particularly

appropriate in such settings, incorporating the notion that the needed computation

time to obtain optimal service solutions will typically reduce the overall solution’s

utility [Zil96].

At the same time, embedded real-time systems are becoming increasingly unpre-

dictable due to the increasing use of independently developed data-driven applications

whose actual execution parameters vary significantly with input data and cannot

be predicted in advance [AB98]. While several scheduling solutions have already

been proposed to achieve guaranteed service and inter-task isolation, unused reserved

capacities can be more efficiently used to meet deadlines of tasks whose resource usage

exceeds their reservations. Isolation can be reduced in a controlled fashion in order to

donate reserved, but still unused, capacities to overloaded servers, handling overloads

with additional computational capacity wasted by the currently available bandwidth

reservation schedulers.

Furthermore, most of the existing work on overrun control is proposed under the

assumption that soft and hard real-time tasks are independent. However, tasks are

rarely independent in real world embedded systems. As such, it is important to

1.3. CONTRIBUTIONS 25

propose an efficient scheduling technique to support shared resources and precedence

constraints among tasks of open real-time systems, without compromising the real-

time guarantees of hard tasks.

As such, the implementation of adaptive embedded real-time systems, operating in

open and dynamic environments, requires several issues to be considered at the same

time: (i) a cooperative execution of resource intensive services; (ii) time-bounded QoS

management mechanisms; and (iii) more efficient scheduling strategies.

1.3 Contributions

This thesis proposes the fundamental basis of a real-time cooperative framework that

can provide a more efficient and predictable support to the development of quality-

aware embedded systems, characterised by high complexity, dynamic behaviour, and

distributed organisation.

The central proposition of this thesis is that heterogeneous, dynamic, and open real-

time embedded systems are adequately built using a cooperative decentralised model,

supported by anytime QoS optimisation algorithms and effective flexible scheduling

mechanisms.

The CooperatES (Cooperative Embedded Systems) framework [PNB05, NP06a] facil-

itates the cooperation among neighbour devices when a particular set of user-imposed

QoS constraints cannot be satisfyingly answered by a single node. Nodes dynamically

group themselves into a new coalition, allocating resources to each new service and

establishing an initial Service Level Agreement (SLA) that maximises the satisfaction

of the user’s QoS constraints under negotiation [NP05].

The increased complexity of open real-time environments may prevent the possibility

of computing optimal local and global resource allocations within a useful and bounded

time. As such, the QoS optimisation problem is here reformulated as a heuristic-based

anytime optimisation problem that can be interrupted at any time and quickly respond

to environmental changes [NP06c, NP09b]. The proposed anytime algorithms are able

to quickly find a good initial service solution and effectively optimise the rate at which

the quality of the current solution improves at each iteration of the algorithms, with

an overhead that can be considered negligible when compared against the introduced

benefits.

Runtime adaptation is a fundamental issue in resource-constrained QoS-aware systems

since it determines how well users’ service requests are satisfied in the presence of

26 CHAPTER 1. INTRODUCTION

dynamically changing operating conditions. As such, during a coalition’s lifetime,

the initially promised SLA may be downgraded in order to accommodate new service

requests with a higher utility for the system or re-upgraded when the needed resources

become once again available. However, while some users or applications may prefer to

always get the best possible instantaneous QoS independently of the reconfiguration

rate of their requested services, others may find that frequent QoS reconfigurations

are undesirable. This thesis explores these ideas and proposes a QoS adaptation

mechanism that allows users to control the runtime adaptation behaviour of their

applications [NP06b, NP08a].

While runtime adaptation is widely recognised as valuable, adaptations in most ex-

isting systems are limited to changing independent execution parameters. This thesis

provides support for a more realistic solution that considers (i) runtime adaptations

that span multiple dependent components at one node [NP08b, NP08a]; and (ii) a

one-step decentralised coordination model that reduces the complexity of the needed

interactions among nodes until a collective adaptation behaviour is determined, when-

ever the autonomous self-adaptations have an effect on other nodes in a coalition

[NP09a].

Based upon a careful study of the ways in which unused reserved capacities can be more

efficiently used to meet deadlines whenever a task needs to exceed its reserved amount

of computation time, this thesis also proposes the Capacity Sharing and Stealing

(CSS) scheduler [NP07a]. CSS integrates and extends some of the best principles of

previous scheduling approaches to improve the responsiveness of soft real-time tasks

in the presence of overruns while ensuring that the schedulability of hard tasks is not

compromised.

Since this thesis considers possibly inter-dependent task sets, a novel scheduling strat-

egy for supporting shared resources and precedence constraints among tasks of open

real-time systems is also proposed. The Capacity Exchange Protocol (CXP) [NP07b,

NP08c] merges the benefits of CSS with the concept of bandwidth inheritance to allow

a task to be executed on more than its dedicated server, efficiently exchanging capac-

ities among servers and reducing the undesirable effects caused by inter-application

blocking.

1.4 Outline

The rest of this document is organised as follows:

1.4. OUTLINE 27

Chapter 2 is devoted to discuss specific topics relevant for the development of adaptive

real-time embedded systems directly related to the main contributions of this thesis.

Chapter 3 proposes cooperative computing as a valuable solution for addressing the

increasing needs for resources and performance in modern embedded real-time systems.

It describes the main architecture of the CooperatES framework and explores utility-

based resource allocation and adaptation policies. These take into consideration the

increasing demand for customisable service provisioning tailored to each user’s specific

QoS preferences and needs.

Chapter 4 discusses a novel anytime approach to deal with a large number of dynamic

tasks, multiple resources, and real-time operation constraints in open dynamic real-

time systems. The algorithms proposed in Chapter 3 are reformulated as a heuristic-

based anytime optimisation approach in which there is a range of acceptable solutions

with varying qualities, adapting the distributed service allocation to the available

deliberation time that is dynamically imposed as a result of emerging environmental

conditions.

Chapter 5 presents CSS, a novel approach to dynamic server-based scheduling in

open real-systems. CSS supports the coexistence of guaranteed and non-guaranteed

bandwidth servers to efficiently handle soft-tasks’ overloads by making additional

capacity available from two sources: (i) residual capacity allocated but unused when

jobs complete in less than their budgeted execution time; (ii) stealing capacity from

inactive non-isolated servers used to schedule best-effort jobs.

Chapter 6 addresses the problem of QoS dependencies among both local and dis-

tributed tasks of open real-time systems. It starts by extending the local anytime

QoS optimisation algorithms proposed in Chapter 4 to handle adaptations of services

that share resources and whose execution behaviour and input/output qualities are

interdependent. It continues by proposing a decentralised coordination model for

groups of autonomous distributed nodes whose system-wide behaviour is established

and maintained through local interactions. Each node is able to get information about

its nearest dependent neighbours and then complement its partial knowledge of the

global adaptation problem with the state of its own resources. As a result, each node,

although autonomous, is influenced by, and can influence, the behaviour of other nodes

in the system.

Chapter 7 presents CXP, addressing the challenging problem of how to schedule

tasks that share resources or exhibit precedence constraints without any previous

information on critical sections and computation times. While preserving the isolation

principles of independent tasks and inheritance properties of critical sections, CXP

28 CHAPTER 1. INTRODUCTION

introduces significant improvements in the system’s performance through a greedy

capacity exchange policy that takes advantage of all the available unused computation

capacity.

Chapter 8 evaluates the behaviour of the several algorithms proposed in this thesis

through both quantitative and qualitative analysis.

Finally, Chapter 9 offers some concluding remarks and suggests some areas of future

work.

Chapter 2

Adaptive real-time systems

While early research on real-time computing was concerned with guar-

anteeing avoidance of undesirable effects such as overloads and deadline

misses during the system’s development, adaptive real-time systems are

designed to dynamically handle such situations at runtime. This chapter

discusses representative research efforts on that direction directly related

to the main contributions of this thesis.

2.1 Introduction

Real-time computing systems were originally developed to support safety critical,

mission critical, or business critical control applications characterised by stringent

timing constraints and, indeed, much of embedded computing is still for these types

of applications. In these systems, missing a single deadline can jeopardise the entire

system behaviour or even cause catastrophic consequences. Hence, they need to be

designed under worst-case assumptions, identified through a static design before the

system is deployed, and executed with predictable kernel mechanisms to meet the

required performance in all anticipated scenarios, thus ensuring a correct behaviour

and eliminating changes during the system’s operation.

While the high cost of such approach is acceptable for applications with dramatic

failure consequences, it is no longer justified in a growing number of new embedded

systems, in areas such as multimedia, automotive information and entertainment

systems, mobile phone networks, robotics, and radar tracking, which, instead of a

strict hard real-time behaviour for the entire system, only demand some temporal

control in order to be accepted by their users. A deadline miss does not cause a

29

30 CHAPTER 2. ADAPTIVE REAL-TIME SYSTEMS

system or application failure but it is only less satisfactory for the user and, as such,

reserving resources based on average needs is generally regarded as cheaper and more

flexible.

The challenge is how to efficiently execute applications in these new embedded systems

while meeting non-functional requirements, such as timeliness, robustness, dependabil-

ity, performance etc. In fact, in order to satisfy a set of constraints related to weight,

space, and energy consumption, most of these systems are typically built using small

microprocessors with low processing power and limited resources.

This is where QoS management applies. It seems evident that an application cannot

provide stable QoS characteristics if it has not some guarantees on the available amount

of resources. As such, reserving resources is basic for supporting QoS mechanisms.

The operating system or middleware reserves a portion of the system’s resources to

an application, which then has to provide a predefined stable output quality. This has

been precisely the goal of years of research on real-time scheduling and schedulability

analysis: to ensure that there are enough resources (CPU, network bandwidth, etc.)

for meeting time requirements.

However, the move from self-enclosed to open real-time embedded systems is also one

of moving from static to dynamic environments. Open real-time systems allow a mix

of independently developed real-time and non real-time applications to coexist in the

same system. As such, the set of applications to be executed and their aggregate

resource and timing requirements are unknown until runtime, which implies that per-

fect a priori schedulability analysis is impossible. At the same time, users increasingly

consider QoS as important as functionality, that is, how well an application performs

its function is as important as what it does.

In such scenario, static resource allocations might be appropriate for a situation at

a single point in time, e.g. initial deployment, but quickly become insufficient as

conditions change. When reasoning in terms of QoS support in dynamic environments,

which implies the establishment of contracts between clients and service providers,

the idea is to design systems using QoS adaptation and renegotiation techniques and

ensuring that, despite the uncertain factors that trigger the occurrence of changes in

the environment, the QoS contracts remain valid.

Recent research activities in this field have covered the following topics: (i) scheduling

mechanisms that define the execution of competing tasks at runtime; (ii) feedback-

based management strategies to cope with scarcely known or time-varying execution

requirements of tasks; and (iii) architectural solutions for operating systems and

middleware to support the technologies described above.

2.2. QUALITY OF SERVICE (QOS) MANAGEMENT 31

This chapter is devoted to discuss these topics, relevant for the development of adaptive

real-time embedded systems and directly related to the main contributions of this

thesis. Section 2.2 discusses the different approaches that can be used for controlling

QoS in a real-time embedded system. Section 2.3 is focused in real-time adaptive

middleware, the software layer provided above the operating system to facilitate the

development of distributed applications. Whether a set of real-time tasks can meet

their deadlines depends on the characteristics of the tasks and the scheduling algorithm

used. Section 2.4 is devoted to discuss several approaches in designing real-time

scheduling algorithms.

2.2 Quality of Service (QoS) management

The main reason for a QoS management layer in real-time embedded systems is to

provide flexibility for systems and environments where requirements on resources are

inherently unstable and difficult to predict in advance. Such a difficulty is due to

different causes. First of all, modern computer architectures include several low-level

mechanisms that are designed to enhance the average performance of applications but,

unfortunately, introduce high variations on tasks’ execution times [CP03]. In other

situations, as in multimedia systems, processes can have highly variable execution

times that also depend on input data.

Performing an efficient QoS management requires specific support at different levels

of the system’s architecture. Today’s embedded real-time systems are dynamic inter-

operating systems with the need for a QoS management that is [SLS+06]: (i) multi-

layered, basing low level allocations of resources and control behaviour on high-level

system goals; (ii) aggregate, mediating and managing the conflicting QoS needs across

competing applications and users; and (iii) adaptive, adjusting QoS provision on the

fly as situations, conditions, and needs change. Hence, new software methodologies are

emerging in embedded systems, which strictly relate to real-time operating systems,

middleware, and networks.

Several researchers have focused on developing mechanisms for operating systems that

provide soft real-time application support by allowing applications to miss some or

all of their deadlines. These systems generally rely on scheduling primitives that

use application-supplied information concerning each application’s CPU and timing

requirements. When all of the application resource requirements cannot be met,

these systems tend to reject additional applications or stop low-priority tasks that

are already executing [MST94]. Other approaches are explicitly guided by the user in

32 CHAPTER 2. ADAPTIVE REAL-TIME SYSTEMS

selecting which application to eliminate when resource availability falls below a thresh-

old point [CT94]. However, these methods do not support the principle of graceful

degradation wherein all users’ requests are honoured and resources are allocated to

the applications in an equitable manner.

Other systems reduce the resources provided to each application based on formulas of

resource needs or application importance [Fan95, JB95, NL97, JRR97]. These systems

rely on the applications themselves to adjust their processing to fit within the resources

they have been allocated. However, none of these latter systems provide a model for

how the applications can reduce their resource requirements to function within a less-

than-optimal allocation.

To speed time-to-market and reduce costs, embedded system developers increasingly

rely on real-time operating systems that reduce the cost of computer-based automation

and control systems by adopting cost-effective hardware and software. At the time

of this writing, there were 101 commercial real-time operating systems listed and

described in [Emb]. A commercial real-time operating system is generally chosen not

only for its real-time characteristics, but also for its file system and communication

stack, for its portability, and for the associated cross-development environment. It is

usually marketed as the runtime component of an embedded development platform,

which also includes a comprehensive suite of development tools and utilities and a

range of communications options for the target connection to the host, in an Integrated

Development Environment (IDE). Currently, VxWorks [Rivb], from Wind River, is the

major commercial real-time operating system.

There has also been a considerable amount of work in making Linux a real-time

operating system. A list of Linux real-time variants can be found at [Fou]. One

can distinguish two basic approaches: (i) to use a small real-time executive as a base

and execute Linux as a thread in this executive; and (ii) to directly modify the Linux

internals. RTLinux [Riva] and RTAI [DdIA] are examples of the first approach, whereas

Linux RK [RtMSL] is an example of the second approach.

At the network level, a lot of research has been conducted on the end-system or

end-to-end architectures for QoS support, and also on link, network, and transport

layers. Scheduling algorithms for package deliberation provide specific quality levels

[CSZ92], while resource reservation protocols such as the Resource ReSerVation Proto-

col (RSVP) [ZDE+93] provide support for end-to-end resource reservation for specific

sessions. DiffServ and IntServ [BCS94] are examples of IETF standards that integrate

RSVP for the support of real-time as well as the current non real-time service in IP

networks. Each protocol defines different approaches for the classification of network

2.2. QUALITY OF SERVICE (QOS) MANAGEMENT 33

traffic, services, and interfaces for their support. IntServ was especially ambitious

for the support of Internet real-time systems (remote video, multimedia and virtual

reality). DiffServ is a layer 3 traffic-handling mechanism that tries to reduce the

complexity of IntServ and include new services such as SLA (Service Level Agreement),

which specify the amount of customer traffic that can be accommodated at each service

level.

The Real-Time Transport Protocol (RTP) [SCFJ96] is a transport protocol for carrying

real-time traffic flows in an IP network. It provides a standard packet header format

which gives sequence numbering, media-specific time stamp data, source identification,

and payload identification, among other things. RTP is usually carried using UDP.

RTP is supplemented by the Real-Time Transfer Control Protocol (RTCP), which

carries control information about the current RTP session. RTP does not address the

issue of resource reservation but relies on reservation protocols such as RSVP.

The Resource Negotiation and Pricing (RNAP) protocol and architecture [WS00],

based on pricing mechanisms, has been proposed as a framework to enable a user

to select from a set of available network services with different QoS characteristics,

and enable the user and network to dynamically re-negotiate the contracted service

parameters and price. RNAP has some features and goals in common with the work on

differentiated services [NBBB98] and RSVP [ZDE+93]. RNAP is intended for use by

both adaptive and non-adaptive applications. Non-adaptive applications may choose

services that offer a static price, or absorb any changes in price while maintaining their

sending rate. Adaptive applications adapt their sending rate and/or choice of network

services in response to changes in network service prices.

However, most of this research has been focused on low-level system mechanisms.

While individual resource management is an important factor for an efficient QoS

management, we believe that, by itself, it is not sufficient for the ultimate end-users

who experience the resulting QoS. It is known that different users might tolerate

different levels of service, or could be satisfied with different quality combination

choices [RLLS97]. As such, an effective QoS management which takes each user’s

specific QoS preferences into account must span individual resources in an integrated

and accessible way.

Note that the service’s consumer determines the QoS requirements, which might

change over time, while the data source (frequently remote from the consumer and

therefore using different resources) and transport medium determine the quality and

form of information. Furthermore, there might be multiple, simultaneous bottlenecks

(i.e., the most constrained resources) and the bottlenecks might change over time.

34 CHAPTER 2. ADAPTIVE REAL-TIME SYSTEMS

A QoS manager must therefore capture the QoS requirements from each individual

user and application, manage all the resources that could be bottlenecks, mediate con-

flicting demands for resources, effectively utilise allocated resources, and dynamically

reallocate them as conditions change.

Jensen et al. proposed a soft real-time scheduling technique based on applications’

benefit [JLT85]. Each application specified a benefit curve that indicated the relative

benefit to be obtained by scheduling the application at various times with respect to its

deadlines. The goal was to schedule applications so as to maximise an overall system’s

benefit. While this approach is intuitively very appealing, it is computationally

intractable. Nevertheless, this work led to the adoption of utility functions to represent

varying satisfaction with service changes in several other works.

Research on adaptive QoS control [TK93, MJ95, LKRM96] brings us a step closer to

the QoS support from a user’s perspective by providing a mechanism to accommo-

date potential dynamic changes in the operating environment. Other works [VN97,

SWM95] propose analytical models to support QoS metrics of video and multimedia

applications. Both works identify the QoS parameters related to an user’s satisfac-

tion and resource consumption in these types of applications and the corresponding

functions for the relationship of resources and users’ satisfaction. However, these

mechanisms are still mainly system-oriented and the user has limited influence over

the QoS to be delivered or adapted.

In coping with the shortage of QoS support from an end-user point of view, Rajkumar

et al. [RLLS97] proposed Q-RAM, a QoS-based resource allocation model in which

multiple resources are allocated to maximise the overall system’s utility. The static

resource allocation algorithms of Q-RAM were extended to support a dynamic task

traffic model [HLR01] and to handle non-monotonic dimensions [GRH+03]. Q-RAM

can be regarded as a generic approach to an imprecise computation approach, with

the resource allocation problem treated as a general nonlinear or integer programming

problem to be solved offline. Thus, the Q-RAM solution is generally not adaptable

for dynamic environments. However, Rajkumar et al. [GHRL04] reduced the com-

putation complexity of the initial proposal and adapted Q-RAM to dwell control for

phased array radar by repeatedly testing schedulability online using high-performance

computers.

In [JLDB95], a user-centric approach is also taken. The user’s QoS preferences are

considered for the application’s runtime behaviour control and resource allocation

planning. Example preferences include statements such as “a video-phone call should

pause a movie unless it’s being recorded” and “video should be degraded before audio

2.2. QUALITY OF SERVICE (QOS) MANAGEMENT 35

when all desired resources are not available”. These are useful hints for high-level QoS

control and resource planning, but are inadequate for quantitatively measuring QoS

or analytically planning and allocating resources.

Numerous other studies on the arbitration of applications based on precise specifica-

tions of QoS requirements have also been published. In the next paragraphs, some

representative works are discussed.

Abdelzaher et al. [AAS00] proposed a QoS negotiation mechanism to ensure graceful

service degradation in cases of overload, failures, or violation of pre-runtime assump-

tions, and applied the approach in operating systems and middleware implementations

[AS98, AS99]. Tasks’ acceptable QoS levels are described a priori, as well as a

quantitative perceived utility of receiving service at each of those levels. A similar

approach is taken in [Kha98]. But none of these works addresses the balancing of

competing resource demands, considers the dynamic negotiation of QoS levels, or has

developed an effective specification method of QoS preferences or a mechanism to

facilitate utility data acquisition.

Fan [Fan95] describes an architecture in which applications request a continuous range

of QoS commitment from a centralised QoS Manager. Based on the current state of the

system, the QoS Manager may increase or decrease an application’s current resource

allocation within this pre-negotiated range. However, the proposed system suffers from

instability due to the fact that ranges are continuously being adjusted. Furthermore,

it lacks a strong mechanism for deciding which applications’ allocations to modify and

when. It also assumes that any application can be written in such a way as to work

reasonably with any resource allocation within a particular range.

A similar approach based on a centralised QoS manager is proposed by Brand et

al. in [BNBM98]. Their work proposes a mediation method for resource allocation

based on the maximums processor usage and users’ benefit as measures for QoS levels

and presents the Dynamic QoS Manager (DQM) architecture. DQM is based on

the notion of applications’ specified execution levels that reflect algorithmic modes

in which applications can execute. It uses the execution level information and the

current state of the system to dynamically determine appropriate QoS allocations for

the running applications.

Hola-QoS [GVARG02] is a QoS-aware architecture based on four layers. Each one

handles a different conceptual entity: (i) QoS management, to decide which applica-

tions should be executed according to the user’s preferences; (ii) Quality control, to

negotiate with the selected applications a service configuration and to find the feasible

configuration that maximises the user’s satisfaction; (iii) Budget control, to perform

36 CHAPTER 2. ADAPTIVE REAL-TIME SYSTEMS

the feasibility test of the set of budgets required to support a candidate configuration.

It is in charge of creating and initialising budgets and monitoring how budgets are

used; and (iv) Run-time control, that can be viewed as an extension to the operating

system to provide the basic functionality of a resource kernel.

Foster et al. [FFR+04] propose the General-purpose Architecture for Reservation and

Allocation (GARA), a generic architecture for resource reservation and allocation that

supports flow-specific QoS specifications as well as online monitoring and control of

both individual resources and heterogeneous resource sets. The architecture builds on

differentiated service mechanisms to enable the coordinated management of distinct

flow types, networks, CPUs, and storage systems.

Palopoli et al. [PVC+05] introduce an architecture for supporting the feedback-

based adaptive management of multiple resources on a general purpose operating

system, extending a prior architecture for adaptation of the CPU bandwidth for QoS

control [CPM+04]. The architecture allows applications to share access to resources by

specifying their fraction of usage, which are then dynamically adapted by the system

at runtime, based on made observations on the hosted activities.

While we certainly share some concerns with these works, and also apply utility-

based adaptation strategies [NP05], we go a step further and propose a QoS-aware

cooperative service execution to deal with a large number of possibly dependent tasks,

multiple resources, and highly dynamic real-time operation constraints in open real-

time systems.

Several studies in computation offloading propose task partition/allocation schemes

that allow the computation to be offloaded, either entirely or partially, from re-

source constrained (wireless) devices to a more powerful neighbour [WL04, GMG+04,

LWX02]. These works conclude that the efficiency of an application execution can be

improved by careful partitioning the workload between a device and a fixed neighbour.

Often, the goal is to reduce the needed computation time and energy consumption

[LWX01, KHR01, OH98, RRPK98, CKK+04] by monitoring different resources, pre-

dicting the cost of local execution and that of a remote one and deciding between

a local or remote execution. However, most of the work in this direction is limited

to the case where there is only one resource-limited device and one relatively more

capable neighbour to offload computation to. Also, none of these works supports the

maximisation of each user’s specific QoS preferences while offloading computation.

The CooperatES framework proposed in this thesis not only facilitates the cooperation

among heterogeneous nodes whenever a particular set of QoS constraints cannot be

satisfyingly answered by a single node, but also ensures that the resulting coalition is

2.2. QUALITY OF SERVICE (QOS) MANAGEMENT 37

the one which maximises the satisfaction of the QoS constraints associated with the

new service and minimises the impact on the global QoS caused by the new service’s

arrival. Chapter 3 discusses this approach in detail.

Furthermore, the CooperatES framework differs from other QoS-aware frameworks by

considering, due to the increasing complexity of open real-time systems, the needed

tradeoff between the level of optimisation and the usefulness of an optimal runtime

system’s adaptation behaviour. The fundamental problem that has to be faced is the

uncertainty of the environment. In particular, when considering real-time require-

ments, uncertainty means that desired bounds may not be met when adapting the

system to the dynamically changing environmental conditions. As such, QoS opti-

misation should be based on incremental processing resource-aware algorithms with

variable completion times, able to adapt their performance based on the computing

time made available to them.

Imprecise computation and anytime algorithms provide such flexibility. Imprecise

computation [LLS+91] logically divides each task into a mandatory and an optional

part. This division is done in such a way that the system still performs acceptably

as long as all the mandatory parts are executed. The optional part is (usually) an

iterative refinement algorithm that progressively improves the quality of the result

generated by the mandatory part.

These concepts were integrated with replication and checkpoint techniques to reduce

the cost of providing fault tolerance and enhanced availability of real-time systems

[LLB+94, HFL95]. The Imprecise Computation Environment (ICE) [HFL95] was

proposed as an environment for implementing imprecise real-time systems on top of

Real-Time Mach. It uses a modified version of the standard client/server architecture

that adds support for the automatic generation of imprecise servers. Whenever a client

calls an imprecise server, it specifies the maximum imprecision it can tolerate. Then,

the server creates an imprecise task for each request, which is then scheduled by the

operating system along with other tasks in the system.

Recently, imprecise computation models have been used to maximise QoS provisioning

under energy constraints in embedded systems [YVH08, WF08, WWGF08]. These

works propose preemptive schedulers for imprecise tasks which prevent the execution

of optional subtasks whenever there is the possibility of deadline loss or depletion of

the energy source.

Anytime algorithms [DB88, Hor88, Zil96] are structured to take advantage of as much

time as is available, undertaking more detailed calculations as more computing is given.

They are able to return a partial answer, if interrupted at any time before reaching

38 CHAPTER 2. ADAPTIVE REAL-TIME SYSTEMS

completion, whose quality depends on the amount of computation they were able to

perform. Nevertheless, their use in QoS-aware real-time systems has not, to the best

of our knowledge, been actively explored before.

One noticeable exception is [ACS03], where an anytime approach is proposed to

develop new model-based algorithms for generating and evaluating aircraft context-

sensitive trajectories under resource and timing constraints. The work was part of

DARPA’s Software Enabled Control program [Off], whose goal was to develop and

demonstrate the software infrastructure necessary to enable high-performance control

algorithms, which inevitably have complex computational properties, that could be

reliably used in avionics systems.

This thesis advocates that the success of open real-time embedded systems has not

only to do with the accuracy of the performed adaptations but also with the timeliness

criteria that affects the usefulness of the system’s adaptation behaviour. Chapter 4

reformulates the QoS optimisation problem as a heuristic-based anytime optimisation

problem that can be interrupted at any time and quickly respond to environmental

changes. A strong argument in favour of our approach is that it benefits from this

anytime QoS optimisation which is critical for use in highly dynamic and heterogeneous

systems like those we discussed before.

2.3 Adaptive middleware

Middleware encapsulates a set of services residing above the operating system layer

and below the user application layer, facilitating the communication and coordination

of applications’ components that are potentially distributed across several networked

hosts. Moreover, middleware provides application developers with high-level program-

ming abstractions which hide interprocess communication, mask the heterogeneity of

the underlying systems (hardware devices, operating systems, and network protocols),

and facilitate the use of multiple programming languages at the application level.

Emmerich [Emm00] provides a frequently referenced taxonomy of middleware. His

taxonomy is based on the type of programming-language abstraction that the middle-

ware provides for interaction among distributed software components: transactional,

message-oriented, procedural, or object-oriented. The corresponding primitive com-

munication techniques are distributed transactions, message passing, remote procedure

calls, and remote object invocations, respectively. Bakken [Bak01] introduced a similar

taxonomy that also includes four classifications: distributed tuples, message-oriented,

2.3. ADAPTIVE MIDDLEWARE 39

remote procedure call, and distributed object. In this chapter,the Emmerich’s taxon-

omy is used to help lay a foundation for our later discussion of adaptive middleware.

Transactional middleware supports distributed transactions among processes running

on distributed hosts. Originally, this type of middleware was targeted at intercon-

necting heterogeneous database systems. Goals include providing data integrity, high-

performance, and availability using the two-phase commit protocol [BHG87]. IBM

CICS [Hud94] and BEA Tuxedo [Hal96] are two examples of this category.

Message-oriented middleware facilitates asynchronous message exchange between clients

and servers using the message-queue programming abstraction, a generalisation of

an operating system’s mailbox. Messages do not block a client and are deposited

into a queue with no specific receiver information. In addition, the message-queue

abstraction decouples clients and servers, which enables interaction among otherwise

incompatible systems. IBM MQSeries [GS96] and Sun Java Message Queue [HBS99]

are two examples of this category.

Procedural middleware extends procedural programming languages to include remote

procedure calls (RPC), where the body of the procedure resides on a remote host

and can be called the same way as a local procedure. Birrell and Nelson [BN84]

implemented the first full-fledged version of RPC. Sun Microsystems adopted RPC as

part of its open network computing [Sri95]. Later, Open Group developed a standard

for RPC called distributed computing environment (DCE) [Gro97]. Most Unix and

Windows operating systems now support RPC facilities.

Finally, object-oriented middleware is based on both the object-oriented programming

paradigm and the RPC architecture. It provides the abstraction of a remote object,

whose methods can be invoked as if the object were in the same address space as

its client. Encapsulation, inheritance, and polymorphism are often supported by this

type of middleware. CORBA [Groa], Java RMI [Mica], and DCOM [Cora] are three

major object-oriented middleware approaches.

Among these four types, our primary focus is on object-oriented middleware, which is

the basis for most research in adaptive middleware. Therefore, the remainder of this

section reviews some of the most important object-oriented middleware approaches.

In the last years, the OMG (Object Management Group) has improved the CORBA

standard specifications with respect to real-time issues. For instance, it has adopted

the CORBA/e [Grob] and Real-Time CORBA specifications [Groc].

Similarly, with the appearance of pervasive computing paradigms and ad hoc networks,

the possibility of having a large number of devices collaborating within a flexible

40 CHAPTER 2. ADAPTIVE REAL-TIME SYSTEMS

structure has to be exploited. Even if they do not provide any real-time features,

both Jini [Micb] (in the area of service discovery for embedded networked devices)

and .NET [Corb] (in the field of platforms for the development of distributed software

systems) are worth mentioning due to their increasing popularity. Both allow to

build distributed embedded systems based on services that appear and disappear

dynamically.

However, these middleware platforms are very limited in their ability to support

adaptation. As such, adaptive middleware emerges as a solution to address in an

unified manner the complexity of programming interprocess communication, the need

to support services across heterogeneous platforms, and the need to adapt to dynam-

ically changing environmental conditions.

One of the earliest adaptive middleware projects proposed is the Adaptive Commu-

nication Environment (ACE) [Sch93, SH02], a real-time object-oriented framework

written in C++, that provides high-performance and real-time communication ser-

vices. ACE employs software design patterns to support distributed applications with

efficiency and predictability, including low latency for delay-sensitive applications,

high performance for bandwidth-intensive applications, and predictability for real-

time applications.

Schmidt et al. [SLM98] extended their ACE work to create the ACE ORB (TAO),

a CORBA compliant real-time ORB built atop of the ACE components. TAO en-

hances the standard CORBA event service to provide real-time event dispatching and

scheduling required by real-time applications such as avionics, telecommunications and

network management systems. Earlier versions of TAO employ the strategy design

pattern [GHJV95] to encapsulate different aspects of the ORB internals, such as IIOP

pluggable protocols, concurrency, request demultiplexing, scheduling, and connection

management. A configuration file is used to specify the strategies used to implement

these aspects during startup time. TAO parses the configuration file and loads the

required strategies. Recent versions of TAO decomposes the C++ implementation of

TAO into several core ORB components that can be dynamically loaded on demand

using the virtual component pattern [CSKO02].

The Component-Integrated ACE ORB (CIAO) [WSK03] is the TAO implementa-

tion of CORBA’s Component Model (CCM), which also resides in the distribution

layer. CIAO intended to provide component-based design to distributed real-time and

embedded (DRE) system developers by abstracting systemic aspects, such as QoS re-

quirements and composable meta-data units supported by the component framework.

Kon et al. [KRL+00] proposed a dynamically adaptive version of TAO called Dynamic-

2.3. ADAPTIVE MIDDLEWARE 41

TAO using computational reflection. To provide real-time services, DynamicTAO uses

the Dynamic Soft Real-Time Scheduler (DSRT) [Gar99] that provides QoS guarantees

to applications with soft real-time requirements.

DSRT also integrates the QualMan (QoS-aware resource management) middleware

[NhCN98], which consists of a set of resource servers (schedulers and brokers) to

provide QoS negotiation, admission, and reservation capabilities for sharing resources

such as CPU, network, and memory. It was designed to support QoS requirements of

distributed multimedia applications.

QuO [ZBS97] is a well-known adaptive middleware framework for the integration of

QoS management in CORBA and Java RMI. QuO’s emphasis is on QoS specification,

measurement, control, and adaptation to changes. It provides a number of capabilities,

including application-level specification and monitoring of QoS, flexible adaptation and

control when the quality requirements are not being met, and integration of different

subsystems providing QoS mechanisms and services.

Blair et al. [BCD98] have investigated the middleware implementation for mobile

multimedia applications which can be dynamically adapted in response to the envi-

ronmental changes in the context of the Adapt project. In the OpenORB project

[BCRP98], the successor of Adapt, Blair et al. continued their investigation study-

ing the role of computational reflection in middleware. More recently, Blair et al.

[BCA+01] designed OpenORB v2 that adds a component-based design framework to

the OpenORB reflective framework. OpenCOM [CBCP01] is the implementation of

OpenORB v2, designed for Microsoft COM systems. All these projects are greatly

influenced by the ITU-T/ISO RM-ODP [IT95], a meta standard for multimedia ap-

plications. FlexiNet [Hay97] is another CORBA compliant ORB implemented in Java

that uses reflection to provide dynamic adaptation. FlexiNet is designed as a set of

components, which can be dynamically assembled. Similar to DynamicTAO [KRL+00],

FlexiNet provides coarse-grained ORB-wide adaptation. FlexiNet can dynamically

modify the underlying communication’s protocol stack through the replacement and

insertion of layers. Similar to OpenORB [BCRP98], FlexiNet also provides fine-grained

per-interface adaptation.

Squirrel [KBH+01b, Kos02] is a QoS-oriented middleware specialised for distributed

multimedia applications. Squirrel uses the Infopipes abstraction [KBH+01a] to support

streaming data. The designers argue that CORBA stubs and skeletons generated from

IDL interfaces follow a standard protocol (marshalling and unmarshalling) that is not

suitable for multimedia applications with different QoS requirements. To solve this

problem, Squirrel introduces smart proxies [Kos02], which are service-specific stubs

42 CHAPTER 2. ADAPTIVE REAL-TIME SYSTEMS

that include adaptive code. A smart proxy for a specific application can be developed

and shipped to the client program statically at compile time or dynamically at runtime.

MetaSockets [SMK03], developed at Michigan State University, also address the is-

sue of adaptable multimedia streams. MetaSockets are created from existing Java

socket classes using Adaptive Java, a reflective extension to Java, whose structure and

behaviour can be adapted dynamically in response to external stimuli. MetaSockets

provides a pipeline abstraction similar to that of Squirrel. However, the adaptation

supported in MetaSockets are finer-grained due to dynamic insertion and removal of

filters instead of the whole pipeline as in Squirrel. A filter is a Java class that can be

developed by third parties and can be inserted into the MetaSocket pipeline during

runtime to adapt the application behaviour.

Adaptive middleware is still an ongoing research area. Dealing with highly dynamic

interactions among nodes and continuously changing environments that demand pre-

dictable operation is still an open challenge. Since our focus is on complex real-time

systems made of embedded components, then even more stringent requirements have to

be taken into account, namely to achieve distributed, safe and timely process control.

In this context, the provision of adequate interaction paradigms is a fundamental

aspect [BMB+00].

From another perspective, it is important to observe that the emergence of applications

operating independently of direct human control is inevitable [ACH+01, HB01]. Re-

search on high-level models for this class of applications has revealed the shortcomings

of current architectures and middleware interaction paradigms. Typical characteristics

of this class of applications, such as autonomy or mobility must be accommodated,

while allowing the possibility to handle nonfunctional requirements like reliability,

timeliness or security.

In contrast with the client/server or RPC based paradigms supported by current state-

of-the-art object-oriented middleware, event models have shown to be quite promising

in this area [HLS97, MC02, Crn02]. Event notifications contain data that represent

a change to the state of the sending applications’ component, avoiding a centralised

control and requiring a less tightly coupled communication relationship between appli-

cations’ components compared to the traditional client/server communication model.

However, the existing middleware approaches offering event services often lack one key

point, the provision of support for nonfunctional attributes.

Therefore, this thesis proposes new architectural constructs that are adequate to such

event-based interaction models and, at the same time, provide adequate support to ad-

dress the specific requirements of embedded real-time systems. Chapter 6 presents an

2.4. REAL-TIME SCHEDULING 43

one-step decentralised coordination model based on an effective feedback mechanism

to reduce the complexity of the needed interactions among nodes until a collective

adaptation behaviour is determined whenever the autonomous self-adaptations to

the changing environmental conditions have an impact on other coalition members.

Positive feedback is used to reinforce the selection of the new desired global service

solution, while negative feedback discourages nodes to act in a greedy fashion as this

adversely impacts on the provided service levels at neighbouring nodes.

2.4 Real-time scheduling

In a multitasking system, scheduling has two main functions: (i) maximise the pro-

cessor’s usage, i.e., the ratio between active and idle time; and (ii) minimise tasks’

response time, i.e., the time between tasks’ release time and the end of its execution. At

best, response time may be equal to execution time, when a task is elected immediately

and executed without preemption.

A scheduling algorithm is then a set of rules defining the execution of tasks at runtime.

It is provided with a schedulability or feasibility test, which determines, whether a set

of tasks with parameters describing their temporal behaviour will meet their temporal

constraints if executed according to the rules of the algorithm.

There is a fundamental difference between hard and soft real-time scheduling. Hard

real-time preserves temporal and functional feasibility, even in the worst case. Hard

real-time scheduling has been concerned with providing guarantees for temporal fea-

sibility of task execution in all anticipated situations, focusing on the worst case.

The temporal attributes and demands used by real-time scheduling for feasibility

analysis and runtime execution form the task model an algorithm can handle. Early

applications, such as simple control loops, had temporal characteristics that can

be represented by simple temporal constraints. Hence, most algorithms and task

models are dominated by attributes such as period, computation time, and a deadline.

While periods and deadlines are typically derived from application characteristics,

computation time is a function of the task code.

Most scheduling algorithms for periodic task sets have been developed around one

of three basic schemes: table driven, fixed priority, or dynamic priority. Depending

on whether the majority of scheduling issues are resolved before or at runtime, the

algorithm is referred as an offline or online scheduler.

Offline scheduling builds a complete planning sequence before tasks’ execution. In

44 CHAPTER 2. ADAPTIVE REAL-TIME SYSTEMS

Table-Driven Scheduling (TDS) approaches [RS94] a table determines which tasks

to execute at which points in time. As only a table lookup is necessary to execute

the schedule, task dispatching is very simple and does not introduce a large run-

time overhead. TDS methods are capable of managing distributed applications with

complex constraints, such as precedence, jitter, and end-to-end deadlines and are the

ones usually associated with Time-Triggered architectures, such as TTP, which is

commercially available. While its rigidity enables deterministic behaviour, it limits

flexibility drastically. Furthermore, a previous knowledge about all the activities

and events that may occur at runtime may be hard or impossible to obtain in some

environments.

Online scheduling methods overcome these shortcomings by choosing, at any time,

the next task to be executed. When a new event occurs, the running task may be

changed without the need to know in advance the time of this event’s occurrence.

This dynamic approach provides less precise statements than the static one and has

a higher implementation overhead. However, it manages the unpredictable arrival of

tasks and allows a progressive creation of the scheduling sequence.

Fixed priority scheduling (FPS) [LL73] is a common policy in many standard operating

systems, assigning priorities to tasks before the system’s runtime and executing, at

runtime, the task with the highest priority from the set of ready tasks. The basic fixed

priority scheduling algorithms are Rate Monotonic [LL73] and Deadline monotonic

[LW82].

Dynamic priority scheduling, as applied by the Earliest Deadline First (EDF) [LL73]

policy, selects, at runtime, the task which has the closest deadline from the set of

ready tasks. As such, priorities do not follow a fixed pattern, but change dynamically

at runtime.

However, the strict compliance with every deadline is not mandatory in many embed-

ded time-sensitive applications, characterised by implicit timing constraints for which

occasional failures can be tolerable as long as they do not become too frequent. For

instance, when streaming a MPEG movie, the delayed decoding of a few frames is not

even perceived by the user as long as the system behaves “well” in average.

In the scientific community there has been, and still is, much interest in reservation-

based scheduling. One major reason is to provide acceptable response for soft real-time

tasks, while bounding their interference of hard-real time tasks. With reservation-

based scheduling, a task or subsystem receives a real-time share of the system re-

sources according to a (pre-negotiated) contract. Thus, the contract contains timing

requirements. In general, such a contract boils down to some approximation of having

2.4. REAL-TIME SCHEDULING 45

a private processor that runs at reduced speed.

As such, instead of scheduling tasks based on worst-case execution measures, guar-

antees based on average estimations of the needed computation time are typically

acceptable for soft real-time tasks. A deadline miss does not constitute a system or

application failure but it is only less satisfactory for the user and, as such, the approach

is generally regarded as cheaper and more flexible.

Since the actual execution time of tasks can be affected by several factors, every

task may either need more or less than its reserved computation time at runtime,

when scheduled based on average estimations. If a task needs more than its reserved

budget, the overload should remain isolated to that particular task, not jeopardising

the schedulability of other tasks. Not only it is desirable to achieve temporal isolation

among soft real-time tasks but also to not compromise the schedulability of hard real-

time tasks. On the other hand, whenever a task completes in less than its budgeted

execution time, it releases computation time that can be used to advance the execution

of overloaded tasks.

A large number of schemes, both in fixed and dynamic scheduling approaches, have

been described in the literature to reclaim any spare time coming from early comple-

tions and to handle overload situations preserving the schedulability of hard tasks.

Optimal fixed priority capacity reclaiming algorithms that minimise soft tasks’ re-

sponse times whilst guaranteeing that the deadlines of hard tasks are met were pro-

posed in [LRT92, DTB93]. However, they present some drawbacks. The work in

[LRT92] relies on a pre-computed table that defines the residual capacity present

on each invocation of a hard task. In contrast, [DTB93] determines the amount of

available residual capacity at runtime, but the execution time overhead introduced by

the optimal dynamic approach is infeasible in practice [Dav93].

In [BB02], Bernat and Burns propose a capacity sharing protocol for enhancing soft

aperiodic responsiveness in a fixed priority environment, where each task is handled

by a dedicated server. The protocol allows an overloaded server to steal capacity from

other servers to advance the execution of the served tasks, thus loosing isolation among

the served tasks.

The capacity sharing protocol of [BB02] has been extended by the HisReWri algorithm

[BBB04]. The algorithm identifies those tasks that did execute when a hard task has

released some of its maximum allocated capacity and retrospectively assigns their

execution times to the hard task. If there is residual capacity available, tasks’ budgets

are replenished by the amount of residual capacities they consumed. As execution time

46 CHAPTER 2. ADAPTIVE REAL-TIME SYSTEMS

is retrospectively reallocated, the authors describe the protocol as history rewriting.

In dynamic scheduling, a well known technique for limiting the effects of overruns

was proposed by Abeni and Buttazo [AB98]. The Constant Bandwidth Server (CBS)

scheduler handles soft real-time requests with a variable or unknown execution be-

haviour under EDF [LL73] scheduling policy. To avoid unpredictable delays on hard

real-time tasks, soft tasks are isolated through a bandwidth reservation mechanism,

according to which each soft task gets a fraction of the CPU and it is scheduled in such

a way that it will never demand more than its reserved bandwidth, independently of

its actual requests. This is achieved by assigning each soft task a deadline, computed

as a function of the reserved bandwidth and its actual requests. If a task requires to

execute more than its expected computation time, its deadline is postponed so that

its reserved bandwidth is not exceeded. As a consequence, overruns occurring on a

served task will only delay that task, without compromising the bandwidth assigned

to other tasks.

However, with CBS, if a server completes a task in less than its budgeted execution

time no other server is able to efficiently reuse the amount of computational resources

left unused. To overcome this drawback, CBS has been extended by several resource

reclaiming schemes [LB00, CBS00, MLBC04, CBT05, LB05], proposed to support an

efficient sharing of computational resources left unused by early completing tasks.

Such techniques have been proved to be successful in improving the response times of

soft real-time tasks while preserving all hard real-time constraints.

GRUB [LB00] reduces the number of task preemptions by assigning all the excess

capacity to the currently executing CBS server. Although a greedy reclamation policy

is used, excess capacity always tends to be distributed in a fair manner among needed

servers across the time line. However, GRUB always postpones a server’s deadline

before starting a new job, regardless of the current value of the server’s budget. A

critical parameter of this approach is the time granularity used in the algorithm, since

a small period reduces the scheduling error, but increases the overhead due to context

switches [CBS00].

CASH [CBS00] uses a global queue of residual capacities originated by early com-

pletions, ordered by deadline. Whenever a CBS server is scheduled for execution

it will first use any queued capacity whose deadline is less than or equal to its

own, reducing the number of deadline shifts and executing periodic tasks with more

stable frequencies. However, since CASH immediately recharges the servers’ capacities

without suspending the tasks on every capacity exhaustion, tasks may be scheduled

in an unexpected way [MLBC04]. An improvement to CASH’s residual bandwidth

2.4. REAL-TIME SCHEDULING 47

reclaiming and the ability to work in the presence of shared resources have been later

proposed in [CBT05].

IRIS [MLBC04] identifies the deadline aging problem in previous extensions to CBS

when scheduling acyclic tasks (tasks that are continuously active for large intervals of

time) and proposes to suspend each task’s replenishment until a specific time, following

a hard reservation approach [RJM+98]. It is also a fair algorithm in the sense that

residual capacity is equally distributed among the servers that need to execute more

than the reserved time. However, residual capacity reclaiming is only performed after

all the servers had exhausted their reserved capacities, potentially wasting valuable

bandwidth that could otherwise have been used.

BACKSLASH [LB05] proposes to retroactively allocate residual capacities to tasks

that have previously borrowed their current resource reservations to complete previous

overloaded jobs, using an EDF version of the mechanism implemented in HisReWri

[BBB04]. At every capacity exhaustion, servers’ capacities are immediately recharged

and their deadlines extended as in CBS. However, a task that borrows from a future

job remains eligible to residual capacity reclaiming with the priority of its previous

deadline. The main problem of this approach is that allowing a task to use resources

allocated to the next job of the same task may cause future jobs of that task to miss

their deadlines by larger amounts. Considering the mean tardiness of a set of periodic

tasks on higher system loads, BACKSLASH can be outperformed by an algorithm

that do not borrows from future resources [LB05].

While these scheduling schemes generally improve the system’s performance, new

scheduling requirements are emerging as the number of applications with soft real-

time constraints continues to grow. In fact, current real-time scheduling methods

focus on periodic tasks with bounded execution times. However, many tasks used in

real-time control and optimisation applications do not fit this pattern [Haw03, ACS03,

SCC04, BB04, vdBFK06, NP06c, NP09b].

Consider for example a route optimiser that is part of the navigation system of an

automated vehicle [SCC04]. Given the state of the external and internal world, the

system is continuously searching for the best path. The task execution is unbounded,

data-driven, not predictably regular, and as a result its operation is not easily parcelled

for a periodic execution. With an anytime approach [ZR96], the optimisation task can

be interrupted at any time and still be able to provide a solution and a measure of

its quality. As such, systems can take advantage of the flexibility offered by anytime

algorithms as long as a scheduling mechanism that can regulate their behaviour is

developed.

48 CHAPTER 2. ADAPTIVE REAL-TIME SYSTEMS

Furthermore, existing scheduling schemes are only able to reclaim the unused allocated

capacity made available when jobs complete in less than their budgeted execution time

and a proper reclaiming of unused capacities of idle servers is not supported. Isolation

can be reduced in a controlled fashion in order to donate reserved, but still unused,

capacities to currently overloaded servers. Chapter 5 proposes the Capacity Sharing

and Stealing scheduler, able to distinguish between reclaiming “residual capacity” due

to earlier completions of periodic tasks (predictable arrivals) and reclaiming “non-

isolated capacity” from inactive servers which handle aperiodic best-effort tasks (non-

predictable arrivals) in order to advance the execution of overloaded servers and reduce

their mean tardiness.

Particular attention has also been given by the research community to tasks with

uncertainty about the actual arrival time, i.e., they do not occur in a periodic manner.

These are called aperiodic if no assumptions at all can be made about their arrival

time and sporadic if at least a minimum time between to consecutive arrivals can be

given. In the latter case, a worst-case assumption, the minimum inter-arrival time, can

be used to include sporadic tasks as periodic in the feasibility test [Mok83]. Aperiodic

tasks are usually generated by external events and activated by interrupts, for example

coming from a sensory acquisition board.

While no hard guarantees can be made about aperiodic tasks, algorithms have been

presented to allocate a certain amount of processing time reserved for aperiodic tasks,

which allows analysis of response times of the entire set of aperiodic tasks. Typically,

this reservation is done via server tasks [SSL89], which lend their resources to aperiodic

tasks and which are included in the offline feasibility analysis as place holders, or as

bandwidth [SB94], i.e., a portion of the processing time. In the case of table driven

scheduling, the amount and location of unused resources is known to serve aperiodic

tasks [Foh95].

However, all of the schedulers discussed above assume tasks are independent. When

tasks share access to some of the system’s resources they introduce a contention issue

that affects schedulability. Let us consider a critical resource R, shared by two tasks

τ1 and τ2, that must be accessed under mutual exclusion. Specific mechanisms, such

as semaphores or protected objects, provided by a real-time kernel or programming

language can be used to access those critical sections.

The question is how to ensure a predictable response time of real-time tasks in a

preemptive scheduling mechanism. In fact, if classical mutual exclusion semaphores

are used, a particular problem arises, usually referred as priority inversion [SRL90]. If

a higher priority task is blocked on a semaphore by a lower priority task and another

2.4. REAL-TIME SCHEDULING 49

medium priority task arrives, the latter can preempt the lower priority task causing

an unbounded blocking delay to the higher priority task. It is important to note that

in a non-preemptive context this problem does not arise since, by definition, a task

cannot be preempted during a critical section.

Several protocols have been developed for preventing the priority inversion under

the Rate Monotonic and Earliest Deadline First scheduling context. These protocols

determine an upper bound of the blocking time due to a critical resource access for

each task in the system. This maximum blocking duration is then integrated into the

schedulability tests of classical scheduling algorithms.

The basic idea of the Priority Inheritance Protocol [SRL90] is to dynamically change

the priority of those tasks accessing a critical section. A task τi, which is inside a

critical section, gets the priority of any higher priority task τj waiting for the resource.

Consequently, task τi is scheduled, during the duration of the critical section, with a

higher priority than its initially assigned priority. This new context leads to freeing

the resource earlier, minimising the waiting time of higher priority tasks.

The Priority Ceiling Protocol [CL90] extends the previous protocol by preventing a

task to enter in a critical section that leads to blocking it, in order to avoid deadlocks

and chained blocking. To do so, each resource is assigned a priority, called priority

celling, equal to the priority of the highest priority task that can use it. However, it

is important to note that this protocol needs to know a priori all the tasks’ priorities

and the resources used by each task.

The Stack Resource Policy [Bak90] allows the use of multi-unit resources and can

be applied with a variable-priority scheduling like EDF. In addition to the classical

priority, each task is assigned a new parameter π, called level of preemption, which is

related to the time devoted to its execution (π is inversely proportional to its relative

deadline). This level of preemption is such that a task τi cannot preempt a task τj

unless π(τi) > π(τj). The main difference between the Priority Ceiling Protocol and

the Stack Resource Policy is the time at which a task is blocked. With the Priority

Ceiling Protocol, a task is blocked when it wants to use a resource, while with the

Stack Resource Policy a task is blocked as soon as it wants to get the processor.

Some scheduling solutions based on these protocols were already proposed [Jef92,

CS01, CBT05, Bar06] but they all require a prior knowledge of the maximum resource

usage and, as such, cannot be directly applied to open real-time systems.

Coherently with the resource reservation approach of CBS, resource sharing among

tasks of open real-time systems started to be addressed in [LLA01] without requiring

50 CHAPTER 2. ADAPTIVE REAL-TIME SYSTEMS

any a priori knowledge about the tasks’ structure and temporal behaviour. The

proposed Bandwidth Inheritance (BWI) protocol extends the CBS scheduler to work

in the presence of shared resources, adopting the Priority Inheritance Protocol to

handle tasks’ blocking. However, its main drawback is its unfairness in bandwidth

distribution. A blocking task can use most (or all) of the reserved capacity of one or

more blocked tasks, without compensating the tasks it blocked. Blocked tasks may

then loose deadlines that could otherwise be met.

To address the lack of a compensation mechanism of BWI, BWE [WLP02] and CFA

[SLS04] try to fairly compensate blocked servers in exactly the same amount of capacity

that was consumed by a blocking task while executing in a blocked server. However,

these attempts to fairly compensate borrowed capacities introduce a high overhead.

Chapter 7 proposes the Capacity Exchange Protocol (CXP), extending CSS to effi-

ciently schedule inter-dependent task sets without introducing any significant over-

head. CXP merges the benefits of a smart greedy capacity reclaiming policy with

the concepts of bandwidth inheritance and hard reservations, focusing on greedily

exchanging extra capacities as early, and not necessarily as fairly, as possible.

2.5 Summary

Traditionally, real-time systems were focused on providing a single, specific solution

to single, specific applications, treating all activities with the same methods, geared

towards the most demanding scenarios. However, in the last years, the use of processor-

based devices has increased dramatically and there is extensive research work on

topics such as ambient intelligence, pervasive systems, disappearing computer, home

automation, and ubiquitous computing, which aim at a better integration of computers

in our in our daily lives.

In these open and uncertain environments, classical methodologies for real-time sys-

tems design are hardly applicable since the set of applications to be executed and their

aggregate resource and timing requirements are unknown until runtime. At the same

time, users increasingly demand for QoS guarantees. As such, runtime adaptation is

a must in order to achieve a desired level of performance.

This chapter discussed specific topics relevant for the development of adaptive real-

time embedded systems, their current limitations, and introduces the novel research

directions that are proposed in this thesis to increase the flexibility and enhance the

functionality of new embedded real-time systems.

Chapter 3

Cooperative embedded systems

The scarcity and diversity of resources among the devices of heterogeneous

computing environments may affect their ability to execute services within

users’ acceptable QoS levels. The problem is even more complex in open

real-time environments where the characteristics of the computational load

cannot always be predicted in advance but, nevertheless, response to events

still has to be provided within precise timing constraints in order to guar-

antee a desired level of performance.

This chapter addresses these complex demands by proposing a cooperative

QoS-aware framework, allowing resource constrained devices to collectively

execute services with their more powerful or less congestioned neighbours,

meeting non-functional requirements that otherwise would not be met by

an individual execution.

3.1 Introduction

Embedded real-time systems are increasingly at the core of a wide range of domains,

including consumer electronics, telecommunications, medicine, avionics and automo-

tive where independently developed real-time and non-real-time services may coexist

in a system with a set of finite resources under management. As services dynamically

enter and leave the system at any time, resource requirements are inherently unstable

and difficult to predict in advance [GRHL04]. As a consequence, the overall system’s

workload is subject to significant variations, which can overload resources and degrade

the entire system’s performance in an unpredictable fashion [HLR01].

51

52 CHAPTER 3. COOPERATIVE EMBEDDED SYSTEMS

In order to achieve the users’ acceptance requirements, the underlying resource man-

agement layer must supply services and protocols which know how to negotiate,

admit, and enforce resource allocations according to the dynamically changing resource

requirements. Online methods that react to load variations and adapt the system’s

performance in a controlled fashion overcome the shortcomings of a rigid off-line design

and worst-case assumptions, providing the needed flexibility.

Decision making in the presence of several QoS dimensions and service requests can

be performed through multi-criteria decision analysis. The aim is to rank competing

services according to their QoS characteristics and users’ service preferences. Section

3.3 proposes a sufficiently expressive model for defining the QoS dimensions subject

to negotiation, their attributes and the quality constraints in terms of possible values

for each attribute, as well as inter-dependency relations between some of those QoS

parameters. Given such model, a service provider will be able to appropriately compare

services and take better decisions according to each user’s service preferences.

At the same time, an increasing number of applications needs a considerable amount

of computation power and is pushing the limits of traditional data processing infras-

tructures [SCZ05]. During loaded periods, a particular node may not have sufficient

resources to deliver the minimum desired quality to every application along each of

its QoS dimensions. Consider, for example, the real-time stream processing systems

described in [MOFR01, EEGL03, SLSL05]. The quantity of data produced by a variety

of data sources and sent to end devices for further processing is growing significantly,

increasingly demanding more processing power. The challenges become even more

critical when a coordinated content analysis of data sent from multiple sources is

necessary [EEGL03]. Thus, with a potentially unbounded amount of stream data and

limited resources, some of the processing tasks may not be satisfyingly answered by a

single node, even at the users’ minimum acceptable QoS levels [SLSL05].

Hence, decisions must be made by the underlying resource management framework to

share available resources among applications such that a global objective is maximised.

By redistributing the computational load across a set of nodes, a cooperative environ-

ment enables the execution of far more complex and resource-demanding services than

those that otherwise would be able to be executed on a stand-alone basis.

Section 3.4 proposes the CooperatES (Cooperative Embedded Systems) framework

[NP05, PNB05] to facilitate the cooperation among neighbours whenever a particular

set of constraints cannot be satisfyingly answered by a single node. Nodes dynamically

group themselves into a new coalition, allocating resources to each new service and

establishing an initial Service Level Agreement (SLA). The coalition is dynamically

3.2. PROBLEM DESCRIPTION AND SYSTEM MODEL 53

formed as the set of nodes which maximise the satisfaction of the QoS constraints

associated with the new service and minimise the impact on the global QoS caused by

the new service’s arrival [NP05].

Nevertheless, short term dynamic environmental changes impose that the promised

SLA for a service Si can never be more than an expectation of a best-effort service

quality during long term periods [Bur03]. The system must be adaptive, that is, it must

be able to adapt its timing expectations to the current conditions of the environment,

possibly sacrificing the quality of other, non-time related, parameters. As such, once a

SLA is admitted, it may be downgraded to a lower QoS level in order to accommodate

new service requests with a higher utility or (re)upgraded when the needed resources

become available.

However, while some users or applications may prefer to always get the best possible

instantaneous QoS, independently of their services’ reconfiguration rate, others may

find that frequent QoS reconfigurations are undesirable [NP06b]. Section 3.7 details

our approach for adapting the services’ execution to the dynamically changing system’s

conditions under the control of each individual user’s stability preferences.

The work discussed in this chapter is partially presented in [NP05, PNB05, NP06b].

3.2 Problem description and system model

Consider an open distributed system with several heterogeneous nodes, each with its

specific set of resources Ri where independently developed services, some of them

with real-time execution constraints, can appear while other are being executed, at

any time, at any node. Due to these characteristics, resource availability is highly

dynamic and unpredictable in advance.

Each service Si has a set of parameters that can be changed in order to achieve

an efficient resource usage that constantly adapts to the devices’ specific constraints,

nature of executing tasks and dynamically changing system conditions. Each subset of

parameters that relates to a single aspect of service quality is called a QoS dimension.

For example, consider the transmission of multiple audio/video streams over a network.

This scenario involves a network with a given bandwidth and nodes serving and

receiving the streams. Typical audio related parameters are the sampling rate (8,

16, 24, 44, 48 kHz), the sampling bits (8, 16), and the end-to-end latency (100, 75, 50,

25 ms), while in video it is usually considered the picture dimension (SQCIF, QCIF,

CIF, CIF4), colour depth (1, 3, 8, 16, . . .), and frame rate (1, . . ., 30).

54 CHAPTER 3. COOPERATIVE EMBEDDED SYSTEMS

Each of these QoS dimensions has different resource requirements for each possible

level of service. We make the reasonable assumption that services’ execution modes

associated with higher QoS levels require higher resource amounts.

Furthermore, note that different configurations of a stream can have different utility

values for different users and applications. For example, for a particular user a

transmission of a music concert may place higher quality requirements on audio,

although colour video may also be desirable, while another user of a remote surveillance

system may require higher video quality with a minimum of gray scale images.

Users provide a single specification of their own range of QoS preferences Qi for a

complete service Si, ranging from a desired QoS level Ldesired to the maximum tolerable

service degradation, specified by a minimum acceptable QoS level Lminimum, without

having to understand the individual components that make up the service. As a

result, the user is able to express acceptable compromises in the desired QoS and

assign utility values to QoS levels. Note that this assignment is decoupled from the

process of establishing the supplied service QoS levels themselves and determining the

resource requirements for each level.

Let Qi be the set of the user’s QoS constraints associated with service Si. Each Qkj is

a finite set of quality choices for the jth attribute of dimension k. This can be either

a discrete or continuous set.

For some of the system’s nodes there may be a constraint on the type and size of

services they can execute within the users’ acceptable QoS levels Qi. Given a node n

and a set of SLAs σ to be provided, we assume the existence of the following function:

Definition 3.2.0.1
feasibility(σn) = true, if σ is feasible in node n

feasibility(σn) = false, otherwise

Proposition 3.2.0.1 Given a node n and a set of SLAs σ to be provided, the func-

tion feasibility(σn) always terminates and returns true if σ is feasible in n or false

otherwise.

Therefore, this thesis addresses a distributed cooperative execution of resource inten-

sive services in order to maximise the users’ satisfaction with the obtained QoS. Nodes

may cooperate either because they can not deal alone with the resource allocation

demands imposed by users and services or because they can reduce the associated

execution cost by working together.

There will be a set of independent tasks τ1, . . . , τn to be executed, resulting from parti-

tioning the resource intensive service Si. Correct decisions on service partitioning must

3.3. EXPRESSING QUALITY OF SERVICE 55

be made at run time when sufficient information about workload and communication

requirements become available [WL04], since they may change with different execution

instances and users’ QoS preferences.

Given the spectrum of the user’s acceptable QoS levels Qi for service Si = {τ1, . . . , τn},

the coalition formation problem can be described as:

Given a set of neighbour nodes N and a resource allocation demand en-

forced by Qi, if the resource demand cannot be satisfyingly answered by

a single node, neighbour nodes should cooperate to fulfil such resource

demand. The selection of a subset of nodes in N to cooperatively execute

Si should be influenced by both the maximisation of the QoS constraints

Qi associated with Si and by the minimisation of the impact on the current

QoS of the previously accepted services caused by the arrival of Si.

The reader should note that this thesis is focused on the initial configuration and

runtime adaptation of a distributed cooperative QoS-aware service execution. The

proposed approach is completely independent from how the code to be executed on

the original node’s behalf arrives to the coalition members. Services’ remote blocks

can be migrated to the selected partners after the coalition formation decision or,

alternatively, all the nodes in the system are a priori equipped with all the code

blocks.

3.3 Expressing Quality of Service

Given the heterogeneity of services to be executed, users’ quality preferences, under-

lying operating systems, networks, devices, and the dynamics of their resource usages,

QoS specification becomes an important issue in the context of a distributed QoS-

aware cooperative service execution framework. However, as open distributed systems

become more complex, so is the specification of requested and supplied QoS among

users and service providers. Nodes must either have a common understanding of

how QoS should be specified, or be able to map their individual specifications into a

common one.

The definition of such a generic QoS scheme must include quality dimensions, at-

tributes and values, as well as relations that map dimensions to attributes and at-

tributes to values. Adopting a common QoS description scheme in an open distributed

environment guarantees information consistency and compatibility in a community of

56 CHAPTER 3. COOPERATIVE EMBEDDED SYSTEMS

heterogeneous nodes. Information consistency is satisfied when each specific expression

has the same meaning for every node. Information compatibility is achieved when any

concept is described by the same expression, for all the nodes. Furthermore, a generic

QoS scheme should also be extensible to support the later addition of news terms and

relations as the system evolves.

We model each of these diverse requirements by the following structure [NP05], that

can be expressed in several QoS description languages [JN04]:

QoS = {Dim, Attr, V al, DAr, AV r, Deps}

where Dim = {Dim0, . . . , Dimn} is the set of QoS dimensions, Attr = {Attr0, . . . , Attrm}

is the set of attributes identifiers, V al = {V al0, . . . , V alk} is the set of attribute’s

values identifiers, DAr and AV r are the set of relationships that assign attributes to

dimensions and values to attributes, respectively, and Deps is the set of dependencies

among the values of different QoS attributes.

Each value is represented by a triple

V ali = {V alue, Type, Domain}

where Type = {integer, f loat, string}, and Domain = {continuous, discrete}.

The set of relationships DAr assigns to each dimension in Dim a set of attributes in

Attr and is defined as

DAr : Dimi → Atr, ∀Dimi
∈ Dim

The set of relationships AVr assigns to each attribute in Attr a specific value in V al

and is represented as

AVr : Atri → V alk, ∀Atri
∈ Atr, ∃1

V alk ∈ V al

Deps defines the set of existing dependencies among the values of the existing at-

tributes. There are n QoS attributes x1, x2, . . . , xn, whose values are taken from the

domains D1, D2, . . . , Dn, respectively, and a set of dependency constraints on their

values. The constraint

Depij = pk(xk1, . . . , xkj), ∀Attri, Attrj ∈ Attr

3.3. EXPRESSING QUALITY OF SERVICE 57

is a predicate that is defined on the Cartesian product Dk1x . . . xDkj. This predicate

pk is true if and only if the value assignment of these variables satisfies this constraint.

Note that there is no restriction on the form of the predicate. It can be a mathematical

or logical formula or any arbitrary relation defined by a tuple of acceptable values.

Using a video streaming application as an example, the following is a list of quality

dimensions that might be associated with any particular application. The list is given

to illustrate the proposed model and is not intended to be exhaustive.

Dim = {Video Quality, Audio Quality}

Attr = {compression index, color depth, frame size, frame rate,

sampling rate, sample bits}

Val = {{1,integer,discrete},{3,integer,discrete},...,

{[1,30],integer,continuous},...}

DA Video Quality = {compression index, color depth, frame size,

frame rate}

DA Audio Quality = {sampling rate, sample bits}

AV compression index = {[0,100]},

AV frame size (pixels) = {80x40, 240x180, 320x240, 640x480, 720x480,

...}

AV color depth (bits) = {1, 3, 8, 16, 24, ...}

AV frame rate (per second) = {[1,30]}

AV sampling rate (kHz) = {8, 11, 32, 44, 88}

AV sample bits (bits) = {4, 8, 16, 24}

Having such a QoS characterisation of a particular application domain, users and ser-

vice providers are now able to define their service requirements and proposals in order

to reach an agreement on service provisioning. Since QoS is often multi-dimensional,

a user (or application) might want to make some quality tradeoff, especially when the

available resources are scarce. Therefore, it is to the user’s advantage to be able to

specify a set of personal QoS requirements using an interface that explicitly allows the

definition of quality tradeoffs.

Consider the following example. Typically, the video frame rate fluctuates as the

system’s load fluctuates. However, frame rate is an important QoS parameter for talk

shows because it affects lip synchronisation [Nak98]. As such, other QoS parameters

58 CHAPTER 3. COOPERATIVE EMBEDDED SYSTEMS

like the frame size or the compression index may be better candidates for degradation

when the needed resources become scarce. On the other hand, in a remote video

surveillance system, a grey scale, low frame rate may be sufficient, but a high image

quality is important. As such, an efficient system’s QoS optimisation policy must

consider the specific quality requirements of each user or application.

A flexible approach to deal with the heterogeneity and load variations of dynamic open

environments is to define such personal quality requirements through a utility model.

Several works associate with each pre-defined QoS level a utility function that specifies

the user’s benefit in obtaining service within those values [AAS00, RLLS97, LL07].

However, it may be clearly infeasible to make the user specify an absolute utility value

for every pre-defined quality choice. While we want a semantically rich request in

order to achieve a service provisioning closely related to the user’s quality preferences,

we also want the user to actually be able to express personal QoS preferences in a

service request.

Furthermore, rather than demanding the user to predefine QoS levels with associated

utility values, we propose to dynamically determine QoS levels according to each

user’s acceptable QoS values and local resource availability and compute the reward

of executing a task at one of those dynamically determined QoS levels based on the

number, and relative importance, of the QoS dimensions being served closer to the

user’s desired QoS level.

Following those goals, a more natural and realistic way to describe acceptable QoS

levels and their related utility is to simply formulate a service request based on a

qualitative, not quantitative, measure. With a relative decreasing order on quality

dimensions, their attributes, and accepted values, a user is able to encode the relative

importance of the new service’s performance at the different QoS levels without the

need to quantify every quality tradeoff with absolute values.

For example, a user of a remote video surveillance system can easily state that video

is more important than audio, and the image’s quality is more important than the

obtained frame rate and colour depth with the following service request:

1. Video Quality

(a) compression index : {[0,20], [21,30]}

(a) frame rate : {[10,6], [5,1]}

(b) color depth : {3, 1}

2. Audio Quality

(a) sampling rate : {11, 8}

3.4. THE COOPERATES FRAMEWORK 59

(b) sample bits : {8, 4}

Note that for each of the QoS attributes a preference order may be as well expressed.

The evaluation of the user’s acceptability of each service proposal with respect to the

expressed quality preferences is detailed in Section 3.5.

3.4 The CooperatES framework

Currently, middleware technologies such as CORBA or .NET are being widely used

in many application areas to mask out the heterogeneity of systems and networks

and alleviate the inherent complexity of distributed systems. However, the recent

emergence of new application areas for embedded real-time systems imposes new

challenges in terms of resource sharing, dynamism, and timeliness which most existing

middleware platforms are unable to tackle.

In this section, we propose a generic solution to the problem of task allocation among

autonomous heterogeneous nodes and suggest that nodes form coalitions in order to

execute services that otherwise could not be delivered within the users’ acceptable

QoS levels.

The CooperatES (Cooperative Embedded Systems) framework enables resource-con-

strained devices to solve computationally expensive services by redistributing parts of

the service onto other devices, forming temporary coalitions for a cooperative service

execution. Such distribution is influenced by the maximisation of the QoS preferences

associated with the new service request, addressing the increasingly complex demands

on performance and customisable service provisioning.

Each node has a significant degree of autonomy and it is capable of performing tasks

and sharing resources with other nodes. A service can be executed by a single node or

by a group of nodes, depending on the user’s device capabilities and imposed quality

constraints. In either case, the service is processed in a transparent way for the user,

as users are not aware of the exact distribution used to solve the computationally

expensive services.

In the proposed model, QoS-aware applications must explicitly request the service

execution to the underlying CooperatES framework, thus providing explicit admission

control, abstracting from the existing underlying distributed middleware and operating

system. The model itself abstracts from the communication and execution environ-

ments.

60 CHAPTER 3. COOPERATIVE EMBEDDED SYSTEMS

Figure 3.1 presents the structure of the proposed framework, running on every node

of the network.

Figure 3.1: Framework structure

Central to the behaviour of the framework is the QoS Provider of each node which

is responsible for processing both local and remote resource requests. Rather than

reserving local resources directly, it contacts the Resource Managers to grant specific

resource amounts to the requesting tasks. This negotiation is based on a contract

model: there is trading of quality by resources. For this purpose, resource usage

accounting, budget enforcement, and monitoring are required mechanisms. Note that

in this thesis it is assumed that failures of resources will not occur during services’

execution but only that they may get overloaded.

Each Resource Manager is a module that manages a particular resource. The module

interfaces with the actual implementation in a particular system of the resource con-

troller, such as the device driver for the network, the scheduler for the CPU, or with

the software that manages other resources (such as memory). Although we consider

a collaborative environment, proper resource usage must be monitored at run time

[BP04], in order to make decisions based on the actual system’s resource usage and

not only on the resource usage assumptions of requesting services.

An effective QoS-aware resource management requires resolving multiple views of QoS

ranging from high-level user perceptive quality down to lowest level views closer to

individual resources and their controls. Although there can be many layers, we identify

three in particular:

System layer. At the system layer, there is the knowledge of the system’s goals, the

3.4. THE COOPERATES FRAMEWORK 61

applications in the system, and the available resources. This is also the layer

at which there is an understanding of the relative importance of applications to

mission goals, resource allocation strategies for each goal, and the policies for

mediating conflicting application resource needs.

Application layer. An application view of resource management involves acquiring

whatever resources are needed to meet applications’ requirements and to effec-

tively utilise the available resources. If there are not enough resources, then an

application needs to be flexible enough to adjust its resource needs by gracefully

degrading its quality level.

Resource layer. Resource specific mechanisms control access to each individual re-

source, deciding whether and how a request for a resource allocation should be

granted. Typical resource allocation mechanisms have little or no knowledge

of the applications using them or their requirements, although some limited

information can be propagated to the resource level in the form of relative

priorities and reservation requests.

As such, resource managers have the ability to use each other in order to allow systems

to be built supporting QoS requirements either from the point of view of the user (e.g.

user-perceived high quality), of applications (e.g. video frame rate) or of the system

(e.g. CPU cost). As an example, a particular system may provide the resource manager

layering of Figure 3.2. An interactive application can be more user friendly and easier

to use by providing only high-level user perceptive quality, whilst other applications

can be programmed to use application-related QoS constraints.

The System Manager maintains the overall system configuration, controlling and

monitoring the partner’s execution and resolving conflicts arising from the autonomous

adaptation of nodes.

Figure 3.3 details the structure of the QoS Provider. To guarantee the execution of a

local or remote service request, the node’s Local Provider tries to find a feasible set of

SLAs that maximises the utility associated with the new service’s QoS configuration

and minimises the impact on the current QoS of previously accepted services, using

the service proposal formulation algorithms discussed throughout this thesis.

If the resource demand imposed by an user’s QoS constraints cannot be locally sat-

isfied, the Coalition Organiser is responsible for the coalition formation process. It

broadcasts the service’s description as well as the user’s quality constraints, evaluates

the received service proposals and decides which nodes will form the new coalition,

using the coalition formation algorithms discussed throughout this thesis.

62 CHAPTER 3. COOPERATIVE EMBEDDED SYSTEMS

Figure 3.2: Resource managers’ layering

Figure 3.3: QoS Provider

The details of an initial implementation of a prototype of the CooperatES framework in

Ada are described in [PNB05]. The paper assesses the suitability of the Ada language

to be used in dynamic QoS-aware systems.

3.5. COALITION FORMATION 63

3.5 Coalition formation

The formation of a new coalition for a cooperative service execution should enable the

selection of individual nodes that, based on their own resources and availability, will

constitute the best group to satisfy the user’s QoS requirements associated with the

resource intensive service.

As previously discussed, a service request is considered to be formulated through the

relative decreasing importance (k = 1 . . . n) of a set of n QoS dimensions, ranging from

a desired QoS level Ldesired to the maximum tolerable service degradation, specified by

a minimum acceptable QoS level Lminimum. For each dimension, a relative decreasing

importance order of attributes is also specified (i = 1 . . . attrj), where j is the number of

attributes of dimension k. Please note that k and i are not the identifiers of dimensions

and attributes in a domain’s QoS description, but their relative position in a user’s

service request.

Consider that the user’s service request can be translated into the acceptable QoS

region represented in Figure 3.4 for the video dimension.

Figure 3.4: Acceptable service quality

Whenever the user’s node nu is unable to execute an entire service Si within the user’s

acceptable QoS levels Qi, its QoS Provider broadcasts a cooperation request. The set

of tasks that can be remotely executed is determined by a task partition/allocation

scheme that dynamically considers the tradeoff between local execution requirements

and communication costs [WL04]. The cooperation request includes a description of

each remote task τi and the user’s QoS constraints Qi for the entire service Si.

Every neighbour node nj which is able to execute one of the tasks τi within Qi

formulates a service proposal according to a local QoS optimisation algorithm (please

64 CHAPTER 3. COOPERATIVE EMBEDDED SYSTEMS

refer to Section 3.6 for details) and replies to the user’s node nu with both its service

proposal Pji and its local reward Rj , resulting from its cooperation acceptance. For

now, it suffices to say that the local reward is an indicator of the node’s local QoS

optimisation level, according to the set of services being locally executed and their

associated QoS constraints. How each node measures its local reward will be detailed

in Section 3.6.

It is clear that different groups of nodes will have different degrees of efficiency in

the service’s cooperative execution performance due to different capabilities of their

members and their current state. As such, the coalition’s members selection should

be determined by the proximity of the nodes’ service proposals with respect to the

expressed user’s multi-dimensional QoS constraints.

Each admissible proposal1 Pji is then evaluated by determining, for each QoS dimen-

sion Qk, a weighted sum of the differences between the user’s preferred values and the

values proposed in Pji, using Equation 3.1.

distance(Pji) =
n

∑

k=1

wk ∗ dif(Qk) (3.1)

where n is the number of QoS dimensions under negotiation and 0 ≤ wk ≤ 1 is the

relative importance of the kth QoS dimension Qk to the user and can be defined as

wk =
n− k + 1

n
(3.2)

The utility of each proposed value propki for the QoS attribute attrki when compared

to the user’s preferred one prefki is given by Equation 3.3, considering separately

continuous and discrete domains.

dif(Qk) =

m
∑

i=1

wi ∗ |da(propki, prefki)| (3.3)

where m is the number of attributes in the kth QoS dimension and 0 ≤ wi ≤ 1 is the

relative importance of the ith attribute to the user and can be defined as

wi =
m− i + 1

m
(3.4)

1A service proposal for a task τi is admissible if it can satisfy all QoS dimensions within the user’s

acceptable QoS levels Qi

3.5. COALITION FORMATION 65

In Equation 3.3, the function da(propki, prefki) quantifies, for a QoS attribute attrki,

the degree of the user’s acceptability of the proposed value propki, when compared to

the user’s preferred value prefki and is defined as

da =

propki − prefki

max(Qk)−min(Qk)
, if continuous Qki

pos(propki)− pos(prefki)

length(Qk)− 1
, if discrete Qki

(3.5)

If attribute attrki has a continuous domain, this quantification is a normalised dif-

ference between the proposed value propki and the preferred one prefki. For discrete

domains, Equation 3.5 considers the preferences attached to propki and prefki by using

their relative position in the service’s QoS requirements specification.

In [LLS+99] the authors use the notion of a quality index, defining a bijective function

that maps the elements of a discrete domain into integer values. Here, we use a

similar approach by mapping the position (index) of that attribute in the domain’s

specification into propki’s and prefki’s scoring values.

Whenever the domain’s QoS description defines the possible values for some attribute

of a QoS dimension Qk by a set of intervals, Qk in Equation 3.5 must relate to the

particular interval where propki is found. In a similar fashion, if the user expresses a

set of acceptable intervals for a QoS attribute attrki of dimension Qk, the considered

preferred value prefki should be the first value of the particular interval where propki

is found and the relative decreasing order of importance wk of that interval to the user

must also be considered.

The best proposal for each of the service’s tasks is thus the one that presents the

lowest distance to the user’s quality preferences in all QoS dimensions. Furthermore,

each node’s local reward can be used to improve a global load balancing. Consider two

proposals whose evaluation differ by an amount less than α (this value can be defined

by the user or by the framework). For a particular user, the perceived utility will be

equally acceptable if any of those nodes is selected for being part of the new coalition

but the global system’s resource optimisation is improved if the node with a higher

local reward is selected instead. Selecting the node with a higher local reward from

two similar service proposals, not only maximises the service’s quality for a particular

user, but also maximises the global system’s utility.

As such, the coalition formation process, detailed in Algorithm 1, enables the selection

of those nodes which offer service closer to the user’s desired QoS level and, at the

66 CHAPTER 3. COOPERATIVE EMBEDDED SYSTEMS

same time, efficiently distributes the computational load across available nodes.

Algorithm 1 Coalition formation

Let EPki
be the evaluation value of proposal Pki, sent by node nk for task τi

Let Bestτi
be the best proposal for task τi

Let Rk be the local reward of node nk

Let Rbest be the local reward of the node which has proposed Bestτi
for task τi

Let C be the formed coalition

1: Start with an empty coalition C ⊲ C = ∅

2: for each task τi ∈ Si do

3: for each received kth proposal Pki for task τi do

4: EPki
= distance(Pki)

5: if (Bestτi
− EPki

> α) or (0 < Bestτi
− EPki

< α and Rk > Rbest) then

6: Bestτi
= EPki

7: Update coalition with node nk for task τi ⊲ C = C \ (nj , τi) ∪ (nk, τi)

8: end if

9: end for

10: end for

11: return coalition C

The algorithm terminates when all the received proposals are evaluated or if it finds

that the quality of a coalition cannot be further improved because all the tasks τi ∈ Si

will be served at the user’s preferred QoS level Ldesired.

3.6 Service proposal formulation

All nodes that participate in a cooperative QoS-aware service execution negotiation

must provide sufficient resources to formulate a SLA within the user’s acceptable

QoS levels [Lminimum, Ldesired]. It is therefore the responsibility of each individual

QoS Provider to map the user’s QoS constraints to local resource requirements, and

then reserve resources accordingly (recall that resource reservations are made through

Resource Managers).

The interpretation of QoS constraints and consequent mapping on the needed resource

quantities has been explored, for example, in [RLLS97, FWMM97, GP99, BSLH05].

This thesis is focused in the dynamic formation and runtime adaptation of cooperative

coalitions and does not deal with this mapping. The reader can assume that services

3.6. SERVICE PROPOSAL FORMULATION 67

make a reasonable accurate analysis of their resource requirements computed a priori

by resource monitoring tools and improved by run-time adaptation.

Requests for a cooperative service execution arrive dynamically at any node and are

formulated as a set of acceptable multi-dimensional QoS levels. Such QoS management

is known to be NP-hard [LLS+99]. As a consequence, there are no optimal solution

techniques other than a (possibly complete) enumeration of the solution space. On

the other hand, QoS management calls for on-line solutions because the optimisation

module will ideally be used in the admission control of an adaptive QoS management

system. Therefore the goal is to strike the right balance between solution quality and

computational complexity.

Conventional admission control schemes either guarantee or reject each service request

based on current local resource availability. On the other hand, we here propose

a QoS negotiation mechanism that, in cases of overload, or violation of pre-runtime

assumptions guarantees a graceful quality degradation in a controlled fashion. Offering

QoS degradation as an alternative to a simple service rejection has been proved to

achieve a higher perceived utility [AAS00]. An important attribute of the proposed

QoS optimisation algorithm is its incremental and state-reuse property in order to

avoid having to completely redo expensive computations to accommodate the dynamic

arrival and departure of tasks.

To locally guarantee the cooperation request, each node’s QoS Provider executes a

local gradient descent QoS optimisation algorithm, quadratic in the number of tasks

and resources and linear in the number of QoS levels. The goal is to maximise the

satisfaction of the new service’s QoS constraints while minimising the impact on the

current QoS of previously accepted services. However, the CooperatES framework

ensures a dynamically forecasted stability period ∆t for each accepted service Si,

indicating that during that specific time interval the promised QoS level for a service

Si will be assured. As such, only services whose stability period has already expired

can be downgraded to a lower quality level to accommodate new services with a higher

utility. This subject will be discussed in detail in Section 3.7.

The proposed QoS optimisation, detailed in Algorithm 2, operates in rounds. In each

round, it considers all the possible decrements of the services’ QoS levels and identify

the one that produces the minimum utility decrease, without violating the minimum

requested QoS level. This process is repeated until a feasible set of QoS levels σ is

found, or until the algorithm finds the set of SLAs unschedulable even at the lowest

acceptable QoS level for each service. In this later case the new service request is

rejected.

68 CHAPTER 3. COOPERATIVE EMBEDDED SYSTEMS

Algorithm 2 Service proposal formulation

Let τ e be the set of previously accepted tasks whose stability period ∆t has expired.

Let τp be the set of all previously accepted tasks whose current QoS cannot be

changed.

Let τa be the newly arrived task.

Each task τi has associated a set of user’s defined QoS constraints Qi.

Each Qkj is a finite set of n quality choices for the jth attribute, expressed in

decreasing preference order, for all k QoS dimensions.

Let σ be the determined set of SLAs, updated at each step of the algorithm

1: Select the maximum requested QoS level Qkj[0], for all the j attributes of the k

QoS dimensions, for the newly arrived task τa, defining SLAτa

2: Keep the current QoS level for each task τk ∈ τ e

3: Update the current set of SLAs σ ⊲ σ = σ ∪ SLAτa

4: while feasibility(σ) 6= TRUE do

5: if there are no task τi being served at Qkj[m] > Qkj [n], for any jth attribute

of any k QoS dimension then

6: Reject τa

7: end if

8: for each task τi ∈ τ e ∪ τa do

9: for each jth attribute of any k QoS dimension in τa receiving service at

Qkj[m] > Qkj[n] do

10: Determine the reward decrease by downgrading attribute j to Qkj [m+1]

11: end for

12: end for

13: Find task τmin whose reward decrease is minimum

14: Define the new SLA′
τmin

for task τmin with the new value Qyx[m+1] for attribute

x of the QoS dimension y

15: Update the current set of promised SLAs σ ⊲ σ = σ \ SLAτmin
∪ SLA′

τmin

16: end while

17: return the new local set of promised SLAs σ

The reward rτi
of executing a task τi at the determined SLA depends on the number,

and relative importance, of the QoS dimensions being served closer to the user’s desired

QoS level Ldesired. The distance between the user’s desired and the node’s proposed

values is computed through Equation 3.6,

3.7. SUPPORTING RUNTIME QOS ADAPTATION AND STABILITY 69

rτi
=

1 , if task τi is being best

served in all QoS dimensions

1−
n

∑

j=0

wj ∗ penaltyj , if Qjk < Qbestj

(3.6)

where penalty is a parameter that decreases the reward value. This parameter can be

fine tuned by the user or the framework’s manager according to several criteria and

its value should increase with the distance to the user’s preferred values.

Using the reward achieved by each proposed SLA it is possible to determine a measure

of the node’s local QoS optimisation resulting from the acceptance of the new service

request. For a node Nj, the local reward Rj achieved by the set of proposed SLAs is

given by

Rj =

n
∑

i=1

rτi

n
(3.7)

Note that unless all tasks are executed at their highest requested QoS level there is

a difference between the determined set of SLAs and the maximum theoretical local

reward that would be achieved if all local tasks were executed at their highest QoS level.

This difference can be caused by either resource limitations, which is unavoidable, or

poor load balancing, which, as discussed in the previous section, can be improved

by sending nodes’ local rewards along with their service proposals, and selecting,

for proposals with similar evaluation values, those nodes that achieve a higher local

optimisation.

3.7 Supporting runtime QoS adaptation and sta-

bility

Any service provider’s resource allocation policy is subject to environmental uncertain-

ties, and for that reason, the promised SLA can never be more than an expectation

of an average service quality [Bur03]. To cope with dynamic environments, a system

must be adaptive, that is, it must be able to adjust its current level of service in

response to changes in the environment.

Traditionally, the adaptation behaviour was integrated within applications. Although

minimum system changes were required to implement QoS delivery, there are some

70 CHAPTER 3. COOPERATIVE EMBEDDED SYSTEMS

disadvantages in that approach. Different applications running on the same system

may have a different adaptive behaviour when a fluctuation on the task traffic flow

occurs. Some of them may require a considerable amount of resources to perform their

desired adaptation, while others may not be able to perform any adaptations at all.

Furthermore, the adaptation component integrated into an application is not generic

and reusable.

It is therefore desirable to propose a generic mechanism that adapts the services’

execution to the dynamically changing system’s conditions. Nevertheless, while some

users or applications may prefer to always get the best possible instantaneous QoS,

independently of the reconfiguration rate of their requested services, others may find

that frequent QoS reconfigurations are undesirable. For example, in some video

applications a constant frame rate may be better than a frequent variation whose

average is higher than the initial contracted level of service.

As such, we consider that the dynamic QoS arbitration among competing services

should be done under the control of the user [NP06b]. This suggests that while a

resource constrained device may not be able to avoid a downgrade of the currently

provided QoS level of some services in order to accommodate a new service with a

higher utility, upgrades to a higher QoS level can and should be controlled by each

user’s stability requirements. Possible attributes for such QoS stability dimension

can be a minimum granted stability period ∆min and a minimum increment in the

service’s reward Umin in order to upgrade the current service’s QoS level. These can

be interpreted as “do not change to a better service’s quality state unless this gives

me at least a reward’s increment of Umin over a ∆min period”. The flexibility and

expressiveness of the QoS scheme proposed in Section 3.3 allows the user’s stability

preferences and their relative order of importance to be expressed as any other QoS

dimension.

The system computes the possible upgrades of the currently provided SLAs (see

Section 3.7.2 for details) and periodically forecasts the granted stability period (Section

3.7.1) for an entire service Si. If the user’s stability requirements are met, the current

service’s SLA is upgraded. Otherwise, the service is kept in its current QoS level and

the pre-reserved resource amounts for the computed upgrades become immediately

available for subsequent QoS negotiations.

3.7. SUPPORTING RUNTIME QOS ADAPTATION AND STABILITY 71

3.7.1 Promised stability periods

From the service provider’s side, each proposed SLA should now be complemented with

a stability period ∆t, indicating that during that specific time interval the promised

QoS level for a service Si will be assured either on the arrival and departure of other

services.

Note that service stability could be achieved by using a fixed, large enough value for ∆t,

but this would then result in lack of responsiveness in adaptability to environmental

changes. Furthermore, fixed values only make sense when there is some knowledge

about the tasks’ traffic model, which is not the case in open real-time systems. Pro-

posed stability periods should then be periodically updated in response to variations

in the tasks’ traffic flow and corresponding resource usage, efficiently adapting the

system’s behaviour to the observed environmental changes.

Time series analysis comprises methods that attempt to understand a sequence of data

points, typically measured at successive times, spaced at (often uniform) time intervals

to make forecasts. Several algorithms are available for making predictions within a

time series [BJ90]. Generally speaking, prediction algorithms are based on the analysis

of the past observed n samples and range from simple solutions, e.g. moving averages,

to complex ones based on optimal filtering theory.

The simple exponential smoothing (SES) model [Bro63] has become very popular

as a forecasting method for a wide variety of time series data as it is both robust

and easy to apply. In fact, empirical research by Makridakis et al. [MAC+82] has

shown SES to be the best choice for one-period-ahead forecasting, from among 24

other time series methods and using a variety of accuracy measures. Thus, regardless

of the theoretical model for the process underlying the observed time series, simple

exponential smoothing will often produce quite accurate forecasts.

Intuitively, past data should be discounted in a more gradual fashion, putting rela-

tively more weight on the most recent observations. SES accomplishes exactly such

weighting, with exponentially smaller weights being assigned to older observations.

We use the SES model to forecast the length of the next stability period for a service

Si by combining the forecasts for each of the system’s resources ri it uses.

Equation 3.8 is used recursively to update (forecast) the smoothed series as new

observations are recorded for each resource ri. The observed minimum stability period

for resource ri during the period of observation t is denoted by xt and ∆ri

t may be

regarded as the best estimate of what the next value of x will be.

72 CHAPTER 3. COOPERATIVE EMBEDDED SYSTEMS

∆ri

t = αxt + (1− α)∆ri

t−1 (3.8)

Each new forecast is then based on the previous forecast plus a percentage of the

difference between that forecast and the actual value of xt at that point. The per-

centage 0 ≤ α ≤ 1 is known as the smoothing factor. Values of α close to 1 have less

of a smoothing effect and give a greater weight to recent changes in the data, while

values of α closer to 0 have a greater smoothing effect and are less responsive to recent

changes. α can then be adjusted by the system’s designer to create a more reactive

or conservative response to recent changes in the tasks’ traffic flow. Alternatively, a

statistical technique may be used to optimise the value of α, minimising the difference

between the predicted and observed values. For example, the method of minimum

least-squares may be used to determine α’s value for which the sum of the quantities

(∆ri

t−1 − xt)
2 is minimised [Bro63].

Having the stability forecasts for each of the system’s resources, the promised stability

period for a work unit of a particular service Si must be based on a coherent summary of

the forecasts for each of the resources it uses. Any use of an arithmetic summarisation

function that combines the values (such as a mean), will provide an incorrect stability

period due to relative scaling. On the other hand, combinations of several dynamical

variables using logical operators has already been proposed to provide more expressive

policies for SLAs [Rod02].

Equation 3.9 determines the promised stability period for service Si by aggregating the

forecasted values for each of the resources ri it uses through the fuzzy AND operator

(the min function). It allows a quick and simple evaluation of stability periods for

each locally accepted service and leads to a correct system behaviour.

∆t = min(∆r1
AND ∆r2

AND . . . AND ∆rn
) (3.9)

3.7.2 Determine possible upgrades of previously downgraded

Service Level Agreements (SLAs)

Rather than trying to upgrade previously downgraded services on every service depar-

ture, their QoS re-upgrade should be triggered based on a specific threshold of desired

system utilisation, avoiding high reconfiguration rates in dynamic systems.

Let Lt be the desired system’s resource usage threshold to activate the dynamic QoS re-

upgrade of previously downgraded tasks whose stability period ∆t has already expired.

3.7. SUPPORTING RUNTIME QOS ADAPTATION AND STABILITY 73

Let L be the current level of the system’s load demanded by the n offered SLAs.

Intuitively, L < Lt indicates an underutilisation and the dynamic QoS re-upgrade

should take place.

Algorithm 3 implements a gradient descendent heuristic that starts with the initial

contracted level for the previously downgraded tasks whose granted stability period

has already expired and terminates when it finds a set of feasible QoS levels, if any.

The goal is to reallocate the needed resources to supply the initially promised SLA for

every task that had to suffer a QoS downgrade.

Algorithm 3 QoS re-upgrade of previously downgraded tasks

Let τ e be the set of previously downgraded tasks whose stability period ∆t has

expired.

Let τp be the set of all previously accepted tasks whose current QoS cannot be

changed.

Each task τi has associated a set of user’s defined QoS constraints Qi.

Let Qkj[init] be the initially provided and Qkj[i] the currently provided level of service

for attribute j of the kth QoS dimension for task τi ∈ τ e

Let σ be the determined set of SLAs, updated at each step of the algorithm

1: Select the initially provided value Qkj [init] for all j attributes of the k QoS

dimensions, for all tasks τi ∈ τ e

2: Keep the current QoS level for all tasks in τp

3: Update the current set of SLAs σ

4: while feasibility(σ) 6= TRUE do

5: for each task τi ∈ τ e do

6: for each jth attribute of any k QoS dimension with value Qkj [m] > Qkj [i]

do

7: Determine the reward decrease by downgrading attribute j to Qkj [m+1]

8: end for

9: end for

10: Find task τmin whose reward decrease is minimum

11: Define the new SLA SLA′
τmin

for task τmin with the new value Qyx[m + 1] for

attribute x of the QoS dimension y

12: Update the current set of promised SLAs σ ⊲ σ = σ \ SLAτmin
∪ SLA′

τmin

13: end while

14: return the new local set of promised SLAs σ

If Algorithm 3 produces a new set of upgraded SLAs, an actual upgrade of each of

74 CHAPTER 3. COOPERATIVE EMBEDDED SYSTEMS

the currently provided SLAs only occurs if the user’s stability requirements, namely

the minimum granted stability period ∆min and the minimum increment in the SLA’s

reward Umin, are met. Clearly, as these constraints are stringent, it is harder to upgrade

to better quality levels.

3.8 Summary

As the complexity of various new embedded real-time systems increases, multiple

tasks, whose actual resource demands are only know at runtime, have to compete for

the limited resources of a single embedded device. In this context, resource constrained

devices may need to collectively execute services with their neighbours in order to fulfil

the complex QoS constraints imposed by users and applications. As such, an efficient

arbitration of QoS levels in this highly dynamic, open, shared, and heterogeneous

environment becomes very important.

This chapter presented the CooperatES framework, a QoS-aware framework that

addresses the increasing demands on resources and performance in embedded real-

time systems by allowing services to be executed by temporary coalitions of nodes.

Users encode their own relative importance of the different QoS parameters for each

service they want to execute and the framework uses this information to determine

the distributed resource allocation that maximises the satisfaction of those constraints

and minimises the impact on the current QoS levels of previously accepted tasks.

Particular attention was devoted in also maximising the users’ influence on their

services’ adaptation behaviour during runtime. While a downgrade of the currently

provided QoS level of some services may not be avoidable due to resource limitations,

upgrades to a higher QoS level are controlled by each user’s stability requirements,

namely a minimum utility increment and a minimum stability period. The framework

computes the possible upgrades of the currently provided QoS level and periodically

forecasts the granted stability period for each accepted service. The current service’s

QoS level is upgraded only if the user’s stability requirements are met.

Chapter 4

Time-bounded service configuration

The notion that the needed computation time to obtain optimal service

solutions will typically reduce the overall utility of a cooperative service

execution is formalised in this chapter using the concept of anytime algo-

rithms. The use of an anytime approach is mainly inspired by its powerful

ability to ensure a timely answer to events, despite the imprecision and

uncertainty of open real-time environments.

Nodes start by negotiating partial, acceptable service proposals that are

latter iteratively refined if time permits, in opposition to the traditional

QoS optimisation approach proposed in the previous chapter that either

runs to completion or is not able to provide a useful solution.

4.1 Introduction

Optimising QoS for systems operating in open environments involves dealing with a

number of challenges not faced in many simpler domains. Open systems are inherently

uncertain and dynamic and accurate optimisation models are difficult to obtain and

quickly become outdated. Nevertheless, despite their uncertainty, responses to events

still have to be provided within precise timing constraints in order to guarantee a

desired level of performance.

As such, the design of effective QoS optimisation algorithms has been and remains

very much an art. Before the search for a locally optimal solution can begin it has

to be decided how to obtain an initial feasible solution. It is sometimes practical to

initiate the search from several different starting points and to choose the best result.

75

76 CHAPTER 4. TIME-BOUNDED SERVICE CONFIGURATION

Furthermore, a “good” neighbourhood has to be chosen for the problem at hand and

a method for searching it. The choice is normally guided by intuition since very little

theory is available as a guide.

Then, the analysis of the performance of a standard optimisation algorithm is con-

cerned with the following: (i) time complexity, i.e, the time required by the algorithm

to arrive at the final answer; (ii) size of the neighbourhood to be searched; (iii) choice

of the pivot element, i.e., to which better neighbouring solution to move to; and (iv)

the number of iterations required to reach a locally optimal solution.

For more than three decades, many researchers from the fields of mathematics, com-

puter science and operations research have been working on combinatorial optimisation

techniques that aim to reduce the needed computation time to find a solution. There

are three algorithmic approaches [AL97, MT90] that have been well studied and widely

used: (i) enumerative methods that are guaranteed to produce an optimal solution

[Iba88]; (ii) approximation algorithms that run in polynomial time [Sah75, IK75]; and

(iii) heuristic techniques that do not have a guarantee in terms of solution quality or

running time, but provide a robust approach to obtaining a high quality solution to

problems of a realistic size in reasonable time [AL97].

However, the increased complexity of dynamic open real-time environments may pre-

vent the possibility of computing both locally and globally optimal resource allocations

within a useful and bounded time. This is true for many soft real-time applications,

where it may be preferable to have approximate results of a poorer but acceptable

quality delivered on time than late results with the desirable optimal quality. For

example, it is better for a collision avoidance system to issue a timely warning together

with an estimated location of the obstacle than a late description of the exact evasive

action. Another example concerns video and sound processing. While poorer quality

images and voices on a timely basis may be acceptable, late frames and long periods of

silence often are not. Other examples can be found in route optimisation of automated

vehicles [vdBFK06, SCC04], computer games [Haw03], and real-time control [BB04].

What characterises these domains is that it is not computationally feasible or desirable

to compute optimal answers. In other words, complex soft real-time problems need

approximate solutions delivered on time.

Anytime algorithms have shown themselves to be particularly appropriate in such

settings, as they usually provide an initial, possibly highly sub-optimal, solution very

quickly and then concentrate on improving this solution until the time available for

planning runs out. Nevertheless, there has been relatively little interaction between

QoS management and anytime algorithms. QoS management research has been con-

4.2. ANYTIME ALGORITHMS 77

centrated on finding single optimal, or with a fixed sub-optimality bound, solutions.

This chapter reformulates the distributed resource allocation problem for sets of in-

dependent task sets proposed in the previous chapter as a heuristic-based anytime

optimisation problem in which there are a range of acceptable solutions with varying

qualities, adapting the distributed service allocation to the available deliberation time

that is dynamically imposed as a result of emerging environmental conditions.

The anytime approach for configuring the set of feasible QoS levels for independent

task sets proposed in this chapter is partially presented in [NP06c, NP09b].

4.2 Anytime algorithms

When the problem is complex and the available time to find a solution is limited,

generating optimal solutions can be infeasible. A useful approach in these situations

is to employ the so-called anytime algorithms which deliver the best solution that can

be generated within the available computation time.

In the broadest terms, an anytime algorithm is an iterative refinement algorithm

that can be interrupted at any time during its execution and will always return a

valid solution to the problem it is solving, with the possible exception of an initial

time period before the first solution is found. It is expected that the quality of the

answer will increase (up to some maximum quality) as the anytime algorithm is given

increasing time to run, offering a tradeoff between the quality of the result and its

computational cost. The term is due to Dean and Boddy who originally suggested the

concept of anytime algorithms in their work on time-dependent planning [DB88].

The concept can be illustrated with some examples. An example of a problem for

which there is no anytime algorithm is searching for an item. Solving this problem

implies finding the item, so halting the search before the item is found will never return

a solution to it. As a generalisation, all the problems with only one solution cannot

be solved by an anytime approach. However, the planning of a route between two

known points makes a good example of a problem that may be solved by an anytime

algorithm. An initial solution can be constructed by plotting a straight line between

two points. Then, this initial result can then be iteratively refined to better suit the

search criteria (e.g. to avoid crossing rivers or to minimise the amount of energy used

climbing hills).

A similar technique, termed flexible computation, was introduced by Horvitz [Hor88]

to solve time-critical decision problems. This line of work is also closely related to

78 CHAPTER 4. TIME-BOUNDED SERVICE CONFIGURATION

the notion of imprecise computation [LLS+91]. Imprecise computation uses monotone

functions to produce intermediate results as a task executes. The value of these results

is expected to improve as the execution of the task continues. The computation

required to produce a result with minimum quality forms the mandatory part of

the task. Clearly, this mandatory part must have a worst case execution time that

is guaranteed by the schedulability analysis. The rest of the task’s execution is

called optional. The optional part is (usually) an iterative refinement algorithm that

progressively improves the quality of the result generated by the mandatory part.

What is common to these research efforts is the recognition that the computation

time needed to compute optimal solutions will typically reduce the overall utility of

the system.

4.2.1 An anytime QoS optimisation approach

Searching for an optimal resource allocation with respect to a particular goal has

always been one of the fundamental problems in QoS management. However, as

the complexity of open distributed real-time systems increases, it is also increasingly

difficult to achieve an optimal resource allocation that deals with both users’ and

nodes’ constraints within an useful and bounded time.

Anytime computation extends the traditional notion of a computational procedure by

allowing it to return many possible approximate answers to any given input. This

flexibility makes it an obvious choice for integrating complex and unbounded QoS

optimisations into highly dynamic open real-time systems. This leads to one of the

primary general principles of this thesis:

In order to enable a cooperative service execution that will function ad-

equately in a real-time, dynamic, distributed, heterogeneous, and open

environment, the algorithms used to configure such execution should be

designed as anytime algorithms.

A system using an anytime service configuration gains the advantage of being able to

explicitly manage resource usage during the QoS optimisation process. In this context,

a resource is anything that is consumed by the optimisation process. Typically this

will be CPU time, memory space, and energy. Similarly, if the utility of achieving

a goal decreases as time increases, the utility of the goal can also be considered a

resource when optimising for such time-dependent goals.

4.2. ANYTIME ALGORITHMS 79

By using an anytime approach, the system can tradeoff the resource consumption

against the quality of the produced solution. This can be done by monitoring the

progress of the anytime optimisation, either through direct feedback or via a perfor-

mance profile, and then interrupting the optimisation process when a set of SLAs

that surpasses a certain quality threshold has been found. A performance profile is

a representation of the relationship between processing time and result quality for a

particular anytime algorithm and problem. Performance profiles can be used to predict

how quickly a solution of a certain quality will be produced. The idea of performance

profiles for anytime algorithms was first proposed in [DB88] and has been extended in

works such as [Zil96] and [vHtT00].

However, although an algorithm that can be stopped at any time is potentially useful,

some guarantees on its performance are necessary to ensure its applicability [Zil96]:

Measurable quality. The quality of an approximate result can be determined pre-

cisely. For example, when the quality reflects the distance between the approxi-

mate result and the correct result, it is measurable as long as the correct result

can be determined.

Recognisable quality. The quality of an approximate result can easily be deter-

mined at run time (that is, within a constant time). For example, when solving

a combinatorial optimisation problem (such as path planning), the quality of a

result depends on how close it is to the optimal answer. In such a case, quality

can be measurable but is not recognisable.

Monotonicity. The quality of the result is a nondecreasing function of time and

input quality. Note that when quality is recognisable, the anytime algorithm

can guarantee monotonicity by simply returning the best result generated so far

rather than the last generated result.

Consistency. The quality of the result is correlated with computation time and input

quality. In general, algorithms do not guarantee a deterministic output quality

for a given amount of time, but it is important to have a narrow variance so that

quality prediction can be performed.

Diminishing returns. The improvement in solution quality is larger at the early

stages of the computation, and it diminishes over time.

Interruptibility. The algorithm can be stopped at any time and provide some an-

swer. Originally, this was the primary characteristic of anytime algorithms.

80 CHAPTER 4. TIME-BOUNDED SERVICE CONFIGURATION

Preemptability. The algorithm can be suspended and resumed with minimal over-

head.

If these properties hold, an anytime algorithm is then able to return a valid result

at any time and the longer the algorithm runs the better the results will be, until

the optimal result has been reached. Note that it is not necessary that the optimal

result is reached in the same time as the non-anytime, traditional version of the same

algorithm, as long as the anytime version returns a good solution within a reasonable

amount of time.

To what respect the preceding statement is true, and what is intended by a “good

result” and “reasonably amount of time”, largely depends on the problem that one

is trying to solve. In the case of a QoS-aware cooperative service execution we

strongly believe that a sub-optimal solution delivered on time is much better than

not having any suitable service solution within the required time or having an optimal

QoS optimisation delivered too late.

Our proposal, discussed in detail in the remaining sections of this chapter, is to

quickly establish an initial, sub-optimal, service solution according to the set of QoS

constraints that have to be satisfied. Then, if time permits, the initial solution is

gradually refined until it finally reaches its optimal value or the available deliberation

time expires. At each iteration, a new set of SLAs is found with an increasing utility to

the user’s request under negotiation but these successive adjustments get smaller as the

QoS optimisation process progresses. The binary notion of correctness associated with

traditional QoS optimisation algorithms is then replaced by a set of quality measured

outputs.

As discussed above, a quality measure is an integral part of an anytime algorithm.

The quality of partial solutions produced by an anytime algorithm should be both

measurable and recognisable. The principle of measurable quality requires that the

quality of an approximate result (i.e. not a full solution) can be determined accurately.

The principle of recognisable quality requires that quality can be calculated at runtime

without too much processing being required (e.g. in linear time). A quality measure

is also necessary to determine whether the results returned from the algorithm are

improving monotonically with respect to time.

Determining the quality of incomplete solutions produced by anytime algorithms has

traditionally been a difficult proposition [Zil96]. In a first approach to the problem

in our cooperative QoS-aware scenario, a good measure of success for the QoS op-

timisation process may seem to be how similar the service solution resulting from

4.3. ANYTIME COALITION FORMATION 81

the interrupted optimisation is to the solution that would have been generated if the

optimisation process had been allowed to run to completion. However, this results in

a measurable but not recognisable quality measure. As such, for the remaining of this

thesis, each intermediate solution’s quality measure indicates how close is the offered

QoS level to the user’s desired QoS level. Recall that the purpose of a cooperative

service execution is to maximise the user’s satisfaction with the provided service.

4.3 Anytime coalition formation

Iterative improvement algorithms can find a good approximation to an optimal solution

and naturally yield an interruptible anytime algorithm [Zil96]. Based on this idea,

this section reformulates the traditional coalition formation algorithm described in

the previous chapter as an iterative refinement algorithm that can be interrupted at

any time and still returns a feasible service solution.

The proposed anytime coalition formation algorithm, described in detail in Algorithm

4, uses each node’s local reward as a heuristic to guide the coalition formation process.

The goal is to quickly find a sufficiently good initial solution and gradually maximise

its improvement at each iteration, it if time permits.

Clearly, nodes with a higher local reward have a higher probability to be offering service

closer to this particular user’s request under negotiation since the utility achieved by

all services being locally executed is higher. Then, for each remote task τi ∈ Si, rather

than depending on the order of proposals’ reception, the next candidate proposal Pki

to be selected from the set of received proposals Pi is the one sent by the node Nk with

the greatest local reward Rk, using Equation 4.1. [NP06c].

Pki|Pki ∈ Pi, max(Rk) (4.1)

After an initial coalition has been determined, the algorithm iteratively continues, if

time permits, to evaluate the remaining received proposals. Note that it is possible that

some other node has sent a better proposal for the service request under negotiation

even if it has a lower local reward. Recall that the service proposal formulation

algorithm always suggests the best solution for the new service, even if it has to

downgrade the currently provided level of service of the previously accepted services.

It is the responsibility of the coalition formation algorithm to select between similar

proposals (whose evaluation values differ in less than some configurable threshold α)

those nodes that achieve higher local rewards, promoting load balancing.

82 CHAPTER 4. TIME-BOUNDED SERVICE CONFIGURATION

Algorithm 4 Anytime coalition formation

Let EPki
be the evaluation value of proposal Pki, sent by node Nk for task τi

Let Bestτi
be the best proposal for task τi

Let Rk be the local reward of node Nk

Let Rbest be the local reward of the node which has proposed Bestτi
for task τi

Let C be the formed coalition

1: Start with an empty coalition C ⊲ C = ∅

2: for each τi ∈ Si do

3: for each received kth proposal Pki|Pki ∈ Pi, max(Rk) do

4: EPki
= distance(Pki)

5: if (Bestτi
− EPki

> α) or (0 < Bestτi
− EPki

< α and Rk > Rbest) then

6: Bestτi
= EPki

7: Update coalition C with node nk for task τi ⊲ C = C \ (nj , τi) ∪ (nk, τi)

8: end if

9: end for

10: end for

11: return coalition C

At the end of each iteration, Equation 4.2 determines the quality of the achieved

solution, where Bestτi
is the evaluation values of the selected service proposals, |Si| is

the number of independent tasks in Si that can be remotely executed, and |coalition|

is the number of tasks which already have a selected service proposal.

Qcoalition =

⌊

|coalition|

|Si|

⌋

∗

|coalition|
∑

i=1

1−Bestτi

|coalition|
(4.2)

Note that according to Equation 4.2, the quality of an incomplete coalition for the set

of tasks τi ∈ Si that can be remotely executed is zero.

The algorithm terminates when all the received proposals are evaluated or if it finds

that the quality of a coalition cannot be further improved because all the tasks τi ∈ Si

will be served at the user’s preferred QoS level Ldesired.

4.3.1 Formal description of the algorithm’s anytime behaviour

The coalition formation’s anytime behaviour can be formally described using the set

of axioms presented in [vHtT00]. The authors describe the anytime functionality of an

4.3. ANYTIME COALITION FORMATION 83

algorithm using four axioms, each of which describes a different aspect of the anytime

behaviour as follows:

Axiom 4.3.1.1 (Initial behaviour) There is an initial period during which the al-

gorithm does not produce a coalition for a cooperative service execution

The algorithm does not immediately produces an intermediate solution, since it must

first analyse a service proposal for each task τi ∈ Si that can be remotely executed. If

t′ indicates the duration of this initial step then, if interrupted at any time t < t′, the

algorithm will not be able to return a valid solution and the achieved quality will be

zero.

∀t<t′ Qcoalition(t) = 0

Axiom 4.3.1.2 (Growth direction) The quality of a coalition only improves with

increasing run time

Algorithm 4 ensures that the coalition’s members are only updated if and only if a

better proposal for a task τi ∈ Si that can be remotely executed is found. As such,

the quality of the currently determined coalition can only improve with time.

∀t′>t Qcoalition(t) ≤ Qcoalition(t′)

Axiom 4.3.1.3 (Growth rate) The amount of increase in the coalition’s quality

varies during computation

Algorithm 4 selects for evaluation, at each iteration, the service proposal sent by the

node with the highest local reward. Such heuristic selection has the highest probability

of choosing proposals closer to the user’s preferred QoS values. Then, it is expected

that a coalition’s quality will rapidly increase in the first steps of the algorithm and

its growth rate should diminish over time.

∀t′>t Qcoalition(t + 1)−Qcoalition(t) > Qcoalition(t′ + 1)−Qcolaition(t′)

Axiom 4.3.1.4 (End condition) After evaluating all candidate proposals the algo-

rithm achieves its full functionality

84 CHAPTER 4. TIME-BOUNDED SERVICE CONFIGURATION

If the time required to evaluate a candidate proposal is te, the total required runtime

of the anytime algorithm is the sum of all n evaluations. After n ∗ te, Algorithm

4 will produce exactly the same solution quality as its traditional version proposed

in Chapter 3 which only produces a solution with quality Q′
coalition at the end of its

computation time.

Qcoalition(n ∗ te) = Q′
coalition

4.3.2 Conformity with the desirable properties of anytime

algorithms

The conformity of the proposed anytime coalition formation algorithm with the desir-

able properties of anytime algorithms discussed in Section 4.2.1 is checked in the next

paragraphs.

Property 4.3.2.1 (Measurable quality) A coalition’s quality can be determined

precisely

Proof 4.3.2.1 According to Equation 4.2, the quality of the generated coalition at

each iteration of the algorithm can be directly computed from the evaluation values of

the best service proposals for each of the service’s tasks.

�

Property 4.3.2.2 (Recognisable quality) The quality of a coalition can be easily

determined at run time

Proof 4.3.2.2 Let Si = τ1, . . . , τn be the set of n tasks under negotiation for a coop-

erative execution.

A coalition c is only updated to c′ when a better proposal for a task τi ∈ Si is found,

by replacing the previously selected service proposal Pki from node Nk with Pk′i from

node Nk′.

Let |c| be the size of the generated coalition to cooperatively execute service Si, EPk′i
be

the evaluation value of the new service proposal Pk′i, and EPki
be the evaluation value

of the previously selected service proposal Pki.

4.3. ANYTIME COALITION FORMATION 85

The quality of the updated coalition Qc′ can be quickly determined by adding the quality

Qc achieved by coalition c to the weighted difference between EPk′i
and EPki

.

Qc′ = Qc +
EPk′i

− EPki

|c|

This makes the determination of the new coalition’s quality straightforward and within

a constant time.

�

Property 4.3.2.3 (Monotonicity) The quality of the generated coalition is a non-

decreasing function of time

Proof 4.3.2.3 Node Nk is only added to a coalition if and only if it proposes a better

service for task τi ∈ Si, that is, if it is closer to the user’s quality preferences than the

best service proposal found so far.

The algorithm always returns the coalition formed by the best service proposals eval-

uated until time t, which can be different from the last set of evaluated proposals.

According to Zilberstein [Zil96], this characteristic in addition to a recognisable quality

is sufficient to prove the monotonicity of an anytime algorithm.

�

Property 4.3.2.4 (Consistency) For a given amount of computation time on a

given input, the quality of the generated coalition is always the same

Proof 4.3.2.4 For a given amount of computation time ∆t on a given input of a set

of service proposals P and user’s QoS preferences Qi for service Si, the quality of

the selected coalition for a cooperative service execution is always the same, since the

selection of candidate proposals for evaluation is deterministic.

According to Equation 4.1, for each task τi ∈ Si, the next proposal Pki to be selected

for evaluation is the one sent by the node with the greatest local reward. As such, the

algorithm guarantees a deterministic output quality for a given amount of time and

input.

�

86 CHAPTER 4. TIME-BOUNDED SERVICE CONFIGURATION

Property 4.3.2.5 (Diminishing returns) The improvement in the generated coali-

tion’s quality is larger at the early stages of the computation and it diminishes over

time

Proof 4.3.2.5 The quality of each generated coalition, given by Equation 4.2, is mea-

sured using the evaluation values of the best proposals for each task τi ∈ Si. The best

proposal is the one that contains the attributes’ values more closely related to the user’s

specific QoS preferences Qi, in all QoS dimensions.

Each node’s local reward, determined with Equation 3.7, expresses a degree of satis-

faction for all the users that have tasks being locally executed with specific QoS levels,

including the service being currently negotiated.

Selecting for evaluation, for each task τi ∈ Si, the proposal sent by the node that

achieved the highest local reward is expected to rapidly improve the quality of the

generated coalition at an early stage of execution. Nevertheless, some other node may

propose a better service for the service request under negotiation at the expense of

a higher QoS downgrade of previously accepted services, thus achieving a lower local

reward. As such, it is still possible that the solution’s quality can be further improved

in the next iterations of the algorithm, but at a lower increment rate.

�

Property 4.3.2.6 (Interruptibility) The algorithm can be stopped at any time and

still be able to provide a solution

Proof 4.3.2.6 Let t′ be the time needed to generate an initial coalition. By Axiom

4.3.1.1 it is known that if interrupted at any time t < t′ the algorithm will not be able

to return a valid solution, resulting in zero quality.

However, when stopped at any time t > t′ the algorithm always returns the coalition

with the highest quality determined until time t, which can be different from the last

set of evaluated proposals.

�

Property 4.3.2.7 (Preemptibility) The algorithm can be suspended and resumed

with minimal overhead

4.4. ANYTIME SERVICE PROPOSAL FORMULATION 87

Proof 4.3.2.7 Since the algorithm keeps both the set of received proposals not yet

evaluated until time t and the determined coalition, it can be easily resumed after an

interrupt.

�

4.4 Anytime service proposal formulation

This section reformulates the traditional service proposal formulation algorithm pro-

posed in Chapter 3 as an iterative refinement algorithm that can be interrupted

at any time and still returns a feasible service solution. Recall that requests for a

cooperative service execution arrive dynamically at any node and are formulated as a

set of acceptable multi-dimensional QoS levels in decreasing preference order.

In order to be useful in practice, the proposed anytime approach must try to quickly

find a sufficiently good initial proposal and gradually improve it if time permits,

conducting the search for a better feasible solution in a way that maximises the

expected improvement in the solution’s quality [Zil96]. As such, the proposed QoS

optimisation algorithm, starts by keeping the QoS levels of previously accepted services

and selects the lowest requested QoS level for the new requesting tasks τi ∈ Si. Note

that this is the service configuration with the highest probability of being feasible

without degrading the current level of service of previously accepted tasks.

As such, the proposed anytime approach clear splits the formulation of a new set of

SLAs in two different scenarios. The first one, detailed in Algorithm 5, involves serving

the new task without changing the QoS level of previously guaranteed tasks. The

second one, detailed in Algorithm 6, due to the lack of resources, demands degrading

the currently provided level of service of the previously accepted tasks in order to

accommodate the new requesting task.

After quickly determining this initial service solution, the search of a better solution is

guided, at each iteration, by the maximisation of the new task’s QoS level and by the

minimisation of the QoS degradation of the previously accepted services. When τi can

be accommodated without degrading the QoS of the previously accepted tasks, the

configuration that maximises τi’s reward increase is selected (Step 1). On the other

hand, when QoS degradation is needed to accommodate τi, the algorithm incrementally

finds the minimal service degradation for the previously accepted services until a

feasible solution is found (Step 2).

88 CHAPTER 4. TIME-BOUNDED SERVICE CONFIGURATION

Algorithm 5 Anytime service proposal formulation - Step 1

Let τ e be the set of previously accepted tasks whose stability period ∆t has expired.

Let τp be the set of all previously accepted tasks whose current QoS cannot be

changed.

Let τa be the newly arrived task.

Each task τi ∈ τ e ∪ τa ∪ τp has associated a set of user’s defined QoS constraints Qi.

Each Qkj is a finite set of n quality choices for the jth attribute, expressed in

decreasing preference order, for all k QoS dimensions.

Let σ be the determined set of SLAs, updated at each step of the algorithm

Step 1 - Maximise the QoS level of the newly arrived task τa

1: Define SLAτa
by selecting the lowest requested QoS level Qkj [n], for all the j

attributes of the k QoS dimensions for the newly arrived task τa

2: Keep the current QoS level for each task τk ∈ τ e

3: Update the current set of SLAs σ ⊲ σ = σ ∪ SLAτa

4: while feasibility(σ) = TRUE do

5: for each jth attribute of any k QoS dimension in τa with value Qkj[m] > Qkj[0]

do

6: Determine the utility increase by upgrading attribute j to the next possible

value Qkj[m− 1]

7: end for

8: Find maximum increase and define SLA′
taua

for task τa by upgrading attribute

x to the Qkj[m− 1]’s level

9: Update the current set of promised SLAs σ ⊲ σ = σ \ SLAτmin
∪ SLA′

τmin

10: end while

At each iteration, the quality of the proposed solution can be measured by considering

the reward achieved by the new arriving task rτi
, the impact on the provided QoS of

the n previously accepted tasks rτp and the value of the previously generated feasible

configuration Q′
conf , using Equation 4.3. Initially, Q′

conf is set to zero and its value is

only updated if the iteration’s solution is feasible.

Qconf =

rτi
∗

n
∑

i=0

rτp

n

(1−Q′
conf

)

(4.3)

4.4. ANYTIME SERVICE PROPOSAL FORMULATION 89

Algorithm 6 Anytime service proposal formulation - Step 2

Step 2 - Find local minimal service degradation to accommodate τa

11: while feasibility(σ) 6= TRUE do

12: for each task τi ∈ {τ
e ∪ τa} do

13: for each jth attribute of any k QoS dimension in τa with value Qkj[m] >

Qkj[n] do

14: Determine the reward decrease by downgrading attribute j to Qkj [m+1]

15: end for

16: end for

17: Find task τmin whose reward decrease is minimum

18: Define SLA′
τmin

for task τmin with the new value Qyx[m + 1] for attribute x of

the QoS dimension y

19: Update the current set of promised SLAs σ ⊲ σ = σ \ SLAτmin
∪ SLA′

τmin

20: end while

21: return the new local set of promised SLAs σ

The algorithm can be interrupted at any time as a consequence of the dynamic nature

of the environment [NP07a, NP08c], or finishes when it finds a feasible set of QoS

configurations whose quality cannot be further improved, or when it finds that even

if all the tasks would be served at the lowest admissible QoS level it is not possible to

accommodate the new requesting tasks in wij. In the latter case, the service request is

rejected and the previously accepted tasks continue to be served at their current QoS

levels.

The proposed anytime QoS optimisation algorithm always improves or maintains the

current solution’s quality as it has more time to run. This is done by keeping the best

feasible solution found so far, if the result of each iteration is not always proposing

a feasible service configuration for the new task set. However, each intermediate

configuration, even if not feasible, is used to calculate the next solution, minimising

the search effort.

The next simple example denotes this behaviour. Admit that the algorithm runs

to completion or it is interrupted after its fifth iteration (Table 4.1). With this set

of iterations, the algorithm would return the solution found at the fifth iteration

rather than the second one, since it is the one with the greatest quality for the new

service under negotiation. The second solution would only be returned as the best

feasible solution if the algorithm was interrupted before it was able to complete its

90 CHAPTER 4. TIME-BOUNDED SERVICE CONFIGURATION

fifth iteration.

Iteration Qconf Feasible?

1st (0.1 ∗ 0.8)(1−0) = 0.08 yes

2nd (0.2 ∗ 0.8)(1−0.08) = 0.185 yes

3rd (0.3 ∗ 0.8)(1−0.185) = 0.313 no

4th (0.3 ∗ 0.75)(1−0.185) = 0.297 no

5th (0.3 ∗ 0.7)(1−0.185) = 0.280 yes

Table 4.1: Iterative QoS optimisation

In the next sections, although similar to what has been demonstrated for the anytime

coalition formation algorithm, for the sake of completeness, we also describe the differ-

ent aspects of the anytime functionality of the proposed service proposal formulation

algorithm using the four axioms presented in [vHtT00] and its conformity with the

desired properties of anytime algorithms presented in [Zil96].

4.4.1 Formal description of the algorithm’s anytime behaviour

Axiom 4.4.1.1 (Initial behaviour) Until a feasible set of SLAs is found the new

task is rejected

Clearly, an intermediate solution can only be considered if it produces a feasible set

of SLAs. If t′ indicates the time at which the first feasible solution is found then, if

interrupted at anytime t < t′, the algorithm will reject the new task and the quality

of the determined configuration will be zero.

∀t<t′ Qconf(t) = 0

Axiom 4.4.1.2 (Growth direction) The quality of a feasible set of SLAs can only

improve over time

At each iteration, the proposed algorithm only considers a new feasible set of SLAs

as the currently found solution if and only if it improves the solution’s quality. When

the new requesting task τi can be accommodated without degrading the QoS of the

previously accepted tasks, the configuration that maximises τi’s reward increase is

selected. On the other hand, when QoS degradation is needed to accommodate τi,

4.4. ANYTIME SERVICE PROPOSAL FORMULATION 91

the algorithm incrementally finds the minimal service degradation for the previously

accepted services until a feasible solution is found.

∀t′>t Qconf(t) ≤ Qconf(t
′)

Axiom 4.4.1.3 (Growth rate) The amount of increase in the solution’s quality varies

during computation

The solution’s quality is expected to rapidly increase in the first steps of the algorithm

and its growth rate should diminish over time as the algorithm starts by improving

the new user’s preferred quality attributes until an unfeasible set of SLAs is found or

the new task can be served at the user’s preferred QoS level.

On the other hand, when QoS degradation is needed in the search for a new feasible

solution, the algorithm degrades the less important attributes for all services being

locally executed.

∀t′>t Qconf(t + 1)−Qconf(t) > Qconf (t
′ + 1)−Qconf(t

′)

Axiom 4.4.1.4 (End condition) When it is not possible to improve the solution’s

quality the algorithm achieves its full functionality

When it runs to completion, the anytime version of the algorithm will produce exactly

the same solution as its traditional version proposed in the previous chapter that only

produces a solution with quality Q′
conf at the end of its computation time.

The anytime version terminates when it finds a set of QoS levels that keeps all tasks

feasible and the quality of that solution can not be further improved, or when it finds

that, even at the lowest QoS level for each task, the new set is unfeasible.

If the time required to improve or degrade an attribute and test for the schedulability

of the solution is given by ts, the total required runtime of the anytime algorithm is

the sum of all n needed changes in attributes to find the best feasible solution.

Qconf(n ∗ ts) = Q′
conf

4.4.2 Conformity of with the desirable properties of anytime

algorithms

Property 4.4.2.1 (Measurable quality) The quality of a SLA can be determined

precisely

92 CHAPTER 4. TIME-BOUNDED SERVICE CONFIGURATION

Proof 4.4.2.1 At each iteration of the algorithm, Equation 4.3 measures the quality

of the proposed SLA by considering the proximity of the proposal with respect to the

user’s request under negotiation and the impact of that proximity on the global utility

achieved by the previously accepted tasks.

�

Property 4.4.2.2 (Recognisable quality) The quality of a set of SLAs can be

easily determined at run time

Proof 4.4.2.2 The quality of each generated feasible set of SLAs is determined by

using the rewards achieved by all tasks being locally executed, which includes the newly

arrived one. Using Equation 3.6, the rewards’ computation is straightforward and

time-bounded.

�

Property 4.4.2.3 (Monotonicity) The quality of the generated set of SLAs is a

nondecreasing function of time

Proof 4.4.2.3 The algorithm produces a new set of SLAs at each iteration, as it

tries to maximise the utility increase for the new requesting task while minimising

the utility decrease for all previously accepted tasks. It may happen, due to resource

limitations, that the generated set of SLAs at the end of an iteration is not feasible.

Since a service proposal can only be considered useful within a feasible set of tasks, the

algorithm always returns the best found feasible solution rather than the last generated

SLA.

According to Zilberstein [Zil96], this characteristic in addition to a recognisable quality

is sufficient to prove the monotonicity of an anytime algorithm.

�

Property 4.4.2.4 (Consistency) For a given amount of computation time on a

given input, the quality of the generated SLA is always the same

Proof 4.4.2.4 For a given amount of computation time ∆t on a given input of a set

of QoS constraints Q associated with a set of tasks τ , the quality of the proposed set

4.4. ANYTIME SERVICE PROPOSAL FORMULATION 93

SLA for the new task τi is always the same, since the selection of attributes to improve

or degrade at each iteration is deterministic.

At each iteration, the QoS attribute selected to be improved is the one that maximises

an increase in the reward achieved by the new arrived task τi, while the QoS attribute

selected to be downgraded is the one that minimises the decrease in the global reward

achieved by all tasks being locally executed. As such, the algorithm guarantees a

deterministic output quality for a given amount of time and input.

�

Property 4.4.2.5 (Diminishing returns) The improvement in the quality of the

generated SLA is larger at the early stages of the computation and it diminishes over

time

Proof 4.4.2.5 An initial solution that keeps the QoS levels of the previously guaran-

teed tasks τp and selects the worst requested level in all QoS dimensions for the new

arrived task τi is quickly generated. Its quality is given by Equation 4.3, considering

the rewards achieved by all tasks.

At each iteration, the currently found solution is improved by either upgrading the

QoS attribute that maximises an increase in τi’s utility or by downgrading the QoS

attribute that minimises the decrease in the utility of the local set of tasks. As such,

the increment in the solution’s quality is expected to be larger at the firsts iterations

and it diminishes over time.

�

Property 4.4.2.6 (Interruptibility) The algorithm can be stopped at any time and

still provide a solution

Proof 4.4.2.6 Let t′ be the time needed to generate the first feasible solution. By

Axiom 4.4.1.1 its is known that if interrupted at any time t < t′, the algorithm will

not be able to return a new set of SLAs and the quality will be zero.

Nevertheless, when interrupted at time t > t′ the algorithm returns the best feasible set

of SLAs generated until t, which can be different from the last evaluated set.

�

94 CHAPTER 4. TIME-BOUNDED SERVICE CONFIGURATION

Property 4.4.2.7 (Preemptibility) The algorithm can be suspended and resumed

with minimal overhead

Proof 4.4.2.7 Since the algorithm keeps the best generated feasible solution and the

configuration values determined at the last iteration it can be easily resumed after an

interrupt.

�

4.5 Anytime upgrade of previously downgraded SLAs

This section reformulates the traditional QoS re-upgrade algorithm described in the

previous chapter as an iterative refinement algorithm that can be interrupted at any

time and still returns a feasible service solution, detailed in Algorithm 7.

Recall that in the previous chapter we have defined that the system periodically

forecasts the granted stability period for each locally accepted service Si and if the

user’s stability requirements are met, the currently provided service’s SLA is upgraded.

Otherwise, the service is kept in its current QoS level and the pre-reserved resource

amounts for the computed upgrades become immediately available for subsequent QoS

negotiations.

The search for the set of possible service upgrades is guided, at each iteration, by the

maximisation of each task’s reward increase. The algorithm can be interrupted at any

time or finishes when it finds a feasible set of QoS configurations whose quality cannot

be further improved due to resource limitations or all the initially granted SLAs are

reached.

At each iteration, the achieved solution’s quality is measured by Equation 4.4, consid-

ering the rewards achieved by the new upgraded SLAs for the previously downgraded

tasks rτe and the value of the previous generated feasible configuration Q′
conf . Initially,

Q′
conf is set to zero and its value is only updated if the achieved solution is feasible.

Qconf =

n
∑

i=0

rτe

n

(1−Q′
conf

)

(4.4)

In the next sections, although similar to what has been demonstrated for the anytime

4.5. ANYTIME UPGRADE OF PREVIOUSLY DOWNGRADED SLAS 95

Algorithm 7 Anytime QoS re-upgrade of previously downgraded tasks

Let τ e be the set of previously downgraded tasks whose ∆t has expired

Let τp be the set of all previously accepted tasks whose current QoS cannot be

changed.

Each task τi ∈ τ e ∪ τp has associated a set of user’s defined QoS constraints Qi.

Let Qkj[init] be the initially provided and Qkj[i] the currently provided level of service

for attribute j of the kth QoS dimension for task τi ∈ τ e

Let σ be the determined set of SLAs, updated at each step of the algorithm

1: while feasibility(σ) = TRUE do

2: for each task τi ∈ τ e do

3: for each jth attribute of any k QoS dimension with value Qkj [m] > Qkj [init]

do

4: Determine the utility increase by upgrading attribute j to Qkj[m− 1]

5: end for

6: end for

7: Find task τmax whose reward increase is maximum

8: Define SLA′
τmax

for task τmax with the new value Qyx[m− 1] for attribute x of

the QoS dimension y

9: Update the current set of promised SLAs σ ⊲ σ = σ \ SLAτmax
∪ SLA′

τmax

10: end while

11: return the new local set of promised SLAs σ

coalition formation algorithm and the anytime service proposal formulation, for the

sake of completeness, we also describe the different aspects of the anytime functionality

of the proposed service proposal formulation algorithm using the four axioms presented

in [vHtT00] and its conformity with the desired properties of anytime algorithms

presented in [Zil96].

4.5.1 Formal description of the algorithm’s anytime behaviour

Axiom 4.5.1.1 (Initial behaviour) Until a feasible set of SLAs is found no new

set of possible upgrades is returned

Clearly, a new set of upgraded SLAs can only be considered within a feasible set of

service configurations. If t′ indicates the time at which the first feasible solution is

96 CHAPTER 4. TIME-BOUNDED SERVICE CONFIGURATION

found then, if interrupted at anytime t < t′, the algorithm will not be able to provide

any set of possible service upgrades.

∀t<t′ Qconf(t) = 0

Axiom 4.5.1.2 (Growth direction) The quality of a feasible set of upgraded SLAs

can only improve over time

At each iteration, the algorithm iteratively maximises each task’s reward increase, by

upgrading the most desired QoS attributes for the user. As such, if a new set of feasible

SLAs is found, it can only be one with a higher global utility.

∀t′>t Qconf(t) ≤ Qconf(t
′)

Axiom 4.5.1.3 (Growth rate) The amount of increase in the solution’s quality varies

during computation

Since the algorithm starts by upgrading the users’ preferred QoS attributes it is

expected that quality of the produced solution rapidly increases in the first steps

of the algorithm and its growth rate diminishes over time.

∀t′>t Qconf(t + 1)−Qconf(t) > Qconf (t
′ + 1)−Qconf(t

′)

Axiom 4.5.1.4 (End condition) When it is not possible to improve the solution’s

quality the algorithm achieves its full functionality

When it runs to completion, the anytime version of the algorithm will produce exactly

the same solution as the traditional QoS re-upgrade discussed in the previous chapter

that only produces a solution with quality Q′
conf at the end of its computation time.

The anytime version terminates its computation when it finds a set of QoS levels that

keeps all tasks feasible and the quality of that solution can not be further improved. If

the time required to improve an attribute and test for the schedulability of the solution

is given by ts, the total required runtime of the anytime algorithm is the sum of all n

needed changes in attributes to find the best feasible solution.

Qconf(n ∗ ts) = Q′
conf

4.5. ANYTIME UPGRADE OF PREVIOUSLY DOWNGRADED SLAS 97

4.5.2 Conformity with the desirable properties of anytime

algorithms

Property 4.5.2.1 (Measurable quality) The quality of an upgraded set of SLAs

can be determined precisely

Proof 4.5.2.1 At each iteration of the algorithm, Equation 4.3 measures the quality

of the proposed set of upgraded SLAs by considering the proximity of the new set of

service proposals with respect to the users’ preferred QoS levels.

�

Property 4.5.2.2 (Recognisable quality) The quality of an upgraded set of SLAs

can be easily determined at run time

Proof 4.5.2.2 The quality of each generated feasible set of upgraded SLAs is deter-

mined by using the rewards achieved by all tasks being locally executed. Using Equation

3.6, the rewards’ computation is straightforward and time-bounded.

�

Property 4.5.2.3 (Monotonicity) The quality of the generated set of upgraded SLAs

is a nondecreasing function of time

Proof 4.5.2.3 The algorithm produces a new set of SLAs at each iteration, as it

tries to maximise the utility increase of all previously downgraded tasks. Since an

upgraded set of SLAs can only be considered useful within a feasible set of service

configurations, the algorithm always returns the best found feasible solution rather

than the last generated set of upgraded SLAs.

According to Zilberstein [Zil96], this characteristic in addition to a recognisable quality

is sufficient to prove the monotonicity of an anytime algorithm.

�

Property 4.5.2.4 (Consistency) For a given amount of computation time on a

given input, the quality of the generated upgraded set of SLAs is always the same

98 CHAPTER 4. TIME-BOUNDED SERVICE CONFIGURATION

Proof 4.5.2.4 For a given amount of computation time ∆t on a given input of a set

of QoS constraints Q associated with a set of tasks τ , the quality of the proposed set

of upgraded SLAs is always the same, since the selection of attributes to improve each

iteration of the algorithm is deterministic.

At each iteration, the QoS attribute selected to be improved is the one that maximises an

increase in the node’s local reward. As such, the algorithm guarantees a deterministic

output quality for a given amount of time and input.

�

Property 4.5.2.5 (Diminishing returns) The improvement in the quality of the

generated set of upgraded SLAs is larger at the early stages of the computation and it

diminishes over time

Proof 4.5.2.5 At each iteration, the currently found service solution is improved by

upgrading the QoS attribute that maximises an increase in the node’s utility. As such,

the increment in the solution’s quality is expected to be larger at the firsts iterations

and it diminishes over time.

�

Property 4.5.2.6 (Interruptibility) The algorithm can be stopped at any time and

still provide a solution

Proof 4.5.2.6 Let t′ be the time needed to generate the first upgraded set of SLAs.

By Axiom 4.5.1.1 it is known that if interrupted at any time t < t′ the algorithm will

not be able to return a new set or upgraded SLAs.

However, when stopped at any time t > t′, the algorithm returns the best feasible set

of upgraded SLAs generated until time t.

�

Property 4.5.2.7 (Preemptibility) The algorithm can be suspended and resumed

with minimal overhead

Proof 4.5.2.7 Since the algorithm keeps the best generated feasible solution and the

configuration values determined at the last iteration it can be easily resumed after an

interrupt.

�

4.6. SUMMARY 99

4.6 Summary

As an increasing number of end users runs both real-time and traditional desktop

applications in the same distributed embedded system, the issue of how to provide

an efficient Quality of Service (QoS) control in a highly dynamic, open, shared, and

heterogeneous environment becomes very important.

However, finding an optimal distributed service provisioning that deals with both users’

and service providers’ quality constraints can be extremely complex and impossible

to achieve in a useful and bounded time. Unlike conventional QoS optimisation algo-

rithms that guarantee a correct output only after termination, this chapter proposed

an anytime approach that does not rely on the availability of the complete deliberation

time to provide a service solution and a measure of its quality. Nodes start by

negotiating partial, acceptable service proposals that are latter refined if time permits,

with a quality which is expected to improve as the run time of the algorithm increases.

Contrary to a traditional QoS optimisation, the proposed anytime approach considers

the needed tradeoff between the level of optimisation and the usefulness of an optimal

runtime system’s adaptation behaviour. Such tradeoff is a powerful and useful ap-

proach in open dynamic real-time systems where, despite their uncertainty, responses

to events still have to be provided within precise timing constraints.

100 CHAPTER 4. TIME-BOUNDED SERVICE CONFIGURATION

Chapter 5

Scheduling tasks in open systems

The basic assumptions made on classical real-time scheduling theory are

no longer valid in new open and dynamic embedded systems. A new

approach is needed to handle the dynamic changes of services’ requirements

in a predictable fashion, enforcing timing constraints with a certain degree

of flexibility, aiming to achieve the desired tradeoff between predictable

performance and an efficient use of resources.

This chapter proposes a dynamic server-based scheduler that supports the

coexistence of guaranteed and non-guaranteed bandwidth servers to effi-

ciently handle soft-tasks’ overloads by making additional capacity available

from two sources: (i) residual capacity allocated but unused when jobs

complete in less than their budgeted execution time; (ii) stealing capacity

from inactive non-isolated servers used to schedule best-effort jobs.

5.1 Introduction

As an increasing number of end users runs both real-time and traditional desktop appli-

cations in the same system, the issue of how to provide an efficient resource utilisation

in this highly dynamic, open, and shared environment becomes very important. The

need arises from the fact that independently developed services can enter and leave

the system at any time, without any previous knowledge about their real execution

requirements and tasks’ inter-arrival times.

For most of these systems, the classical real-time approach based on a rigid off-line

design and worst-case execution time (WCET) assumptions would keep resources

101

102 CHAPTER 5. SCHEDULING TASKS IN OPEN SYSTEMS

unused for most of the time. Usually, tasks’ WCET is rare and much longer than

the average case. At the same time, it is increasingly difficult to compute WCET

bounds in modern hardware without introducing excessive pessimism [CP03]. Such

a waste of resources can only be justified for very critical systems in which a single

missed deadline may have catastrophic consequences.

A well known technique for limiting the effects of overruns, when a task needs to

execute more than its guaranteed reserved time, was proposed by Abeni and Buttazo

[AB98]. The Constant Bandwidth Server (CBS) scheduler handles soft real-time

requests with a variable or unknown execution behaviour under the Earliest Deadline

First (EDF) [LL73] scheduling policy. To avoid unpredictable delays on hard real-time

tasks, soft tasks are isolated through a bandwidth reservation mechanism, according

to which each soft task gets a fraction of the CPU and it is scheduled in such a way

that it will never demand more than its reserved bandwidth, independently of its

actual requests. This is achieved by assigning each soft task a deadline, computed

as a function of the reserved bandwidth and its actual requests. If a task requires to

execute more than its expected computation time, its deadline is postponed so that

its reserved bandwidth is not exceeded. As a consequence, overruns occurring on a

served task will only delay that task, without compromising the bandwidth assigned

to other tasks.

However, with CBS, if a server completes a task in less than its budgeted execution

time no other server is able to efficiently reuse the amount of computational resources

left unused. To overcome this drawback, CBS has been extended by several resource

reclaiming schemes [LB00, CBS00, MLBC04, CBT05, LB05], proposed to support an

efficient sharing of computational resources left unused by early completing tasks.

Such techniques have been proved to be successful in improving the response times of

soft real-time tasks while preserving all hard real-time constraints.

Nevertheless, not all computational tasks in modern open real-time systems follow a

traditional periodic pattern. For example, aperiodic complex optimisation tasks may

take varying amounts of time to complete depending on the desired solution’s quality

or current state of the environment. Some examples can be found in [Haw03, ACS03,

SCC04, BB04, vdBFK06] or in the anytime algorithms discussed in the previous

chapter. Furthermore, the existing reclaiming schemes are unable to reduce isolation

in a controlled fashion and donate reserved, but still unused, capacities to currently

overloaded servers.

Based upon a careful study of the ways in which unused reserved capacities can be

more efficiently used to meet deadlines of tasks whose resource usage exceeds their

5.2. SYSTEM MODEL 103

reservations, this chapter presents the Capacity Sharing and Stealing (CSS) scheduler.

CSS considers the coexistence of the traditional isolated servers with a novel non-

isolated type of servers, combining an efficient reclamation of residual capacities with

a controlled isolation loss. The goal is to reduce the mean tardiness of periodic

guaranteed jobs by handling overloads with additional capacity available from two

sources: (i) by reclaiming unused allocated capacity when jobs complete in less than

their budgeted execution time; and (ii) by stealing allocated capacities from inactive

non-isolated servers used to schedule aperiodic best-effort jobs.

CSS is partially presented in [NP07a]. The integration of CSS into the CooperatES

framework is discussed in [NP06a].

5.2 System model

The work presented in this chapter focus on dynamic open real-time systems where all

accepted tasks execute on a single shared processor, the sum of the reserved capacities

is no more than the maximum capacity of the processor, and the scheduler does not

have any previous and complete knowledge about the services’ execution requirements.

When a new service arrives to a node, requiring a certain amount of resources based

on expected average needs, an admission test is run. If, given the current system’s

load, the required amount can be guaranteed, the service is accepted and the requested

amount is reserved.

A service can be composed by a set of independent real-time and non-real-time tasks

which can generate a virtually infinite sequence of jobs. The jth job of task τi arrives

at time ai,j, is released to the ready queue at time ri,j, and starts to be executed at

time si,j with deadline di,j = ai,j + Ti, with Ti being the period of τi. The arrival time

of a particular job is only revealed at runtime and the exact execution requirements

ei,j, as well as which resources will be accessed and by how long they will be held, can

only be determined by actually executing the job to completion until time fi,j. These

times are characterised by the relations ai,j ≤ ri,j ≤ si,j ≤ fi,j.

Each accepted real-time task τi is associated to a CSS server Si characterised by a pair

(Qi, Ti), where Qi is the server’s maximum reserved capacity and Ti its period. Note

that these values are based on average estimations for soft real-time tasks.

At any given time, it is selected for execution the server with the earliest deadline and

pending work to do, based on the EDF [LL73] priority assignment. When no server is

104 CHAPTER 5. SCHEDULING TASKS IN OPEN SYSTEMS

selected, the processor is idle or it is executing non-real time tasks.

5.3 The Capacity Sharing and Stealing (CSS) ap-

proach

The CSS scheduler [NP07a] integrates and extends some of the best principles of

previous scheduling approaches to improve the responsiveness of soft real-time tasks

in the presence of overruns while ensuring that the schedulability of hard tasks is not

compromised. To ease the algorithm’s discussion, the main principles of the proposed

approach are discussed in the next paragraphs and the CSS scheduler is formally

presented in Section 5.3.1.

All tasks in the system are assumed to be independent and no task is allowed to

suspend itself waiting for a shared resource or a synchronisation event. The system

consists of n servers and a global scheduler based on the EDF priority assignment.

A single ready queue exists and, at each instant, the active server with the earliest

deadline Si is selected and its corresponding task τi is dispatched to execute.

A CSS server Si is characterised by an ordered pair (Qi, Ti), where Qi is the server’s

maximum reserved capacity and Ti is the server’s period. At each instant, the following

values are associated with each server: its currently assigned deadline di,k, its currently

available capacity ci, the amount of residual capacity cr that can be reclaimed by other

servers, and its currently assigned capacity recharging time ri.

The algorithm considers two different types of servers: isolated servers used to schedule

periodic and sporadic guaranteed tasks and non-isolated servers for aperiodic best-

effort tasks. For an isolated server, the amount of reserved capacity Qi is ensured to

be available every period Ti, while an inactive non-isolated server can have some or

all of its reserved capacity Qi stolen by a needed overloaded server.

By setting a specific recharging time ri rather than automatically replenish the server’s

capacity and update its deadline on every capacity exhaustion, CSS follows a hard

reservation approach (please refer to [RJM+98] for a description of hard vs soft reser-

vations).

Recall that CBS presents some drawbacks when serving tasks that are active for long

intervals of time, covering therefore many periods of a server. Since CBS automatically

recharges a server’s capacity and postpones its deadline on every capacity exhaustion,

if the server’s deadline, although postponed, is still the earliest, the renewed capacity

5.3. THE CAPACITY SHARING AND STEALING (CSS) APPROACH 105

can be used within the same period. This leads to a temporal over execution that may

be followed by a starvation period, altering the rate of periodic tasks.

As such, advancing the recharging times when there is pending work is against our

purpose of executing periodic activities with stable frequencies. Note that if pending

jobs are a consequence of early arrivals, executing periodic services with a stable

frequency suggests that those early arrived jobs should only begin their execution in

the expected period of arrival. Furthermore, a hard reservation approach enables a

server whose capacity as been exhausted to continue its execution either by stealing

capacities from inactive non-isolated servers or by using any new residual capacities

that eventually is released until its currently assigned deadline, keeping its current

priority.

At time t, a server Si is said to be active if (i) the served task is ready to execute;

(ii) is executing; or (iii) the server is supplying its residual capacity to other servers

until its currently assigned deadline di,k. Otherwise, Si is inactive if (i) there are no

pending jobs to serve; and (ii) the server has no residual capacity to supply to the

other servers.

State transitions are determined by the (i) arrival of a new job, (ii) capacity exhaustion,

or (iii) non-existence of pending jobs at replenishment time (Figure 5.1). An inactive

server becomes active with the arrival of the new jth job at time ai,j , if ai,j ≥ di,j−1.

If ai,j < di,j−1, the job is only released at the next server’s replenishment instant ri.

On the other hand, an active server becomes inactive if (i) all its reserved capacity is

consumed and there are no pending jobs to serve (capacity exhaustion can occur while

a server is supplying its residual capacity to other servers or is using its capacity to

advance a job’s execution); or (ii) there are no pending jobs at replenishment time.

Figure 5.1: State transitions of CSS servers

For each server Si, when t = ri, the action to be taken depends on the existence,

at time t, of pending jobs to be executed, that is, if there is a job Ji,k such that

106 CHAPTER 5. SCHEDULING TASKS IN OPEN SYSTEMS

ai,k ≤ t < fi,k. An active server without pending work (it must be supplying its residual

capacity to other servers) becomes inactive and its residual capacity is discharged.

On the other hand, for a server with pending jobs, a new deadline is generated to

di,k = max{ai,k, di,k−1}+Ti, the server’s capacity is replenished to its maximum value

ci = Qi, the recharging time is set to the server’s new deadline ri = di,k, and the

server’s residual capacity is set to zero cr = 0.

Whenever a job is completed, the remaining reserved capacity of its dedicated server

can (and should) be used by any active task to advance its execution. Although the

idea of residual capacity reclaiming is not new, CSS proposes to efficiently reclaim

unused computation times as early as possible. Note that when using a residual

capacity of another server, a task must be scheduled using the current deadline of

the server to which the residual capacity belongs to. Since reserved capacities expire

at their deadlines, it makes sense to reclaim residual capacities before consuming the

server’s own reserved capacity Qi in order to increase the probability of effectively

using them.

Let A be the set of all active servers. The set of active servers Ar eligible for residual

capacity reclaiming when a server Si is scheduled for execution is given by Ar =

{Sr|Sr ∈ A, dr ≤ di,k, cr > 0}, where dr is the current deadline of early completed jobs

and di,k is the currently assigned deadline of server Si.

When scheduled with CSS, a server Si starts by reclaiming the residual capacity cr

supplied by the earliest deadline active server Sr from the set of eligible servers Ar,

either until the job’s completion or cr’s exhaustion. Sr is then defined as ∃1Sr ∈ Ar :

mindr
(Ar), Ar 6= ∅.

Since the execution requirements of each job are not known beforehand, it also makes

sense to devote as much excess capacity as possible to the currently executing server.

As such, while there is pending work to do, remaining residual capacities are greedily

consumed by the currently executing server according to a EDF policy.

We carefully considered this fairness issue. The increased computational complexity

of fairly assigning residual capacities to all active servers and the fact that fairly

distributing residual capacities to a large number of servers (usually in proportion to

the servers’ bandwidths) can originate a situation where not enough excess capacity is

provided to any one to avoid a deadline miss, leading us to assign all residual capacity

to the currently executing server Si. Such a greedy capacity reclaiming not only has

a reduced computational complexity, but also minimises deadline postponements and

the number of preemptions and tends to be fair in the long run [LB00].

5.3. THE CAPACITY SHARING AND STEALING (CSS) APPROACH 107

If all available residual capacities are exhausted and the current job is not complete,

Si consumes its own reserved capacity ci, either until the job’s completion or ci’s

exhaustion. The hard reservation approach that was adopted enables a overloaded

server Si whose capacity has been exhausted to be kept active with its current deadline

and to continue to execute its current job either by stealing capacities from inactive

non-isolated servers or by using any new residual capacities that eventually will be

released until di,k.

Let I be the set of all inactive non-isolated servers. The set of inactive non-isolated

servers IN
s eligible for capacity stealing, when the currently executing server Si has

reclaimed all the eligible residual capacity and has exhausted its own reserved capacity,

is given by IN
s = {Ss|Ss ∈ I, ds < di,k, cs > 0}, where ds is the current deadline of each

inactive non-isolated server.

With CSS, Si is able to steal the non-isolated capacity of the earliest deadline inactive

non-isolated server Ss from the set of eligible servers IN
s , determined by ∃1Ss ∈ IN

s :

minds
(IN

s), IN
s 6= ∅.

Similarly to the residual capacity reclaiming phase, and due to the same reasons,

non-isolated capacity stealing also follows a greedy approach. When the capacity

being stolen is exhausted and the job has not yet been completed, the next non-

isolated capacity c′s is used (if any) by Si to advance its execution. However, capacity

stealing is interrupted whenever (i) the currently executing server Si is preempted; (ii)

a replenishment event occurs on the capacity cs being stolen; or (iii) a new job arrives

for the inactive non-isolated server Ss whose reserved capacity is being used by Si.

As expected, to preserve the system’s schedulability, when a new job arrives for the

inactive non-isolated server Ss, it reaches the active state with its remaining capacity

cs. Note that an active non-isolated server can also take advantage of available residual

capacities, share its residual capacity with other servers and steal inactive non-isolated

capacities.

Since the parameters of inactive servers are not automatically updated, when the

currently executing server Si tries to steal the earliest deadline inactive non-isolated

capacity of server Ss it must check if an update of the current values of the deadline

and reserved capacity of server Ss are needed. If the previously generated absolute

deadline ds of the selected non-isolated server Ss is lower than the current time (ds < t),

a new deadline (ds = t + Ts) is generated and the server’s capacity is recharged to its

maximum value (cs = Qs). Otherwise, Ss’s current values are used. In either case, Ss

is kept in the inactive state.

108 CHAPTER 5. SCHEDULING TASKS IN OPEN SYSTEMS

5.3.1 The CSS scheduler

CSS differs from the original CBS scheduler in three main characteristics: (i) it

follows a hard reservation approach; (ii) it greedily reclaims, as early as possible,

the unused computation times originated by early completions; and (iii) it reduces

isolation in a controlled fashion to donate reserved, but still unused, capacities to

currently overloaded servers.

Whenever a new job Ji,k arrives at time ai,k for server Si, if Si is active, the job is

buffered and will be served later. If Si is inactive and if ai,k < di,k, the server becomes

active and the job is served with the last generated deadline di,k, using the current

capacity ci. Otherwise, Si’s capacity is recharged to its maximum value ci = Qi, a

new deadline is generated to di,k = max{ai,k, di,k−1}+Ti, the recharging time is set to

ri = di,k and its residual capacity is set to cr = 0. At replenishment time ri, unused

reserved capacities are discarded.

Naturally, while a server is executing, the consumed capacity must be accounted for.

By dynamically managing a pointer to the server from which the capacity is going to

be decreased, the proposed dynamic accounting mechanism of CSS eliminates the need

of extra queues or additional server states as used in other served-based scheduling

approaches, clearly reducing its overhead. With CSS, the server from which the

accounting is going to be performed is dynamically determined at the time instant

when a capacity is needed.

CSS uses the following rules to manage reserved capacities:

• Rule A: Whenever a server Sj completes its kth job and it has no pending

work, its remaining reserved capacity cj > 0 is immediately released as residual

capacity cr = cj. cr can now be reclaimed by eligible active servers until the

currently assigned Sj ’s deadline dj,k or cr’s exhaustion. Sj is kept active with its

current deadline and its reserved capacity cj is set to zero.

• Rule B: The next server Si scheduled for execution points to the earliest deadline

server Sr from the set of eligible active servers with residual capacity cr > 0 and

deadlines dr ≤ di,k. Si consumes the pointed residual capacity cr, running with

the deadline dr of the pointed server Sr. Whenever cr is exhausted and there is

pending work, Si disconnects from Sr and selects the next available server S ′
r (if

any).

• Rule C: If all available residual capacities are exhausted and the current kth

job of server Si is not yet completed, Si consumes its own reserved capacity ci

5.3. THE CAPACITY SHARING AND STEALING (CSS) APPROACH 109

either until the job’s completion or ci’s exhaustion (whatever comes first). If

ci is exhausted and there is still pending work to do, Si is kept active with its

current deadline di,k.

• Rule D: With pending work and no reserved capacity left, the currently ex-

ecuting server Si connects to the earliest deadline server Ss from the set of

eligible inactive non-isolated server with remaining capacity cs > 0 and deadlines

ds ≤ di,k. Si steals the pointed inactive capacity cs, running with its current

deadline di,k. Whenever cs is exhausted and the job has not yet been completed,

the next non-isolated capacity c′s is used (if any).

Note that the proposed dynamic capacity accounting mechanism ensures that at time

t, the currently executing server Si is using a residual capacity cr originated by an

early completion of another active server, its own reserved capacity ci, or is stealing

capacity cs from an inactive non-isolated server (for that order). Furthermore, in order

to preserve the system’s schedulability, it ensures that the longest time a server can

be connected to another server is bounded by the currently pointed server’s capacity

and/or deadline.

With the above rules, CSS is then able to (i) achieve isolation among guaranteed tasks;

(ii) efficiently reclaim unused computation times, exploiting early completions; and

(iii) allow an overloaded server to steal non-isolated reserved capacities from inactive

servers.

5.3.2 Handling overloads with CSS

The next example details how CSS can handle soft tasks’ overloads without postponing

their deadlines by greedily reclaiming residual capacities and stealing inactive non-

isolated capacities used to schedule aperiodic best-effort services.

Consider the following periodic task set, described by average execution times and

period: τ1 = (2, 5), τ2 = (4, 10), τ3 = (3, 15). τ1 is served by the non-isolated server

S1, while tasks τ2 and τ3 are served by the isolated servers S2 and S3, respectively,

with a reserved capacity equal to their task’s average execution time and period equal

to their task’s expected period.

A possible scheduling of this task set with CSS is detailed in Figure 5.2. When a

server is connected to another server, either reclaiming a residual capacity or stealing

an inactive non-isolated capacity, an arrow indicates where the capacity accounting is

being performed.

110 CHAPTER 5. SCHEDULING TASKS IN OPEN SYSTEMS

Figure 5.2: Handling overloads with CSS

At time t = 3, S2 finishes the first job of task τ2 and releases a residual capacity cr = 1

with deadline dr = 10 (Rule A). Server S3 is scheduled for execution, connects to

the earliest deadline residual capacity available from server S2 and starts to execute

its dedicated task τ3, consuming the reclaimed residual capacity (Rule B). When this

residual capacity is exhausted at time t = 4, S2 becomes inactive and S3 continues to

execute τ3 by using its own reserved capacity until it is exhausted at time t = 7 (Rule

C). Since there is inactive non-isolated capacity available, S3 handles its overload by

stealing capacity previously reserved for server S1 (Rule D). A new deadline for the

stolen capacity cs is set to time t = 12.

Note that at time t = 9 a new job of task τ2 arrives for the inactive server S2 but the

job is only released at time t = 10. Recall that advancing execution times is against

our purpose of executing periodic activities with stable frequencies.

At time t = 15, after server S2 has completed its job by stealing some of the inactive

non-isolated capacity of S1, a new job for server S1 arrives. At this point, S1 becomes

active, but keeping its currently available capacity and corresponding deadline.

At time t = 16, server S1 exhausts its capacity and stops executing since there is

no available inactive non-isolated capacity to steal. However, at time t = 19, a

replenishment of S1’s capacity occurs and it can continue to execute the pending

job. When S1 completes its job’s execution, at time t = 20, it releases the residual

capacity cr = 1 with deadline dr = 24. This residual capacity is used by server S2

before consuming its own capacity at time t = 21.

5.4. THEORETICAL VALIDATION FOR INDEPENDENT TASKS 111

At time t = 25, a new job of task τ1 arrives and the inactive non-isolated server S1

becomes active. Note that it first consumes the residual capacity cr = 1 with deadline

dr = 30, generated at time t = 24 by an early completion of τ2, before consuming its

own capacity.

At time t = 33 an overload of τ2 is first handled by stealing capacity of the inactive

non-isolated server S1 and then, at time t = 38, by consuming the available residual

capacity generated by an early completion of task τ3. Recall that with CSS a server

remains active, even if it has exhausted its capacity, which enables an overloaded server

to take advantage of any eligible residual capacity released until its deadline.

5.4 Theoretical validation for independent tasks

This section analyses the schedulability condition for a hybrid set of independent hard

and soft real-time tasks. Despite the fact that CSS is able to reduce the mean tardiness

of soft real-time tasks through an efficient management of unused reserved capacities,

it can only provide hard real-time guarantees if each hard real-time task is scheduled

by an isolated server with a reserved capacity equal to the hard task’s WCET and

period equal to the task’s period. When this happens, each hard task behaves like a

standard hard task scheduled by EDF. The main difference is that, with CSS, hard

tasks can gain access to and use extra capacities and yield their residual capacities to

other tasks.

In [Abe98], it is proven that a CBS server with parameters (Qi, Ti) cannot occupy a

bandwidth greater than Qi

Ti
. That is, if DSi

(t1, t2) is the server’s bandwidth demand

in the interval [t1, t2], it is shown that ∀t1, t2 ∈ N : t2 > t1, DSi
(t1, t2) ≤

Qi

Ti
(t2 − t1).

This isolation property allow us to use a bandwidth reservation strategy to allocate

a fraction of a resource to a task whose demand is not known a priori. The most

important consequence of this property is that soft tasks, characterised by average

values, can be scheduled together with hard tasks, even in the presence of overloads.

We state that the runtime capacity sharing and stealing performed by CSS does not

affect the system’s schedulability. By assigning each soft task a specific capacity, based

on an average execution time estimation, the desired activation period, and isolating

the effects of tasks’ overloads, a hybrid task set can be guaranteed using the classical

Liu and Layland condition [LL73].

Before proving such schedulability test, we start by ensuring that all generated capac-

ities are exhausted before their respective deadlines.

112 CHAPTER 5. SCHEDULING TASKS IN OPEN SYSTEMS

Lemma 5.4.0.1 Given a set S of isolated servers, each isolated capacity generated

during scheduling is either consumed or discharged until its deadline.

Proof

Let ai,k denote the instant at which a new job Ji,k arrives and the isolated associated

server Si is inactive. At ai,k, a new capacity ci = Qi is generated and Si is inserted

into the ready queue.

Let ∀i,k di,k = max{ai,k, di,k−1}+Ti be the deadline and ∀i,k ri = di,k the replenishment

time associated with capacity ci.

Let [t, t + ∆t[denote a time interval during which server Si is executing, consuming

its own capacity ci. Consequently, Si has used an amount equal to c′i = ci − ∆t ≥ 0

of its own capacity during this period. As such, ci must be decreased to c′i, until it is

exhausted.

Let fi,k denote the time instant at which server Si completes its job Ji,k. Assume that

there are no pending jobs for server Si at time fi,k. According to Rule A, the available

residual capacity cr = ci > 0 can immediately be reclaimed by other servers.

Let cr = ci be the residual capacity available to other servers. At instant fi,k, the

server’s capacity ci is set to zero and another active server Sj is scheduled for execution.

According to Rule B, if the inequality di,k ≤ dj,l holds, let [t, t + ∆t[denote the time

interval during which server Sj is executing, consuming the residual capacity cr of

server Si. Consequently, Sj has used an amount equal to c′r = cr −∆t ≥ 0 during this

period. As such, cr must be decreased to c′r, until the capacity cr is exhausted or the

currently assigned deadline di,k of server Si is reached.

At replenishment time t = ri, any remaining residual capacity cr of server Si not used

by another active server is discharged.

�

Lemma 5.4.0.2 Given a set S of isolated and non-isolated servers, each non-isolated

capacity generated during scheduling is either consumed or discharged until its deadline.

Proof

To prove this lemma we analyse the following cases: a) a new non-isolated capacity

is generated whenever an overloaded active server needs to steal the inactive non-

isolated server’s capacity; and b) a non-isolated capacity is generated whenever a new

job arrives for the inactive non-isolated server.

5.4. THEORETICAL VALIDATION FOR INDEPENDENT TASKS 113

Case a.

Let aj,k denote the time instant when an active overloaded server Sj starts to consume

the non-isolated capacity ci of the inactive non-isolated server Si.

If the inequality di,k−1 ≤ aj,k holds, a new deadline di,k = aj,k + Ti is generated for

the non-isolated capacity, the server’s capacity ci is recharged to its maximum value

ci = Qi and the replenishment time ri is set to ri = di,k. Otherwise, server Si keeps

its current values of ci, di,k, and ri.

Let [t, t + ∆t[denote the time interval during which server Sj is executing, stealing

the non-isolated capacity ci of server Si. Consequently, Sj has used an amount equal

to c′i = ci −∆t ≥ 0 of the non-isolated capacity ci. As such, ci must be decreased to

c′i, until its value is exhausted. If a new job arrives at ai,k < a′
i,k < ri, the inactive

non-isolated server Si becomes active, using its current values for ci, di,k, and ri. If,

at time a′
i,k the capacity ci was being stolen by an active overloaded server, capacity

stealing is immediately interrupted.

While active, the behaviour of the non-isolated server Si is equal to any other active

isolated server in the system. As such, the accounting for the remaining capacity ci is

proven by Lemma 5.4.0.1.

Case b.

Let ai,k denote the time instant when a new job Ji,k arrives for the inactive non-isolated

server Si.

If the inequality di,k−1 ≤ ai,k holds, a new deadline di,k = ai,k + Ti is generated, the

server’s capacity ci is recharged to its maximum value ci = Qi and the replenishment

time ri is set to ri = di,k. Otherwise, server Si keeps its current values for ci, di,k, and

ri.

At time ai,k the non-isolated server Si becomes active and it is inserted into the ready

queue. As such, its capacity ci is consumed as follows from Lemma 5.4.0.1.

�

Theorem 5.4.0.1 Let τh be a set of n periodic hard real-time tasks, with each task

τi being scheduled by a dedicated isolated server Si with a reserved capacity Qi equal

to the task’s WCET and Ti equal to the task’s period. Let τs be a set of soft real-time

tasks scheduled by a group of isolated and non-isolated severs with total utilisation

Usoft. Then τh is feasible if and only if

114 CHAPTER 5. SCHEDULING TASKS IN OPEN SYSTEMS

+Usoft +

n
∑

τi∈τh

Qi

Ti

≤ 1

Proof

The theorem follows immediately from Lemma 5.4.0.1 and Lemma 5.4.0.2. In fact,

Lemma 5.4.0.1 ensures that each generated isolated capacity is always exhausted or

discharged until its deadline. The same is true for any generated non-isolated capacity,

according to Lemma 5.4.0.2.

Since the worst case response time of a hard task is independent of whether the reserved

capacity of some server is being used by that server to execute its dedicated task or

it is being consumed by any other server in the system, the system’s schedulability is

independent of whether the proposed dynamic capacity accounting mechanism of CSS

is in operation or not. In the worst case, the longest time a server can be connected

to another server is bounded by the currently pointed server’s capacity and deadline.

�

5.5 Summary

This chapter was focused on the scheduling of tasks with hard, soft, and non real-

time constraints in open real-time systems. While several solutions have already been

proposed to maximise resource usage and achieve a guaranteed service for hard tasks

and inter-task isolation using average execution estimations for soft tasks, unused

reserved capacities can be more efficiently used to meet deadlines of soft tasks whose

resource usage exceeds their reservations.

The proposed Capacity Sharing and Stealing (CSS) scheduler considers the coexistence

of the traditional isolated servers with a novel non-isolated type of servers, combining

an efficient reclamation of residual capacities with a controlled isolation loss, making

additional capacity available from two sources: (i) by reclaiming unused allocated

capacity when jobs complete in less than their budgeted execution time; and (ii) by

stealing allocated capacities to inactive non-isolated servers used to schedule aperiodic

best-effort jobs.

In addition, a schedulability analysis for a hybrid set of independent hard and soft

real-time tasks has been presented. The analysis is based on the most important

formal properties of CSS, presented and proved in this chapter.

Chapter 6

Handling QoS inter-dependencies

Although a lot of research has been conducted on the support of services’

dynamic QoS reconfiguration under different constraints of resource avail-

ability, most has been focused on the runtime management of independent

QoS attributes.

This chapter extends the CooperatES framework to support adaptive co-

operative coalitions of nodes able to autonomously organise, regulate and

optimise themselves without the user’s intervention or any other central

entity, even when services exhibit unrestricted local and distributed QoS

inter-dependencies among their tasks.

6.1 Introduction

While runtime adaptation is widely recognised as valuable, adaptations in most exist-

ing QoS-aware systems are limited to changing independent execution parameters. We

believe that the true potential of existing adaptation techniques can only be achieved

if support is provided for more general solutions, including inter-dependent runtime

adaptations that span multiple hosts and multiple components.

Increasingly, distributed applications consist of interacting components that may ex-

hibit unrestricted QoS inter-dependencies among them. Such relations specify that a

component offers a certain level of QoS under the condition that some specified QoS

will be offered by the environment or by other service’s components. For example,

network bandwidth can be traded for processing power by using data compression

techniques. However, some compression techniques may not be lossless, thus, they

115

116 CHAPTER 6. HANDLING QOS INTER-DEPENDENCIES

may have an impact on the quality of the data content.

As such, when the outputted QoS of some task depends not only on the amount and

type of used resources but also on the quality of the received inputs sent by other

tasks, the QoS adaptation process has to ensure that a source task provides a QoS

which is acceptable to all consumer tasks and lies within the QoS range supported

by the source task. A service’s feasible QoS level must then be defined as the set of

compatible QoS regions provided by all the dependent components that compose the

service.

This means that QoS-aware systems must handle more and more complexity on their

own. The challenge here is to find mechanisms that control the dynamics of these

complex, distributed, interconnected and rapidly changing environments within a

useful and bounded time. This chapter elaborates on these issues and extends the

CooperatES framework to support adaptive cooperative coalitions of nodes able to

autonomously organise, regulate and optimise themselves without the intervention of

a user or any other central entity, even when services exhibit unrestricted QoS inter-

dependencies.

Solving this dependency problem among local QoS inter-dependencies is equivalent

to finding an assignment of values to all QoS attributes such that all dependency

constraints are locally satisfied. Sections 6.2.1 and 6.2.2 reformulate, respectively, the

anytime algorithms for service proposal formulation and dynamic QoS reconfiguration

proposed in Chapter 4 to handle the local execution of services’ components whose

behaviour and input/output qualities are inter-dependent. To guarantee that a valid

solution is available at any time, QoS dependencies are tracked and the performed

changes are propagated to all the affected attributes at each iteration of the algorithms.

To the best of our knowledge no other works propose an anytime approach for a

distributed QoS configuration of resource intensive services in open real-time embedded

services with the ability to handle tasks’ inter-dependencies while maximising the

satisfaction of each user’s quality preferences.

However, a distributed system composed by self-managing nodes which optimise their

behaviour towards some individual goals is not necessarily optimised at a global level

as there is the possibility that conflicting greedy decisions may lead to interference be-

tween the different nodes’ self-management behaviour, conflicts over shared resources,

sub-optimal system performance and hysteresis effects [FDC02].

Section 6.3 discusses these issues and proposes an one-step decentralised coordination

model based on an effective feedback mechanism to reduce the complexity of the

needed interactions among nodes until a collective adaptation behaviour is determined.

6.2. LOCAL QOS INTER-DEPENDENCIES 117

Positive feedback is used to reinforce the selection of the new desired global service

solution, while negative feedback discourages nodes to act in a greedy fashion as this

adversely impacts on the provided service levels at neighbouring nodes.

By exchanging feedback on the desired self-adaptive actions, nodes converge towards

a global solution, even if that means not supplying their individually best solutions.

As a result, each node, although autonomous, is influenced by, and can influence, the

behaviour of other nodes in the system.

This work has been partially published in [NP08b, NP08a, NP09a].

6.2 Local QoS inter-dependencies

As discussed in the previous chapters, runtime adaptation is a fundamental issue in

resource-constrained QoS-aware systems since it determines how well users’ service

requests are satisfied in the presence of dynamically changing operating conditions.

However, although a lot of research has been conducted on the support of services’

dynamic QoS reconfiguration under different constraints of resource availability, there

are still a number of challenges to be addressed.

One of those challenges is brought by the existence of QoS inter-dependencies among

services’ tasks. A QoS dimension Qa is said to be dependent on another dimension Qb

if a change along the dimension Qb will increase the needed resource demand to achieve

the quality level previously achieved along Qa [RLLS97]. As such, QoS dependencies

explicitly express dependency relationships existing over a service’s QoS characteristics

while specifying the strength and direction of the link.

Formally, there are n QoS attributes x1, x2, . . . , xn of a service S, whose values are

taken from the domains D1, D2, . . . , Dn, respectively, and a set of dependency con-

straints on their values. The constraint pk(xk1, . . . , xkj) is a predicate that is defined

on the Cartesian product Dk1 ∗ . . .∗Dkj. This predicate is true if and only if the value

assignment of these variables satisfies this constraint. Note that there is no restriction

on the form of the predicate. It can be a mathematical or logical formula or any

arbitrary relation defined by a tuple of acceptable values.

This means that the runtime QoS adaptation process must ensure that a source task

provides a QoS which is acceptable to all consumer tasks and lies within the QoS

range supported by the source task. As such, the system may have to adapt the QoS

of individual tasks according to some inter-task QoS dependencies when searching for

the best overall feasible solution. It seems clear that the increased complexity of such

118 CHAPTER 6. HANDLING QOS INTER-DEPENDENCIES

optimisation makes it even more beneficial to use an anytime approach that can trade

the achieved solution’s quality by its computational cost whenever a timely answer to

events is desired.

In the presence of dependency relationships among the tasks of a service S, we assume

that a resource intensive service is partitioned in a set of work units {w1, . . . , wn} that

can be executed at varying levels of QoS, whenever the imposed set of QoS constraints

cannot be satisfyingly answered by a single node. Each work unit wi = {τ1, τ2, . . . , τn}

is a set of one or more tasks that must be executed in the same node due to local QoS

dependencies.

We represent the set of inter-dependencies among tasks of a work unit wi ∈ S as a

dependency graph Gwi
= (Vwi

, Ewi
), where each vertex vi ∈ V⊒〉

represents a task τi

and a directed edge ei ∈ E⊒〉
from τj to τk indicates that τk is functionally dependent

on τj .

As such, whenever a service S can be divided in a set of independent work units

{w1, . . . , wn}, the runtime adaptation problem of each work unit wi can be locally

handled as a resource selection problem at each individual node by traversing the

corresponding dependency graph Gwi
whenever a change in the current value of one

QoS parameter of a task τj ∈ wi has an impact on other tasks τk ∈ wi. For the sake of

simplicity, we present the following functions in a declarative notation with the same

operational model as a pattern matching-based functional language.

Given a graph Gwi
= (Vwi

, Ewi
) and given two tasks τi, τj ∈ Vwi

, we obtain all the tasks

in the possible paths between τi and τj as the result of the function1:

paths(τi, τj) = flatten(paths(τi, τj, ∅))

paths(τi, τj, T) = ∅, if τi = τj

paths(τi, τj, T) = {{τi, τk1
} ∪ paths(τk1

, τj , T ∪ {τk1
}),

...

{τi, τkn
} ∪ paths(τkn

, τj , T ∪ {τkn
})},

∀τkm
∈ Vwi

, such that (τi, τkm
) ∈ Ewi

and τkm
/∈ T

paths(τi, τj, T) = ⊥

Given a set A containing other sets, the function flatten(A) is defined as:

1The function is generic enough to be used later in this chapter to obtain all the nodes between

dependent groups of tasks in a distributed system

6.2. LOCAL QOS INTER-DEPENDENCIES 119

flatten(∅) = ∅

flatten(A) = a ∪ flatten(A \ a), if a ∈ A

Proposition 6.2.0.1 Given a connected graph Gwi
= (Vwi

, Ewi
) and two tasks τi, τj ∈

Vwi
, paths(τi, τj) terminates and returns all the tasks in the possible paths between τi

and τj, ∅ in case τi = τj, or ⊥ in case there is no path between τi, τj ∈ Vwi
.

Note that the paths function is a breadth first approach with cycle checking to find

nodes in the possible paths in graphs. It outputs all the tasks in the possible paths

between two tasks τi and τj , or returns ⊥ if there is no path between those two tasks.

Nevertheless, for the sake of clarity of presentation, in the remainder of this chapter,

we assume that only well-formed dependency graphs are considered in the proposed

algorithms.

Having a work unit wi, its dependency graph Gwi
, and a way to traverse it, both

the anytime service proposal algorithm and the anytime dynamic QoS reconfiguration

proposed in Chapter 4 can be easily extended to handle the local execution of services’

tasks whose behaviour and input/output qualities are interdependent. Sections 6.2.1

and 6.2.2 detail such extension.

6.2.1 Anytime service proposal formulation for inter-dependent

task sets

Based on the dependency graph Gwi
associated with a work unit wi ∈ S, the new

version of the proposed anytime service proposal formulation algorithm tracks QoS

dependencies and propagates the performed changes in one attribute to all locally

affected attributes. If, by traversing the path of dependencies, the algorithm finds a

task that is already in its list of resolved dependencies, a deadlock is detected and the

service proposal formulation is aborted.

Note that the search for a feasible solution to accommodate the new work unit wi of

inter-dependent tasks uses the same deterministic heuristics for the selection of the

attribute to upgrade (Step 1, detailed in Algorithm 8) or downgrade (Step 2, detailed

in Algorithm 9) and the same quality measures as the previous version of the algorithm

for independent task sets.

Furthermore, to guarantee that a valid solution is available if the algorithm is inter-

rupted at any time, performed changes on dependent attributes are propagated to

120 CHAPTER 6. HANDLING QOS INTER-DEPENDENCIES

Algorithm 8 Anytime service proposal formulation for inter-dependent task sets -

Step 1

Let τ e be the set of previously accepted tasks whose stability period ∆t has expired.

Let τp be the set of all previously accepted tasks whose current QoS cannot be

changed.

Let wi be the newly arrived work unit of service S and Gwi
its graph of dependencies.

Let L be the set of local dependency graphs Gwx
of all work units wx ⊆ τ e ∪ τp ∪ wi.

Each task τi ∈ {τ
e∪ τp∪wi} has associated a set of user’s defined QoS constraints Qi.

Each Qi
kj is a finite set of n quality choices for the jth attribute, expressed in

decreasing preference order, for all k QoS dimensions.

Let σ be the determined set of SLAs, updated at each step of the algorithm.

Step 1 - Maximise the QoS level of each task τa ∈ wij

1: Define SLAwij
by selecting the lowest requested QoS level Qa

kj[n], for all the j

attributes of the k QoS dimensions, for each newly arrived task τa ∈ wi, considering

the QoS dependencies of Gwi

2: Keep the current QoS level for each task τk ∈ τ e

3: Update the current set of SLAs σ ⊲ σ ← σ ∪ SLAwi

4: while feasibility(σ) = TRUE do

5: for each task τa ∈ wi do

6: for each jth attribute of any k QoS dimension in τa with value Qa
kj[m] >

Qa
kj[0] do

7: Upgrade attribute j to the next possible value Qa
kj[m− 1]

8: Traverse Gwi
and change values accordingly

9: Determine the utility increase of this upgrade

10: end for

11: end for

12: Find task τmax whose reward increase is maximum

13: Define SLA′
τmax

for task τmax with the new value Qmax
yx [m − 1] for attribute x

of the QoS dimension y

14: Update the current set of promised SLAs σ ⊲ σ ← σ \ SLAτmax
∪ SLA′

τmax

15: end while

all affected tasks at each iteration of the algorithm by traversing the correspondent

dependency graph. As such, the anytime behaviour and the conformity with the

desirable properties of anytime algorithms discussed in Chapter 4 still hold on this

6.2. LOCAL QOS INTER-DEPENDENCIES 121

Algorithm 9 Anytime service proposal formulation for inter-dependent task sets -

Step 2

Step 2 - Find the local minimal service degradation to accommodate each

τa ∈ wi

16: while feasibility(σ) 6= TRUE do

17: for each work unit wd ⊆ τ e ∪ wi do

18: for each task τi ∈ wd do

19: for each jth attribute of any k QoS dimension in τa with value Qi
kj[m] >

Qi
kj[n] do

20: Downgrade attribute j to the previous possible value Qi
kj [m + 1]

21: Traverse Gwd
∈ L and change values accordingly

22: Determine the utility decrease of this downgrade

23: end for

24: end for

25: end for

26: Find task τmin whose reward decrease is minimum

27: Define SLA′
wmin

for the work unit where task τmin belongs, setting the QoS

values of all affected tasks according with the new value Qmin
yx [m + 1] for attribute

x of the QoS dimension y for task τmin

28: Update the current set of promised SLAs σ ⊲ σ ← σ \ SLAwmin
∪ SLA′

wmin

29: end while

30: return new local set of promised SLAs σ

new version of the algorithm.

6.2.2 Anytime re-upgrade of previously downgraded levels of

service for inter-dependent task sets

Recall that our basic viewpoint is that service stability can be more important for some

users than some momentary maximum quality that does not take into consideration

the services’ QoS reconfiguration rate. Although the framework ensures a fixed quality

level during a dynamically determined period of time ∆t for each accepted service S,

an upgrade of the current quality level should be done according to each user’s stability

preferences.

Possible QoS upgrades of previously downgraded SLAs for inter-dependent task sets

122 CHAPTER 6. HANDLING QOS INTER-DEPENDENCIES

are determined by Algorithm 10, which are then compared against the users’ stability

constraints. The proposed anytime QoS reconfiguration algorithm tries to restore the

initially provided SLAs by selecting, at each iteration, the new configuration that

achieves the greatest reward increase, handling tasks whose execution behaviour and

input/output qualities are inter-dependent.

Algorithm 10 Determine possible QoS upgrades for inter-dependent task sets

Let τ e be the set of previously accepted tasks whose stability period ∆t has expired.

Let τp be the set of all previously accepted tasks whose current QoS cannot be

changed.

Each task τi ∈ τ e ∪ τp has associated a set of user’s defined QoS constraints Qi.

Let Qi
kj[init] be the initially provided and Qi

kj[current] the currently provided level

of service for attribute j of the kth QoS dimension for each task τi ∈ τ e.

Let L be the set of local dependency graphs G⊒〉
of all work units wi ⊆ τ e ∪ τp.

Let σ be the determined set of SLAs, updated at each step of the algorithm.

1: while feasibility(σ) = TRUE do

2: for each work unit wu ∈ τ e do

3: for each task τi ∈ wu do

4: for each jth attribute of any k QoS dimension with value Qi
kj [current] >

Qi
kj[init] do

5: Upgrade attribute j to the next possible value Qi
kj[m− 1]

6: Traverse Gwu
∈ L and change values accordingly

7: Determine the utility increase of this upgrade

8: end for

9: end for

10: end for

11: Find task τmax whose reward increase is maximum

12: Define SLA′
wmax

for the work unit where task τmax belongs, setting the QoS

values of all affected tasks according with the new value Qmax
yx [m− 1] for attribute

x of the QoS dimension y for task τmax

13: Update the current set of promised SLAs σ ⊲ σ ← σ \ SLAwmax
∪ SLA′

wmax

14: end while

15: return new local set of promised SLAs σ

Similarly to the anytime service proposal formulation algorithm, note that the search

for a feasible set of upgraded inter-dependent SLAs uses the same deterministic heuris-

tics for the selection of the QoS attribute to upgrade and the same quality measures as

6.3. DISTRIBUTED QOS INTER-DEPENDENCIES 123

its previous version for independent task sets. As such, the anytime behaviour and the

conformity with the desirable properties of anytime algorithms discussed in Chapter

4 still hold on this new version of the algorithm.

6.3 Distributed QoS inter-dependencies

One of the key ideas of the CooperatES framework is that each coalition member

should be able to take the initiative and to decide when and how to adapt to changes

in the environment. However, whenever such autonomous adaptations have an impact

on the outputted QoS of other coalition members the need of coordination arises: how

to ensure that local, individual, adaptation actions of a node can produce a globally

acceptable solution for the entire distributed service [GC92].

Yet, coordinating autonomous dependent adaptations in an open and dynamic system

is challenging and may require complex communication and synchronisation strategies.

According to [MC94] it borrows from as diverse areas as computer science, organisa-

tion theory, operations research, economics, linguistics, and psychology. This great

diversity makes it very difficult to discuss every potential work that has some remote

relation to coordination.

Nevertheless, researchers have been proposing both centralised and decentralised co-

ordination models to describe the “glue” that connects adaptive dependent computa-

tional activities. A distributed system built using a centralised coordination model is

one where the behaviour of the nodes in the system is controlled either by an active

manager node or by a pre-determined plan followed by the nodes [GK04]. However,

with the increasing size and complexity of open embedded systems the ability to build

self-managed distributed systems using centralised coordination models is reaching its

limits [MMB03], as solutions they produce require too much global knowledge.

As such, researchers are increasingly investigating decentralised coordination models to

establish and maintain system properties [DC99, GAKT03, DWH03, BDK+03, DH08].

A system built using a decentralised coordination model is a self-organising system

whose system-wide behaviour is established and maintained solely by the interactions

of its nodes that execute using only a partial view of the system [GK04]. How

these nodes were to interact in order to solve the problem (and not what they were

actually doing) became the focus of decentralised coordination research. Without

a central coordination entity, the collective adaptation behaviour must emerge from

local interactions among nodes. This is typically accomplished through the exchange

124 CHAPTER 6. HANDLING QOS INTER-DEPENDENCIES

of multiple messages to ensure that all involved nodes make the same decision about

whether and how to adapt.

Bridges et al. [BCHS01] propose a framework based on Cactus [TUoA] which supports

adaptations that span multiple components and multiple nodes in a distributed system.

The architecture supports coordinated adaptations across layers using a fuzzy logic

based controller module and coordination across hosts using a prototype protocol

designed for communication oriented services. However, the authors do not specifically

propose a method to obtain a globally coordinated solution.

Ren et al. [RST06] present a real-time reconfigurable coordination model (RT-RCC)

that decomposes dynamic real-time information systems based on the principle of sep-

aration of concerns, namely, functional actors which are responsible for accomplishing

tasks, and non-functional coordinators which are responsible for coordination among

the functional actors. High level language abstractions and a framework for actors

and coordinators are provided to facilitate programming with the RT-RCC model.

A similar approach is followed by Kwiat et al. [KR06] who propose a coordination

model for improving software system attack-tolerance and survivability in open hostile

environments. The coordination model is based on three active entities: actors, roles,

and coordinators. Actors abstract the system’s functionalities, while roles and coor-

dinators statically encapsulate coordination constraints and dynamically propagate

those constraints among themselves and onto the actors. Both the coordination

constraints and coordination activities are distributed among the coordinators and

roles, shielding the system from single points of failure.

However, none of these works proposes support for coordinating inter-dependent au-

tonomous QoS adaptations in cooperative systems, which is the focus of our work.

Furthermore, with some decentralised coordination models it becomes difficult to

predict the exact behaviour of the system taken as a whole because of the large number

of possible non-deterministic ways in which the system can behave [Ser06].

Whenever real-time decision making is in order, a timely answer to events suggests

that after some finite and bounded time we would expect the global adaptation process

to converge to a consistent solution. Furthermore, optimal decentralised control is

known to be computationally intractable [DWH03], although near-optimal systems

can be developed for certain classes of applications [JMB04, DC07, DH08].

Our goal is then to achieve a fast convergence to a global solution through a regulated

decentralised coordination without overflowing nodes with messages. The next section

details the proposed one-step decentralised coordination model based on an effective

6.3. DISTRIBUTED QOS INTER-DEPENDENCIES 125

feedback mechanism to reduce the complexity of the needed interactions among nodes

until a collective adaptation behaviour is determined.

6.3.1 A one-step decentralised coordination model

The core idea behind the proposed decentralised coordination model is to support

distributed systems composed of autonomous individual nodes working without any

central control but still producing the desired function as a whole.

Let W = {w1, . . . , wn} be the finite set of work units of a service S. Then, the

coalition formation phase defines a connected graph GW = (VW , EW) for dependencies

among work units wi ∈ W , on top of the service’s distribution graph, where each

vertex vi ∈ VW represents a work unit wi and a directed edge ei ∈ EW from wj to wk

indicates that wk is functionally dependent on wj. Within GW = (VW , EW), we call

cut vertex to a node ni ∈ VW , if the removal of that node divides GW in two separate

connected graphs.

We assume that each work unit wi ∈W is being executed at its current QoS level Qi
val

at a node ni, from a set of predefined QoS levels {Q0, . . . , Qn}, ranging from the user’s

desired QoS level Ldesired to the maximum tolerable service degradation, specified by

the minimum acceptable QoS level Lminimum. This relation is represented by a triple

(ni, wi, Q
i
val). Furthermore, for a given work unit wi ∈ W , each node ni knows the

set Iwi
= {(nj, wj, Q

j
val), . . . , (nk, wk, Q

k
val)}, describing the quality of all the inputs

related to work unit wi coming from its adjacent nodes in GW .

Upon such system model, we propose to model a self-managed coalition as a group

of nodes that respond to environmental inter-dependent changes according to a dis-

tributed coordination protocol defined by the following phases:

1. Coordination request. Whenever Qi
val′ , the needed downgrade or desired

upgrade of the currently outputted QoS Qi
val for a work unit wi ∈ S, has an

impact on the currently supplied QoS level of other work units wj ∈ S being

executed at other coalition members, a coordination request is sent to the affected

partners.

2. Local optimisation. Affected partners become aware of the new output values

Qi
val′ of wi and recompute their local set of SLAs in order to formulate the

corresponding feedback on the requested adaptation action. We assume that

coalition partners are willing to collaborate in order to achieve a global coalition’s

consistency, even if this might reduce the utility of their local optimisations.

126 CHAPTER 6. HANDLING QOS INTER-DEPENDENCIES

However, a node only agrees with the requested adaptive action if and only if its

new local set of SLAs is feasible.

3. Adaptive action. If the requested adaptive action is accepted by all the affected

nodes in the coalition, the new local set of SLAs is imposed at each of those

coalition members. Otherwise, the currently global QoS level of service S remains

unchanged.

As such, requests for coordination may dynamically arrive at any time, at any node

nj . We consider the existence of feasible QoS regions [SdML99]. A region of output

quality [q(o)1, q(o)2] is defined as the QoS level that can be provided by a work unit

when provided with sufficient input quality and resources. Within a QoS region, it

may be possible to keep the current output quality by compensating for a decrease in

input quality by an increase in the amount of used resources or vice versa.

As such, if a node nj , despite the change in current quality of some or all of its inputs, is

able to continue to produce its current QoS level there is no need to further propagate

the required coordination request along the dependency graph GW . Thus, a cut-vertex

is a key node in our approach.

Consider that a node nk proposes an upgrade to Q′
val for a work unit wk ∈ S. It

may happen that some other nodes, precedent in the path until the next cut-vertex

nc, may be able to upgrade to Q′
val and others may not. Whenever the cut-vertex nc

receives the upgrade request and its new set of inputs, if it is unable to upgrade to

Q′
val then all the effort of previous nodes to upgrade is unnecessary and the global

update fails. Otherwise, the upgrade coordination request continues along the graph,

until the end-user node nu is reached.

In the case of a downgrade to Q′
val initiated by node nk, it may happen that some other

nodes in the path to the next cut-vertex nc may be able to continue to output their

current QoS level despite the downgraded input and others may not. Again, if the

cut-vertex is unable to keep outputting its current QoS level then all the precedent

nodes which are compensating their downgraded inputs with an increased resource

usage can downgrade to Q′
val since their effort is useless.

In these and all other cases, the formulation of the corresponding positive or negative

feedback, at the local optimisation phase, must depend on the feasibility of the re-

quested coordination action as a function of the quality of the node’s new inputs Iwi

for the locally executed work unit wi. Such feasibility is determined by the anytime

local QoS optimisation algorithm detailed in Algorithm 11 which aims to minimise the

impact of the requested changes on the currently provided QoS level of other services.

6.3. DISTRIBUTED QOS INTER-DEPENDENCIES 127

Algorithm 11 Feedback formulation

Let τ e be the set of previously accepted tasks whose stability period ∆t has expired.

Let τp be the set of all previously accepted tasks whose current QoS cannot be

changed.

Each task τi ∈ τ e ∪ τp has associated a set of user’s defined QoS constraints Qi.

Let Qkj[i] be the currently provided level of service for attribute j of the kth QoS

dimension for each task τi ∈ τ e

Let L be the set of local dependency graphs Gwi
of all work units wi ∈ τ e ∪ τp

Let σ be the determined set of SLAs, updated at each step of the algorithm

1: Define SLA′
wi, the requested SLA for the work unit wi, as a function on the new

input values Iwi
and the required output level Qval′

2: Update the current set of SLAs σ ⊲ σ ← σ \ SLAwi
∪ SLA′

wi

3: while feasibility(σ) 6= TRUE do

4: if there is no task τi being served at Qkj[m] > Qkj[n], for any j attribute of

any k QoS dimension then

5: return FALSE

6: end if

7: for each work unit wd ⊆ τ e \ wi do

8: for each task τi ∈ wd do

9: for each jth attribute of any k QoS dimension in τa with value Qkj[m] >

Qkj[n] do

10: Downgrade attribute j to the previous possible value Qkj [m + 1]

11: Traverse Gwd
∈ L and change values accordingly

12: Determine the utility decrease of this downgrade

13: end for

14: end for

15: end for

16: Find task τmin whose reward decrease is minimum

17: Define SLA′
wmin

for the work unit where task τmin belongs, setting the QoS

values of all affected tasks according with the new value Qyx[m + 1] for attribute

x of the QoS dimension y for task τmin

18: Update the current set of promised SLAs σ ⊲ σ ← σ \ SLAwmin
∪ SLA′

wmin

19: end while

20: return TRUE

128 CHAPTER 6. HANDLING QOS INTER-DEPENDENCIES

Note that the node’s local reward associated with the new local set of SLAs can be

lower than the node’s local reward prior to the coordination request. Recall that

we make the assumption that, in cooperative environments, coalition partners are

willing to collaborate in order to achieve a global coalition consistency, even if this

coordination might reduce the global utility of their local QoS optimisations.

If all the nodes affected by the requested adaptation sent by node ni agree with its new

service solution, the adaptive action phase takes place. A “commit” message is sent

by node ni to its direct neighbours in the dependency graph, which then propagate

the message to all the involved nodes in the global adaptation process.

Decentralised control is then a self-organising emergent property of the system. The

proposed coordination model is based on these two basic modes of interaction: positive

and negative feedback. Negative feedback loops occur when a change in one coalition

member triggers an opposing response that counteracts that change at other depen-

dent node. On the other hand, positive feedback loops promote global adaptations.

The snowballing effect of positive feedback takes an initial change in one node and

reinforces that change in the same direction at all the affected partners. By exchanging

feedback on the performed self-adaptations, nodes converge towards a global solution,

overcoming the lack of a central coordination and global knowledge.

Note that only one negotiation round is required between any pair of dependent nodes.

As such, the uncertain outcome of iterative decentralised control models whose effect

may not be observable until some unknowable time in the future is not present in the

proposed regulated coordination model.

Also note that the normal operation of nodes continues in parallel with the change

acknowledge and local optimisation phases. Every time a node recomputes its set of

local SLAs, promised resources are pre-reserved until the global negotiation’s outcome

is known (or a timeout expires). As such, the currently provided QoS levels only

actually changes at the adaptive action phase, as a result of a successful global

coordination.

Due to the environment’s dynamism, more than one coalition member can start an

adaptation process that spans multiple nodes at a given time. Such request can either

be a downgrade or an upgrade of its current SLA for a work unit wi of service S.

Even with multiple simultaneous negotiations for the same service S, only one of

those will result in a successful adaptation at several nodes since, due to local resource

limitations, only the minimum globally requested SLA will be accepted by all the

negotiation participants. In order to manage these simultaneous negotiations, every

negotiation has an unique identifier, generated by the requesting node.

6.3. DISTRIBUTED QOS INTER-DEPENDENCIES 129

6.3.2 Properties of the proposed decentralised coordination

model

In this section we provide a global view of what is involved for the general case and

analyse some of the properties of the proposed decentralised coordination model. We

start with some auxiliary definitions and proofs.

Given a node ni, a work unit wi , the set of local SLAs σ = {SLAw0
, . . . , SLAwp

} for

the p locally executed work units, Qi
val′ as the new requested QoS level for wi, and

Iwi
= {(nj, wj, Q

j
val), . . . , (nk, wk, Q

k
val)} as the set of QoS levels given as input to wi,

then the value of test feasibility(ni, wi, Q
i
val′ , Iwi

) is the return value of Algorithm 11

applied to node ni.

Lemma 6.3.2.1 (Correctness of the feasibility test) Function test feasibility al-

ways terminates and returns true if the new required set of SLAs for outputting the

QoS level Qi
val′ at work unit wi is feasible or false otherwise.

Proof 6.3.2.1 Termination comes from the finite number of tasks τi being executed

in node ni and from the finite number of the k QoS dimensions and j attributes being

tested. The number of QoS attributes being manipulated decreases whenever a task

τi is configured to be served at its lowest admissible QoS level Qkj[n], thus leading to

termination.

Correctness comes from the heuristic selection of the QoS attribute to downgrade at

each iteration of the algorithm.

Thus, after a finite number of steps the algorithm either finds a new set of feasible

SLAs that complies with the coordination request or returns false if, even when all

tasks are configured to be served at their lowest requested QoS level, the requested SLA

for a work unit wi cannot be supplied.

Given a connected graph GW = (VW , EW), such that the work unit wi ∈ W is being

processed by node ni ∈ VW , and Iwi
= {(nj, wj, Q

j
val), . . . , (nk, wk, Q

k
val)} as the current

set of QoS inputs of wi, and given T as the set of changed QoS inputs in response to

the coordination request, the function update(I, T) updates I with the elements from

T :

130 CHAPTER 6. HANDLING QOS INTER-DEPENDENCIES

update(∅, T) = ∅

update(I, T) = {(ni, wi, Q
i
val′)} ∪ update(I \ (ni, wi, Q

i
val), T), if (ni, wi, Q

i
val) ∈ I

and (ni, wi, Q
i
val′) ∈ T

update(I, T) = {(ni, wi, Q
i
val)} ∪ update(I \ (ni, wi, Q

i
val), T), if (ni, wi, Q

i
val) ∈ I

and (ni, wi, Q
i
val′) /∈ T

Proposition 6.3.2.1 Given two sets I and T , both with elements of the form (ni, wi, Q
i
val),

update(I,T) terminates and returns a new set with the elements of I such that whenever

(ni, wi, Q
i
current) ∈ I and (ni, wi, Q

i
new) ∈ T the pair stored in the returned set is

(ni, wi, Q
i
new).

Given a node ni and a work unit wi, we define the function get input qos(ni, wi) as

returning the set of elements (nj , wj, Q
j
val), where each of these elements represents a

work unit wj being executed at node nj with an output QoS level of Qj
val used as an

input of the work unit wi at node ni.

6.3.2.1 Coordinating upgrades

Algorithm 12 Coordinating upgrades
temp := ni

U := ∅

for each nc ∈ CW ∪ {nu} do

if upgrade(temp, nc,GW , Qc
val′) = (TRUE, T) then

temp := nc

U = U ∪ T

else

U = ∅

return

end if

end for

for each (ni, Q
i
val′) ∈ U do

Set the new QoS level Qi
val′ for work unit wi ∈ S

end for

Given the connected graph GW = (VW , EW) with a set of cut-vertices CW and an end-

user node nu receiving the final outcome of the coalition’s processing of service S,

6.3. DISTRIBUTED QOS INTER-DEPENDENCIES 131

whenever a node ni ∈ VW is able to upgrade the output of its work unit wi ∈ S to

a QoS level Qi
val′ , the other nodes in the coalition respond to this upgrade request

according to Algorithm 12.

Given the connected graph GW = (VW , EW) with a set of cut-vertices CW and the sub-

graph that connects node ni to next cut-vertex nc ∈ CW , the function upgrade(ni, nc,GW , Qi
val′)

is defined by:

function upgrade(ni, nc,GW , Qi
val′)

T := {(ni, wi, Q
′
val)}

for each nj ∈ paths(ni, nc) \ {ni} do

S := update(get input qos(ni, wi), T)

if test feasibility(nj , wj, Q
′
val, S) = TRUE then

T := T ∪ {(nj, Q
′
val)}

end if

end for

S := update(get input qos(nc, wc), T)

if test feasibility(nc, wc, Q
′
val, S) = TRUE then

return (TRUE, T)

end if

return (FALSE, ∅)

end function

Lemma 6.3.2.2 Given the connected graph G = (V, E) such that ni ∈ V and nj ∈ V

and a QoS level value Q′
val, the call to upgrade(ni, nj,G, Q

′
val) terminates and returns

true if nj is able to output a new QoS level Q′
val or false otherwise.

Proof 6.3.2.2 Since V is a finite set and since by Proposition 6.2.0.1 paths termi-

nates and by Proposition 6.3.2.1 update terminates, the number of iterations is finite

due to the finite number of elements in the path. Thus, upgrade terminates.

For any element in the path between ni and nj, the new required QoS level Q′
val is

tested and, by Lemma 6.3.2.1, the upgrade is possible if and only if the new local set of

SLAs is feasible. After considering all nodes in the path, the upgrade function returns

true and the set of nodes able to upgrade, if node nj is able to upgrade to Q′
val, or false

otherwise. Thus, the result follows by induction on the length of the set of elements in

the paths between ni and nj.

Theorem 6.3.2.1 (Correctness of Upgrade) Given the connected graph G = (V, E)

representing the QoS inter-dependencies of a serviceS being executed by a coalition of

132 CHAPTER 6. HANDLING QOS INTER-DEPENDENCIES

nodes, such that nu ∈ V is the end-user node receiving the service at a QoS level Qval,

whenever a node ni announces an upgrade to Q′
val, Algorithm 12 changes the set of

SLAs at nodes in G such that nd receives S upgraded to the QoS level Q′
val or does not

change the set of local SLAs at any node and nu continues to receive S at its current

QoS level Qval.

Proof 6.3.2.3 Termination comes from the finite number of elements in C ∪ nu and

from Lemma 6.3.2.2.

Algorithm 12 applies the function upgrade iteratively to all nodes in the subgraph

starting with ni and finishing in nu. The base case is when there are no cut-vertices

and there is only one call to upgrade. It is trivial to see that the result of upgrade will

consist in true and a set of nodes that will upgrade for the new QoS level Q′
val or false

and an empty set and, by Lemma 6.3.2.2, it is correct. The remaining cases happen

when there are one or more cut-vertices between ni and nu. Here, upgrade will be

applied to all subgraphs starting in ni and finishing in nd. Each of these subgraphs are

sequentially tested and only if all of them can be upgraded the service S will be delivered

to node nu at the new upgraded QoS level Q′
val. The result follows by induction in the

number of cut-vertices.

6.3.2.2 Coordinating downgrades

Given the connected graph GW = (VW , EW) with a set of cut-vertices CW and an end-

user node nu receiving the final outcome of the coalition’s processing of service S,

whenever a node ni ∈ VW needs to downgrade the quality of the output of a work unit

wi ∈ S from its current QoS level of Qi
val to a downgraded QoS level Qi

val′ , the other

nodes in the coalition respond to this downgrade request according to Algorithm 13.

Algorithm 13 Coordinating downgrades
1: temp := ni

2: for each nc ∈ CW ∪ {nu} do

3: if downgrade(temp, nc,GW , Qc
val′) = FALSE then

4: temp := nc

5: else

6: Downgrade was compensated and nc continues to output Qc
val

7: break

8: end if

9: end for

6.3. DISTRIBUTED QOS INTER-DEPENDENCIES 133

Given the connected graph GW = (VW , EW) with a set of cut-vertices CW and the sub-

graph that connects node ni to next cut-vertex nc ∈ CW , the function downgrade(ni, nc,GW , Qc
val′)

is defined by:

function downgrade((ni, nc,GW , Qc
val′))

T := {(ni, Q
i
val′)}

for each nj ∈ paths(ni, nc) \ {ni} do

D := update(get input qos(nj , wj), T)

if test feasibility(nj , wj, Q
j
val, D) = TRUE then

T := T ∪ {(nj, Qval)}

else

set qos level(nj , wj, Q
j
val′)

end if

end for

D := update(get input qos(nc, wc), T)

if test feasibility(nc, wc, Q
c
val, D) = TRUE then

return TRUE

else

for each nj ∈ paths(ni, nc) \ {ni} do

set qos level(nj , wj, Q
j
val′)

end for

return FALSE

end if

end function

Lemma 6.3.2.3 Given the connected graph GW = (VW , EW) such that ni ∈ VW and

nj ∈ VW and nj currently outputs a QoS level Qj
val, the call to downgrade(ni, nj,GW , Qi

val′)

terminates and returns true if nj is able to keep its current output level Qj
val or false

otherwise.

Proof 6.3.2.4 Since VW is a finite set and since, by Proposition 6.2.0.1, paths termi-

nates and by Proposition 6.3.2.1 update terminates, the number of iterations is finite

due to the finite number of elements in the path. Thus, downgrade terminates.

For any element nk in the possible paths between ni and nj, it is tested if that node,

given its new set of inputs Iwk
, can continue to output its current QoS level Qk

val.

After considering all k nodes in the possible paths, the downgrade function returns

true, if node nj is able to continue to output Qj
val, or sets all the k previous nodes in

the possible paths between ni and nj to the downgraded QoS level Qk
val′ and returns

134 CHAPTER 6. HANDLING QOS INTER-DEPENDENCIES

false. Again the result follows by induction on the length of the set of elements in the

paths between ni and nj.

Theorem 6.3.2.2 (Correctness of Downgrade) Given the connected graph GW =

(VW , EW) representing the QoS inter-dependencies of a service S being executed by a

coalition of nodes such that nu ∈ VW is the end-user node receiving S at the QoS level

Qu
val, whenever a node ni is forced to downgrade the quality of the output of a work

unit wi ∈ S from its current QoS level of Qi
val to a degraded QoS level Qi

val′ , Algorithm

13 changes the set of SLAs at nodes in GW such that nu continues to receive S at its

current QoS level Qu
val or sets all nodes to a degraded QoS level of Qi

val′ .

Proof 6.3.2.5 Termination comes from the finite number of elements in CW ∪nu and

from Lemma 6.3.2.3.

The correctness trivially follows by the correctness of Lemma 6.3.2.3 and by induction

on the number of elements in CW ∪ {nu}.

6.3.3 Number of exchanged messages

In the previous sections we presented the formalisation of the two main coordination

operations, namely upgrades and downgrades of the currently supplied QoS level Qval

for a service S, as a reaction to a change in the quality of inter-dependent inputs sent

by adjacent nodes. In this section we analyse the number of exchanged messages in

such coordination operations.

We start with some definitions.

Definition 6.3.3.1 Given a directed graph G = (V, E), the in-degree of a node ni ∈ V

is the number of edges that have ni as their destination.

Definition 6.3.3.2 Given a directed graph G = (V, E), the out-degree of a node ni ∈ V

is the number of edges that have ni as their starting node.

Whenever an upgrade to a new QoS level Q′
val is requested by a node ni, if the next

cut-vertex nc in the graph G on QoS inter-dependencies cannot supply the requested

upgrade, then all the precedent nodes between ni and nc are kept in their currently

supplied QoS level Qval. Thus, the number of needed messages is given by the number

of edges in the paths between the ni and nc where it was determined that the requested

6.4. SUMMARY 135

upgrade was not possible. On the other hand, if the upgrade is possible, the number

of needed messages is twice the number of edges between ni and the end-user node nu.

This is because an upgrade is only possible after all the involved nodes are queried

and the conjunction of their efforts results in a upgraded QoS level being delivered to

nu.

Whenever, due to resource limitations, a node ni announces a downgrade to Q′
val, the

next nodes nodes in the sub-graph from ni to the next cut-vertex nc try to compensate

the downgraded input quality in order to keep outputting the previous QoS level Qval.

When the cut-vertex nc is reached two scenarios may occur. In the first one, the

cut-vertex cannot compensate the degradation, although some of its precedent nodes

may. In this case, all the precedent nodes are informed that they can downgrade their

current QoS level to Q′
val since their compensation effort is useless. Note that, in

the worst case, this can be propagated until the final node nu is reached and all the

coalition members will downgrade their current QoS level. As such, in the worst case,

a message is sent from each node to its adjacent ones and a reply is received, which

demands a total number of messages of two times the number of edges between ni and

nu. On the other hand, in the second possible scenario, some cut-vertex nk may be

able to compensate the downgraded input quality and continue to produce the current

QoS level Qval. In this case, the coordination process is restricted to the subgraph

between ni and nk. As such, coordination messages are exchanged in this subgraph

only.

Thus, in the worst case, the maximum number of exchanged messages in a coordination

operation is given by Equation 6.1.

∑

n∈V

(out degree(n) + in degree(n)) (6.1)

6.4 Summary

This chapter addressed the challenging problem of providing support for runtime inter-

dependent QoS adaptations that either span multiple local tasks and/or multiple hosts

in a coalition. QoS inter-dependency relations specify that a task offers a certain level

of QoS under the condition that some specified QoS will be offered by the environment

or by other tasks. As such, the system has to adapt the QoS level of individual services

according both to intra and inter-service QoS dependencies when searching for the best

overall service utility.

136 CHAPTER 6. HANDLING QOS INTER-DEPENDENCIES

Solving this dependency problem among local QoS dimensions is equivalent to finding

an assignment of values to all QoS attributes such that all dependency constraints

are locally satisfied. This chapter proposed anytime QoS optimisation and adaptation

algorithms that track QoS dependencies and propagate the performed changes to all

the affected attributes at each iteration, ensuring that a valid solution is available at

any time.

Furthermore, whenever the effects of these autonomous individual adaptations span

multiple nodes in a coalition, coordination is crucial to maintain the correctness of

a service’s execution and a desirable system’s performance. As a result, each node,

although autonomous, is influenced by, and can influence, the behaviour of other nodes

in a coalition.

This chapter proposed an one-step decentralised coordination model based on an

effective feedback mechanism to reduce the complexity of the needed interactions

among nodes until a collective adaptation behaviour is determined. Positive feedback is

used to reinforce the selection of the new desired global service solution, while negative

feedback discourages nodes to act in a greedy fashion as this adversely impacts on the

provided service levels at neighbouring nodes.

Chapter 7

Scheduling inter-dependent task

sets

Most of the reservation-based scheduling algorithms proposed so far in

the literature only support independent task sets. Tasks are not allowed

to block or suspend their execution, otherwise certain properties, such as

isolation among tasks, cannot be guaranteed. This is a major limitation for

their implementation in several real-time scenarios where tasks communi-

cate through shared memory regions, access mutually exclusive resources,

or exhibit precedence constraints.

This chapter proposes the Capacity Exchange Protocol (CXP), a new

strategy to schedule tasks that share resources and exhibit precedence

constraints without any previous precise information on critical sections

and computation times. The concept of bandwidth inheritance is combined

with the greedy capacity sharing and stealing policy of CSS to efficiently

exchange bandwidth among tasks, minimising the degree of deviation from

the ideal system’s behaviour caused by inter-application blocking.

7.1 Introduction

In Chapter 5 we assumed that tasks were independent, i.e. with no relationships

between them. However, in many real-time systems, inter-task dependencies may

appear: some tasks have to respect a processing order, data is exchanged among

tasks, or they need to use some resources in exclusive mode.

137

138 CHAPTER 7. SCHEDULING INTER-DEPENDENT TASK SETS

From a modelling point of view, there are two kinds of typical dependencies that can

be specified on real-time tasks: (i) precedence constraints, whenever a task must wait

the completion of another task before beginning its own execution; and (ii) mutual

exclusion constraints, to protect access to shared resources such as data structures,

memory areas, external devices, registers, etc.

Until now, a great amount of work has been addressed to minimise the adverse effects of

blocking when considering shared resources and precedence constraints among tasks.

Resource sharing protocols such as the Priority Ceiling Protocol [SRL90], Dynamic

Priority Ceiling [CL90], and Stack Resource Policy [Bak90] have been proposed to

provide guarantees to hard real-time tasks accessing mutually exclusive resources.

Solutions based on these protocols were already proposed [Jef92, CS01, CBT05, Bar06]

but they all require a prior knowledge of the maximum resource usage and, as such,

cannot be directly applied to open real-time systems.

The effectiveness and reduced complexity of CSS, proposed in Chapter 5, in managing

unused reserved capacities without any previous complete knowledge about the tasks’

runtime behaviour makes it appropriate to be used as the basis of a more powerful

scheduler able to handle dependent tasks sets which share access to some of the

system’s resources and exhibit precedence constraints.

The purpose of this chapter is to address both problems, proposing the Capacity Ex-

change Protocol (CXP) which integrates the concept of bandwidth inheritance [LLA01]

with the greedy capacity sharing and stealing policy of CSS. Rather than trying to

account borrowed capacities and exchanging them later in the exact same amount,

CXP focus on greedily exchanging extra capacities as early, and not necessarily as

fairly, as possible. The achieved results suggest that the followed approach effectively

minimises the impact of bandwidth inheritance on blocked tasks, outperforming other

available solutions.

This work is partially presented in [NP07b, NP08c].

7.2 System model

This section extends the system model used in Chapter 5, where independent task sets

were assumed.

A service can be composed by a set of dependent real-time and non-real-time tasks

which can generate a virtually infinite sequence of jobs. The jth job of task τi arrives

at time ai,j, is released to the ready queue at time ri,j, and starts to be executed at

7.2. SYSTEM MODEL 139

time si,j with deadline di,j = ai,j + Ti, with Ti being the period of τi. The arrival time

of a particular job is only revealed at runtime and the exact execution requirements

ei,j, as well as which resources will be accessed and by how long they will be held, can

only be determined by actually executing the job to completion until time fi,j. These

times are characterised by the relations ai,j ≤ ri,j ≤ si,j ≤ fi,j.

Tasks may simultaneously need exclusive access to one or more of the system’s re-

sources R, during part or all of their executions. If task τi is using resource Ri, it

locks that resource. Since no other task can access Ri until it is released by τi, if τj

tries to access Ri it will be blocked by τi. Blocking can also be indirect (or transitive)

if although two tasks do not share any resource, one of them may still be indirectly

blocked by the other through a third task.

Tasks may also exhibit precedence constraints among them. A task τi is said to

precede another task τk if τk cannot start until τi is finished. Such precedence relation

is formalised as τi ≺ τk and guaranteed if fi,j ≤ sk,j.

Precedence constraints are defined in the service’s description at admission time by

a directed acyclic graph G, where each node represents a task and each directed arc

represents a precedence constraint τi ≺ τk between two tasks τi and τk. Given a partial

order ≺ on the tasks, the release times and deadlines are said to be consistent with

the partial order if τi ≺ τk ⇒ ri,j ≤ rk,j and di,j < dk,j.

Each accepted real-time task τi is associated to a CSS server Si characterised by a pair

(Qi, Ti), where Qi is the server’s maximum reserved capacity and Ti its period. Recall

that these values are based on average estimations for soft real-time tasks.

The schedulability of hard real-time tasks can be guaranteed as long as it is possible

to perform an accurate analysis and bound the execution times of hard tasks, their

minimum inter-arrival times, and the duration of the accessed critical sections and

maximum blocking time, independently of the behaviour of other tasks in the system.

Please refer to Section 7.6 for a detailed analysis.

At any given time, it is selected for execution the server with the earliest deadline

and pending work to do, based on the EDF priority assignment. When no server is

selected, the processor is idle or it is executing non-real time tasks.

140 CHAPTER 7. SCHEDULING INTER-DEPENDENT TASK SETS

7.3 Sharing resources in open systems

As discussed in Chapter 5, CSS can effectively reduce the mean tardiness of periodic

soft real-time tasks through an efficient management of unused reserved capacities

under the assumption that tasks do not share any of the system’s resources. In fact,

if classic mutual exclusion semaphores are used with CSS, a particular problem arises,

usually referred as priority inversion [SRL90]. If a higher priority task is blocked on a

semaphore by a lower priority task and another medium priority arrives, the latter can

preempt the lower priority task causing an unbounded blocking delay to the higher

priority task.

Resource sharing among tasks of open real-time systems started to be addressed in

[LLA01]. The proposed Bandwidth Inheritance (BWI) protocol extends the CBS

scheduler to work in the presence of shared resources, adopting the Priority Inheritance

Protocol (PIP) [SRL90] to handle tasks’ blocking. Although the PIP was initially

thought in the context of fixed priority scheduling, it has been shown that it can be

applied to dynamic priority scheduling, holding its basic properties: it limits the worst-

case blocking that must be endured by a job j to the duration of at most min(n, m)

critical sections where n is the number of jobs with lower priority than j and m the

number of different semaphores used by j.

While BWI allows a shared access to the system’s resources without requiring any

prior knowledge about the tasks’ structure and temporal behaviour it also guarantees

that tasks that do not access shared resources are not affected by the behaviour of

other tasks.

However, its main drawback is its unfairness in bandwidth distribution. A blocking

task can use most (or all) of the reserved capacity of one or more blocked tasks, without

compensating the tasks it blocked. Blocked tasks may then lose deadlines that could

otherwise be met.

At the same time, servers keep postponing their deadlines and recharging their ca-

pacities on every capacity exhaustion, potentially severely delaying blocked tasks with

earlier deadlines which will finish later than tasks with longer deadlines. It is known

that allowing a task to use resources allocated to the next job of the same task may

cause future jobs of that task to miss their deadlines by larger amounts [NP07a, LB05].

This violation of the original capacity distribution can have a huge negative impact in

the overall system’s performance.

Figure 7.1 illustrates these problems with a simple example. Three servers S1 = (2, 5),

S2 = (1, 3), and S3 = (1, 4) serve three tasks with execution times equal to their

7.3. SHARING RESOURCES IN OPEN SYSTEMS 141

respective servers’ capacity. Tasks τ1 and τ2 share access to resource R for the entire

duration of their execution times, while τ3 is independent from the other two.

Figure 7.1: BWI’s drawbacks

Note how an early arrival of the second job of task τ1 at time t = 4 allows τ1 to

consume 3 units of reserved bandwidth in the interval [0, 5], more than its initial

reservation. The nonexistence of a compensation mechanism and the automatically

deadline update are responsible for the deadline miss of the second job of task τ2.

To address the lack of a compensation mechanism, BWE [WLP02] and CFA [SLS04]

try to fairly compensate blocked servers in exactly the same amount of capacity that

was consumed by a blocking task while executing in a blocked server. To achieve this,

BWE maintains a global n ∗ n matrix (n is the number of servers in the system) in

order to record the amount of capacity that should be exchanged between servers, a

capacity list at each server to keep track of available budgets, and dynamically manages

resource groups1 at each blocking and releasing of a shared resource. CFA requires

each server to manage two task lists with different priorities and a counter that keeps

track of the amount of borrowed capacity from a higher priority server, converting

the inheritor into a debtor. Contracted debts are payed by blocking servers, until the

blocked servers’ counters are successively decremented to zero.

The increased computational complexity of these attempts to fairly compensate bor-

rowed capacities and the fact that CSS tends to fairly distribute residual capacities

in the long run [NP07a], lead us to propose a simple and efficient capacity exchange

1Groups of tasks that access a particular resource R

142 CHAPTER 7. SCHEDULING INTER-DEPENDENT TASK SETS

protocol that merges the benefits of a smart greedy capacity reclaiming policy with

the concepts of bandwidth inheritance and hard reservations. Adding to the lower

complexity of our approach, taking advantage of all of the available capacity instead

of only exchanging capacities within the same resource group leads to a better system’s

performance in dynamic open real-time systems.

7.4 The Capacity Exchange Protocol (CXP)

The Capacity Exchange Protocol (CXP) merges the benefits of the capacity sharing

and stealing approach of CSS with the concept of bandwidth inheritance to allow a

task τi to be executed on more than its dedicated server Si, efficiently exchanging ca-

pacities among servers and reducing the undesirable effects caused by inter-application

blocking.

CXP adds to a CSS server a list of served tasks ordered by the tasks’ deadlines.

Initially, each server has only its dedicated task in the task list and, as long as no

task is blocked, servers behave as in the original CSS scheduler. With blocking, the

following rules are introduced:

• Rule E: When a high priority task τi is blocked by a lower priority task τj when

accessing the shared resource R, τj is inherited by server Si. The execution time

of τj is now accounted to the currently pointed server by Si. If task τj has not

yet released the shared resource R when Si exhausts all the capacity it can use,

τj continues to be executed by the earliest deadline server with available capacity

that needs to access R, until τj releases R.

• Rule F: If a blocking task τj is inherited by a blocked server Si, delaying the

execution of its dedicated task τi, then τi is also added to Sj ’s task list. When

task τi is unblocked it is executed by the earliest deadline server which has τi in

its task list until it is finished or the server exhausts all the capacity it can use

(whatever comes first).

• Rule G: If at time t, no active server with pending jobs can continue to execute

through one of the rules B, C, or D, and there is at least one active server Sr with

residual capacity greater than zero, it is possible to use those available residual

capacities with deadlines greater than the one assigned to the current job jp,k

of the earliest deadline server Sp with pending work to execute jp,k through

bandwidth inheritance.

7.4. THE CAPACITY EXCHANGE PROTOCOL (CXP) 143

Rule E describes the integration of the bandwidth inheritance mechanism in the

dynamic capacity accounting of CSS. The currently executing server always consumes

the pointed capacity, either its own or another available valid capacity in the system.

Rule F proposes to exchange reserved capacities among servers due to blocking without

the goal of a fair compensation, reducing the complexity and overhead of CXP. It allows

a blocked task τi that has been delayed in its execution to be executed by the earliest

deadline server with available capacity which has τi in its task list. Note that, with

bandwidth inheritance, this server may now be different from Si.

In general, the hard reservation approach may cause the loss of more deadlines since

once a server’s capacity is depleted, capacity recharging is suspended until the server’s

next activation. To minimise this and take advantage of a more constant rate in tasks’

execution, Rule G allows the use of bandwidth inheritance to execute unfinished tasks,

including those from servers that do not directly or indirectly share any resource with

the selected server, if at a particular time no active server in the system is able to

reclaim new residual capacities or steal inactive non-isolated capacities to continue

executing its pending work after a capacity exhaustion.

Since the queue of active servers is ordered by deadlines, CXP easily keeps track of

the earliest deadline server with pending work and no capacity left Sp, as well as the

earliest deadline server with available residual capacity Sr, when traversing the queue

to select the next running server. If the end of the active queue is reached without

finding a server with pending work and available capacity, server Sr is selected as the

running server and inherits the first task of Sp’ list. Sr executes the task, consuming

its own residual capacity. Since a server always starts to consume the earliest residual

capacity available, no modification to the capacity accounting mechanism is needed to

correctly account for the consumed capacity.

Note that Rules A and B of the original CSS scheduler ensure that residual capaci-

ties originated by earlier completions can be reclaimed by any active eligible server.

Blocked servers can then take advantage of any residual capacity, even if it is released

by a server that does not share any resource with the reclaiming server.

7.4.1 Minimising the cost of blocking with CXP

While preserving the isolation principles of independent tasks and inheritance prop-

erties of critical sections of BWI, CXP introduces significant improvements in the

system’s performance. Figure 7.2 illustrates how CXP can minimise the cost of

blocking by efficiently exchanging reserved capacities among servers, scheduling the

144 CHAPTER 7. SCHEDULING INTER-DEPENDENT TASK SETS

same set of tasks used to analyse BWI’s drawbacks in Figure 7.1.

Figure 7.2: Sharing resources with CXP

At time t = 1, task τ2 is added to the task list of server S1 (Rule F). At time t = 2, task

τ2 is unblocked and it is executed by server S1, since it is the earliest deadline server

with remaining capacity with τ2 in its task list (the same happens at time t = 8). Note

that capacities are exchanged between all the system’s servers and not only within a

specific resource group, maximising the use of extra capacities to handle overloads and

still meet deadlines. An overload of the independent task τ3 was handled by reclaiming

the residual capacity originated by an earlier completion of task τ1 at time t = 12.

Since the execution and inter-arrival times of jobs are not known in advance it is

important to minimise the impact of misbehaved tasks that exceed their expected

execution times or have a shorter inter-arrival time of jobs. Note that despite the

earlier arrival of the second job of task τ1 at time t = 4, the deadline of server S1 is not

set to d1,2 = 9 and the job is only released at time t = 5, following a hard reservation

approach.

7.5 Handling precedence constraints in open sys-

tems

Additional constraints that may affect the schedulability of real-time systems arise

when the execution of the data’s producer must precede the execution of the consumer

7.5. HANDLING PRECEDENCE CONSTRAINTS IN OPEN SYSTEMS 145

of that data. In more complex scenarios, both shared resources and precedence

constraints can be present among tasks. This section describes an unified approach to

handle these two types of constraints.

It is well known that precedence constraints can be guaranteed in real-time scheduling

by priority assignment. In fact, with dynamic scheduling, any task will always precede

any other task with a later deadline. This suggests that precedence constraints that

are consistent with the tasks’ deadlines do not affect the schedulability of the task

set. In fact, the idea behind the consistency with the partial order is to enforce a

precedence constraint by using an earlier deadline.

Formal work exists, showing how to modify deadlines in a consistent manner so that

EDF can be used without violating the precedence constraints. Garey et al. [GJST81]

show that the consistency of release times and deadlines can be used to integrate

precedence constraints in the task model. Spuri and Stankovic [SS94] introduce the

concept of quasi-normality to give more freedom to the scheduler so that it can also

obey shared resource constraints, and provide sufficient conditions for schedules to

obey a given precedence graph. The authors prove that with deadline modification

and some type of inheritance it is possible to integrate precedence constraints and

shared resources. Mangeruca et al. [MFSV06] consider situations where the precedence

constraints are not all consistent with the tasks’ deadlines and show how schedulability

can be recovered by considering a constrained scheduling problem based on a more

general class of precedence constraint.

However, all these works base their modifications of deadlines on a previous knowledge

of the tasks’ execution times. To make use of these previous results in open real-time

systems, the consistency of release times and deadlines with the partial order must be

enforced considering estimated execution times when applying some known technique

[GJST81, SB94, MFSV06, Bla77, CSB90] at admission time.

However, such approach immediately raises two questions: (i) what happens if a

precedent task requires more capacity than declared? (ii) how can a task know if

all its predecessors have already finished?

CXP provides answers for both questions and can be used to handle blocking due to

precedence violations in the same way as for a critical section blocking, minimising

the impact of misbehaved tasks on the overall system’s performance. We base our

approach on the idea that if task τj ≺ τi has not yet finished at time si,k, when the

kth instance of τi is selected to execute, it is blocking its successor.

Given a partial order ≺ on the tasks, described by a directed graph G, servers’ state

146 CHAPTER 7. SCHEDULING INTER-DEPENDENT TASK SETS

changes in CXP allow an easy verification of the current condition of a precedent

task τj . Recall that a server that has completed its job is only kept active until its

deadline if it is supplying some residual capacity originated by an earlier completion of

its previous job. As such, by adding the following rule to CXP, we are able to handle

precedence constraints among tasks of open real-time systems without any previous

complete knowledge of their actual behaviour during runtime.

• Rule H: If a precedent server Sj is active at time si,k, whenever server Si is

scheduled for execution it must check the current value of Sj’s residual capacity.

If its equal to zero, then the current task τj of Sj has not yet been completed

and must be added to Si’s task list.

Note that precedence constraints can then be handled by Rule H as an access to a

shared resource without introducing overhead in the protocol. Since CXP reclaims

available residual capacities as earlier as possible, whenever a server Si is scheduled

for execution it already checks the current state of the residual capacity of active earlier

deadline servers.

7.5.1 Handling tasks’ precedences with CXP

The next example illustrates how CXP can easily handle precedence constraints among

tasks whose actual computation times are only revealed at run time. Figure 7.3 shows

a possible scheduling of three servers S1 = (2, 8), S2 = (4, 10), and S3 = (3, 15) used

to serve three periodic soft real-time tasks, based on their estimated average execution

times and periods, exhibiting the following precedence constraints τ1 ≺ τ2 ≺ τ3.

At time t = 3, the successor server S2 knows it has to complete its predecessor’s task

since S1 is still active and its residual capacity is set to zero. As such, task τ1 needs

to be executed in server S2, prior to the execution of τ2.

On the other hand, at times t = 6 and t = 10, both servers S3 and S1 can start

executing their dedicated tasks. At time t = 6, S2 becomes inactive by completing

τ2 and exhausting its capacity. Its inactive state clearly indicates that task τ2 has

been completed. Similarly, at time t = 10, the predecessor server S1 is active but

with residual capacity available. This is only possible when a server has completed its

current task using less that its budgeted capacity.

7.6. THEORETICAL VALIDATION FOR DEPENDENT TASKS 147

Figure 7.3: Handling tasks’ precedences with CXP

7.6 Theoretical validation for dependent tasks

As shown, CXP is particularly suitable to schedule soft real-time tasks without requir-

ing any offline knowledge of how many services will be concurrently executed, which

resources will be accessed, nor by how long they will be held.

However, enabling resource sharing among hard (HRT) and soft real-time (SRT)

tasks in open systems is not straightforward. Demanding that SRT tasks declare

the maximum duration of the critical sections on each accessed resource at admission

time is against the basic purpose of an open system itself. Nevertheless, HRT tasks

still need to be guaranteed based on the knowledge of their worst-case behaviour.

One way to achieve such guarantee in an open system is to implement the critical

sections as library functions whose WCET can be determined. Of course, this comes

at the cost of some pessimism. Nevertheless, serving HRT tasks must always be based

on a reserved capacity equal to their WCETs.

Furthermore, if nested critical sections are allowed, the system’s libraries must also

impose a totally ordered access to resources, since for a deadlock to be possible a

blocking chain must exist in which there is a circular relationship. Deadlocks can be

detected and exceptions raised if a misbehaving task attempts to acquire resources

in an improper order, by following the chain of accessed resources and detecting a

resource that is already in the list.

148 CHAPTER 7. SCHEDULING INTER-DEPENDENT TASK SETS

In the remaining of this section, we assume that resources are orderly accessed through

shared libraries and discuss how to assign the maximum capacity Qi and period Ti to

an isolated server which has to serve a hard real-time task τi in an open system with

n hard reservation servers with a total utilisation of
∑n

i=1
Qi

Ti
≤ 1.

We start by proving the correctness of the proposed capacity exchange mechanism of

CXP.

Definition 7.6.0.1 At a particular time instant t, the total amount of available ex-

ecution capacity Ca in the system is the sum of the remaining reserved capacities

greater than zero that can be used to execute a task (either the remaining execution or

residual capacities of active servers or the remaining execution capacities of inactive

non-isolated servers whose capacity can be stolen by active servers).

Lemma 7.6.0.1 Just after a task τi releases the shared resource R, the total amount

of available execution capacity Ca in the system is the same as in the non-resource

sharing case.

Proof

While task τi is accessing the shared resource R during t units of time, it can block

some other task. It follows from the bandwidth inheritance protocol that when a task

blocks another one it inherits the latter’s server. Furthermore, as proven by Theorem

5.4.0.1 in Chapter 5, the dynamic budget accounting mechanism used in CXP does

not affect the system’s schedulability.

Hence, the total amount of available system’s execution capacity Ca when task τi

releases the shared resource R is independent of whether the task was executed only

by its dedicated server Si or not. In the worst case, the longest time a server can be

connected to another server is bounded by the currently pointed server’s capacity and

deadline.

�

Lemma 7.6.0.2 No capacity is exchanged after its deadline

Proof

7.6. THEORETICAL VALIDATION FOR DEPENDENT TASKS 149

Let ai,k denote the time instant at which the kth instance of task τi arrives and its

dedicated server Si is inactive. At ai,k, a new execution capacity ci = Qi is generated.

If Si is a non-isolated server and some amount cs of its reserved capacity was stolen

while it was inactive, the server becomes active with the remaining execution capacity

ci = Qi − cs.

Let ∀i,k di,k = max{ai,k, di,k−1} + Ti be the deadline and ∀i,k ri = di,k be the replen-

ishment time associated with capacity ci.

Let L be the task list of server Si. L is composed at least by jobs of task τi, but can

also contain, due to blocking, inherited tasks (Rule E) and tasks that were delayed by

the execution of τi in high priority servers (Rule F).

Let [t, t + ∆t[denote a time interval during which server Si is executing the earliest

unblocked task of L, consuming its own reserved capacity ci. Consequently, Si has

used an amount equal to c′i = ci −∆t ≥ 0 of its own capacity during this period. As

such, ci must be decreased to c′i, until its value is equal to zero.

Let fi,k denote the time instant when server Si completes the last job of L. The

remaining execution capacity ci > 0 is released as residual capacity cr = ci and ci is

set to zero.

At the time instant fi,k, the next active server Sj with pending work and remaining

execution capacity is scheduled for execution, according to the EDF policy. If the

inequality di,k ≤ dj,l holds, server Sj can use the released residual capacity cr until its

deadline di,k or cr = 0.

Let [t, t+∆t[denote a time interval during which server Sj is executing, consuming the

residual capacity cr. Consequently, Sj has used an amount equal to c′r = cr −∆t ≥ 0

of Si’s residual capacity during this period. As such, cr must be decreased to c′r, until

its value is equal to zero.

If at some instant t all active servers have exhausted the amount of execution capacities

they can use and there are unfinished jobs, the job of the earliest deadline unfinished

task τu is added to the task list of the earliest deadline active server Sr with residual

capacity cr > 0. Assume that Si is the selected server.

Let [t, t+∆t[denote a time interval during which server Si is executing, consuming its

own residual capacity cr. Consequently, Si has used an amount equal to c′r = cr−∆t ≥

0 of its residual capacity during this period. As such, cr must be decreased to c′r, until

its value is equal to zero.

At replenishment time t = ri any remaining unused residual capacity cr of server Si is

150 CHAPTER 7. SCHEDULING INTER-DEPENDENT TASK SETS

discarded and cr is set to zero.

�

Theorem 7.6.0.1 Given a system with n servers with utilisation U =
∑n

i=1
Qi

Ti
which

uses CXP for accessing shared resources, it can be guaranteed that, at any time, the

system’s utilisation U is no more than the utilisation for the case when the served tasks

do not share any resource.

Proof

Without resource sharing, CXP ensures that no server consumes more than its reserved

capacity Qi every period Ti and the amount of capacity that can be reclaimed or stolen

is limited in the worst case by the reserved capacity and deadlines of the pointed

servers. By directly applying the results of Lemma 7.6.0.1 and Lemma 7.6.0.2, the

same properties hold in CXP when tasks share access to resources.

�

Theorem 7.6.0.2 A blocked task scheduled by CXP never has less available time to

complete its execution than under the basic BWI protocol

Proof

From Rule F, CXP guarantees that a blocked task τi resumes its execution in the

earliest deadline server which has τi in its task list, which may be different from its

dedicated server Si. With BWI, however, the blocked task τi is only able to resume

its execution when its dedicated server Si has no more blocking tasks in its task list

and is the earliest deadline among all active servers.

As a consequence, the time that is available for a blocked task τi to complete its

execution may be increased with CXP but never reduced when compared to BWI.

�

After proving the correctness of the capacity exchange mechanism of CXP, we now dis-

cuss how to provide guarantees to hard real-time tasks, starting with some important

definitions that help to clarify the following analysis.

7.6. THEORETICAL VALIDATION FOR DEPENDENT TASKS 151

Definition 7.6.0.2 Two tasks are in the same resource group G if they directly or

indirectly share some resource.

Definition 7.6.0.3 Given a task τi served by server Si, the blocking time Bi is defined

as the maximum time during which all other tasks can be executed by Si, for each job

of τi.

Lemma 7.6.0.3 Given a task τi served by server Si, only tasks in the same resource

group G can be added to Si’s task list and contribute to Bi, for each instance of τi.

Proof

Initially, each active server has exactly one task in its task list. It follows from the

bandwidth inheritance protocol that if a task τi is blocked by task τj when accessing

a resource R, then τj is added to the task list of server Si. If τj is also blocked on

another resource, the chain of blocking is followed and all the blocked tasks are added

to Si until a non-blocked task is reached. The task list of all other servers remains

unchanged. Hence, the number of tasks that can contribute to Bi is restricted to those

tasks that belong to the same resource group G.

�

Theorem 7.6.0.3 If a HRT task τi is served by an isolated server Si with parameters

(Qi, Ti), where the reserved capacity Qi = Ci + Bi is determined by adding the WCET

Ci of τi to the maximum blocking Bi that can be experienced by an instance of τi,

and Ti is the minimum inter-arrival time of τi’s jobs, then τi will meet its deadline,

regardless of the behaviour of the other tasks in the system.

Proof

From Theorem 7.6.0.1 it follows that each isolated server Si always receives Qi units of

execution capacity every Ti units of time. Lemma 7.6.0.3 assures that the set of tasks

that can be executed by Si is restricted to those tasks in the same resource group G.

Hence, if a HRT task τi does not access any shared resource it is not affected by the

behaviour of other tasks. Therefore, if each instance of τi consumes up to Ci ≤ Qi

units of execution capacity and instances are separated at least by Ti, is is guaranteed

that task τi finishes no later than Si’s capacity exhaustion and it will meet all its

deadlines.

152 CHAPTER 7. SCHEDULING INTER-DEPENDENT TASK SETS

If a HRT task τi accesses some shared resources during its execution, we have to

consider the maximum time during which other tasks can be executed by Si through

bandwidth inheritance. It follows from Lemma 7.6.0.3 that whether task τi meets its

deadline depends only on the timing requirements Ci of task τi and on the maximum

blocking time Bi that can be experienced by each instance of task τi. Hence, in

order not to miss any deadline of a HRT task τi it is sufficient to assign a capacity of

Qi = Ci + Bi to the isolated server Si.

�

From Theorem 7.6.0.3 it is possible to derive sufficient conditions for the schedulability

of HRT tasks. HRT tasks which do not access any shared resource can be guaranteed

exactly like in the original CSS algorithm by assigning them to isolated servers with

reserved capacities Qi = Ci, where Ci is the WCET of task τi, and periods Ti equal

to the minimum inter-arrival times of τi’s jobs. A HRT task τi which accesses shared

resources during its execution can be guaranteed if it is assigned to an isolated server

Si whose capacity Qi = Ci + Bi also accounts for the maximum blocking time Bi that

can be experienced by each instance of τi.

7.6.1 Blocking time computation

An exact computation of the worst-case blocking time Bi for a HRT task τi is a complex

problem in open systems where the unpredictable behaviour of SRT tasks may cause

the associated servers to exhaust their capacities while inside the critical sections,

causing many possible situations in which a SRT task can block a HRT task. Without

a complete knowledge of the number, type, and behaviour of tasks that may, directly

or indirectly, interact through shared resources with a HRT task τi it is impossible to

perform an accurate offline analysis and compute the worst case blocking Bi that can

be experienced by τi without imposing some pessimism.

The dynamic properties of an open real-time systems only allow us to assume that the

WCET of the critical sections that may be accessed by any task through the system’s

libraries can be indirectly computed by an offline analysis of those shared libraries.

With nested critical sections, the WCET must consider the worst possible path in

the blocking chain. The reader may refer to [WEE+07] for an extensive survey of the

current methods and tools to compute WCETs.

This may be considered too pessimistic since to guarantee a set of n HRT tasks the

blocking times must all be summed together at admission time, but the dynamic nature

7.7. SUMMARY 153

of an open system and lack of information impose such pessimism. It is impossible to

completely identify the conditions under which any task that is dynamically admitted

in the system can interfere with a HRT task. Of course, this comes at the cost of a

lower system’s utilisation to guarantee HRT tasks. However, with CXP, SRT tasks

can benefit from the unused reserved capacities of HRT tasks, minimising this waste

of resources.

If a resource group G is guaranteed to be composed only by HRT tasks, it is possible

to explore all possible blocking situations and compute a more accurate and less

pessimistic value for Bi, using, for example, an algorithm similar to the one presented

in [LLA04].

7.7 Summary

The resource reservation approach is particularly interesting to open real-time systems

where new services can enter the system at any time without any previous knowledge

about their execution requirements and tasks’ inter-arrival times. Tasks can be ac-

cepted based only on expected requirements and handled through dedicated servers

that prevent the served tasks from demanding more than the reserved amount.

However, with a classic reservation-based approach, if tasks are allowed to block

or suspend, inconsistencies can arise and real-time guarantees to hard tasks and

probabilistic guarantees for soft tasks cannot be provided. Handling shared resources

and precedence constraints among tasks in open systems is then a very challenging

problem.

This chapter addressed both types of constraints and proposed the Capacity Exchange

Protocol (CXP), a new strategy for open systems that integrates the concept of

bandwidth inheritance with the efficient greedy capacity sharing and stealing policy of

CSS to minimise the degree of deviation from the ideal system’s behaviour caused by

inter-application blocking. The reduced complexity of the proposed approach in CXP

focus on greedily exchanging extra capacities as early, and not necessarily as fairly, as

possible and introduces a novel approach to integrate precedence constraints into the

task model.

In addition, a schedulability analysis for a hybrid set of inter-dependent hard and

soft real-time tasks has been presented. The analysis is based on the most important

formal properties of CXP, presented and proved in this chapter.

154 CHAPTER 7. SCHEDULING INTER-DEPENDENT TASK SETS

Chapter 8

Evaluation

The behaviour of the proposed CooperatES framework in dynamic open

real-time scenarios was evaluated through extensive simulations, with a

special attention being devoted to the introduction of a high variability in

the characteristics of the used scenario. This chapter details the conducted

evaluations and discusses the achieved results.

8.1 Introduction

The ideal way to evaluate the performance of the several algorithms proposed in this

thesis would be to subject them to actual loads from a large portfolio of real world QoS-

aware applications and embedded devices. Nevertheless, we have chosen to evaluate

the effectiveness of the CooperatES framework by creating a broad collection of appli-

cation and device profiles, chosen to cover the spectrum into which real applications

and both embedded and their more powerful neighbour devices would fall or likely

exhibit. Furthermore, the current scarcity of available QoS-aware applications that

can be cooperatively executed by a dynamically formed coalition of nodes invalidates

such approach.

The reported results were observed from multiple and independent simulation runs,

with initial conditions and parameters, but different seeds for the random values1 used

to drive the simulations, obtaining independent and identically distributed variables.

Although the outputs of individual simulation runs are not independent, it is still

possible to obtain independent observations across the results of several simulation

1The random values were generated by the Mersenne Twister algorithm [MN98] with an uniform

distribution.

155

156 CHAPTER 8. EVALUATION

runs (or simulation replicas) with a reasonably good statistical performance [LK00].

The mean values of all generated samples were used to produce the charts presented

in this chapter, with a confidence level of 99,9% associated to each confidence interval

[EM].

8.2 Evaluated scenario

The simulator used in the conducted experiments was custom built in Erlang [Lab],

a functional programming language designed to be run in a distributed environment

populated with resource constrained devices.

An application that captures, compresses and transmits frames of video to end users,

which may use a diversity of end devices and have different sets of QoS preferences,

was used as a scenario for the simulations. The application was composed by a set of

source units to collect the data, a compression unit to gather and compress the data

that came from the multiple sources, a transmission unit to transmit the data over the

network, a decompression unit to convert the data into each user’s specified format,

and an user unit to display the data in the user’s end device.

The number of simultaneous nodes in the system varied from 10 to 100, while the

number of simultaneous users varied from 1 to 20, generating different amounts of load

and resource availability. Each node had a fixed set of mappings between requested

QoS levels and resource requirements and the code bases needed to execute each of

the streaming application’s units was loaded a priori in all the nodes.

The characteristics of end devices and their more powerful neighbour nodes was

randomly generated from the set of characteristics described in Table 8.1, creating a

distributed heterogeneous environment. This non-equal partition of resources affected

the ability of some nodes to singly execute some of the application’s units and has

driven nodes to a coalition formation for a cooperative service execution.

Requested QoS levels were randomly generated, at randomly selected end devices and

at randomly generated times, expressing the spectrum of acceptable QoS levels in a

qualitative way, ranging from a randomly generated desired QoS level to a randomly

generated maximum tolerable service degradation. The relative decreasing order of

importance imposed in dimensions, attributes and values was also randomly generated.

Similarly, inter-dependency QoS relations among tasks were randomly generated for

each service.

The QoS domain used to generate the users’ service requests was composed by the

8.2. EVALUATED SCENARIO 157

Table 8.1: Possible characteristics of nodes

Resource Type

cpu 400 MHz, 750 MHz, 1 GHz, 1.5 GHz, 2 GHz, 2.5 GHz, 3 GHz

memory 128 MB, 256 MB, 512 MB, 1 GB, 2 GB, 4 GB, 8 GB

storage 512 MB, 1 GB, 10 GB, 30 GB, 50 GB, 200 GB, 500 GB

network 10 Mbps, 11 Mbps, 54 Mbps, 100 Mbps, 1 Gbps

display none,240x180,320x240,640x480,720x480, 1024x768, 1280x1024

following list of QoS dimensions, attributes, and possible values:

QoS dimensions = {Media Container,Video Quality, Audio Quality}

Media Container = {container format}

Video Quality = {color depth, frame size, frame rate}

Audio Quality = {sampling rate, sample bits}

container format = {3GP, ASF, AVI, QuickTime, RealVideo, WMV}

color depth (bits) = {1, 3, 8, 16, 24}

frame size (pixels) = {240x180, 320x240, 640x480, 720x480,

1024x768,1280x1024}

frame rate (per second) = {[1,30]}

sampling rate (kHz) = {8, 11, 32, 44, 88}

sample bits (bits) = {4, 8, 16, 24}

Based on each user’s service request, coalitions of 4 to 20 nodes were formed using the

anytime coalition formation and service proposal formulation algorithms proposed in

Chapter 4. Each node was connected at least to another node in the coalition. The

maximum degree of each node, that is, the maximum number of connections to a node

was set to 3. After the coalition was formed, a random percentage of the connections

among its members was selected as a QoS dependency among those work units.

To cope with such a dynamic environment, nodes were requested to adjust their local

set of SLAs, either by lowering the currently provided QoS level of some services due

to resource limitations or by (re)upgrading them when the needed resources become

available.

158 CHAPTER 8. EVALUATION

8.3 Anytime approach’s behaviour and overhead

Throughout this thesis, the notion that complex scenarios may prevent the possibility

of computing optimal resource allocations was claimed and anytime algorithms that

can tradeoff the needed deliberation time for the quality of the achieved results were

proposed.

The first set of conducted studies had two main objectives: (i) to analyse the behaviour

of the anytime algorithms proposed in Chapters 4 and 6 in highly dynamic scenarios;

and (ii) to measure the computational cost of those algorithms when compared to their

traditional versions proposed in Chapter 3.

The behaviour of an anytime algorithm is described by its performance profile, a

representation of the relationship between processing time and result quality for a

particular anytime algorithm and problem. Since there are many possible factors

affecting the execution time of an algorithm, rather than measuring the algorithms’

absolute execution time on every simulation run, we have normalised it with respect

to its completion time [Zil93]. Nevertheless, all the algorithms needed an average time

lower than 1 second to compute their optimal solutions on a Intel Core Duo T5500 at

1.66 GHz.

8.3.1 Coalition formation

The first conducted study determined the performance profile of the anytime coalition

formation algorithm and compared the usefulness of two methods for selecting, at each

iteration of the algorithm, the next service proposal to be evaluated. The first one, as

proposed in Chapter 4, selects for evaluation the proposal sent by the node with the

highest local reward, while the second one relies on the order of proposals’ reception.

Note that this second approach is the one followed by the traditional version of the

coalition formation algorithm proposed in Chapter 3.

Figure 8.1 details the expected solution’s quality as a function of the needed compu-

tation time.

The heuristic selection based on the nodes’ local reward not only achieves a better

performance, but also has a lower variation on the expected solution’s quality. At

only 20% of the completion time, the anytime coalition formation algorithm achieves

a solution’s quality of 83% ± 6% of its optimal solution, determined at completion

time.

8.3. ANYTIME APPROACH’S BEHAVIOUR AND OVERHEAD 159

Figure 8.1: Coalition formation: Anytime behaviour

On the other hand, a poorer performance and higher variability is achieved if the

algorithm relies on the order of proposal’s reception. At 20% of the completion time,

the algorithm achieves a solution’s quality of 32% ± 25% of its optimal solution,

determined at completion time.

A second study measured the computation time needed by both the anytime and

traditional versions of the coalition formation algorithm to achieve their optimal

solutions at completion time, as well as their first available solution. Figure 8.2 details

the results, normalised to the longest approach.

Figure 8.2: Coalition formation: Anytime vs Traditional

The traditional version is slightly faster than its anytime counterpart. It requires

nearly 95% ± 2% of the time needed by the anytime approach to reach its optimal

160 CHAPTER 8. EVALUATION

solution at completion time. This difference is explained by the way both algorithms

select the next proposal to evaluate. While the traditional version sequentially eval-

uates service proposals according to their order of arrival, the anytime approach

selects proposals based on the nodes’ local reward. This implies either to sort the

proposals’ set before starting the evaluation process or to search, at each iteration, for

the maximum remaining local reward.

However, note that the anytime version needs as little as near 12% ± 2% of its

completion time to be able to deliver a solution, whose quality is near 50% ± 6% of

its optimal solution’s quality. On the other hand, the binary notion of the solution’s

quality of the traditional version of the algorithm, only allows the algorithm to return

its optimal solution at the end of its computation.

8.3.2 Service proposal formulation

A third study evaluated the behaviour of the anytime service proposal algorithm by

measuring its performance profile as well as the impact generated by the arrival of a

new service request on the QoS level of previously accepted tasks.

The results were plotted by averaging the results over several independent runs of the

simulation, divided into two categories. Figure 8.3 presents the scenario where the

average amount of available resources per node is greater than the average amount

of resources demanded by the services being executed. The opposite scenario is

represented in Figure 8.4, where the average amount of resources per node is smaller

than the average amount of demanded resources.

In Figure 8.3, the increase in the solution’s quality Qconf results from the increase in

the new task’s reward (Step 1 of the algorithm). Recall that with spare resources the

QoS levels of previously accepted tasks are kept the same. As such, this increase in

the new service’s reward also increases the node’s local reward, that was affected by

the initially proposed solution of serving the newly arrived service at the minimum

requested QoS level.

However, due to resource limitations (Figure 8.4), when trying to upgrade the reward

achieved by the new service, the generated configuration may result in an unfeasible

set of SLAs. Whenever this happens, the algorithm iteratively selects the minimum

utility’s decrease, until a feasible solution is found that presents a higher satisfaction

for the service request under negotiation, if it exists (Step 2 of the algorithm).

Note that, in both scenarios, the anytime service proposal formulation algorithm

8.3. ANYTIME APPROACH’S BEHAVIOUR AND OVERHEAD 161

Figure 8.3: Proposal formulation: Anytime behaviour with spare resources

Figure 8.4: Proposal formulation: Anytime behaviour with limited resources

optimises the rate at which the quality of the current solution improves over time.

With spare resources (Figure 8.3), at only 20% of the computation time, the solution’s

quality for the new arrived task is near 74% ± 5% of the achieved quality at completion

time. When QoS degradation is needed to accommodate the new task (Figure 8.4), its

service proposal achieves 85% ± 4% of its final quality at 20% of computation time.

Also note that the solution’s quality, identified by Qconf in both figures, quickly

approaches its maximum value at an early stage of the computation.

162 CHAPTER 8. EVALUATION

A fourth study considered the same two scenarios of resource availability to measure

the needed computation time of both the anytime and the traditional versions of the

service proposal formulation algorithm to achieve their optimal solutions at completion

time, as well as their first available solution.

Figure 8.5 compares the needed computation time when the average amount of re-

sources per node is greater than the average amount of resources necessary for each

service execution, while Figure 8.6 compares both versions when the average amount of

resources per node is smaller than the average amount of resources necessary for each

service execution, demanding QoS degradation of the previously accepted services.

Figure 8.5: Proposal formulation: Anytime vs Traditional with spare resources

Both figures allow us to conclude that the traditional version of the service proposal

formulation algorithm is also faster to achieve its optimal solution at completion

time. While the anytime approach tries to quickly find an initial feasible solution by

considering the worst QoS level requested by the user, the traditional version starts by

selecting the user’s preferred QoS level. As such, with spare resources the traditional

version is faster to achieve the optimal resource allocation for the new set of tasks,

while with limited resources both versions need almost the same time.

However, in both scenarios the anytime version is by far quicker to find a feasible

solution. With spare resources, the anytime version needs near 5% ± 2% of its

completion time to find the first feasible solution, with a quality near 10% ± 3%

8.3. ANYTIME APPROACH’S BEHAVIOUR AND OVERHEAD 163

Figure 8.6: Proposal formulation: Anytime vs Traditional with limited resources

of the optimal solution. With limited resources, the anytime version takes about 20%

± 4% of its completion time to reach a feasible solution with 15% ± 3% of the optimal

solution’s quality.

8.3.3 Services’ runtime adaptation

Whenever a system’s utilisation below 60% was detected, an upgrade of previously

downgraded SLAs whose stability period had already expired was done. Promised

stability periods were determined by taking into consideration the observed variations

in the tasks’ traffic flow and correspondent resource usage, adapting the system to the

observed environmental changes. The value of the smoothing factor α was optimised

using the method of least squares.

The performance profile of the anytime QoS re-upgrade algorithm is plotted in Figure

8.7. At 20% of its computation time, the algorithm reaches near 60% ± 4% of its

solution’s quality at completion time. The increase in the solution’s quality, identified

by Qconf in the figure is due to the increase in the tasks’ reward determined by the

possible upgrades. Recall that when determining the possible QoS upgrades for the

previously downgraded tasks whose stability period has already expired, the QoS levels

of all other tasks is kept the same. Naturally, this increase in those tasks’ reward also

164 CHAPTER 8. EVALUATION

increases the node’s local reward.

Figure 8.7: QoS re-upgrade: Anytime behaviour

The study also evaluated the users’ influence on the services’ adaptation behaviour.

Three permanent service requests were added to the dynamic traffic randomly gener-

ated at each simulation run. All the three service requests were generated with the

same random spectrum of acceptable QoS values, in the same decreasing preference

order. They only differed on the users’ QoS stability constraints for the minimum

utility increase and stability period, User1 = {0, 0s}, User2 = {0.2, 10s}, User3 =

{0.3, 30s}, respectively.

Figure 8.8: QoS re-upgrade: users’ influence

The influence of personal constraints on the system’s adaptation behaviour is clearly

8.3. ANYTIME APPROACH’S BEHAVIOUR AND OVERHEAD 165

observable in Figure 8.8. As the user’s constraints for a service upgrade are harder

to achieve there is less probability to change and stay in a better quality level. These

results clearly demonstrate that the users’ influence can be extended to the services’

adaptation behaviour.

The needed computation time of both the anytime and the traditional versions of the

service proposal formulation algorithm to achieve their optimal solutions at completion

time, as well as their first available solution, is detailed in Figure 8.9.

Figure 8.9: QoS re-upgrade: Anytime vs Traditional

Once again, similar conclusions can be taken. Due to the existence of spare resources,

the traditional version of the QoS re-upgrade algorithm is slightly faster to complete

its computation and return an optimal solution. However, the anytime version is able

to almost immediately return a feasible service solution. At near 10% ± 2% of its

completion time it finds the first feasible solution, with a quality near 35% ± 3% of

the optimal solution achieved at completion time.

166 CHAPTER 8. EVALUATION

8.4 Coordinating distributed inter-dependent adap-

tations

The behaviour of the proposed decentralised one-step coordination model in highly

dynamic scenarios was compared to a classic centralised optimal coordination model.

With a centralised coordination model, all changes in the output quality of a work

unit wij ∈ Si have to be communicated to a single entity with service-wide knowledge.

Then, this central coordinator has to determine the impact of those changes in the

overall coalition’s QoS level and request the adaptation of the involved nodes. To

evaluate the success or failure of such dependent adaptation, an adaptation request

must be sequentially made along the dependency graph either until a common global

service solution is found or one of the coalition member is unable to supply the new

desired QoS values.

Optimallity comes from the fact that a node that cannot supply the requested coordi-

nated QoS values is able to reply with a service counter-proposal, instead of replying

with a negative feedback, as proposed in the distributed one-step coordination model.

The goal is to find an optimal distributed service solution, after an unknown number

of iterations among nodes. The involved nodes in the global coordinated adaptation

either agree on the best possible common solution or the coordinated adaptation fails

if one of the nodes is unable to find a compatible solution.

The conducted evaluation started by comparing the total number of messages that

had to be exchanged among nodes when using both approaches to globally coordinate

dependent autonomous self-adaptations. The average results of all simulation runs for

different coalition sizes are plotted in Figure 8.10.

Figure 8.10: Average number of exchanged messages

8.4. COORDINATING DISTRIBUTED INTER-DEPENDENT ADAPTATIONS167

As expected, both coordination approaches require more messages to be exchanged

among nodes as the complexity of the service’s topology increases. Nevertheless, the

proposed decentralised coordination model requires around 80% of the needed number

of messages required by the centralised model until all the affected coalition members

become aware of the coordination request’s result.

Less messages should result in a faster convergence to a global common solution. To

verify the veracity of such assumption a second study measured the needed average

time from the moment a node issued a coordination request until the outcome of the

global adaptation process was determined. The deadline used for the anytime local

QoS adaptation at each node was set to one second. At the end of the algorithm’s

execution, the feasibility or unfeasibility of the received coordination request was

determined by the node.

The obtained results, on an Intel Core Duo T5500 at 1.66 GHz with 2 GB of RAM,

are plotted in Figure 8.11.

Figure 8.11: Needed time until the global adaptation result is determined

Clearly, the proposed decentralised coordination model is faster to determine the over-

all coordination result in all the evaluated services’ topologies, needing approximately

75% of the time spent by the centralised optimal model.

Even if the proposed one-step decentralised model requires less messages and is faster

than a centralised optimal model to determine a global solution it is still important

to evaluate the impact of an one-step coordination model on the achieved service

solution’s quality. Recall that, when adopting the proposed one-step coordination

algorithm, if some other dependent node in the coalition is unable to supply the new

requested values no other alternative solution is tried and the global adaptation process

fails. On the other hand, with the centralised optimal coordination model, a node is

able to reply with a service counter-proposal whenever it is unable to coordinate with

168 CHAPTER 8. EVALUATION

the currently requested values. As such, it is possible that after some iterations, the

node’s best possible service solution can be accepted by all the dependent coalition

partners as part of a global SLA. Note that such intermediate service solution would

not be achieved with the proposed one-step coordination model.

The reward of each determined SLA after a successful global coordination process

was evaluated by computing, for each service’s QoS dimension, a weighted sum of

the differences between the user’s preferred quality values and the proposed values

[NP05, NP06c]. The results were plotted, in Figure 8.12, by averaging the results over

several independent runs of the simulation, divided into two categories: (i) when the

average amount of available resources per node is greater than the average amount of

resources demanded by the services being executed; and (ii) when the average amount

of resources per node is smaller than the average amount of demanded resources.

Figure 8.12: Relative solution’s utility as a function of available resources

As the coalition’s topology complexity increases it is clearly noticeable, in both scenar-

ios, that a near-optimal service solution’s quality is achieved when using the one-step

coordination model, despite its simpler approach and faster convergence to a common

solution. The achieved results can be explained by the fact that as the coalition’s

topology complexity increases it also increases the probability of one of the involved

nodes in the global adaptation process to be unable to use more than its current level of

reserved resources for a work unit wi ∈ S. As the achieved results clearly demonstrate,

such probability is even greater when the resources are scarce.

8.5. EFFICIENCY OF THE PROPOSED SCHEDULING ALGORITHMS 169

8.5 Efficiency of the proposed scheduling algorithms

The conducted experiments can be divided into two major sets. The first one evaluates

the effectiveness of CSS in reducing the mean tardiness of independent periodic tasks.

It starts by comparing the performance of CSS against other similar approaches

considering only sets of isolated servers in Section 8.5.1, while Section 8.5.2 details

the impact of allowing overloaded servers to steal inactive non-isolated capacities in

the improvement of the overall system’s performance.

The second set evaluates how the proposed flexible management of reserved capacities

of CXP can minimise the degree of deviation from the ideal system’s behaviour caused

by inter-application blocking due to shared resources (Section 8.5.3) or precedence

constraints (Section 8.5.4).

Each simulation replica ran until t = 250000, producing a large variety of inheritance

and preemption situations among tasks, and was repeated several times to ensure that

stable results were obtained.

8.5.1 Residual capacity reclaiming

Since the actual execution time of tasks often varies in data-, time-, or system-

dependent ways, servers frequently use less computation time than they have reserved,

dynamically originating residual capacity, that is, reserved but unused capacity. The

efficient reclamation and redistribution of such residual capacity to tasks whose current

needs exceed their reservations can significantly improve the performance of both soft-

real time and best-effort tasks.

Similarly to CSS, CASH [CBS00] and BACKSLASH [LB05] also greedily assign resid-

ual capacities as early as possible to the highest priority server but propose different

approaches to deal with a server’s capacity exhaustion. The first conducted study

evaluated the effect of those approaches in lowering the mean tardiness of independent

periodic jobs. The mean tardiness was determined by
∑n

i=0 trdi/n, where trdi is the

tardiness of task τi, and n the number of periodic tasks. For a fair comparison, only

isolated servers were used with CSS.

Random workloads were created in order to evaluate the performance of each algo-

rithms when the tasks’ parameters differ in dynamic real-time scenarios. Different

sets of 6 periodic servers, with varied capacities ranging from 20 to 50, and period

distributions ranging from 60 to 600 were used, creating different types of load, from

short to long deadlines and capacities. The execution time of each job varied in the

170 CHAPTER 8. EVALUATION

range [0.7Qi, 1.4Qi] of its dedicated server’s reserved capacity Qi.

Figure 8.13 shows the performance of the three algorithms as a function of the system’s

load, measuring the mean tardiness of periodic tasks under random workloads for

different probabilities of jobs’ overload.

Figure 8.13: Performance in dynamic scenarios

As expected, all the algorithms perform better when there is more residual capacity

available to handle overloads. Furthermore, they all behave very similarly when tasks

have a lower probability (until near 30%) of exhausting their servers’ reserved capacity.

The behaviour of a server is determined by two parameters: (i) the server’s reserved

capacity, which defines the fraction of the processor allocated to the task it is serving;

and (ii) the server’s period, which defines the time granularity of the allocation. As

such, without applying any technique to dynamically adapt the server’s parameters

based on the average response times of the served tasks, like the one proposed in

[BB06] for example, it is clear that the system’s performance will severely decrease as

the probability of tasks’ overloads increases.

Nevertheless, CSS outperforms the other algorithms in lowering the mean tardiness

of periodic jobs with increased probabilities of jobs’ overloads. Recall that CASH

and BACKSLASH automatically update a server’s capacity and deadline on every

capacity exhaustion. As these results clearly demonstrate, allowing a task to use

resources allocated to the next job of the same task may cause future jobs to miss

their deadlines by larger amounts.

Even if BACKSLASH and CSS share the same concept of using original deadlines

for residual capacity reclaiming, since CSS follows a hard reservation approach, a

server whose capacity has been exhausted is kept active until its currently assigned

8.5. EFFICIENCY OF THE PROPOSED SCHEDULING ALGORITHMS 171

deadline. As proven by the achieved results, this approach effectively minimises the

mean tardiness of periodic jobs. The reason is that a server is able to use residual

capacities released after it has exhausted its capacity to advance its execution, without

using capacities reserved for future jobs of the same task.

8.5.2 Allowing capacity stealing

A second study evaluated the impact of non-isolated capacity stealing on the perfor-

mance of soft real-time tasks, either with short or long variations from mean execution

times.

The workload consisted of a hybrid set of periodic isolated and non-isolated servers.

The maximum capacity and inter-arrival times of the isolated servers were randomly

generated in order to achieve a desired processor utilisation factor of Uisolated. The

maximum capacity and period of the non-isolated servers were uniformly distributed

in order to obtain an utilisation of Unon−isolated = 1− Uisolated.

To evaluate the weight of non-isolated capacity stealing in lowering the mean tardiness

of tasks, the probability of arrival of new jobs to non-isolated servers varied in the range

[0.1, 1.0]. The mean tardiness of isolated and non-isolated jobs was measured when

using both residual capacities and non-isolated capacity stealing or when only using

residual capacities.

In the first simulation, periodic tasks were served by 1 non-isolated server S1 = (2, 10)

and 4 isolated servers S2 = (3, 15),S3 = (4, 20),S4 = (5, 25), S5 = (6, 30), with

utilisation of Unon−isolated = 0.2 and Uisolated = 0.8. The execution time of each job

shortly varied in the range [0.8Qi, 1.2Qi] of its dedicated server’s reserved capacity Qi.

The achieved results are shown in Figure 8.14. As expected, when overloaded active

servers have more opportunities to steal non-isolated capacities, the obtained mean

tardiness lowers accordingly. When only using residual capacities, the mean tardiness

is higher as the probability of non-isolated jobs’ arrival lowers, since there is less

residual capacities available, released by active non-isolated servers. The experiment

shows that with a low variation in the jobs’ computation times, the ability to steal non-

isolated capacity achieves better results, although the single use of an efficient residual

capacity reclaiming mechanism is able to achieve a similar, albeit lower, performance.

Furthermore, Figure 8.14 also shows that the performance of non-isolated servers is

worse than the achieved performance of isolated servers. Two reasons explain this

behaviour. The first one is that when a new job arrives for a inactive non-isolated

172 CHAPTER 8. EVALUATION

Figure 8.14: Small variation in execution times

server, some of its reserved capacity might have been stolen by a needed active

overloaded server. As such, if the now active non-isolated server cannot reclaim any

available residual capacity, the job must be executed with less capacity than expected,

probably resulting in a deadline miss. The second one is that there is a big difference

on the performance of a server for different configurations of Qi and Ti, even if they

result in the same server utilisation [BB02]. It is well known that the higher the

priority the smaller the capacity available, since there is a tradeoff between capacity

size and interference. A server with parameters (2Qi, 2Ti) has the same utilisation but

a higher probability of using residual capacities and steal inactive non-isolated time

due to the increased period.

Figure 8.15: Large variation in execution times

The second simulation has been generated with the same characteristics of the first

one, except that a greater variance of jobs’ execution time was introduced, ranging

8.5. EFFICIENCY OF THE PROPOSED SCHEDULING ALGORITHMS 173

from [0.6Qi, 1.8Qi] of the dedicated server’s reserved capacity Qi. Note that in this

experiment the average value of the jobs’ execution requirements is greater than the

reserved capacity of their servers, necessarily leading to a greater tardiness. Figure 8.15

clearly shows a perceptibly improved system’s performance when it is possible to steal

inactive non-isolated capacities in the presence of a large variation in jobs’ computation

times. One can conclude that, with CSS, severe overloads can be efficiently handled

through a residual capacity reclaiming and non-isolated capacity stealing approach,

reducing the mean tardiness of periodic jobs.

8.5.3 Sharing resources among tasks

The first conducted study compared the cumulative capacity that was consumed by

the shortest period (SP) and longest period (LP) tasks of a randomly generated task

set when tasks share resources to the amount of capacity that would be consumed if

the same set of tasks did not shared any resource. The cumulated capacities consumed

by the SP and LP tasks were recorded every 200 time ticks and the mean values of all

generated samples plotted in Figures 8.16 and 8.17, respectively.

Different sets of 5 tasks were randomly generated, with varied execution requirements

ranging from 20 to 60 units, and period distributions ranging from 100 to 300 time

units, always ensuring a system’s utilisation U ≤ 1. An isolated server was assigned

to each task, with a reserved capacity Qi equal to the task’s execution requirements

and period Ti equal to the task’s period. The execution requirements of each job were

always equal to the reserved capacity of its dedicated server and all jobs accessed

the shared resource R during all their executions, with a new job being released

immediately after a task has completed its current job.

The achieved results show that with BWI, and due to blocking, while higher priority

tasks can consume less than their initial allocations, tasks with longer deadlines can

consume more than their reserved capacities since BWI is affected by the absence of

a compensation mechanism. In contrast, the efficient capacity exchange mechanism

of CXP ensures that both tasks are able to get their allocated capacities even when

accessing shared resources thus providing a better fairness than BWI and confirming

the conclusions drawn from the examples in Section 7.3.

A second study compared the efficiency of the studied protocols BWI, BWE, CFA and

CXP in lowering the mean tardiness of a set of periodic jobs with variable execution

times in highly dynamic scenarios. At each simulation run, a random number of

servers with a system’s utilisation up to 70% contended for the system’s resources

174 CHAPTER 8. EVALUATION

Figure 8.16: Capacity consumed by the SP task

Figure 8.17: Capacity consumed by the LP task

8.5. EFFICIENCY OF THE PROPOSED SCHEDULING ALGORITHMS 175

with a dynamic traffic that demanded up to 30% of the system’s capacity. Resource

sharing protocols that require a prior knowledge of the maximum resource usage time

for each task such as the Priority Ceiling Protocol, the Dynamic Priority Ceiling, or

the Stack Resource Policy were not considered in the studies since they cannot be

directly applied to open real-time systems.

All servers were generated with varied reserved capacities Qi ranging from 15 to 50

units of execution and period distributions ranging from 50 to 500 time units, creating

different types of load, from short to long deadlines and capacities. Tasks arrived at

randomly generated times and remained in the system for a variable period of time

with each job having an execution time in the range [0.8Qi, 1.2Qi] of its dedicated

server’s reserved capacity Qi, originating both overloads and residual capacities due

to early completions. There were 6 resources, whose access and duration of use was

randomly distributed by the servers, creating direct and transitive blocking situations

and distinct resource groups. For a fair comparison, only isolated servers were used in

CXP.

Figure 8.18 illustrates the performance of the evaluated protocols as a function of the

system’s load, measuring the mean tardiness of periodic tasks under random workloads

for different probabilities of jobs’ overload.

Figure 8.18: Performance in dynamic scenarios

As expected, the achieved results clearly justify the use of a capacity exchange mech-

anism to minimise the impact of blocking on the system’s performance. Without any

compensation for the extra work on blocked servers, BWI obtains the poorest result.

Recall that with BWI, a blocked task is only able to use the remaining capacity of its

dedicated server, if any.

176 CHAPTER 8. EVALUATION

BWE and CFA achieve similar performances when handling tasks with variable ex-

ecution times. Both algorithms are unable to reclaim residual capacities originated

by early completions, wasting available resources to handle overloads and minimise

the number of deadline misses. Also, both algorithms immediately recharge a server’s

capacity and extend its deadline at every capacity exhaustion, allowing a task to use

resources allocated to a future job, contributing for future jobs of that task to miss

their deadlines by larger amounts.

On the other hand, by reclaiming as much extra capacity as possible, CXP outperforms

BWE and CFA in lowering the mean tardiness of periodic tasks in highly dynamic

scenarios. CXP not only exchanges capacities between all active servers, not restricting

capacity exchange to the same resource group, but it also reclaims all the available

residual capacity to handle overloads of soft real-time tasks.

Furthermore, these better results in highly dynamic scenarios were achieved with a

less complex approach to exchange reserved capacities among servers. Figure 8.19

illustrates the average overhead introduced by the optimisations of BWE, CFA, and

CXP in terms of the needed scheduling time and memory consumption during the

previous study, using the base BWI protocol as a reference.

Figure 8.19: Overhead using BWI as reference

As expected, the optimisations performed by BWE, CFA, and CXP introduce some

overhead when compared against BWI in terms of needed time and memory. Although

all the three algorithms need only slightly more time than BWI to determine which

capacity is going to be accounted by the currently executing server, they substantially

differ in terms of storage information demands. BWE requires a global n ∗ n matrix

to record the amount of capacity that must be exchanged between servers and an

extra list at each server to keep track of available capacities. CFA enhances BWI by

8.5. EFFICIENCY OF THE PROPOSED SCHEDULING ALGORITHMS 177

adding a new task queue to each server and one extra variable for each contracted debt

between servers Si and Sj. On the other hand, CXP focuses on minimising the cost

of blocking by exchanging reserved capacities as early, and not necessarily as fairly, as

possible. As such, it does not not account the amount of borrowed capacity on each

server neither manages individual resource groups.

8.5.4 Imposing precedence constraints among tasks

Another study compared the time and memory needed by CXP to schedule the same

task set with and without precedence constraints among its tasks. 10000 tasks sets

were randomly generated, with different system’s utilisation in the range [0.6, 1.0].

For each task set, a random set of precedence constraints consistent with the tasks’

deadlines was determined. Each job had random execution requirements in the range

[0.7Qi, 1.3Qi] of its dedicated server’s reserved capacity Qi.

Figure 8.20: Overhead of handling precedence constraints

The achieved results, plotted in Figure 8.20, allow us to conclude that CXP is able

to efficiently handle precedence constraints among tasks whose exact behaviour is

not known beforehand without any significant overhead. Recall that precedence

constraints are handled by CXP as an access to a shared resource and the proposed

residual capacity reclaiming policy already checks the current state of earlier deadline

servers, since residual capacities are consumed before the server’s reserved capacity.

178 CHAPTER 8. EVALUATION

8.6 Summary

This chapter evaluated, through extensive simulations, the behaviour and overhead of

the algorithms proposed in this thesis when operating in highly dynamic open real-time

scenarios.

After the formal analysis of the desirable properties of anytime algorithms discussed

in Chapter 4, the empirical evaluation detailed in Section 8.3 further strenghts the

pratical usefulness of the proposed anytime algorithms. Note that the solution’s

quality measure of the three algorithms is a non-decreasing function of time. Only a

better service proposal for each specific task under negotiation updates the currently

found solution, increasing its quality. Also, the improvement in the solution’s quality

is larger at the early stages of the computation and diminishes over time. All the

three algorithms quickly determine a service solution whose quality is expected to be

sufficiently close to their optimal solution’s quality, determined at completion time.

Section 8.4 evaluated the proposed one-step decentralised coordination of autonomous

dependent adaptations of resource constrained devices. As the achieved results demon-

strate, the proposed coordination model has a reduced overhead and enables a faster

convergence to a new global service solution, whenever the needed downgrade or

desired upgrade in one coalition member has an impact on or depends on the quality

of the inputs sent by other work units being executed on other coalition members.

The results reported in Section 8.5 clearly demonstrate that the proposed Capacity

Sharing and Stealing (CSS) approach for independent task sets is able to efficiently

reclaim residual capacities originated by earlier completions and steal reserved unused

capacities from inactive non-isolated servers, effectively reducing the mean tardiness

of soft real-time tasks. It is clear that the exact performance depends upon the ratio

of residual capacity donating and residual capacity consuming tasks, but in general

CSS outperforms the other evaluated algorithms.

When considering inter-depedent task sets, the achieved results clearly justify the use

of a capacity exchange mechanism that reclaims as much capacity as possible and does

not restrict itself to exchange capacities only within a resource sharing group. The

proposed Capacity Exchange Protocol (CXP) achieves a better system’s performance

when compared against other available solutions and has a lower overhead.

Chapter 9

Conclusion

This thesis provides support for adaptive cooperative coalitions of possibly

inter-dependent nodes, able to autonomously organise, regulate and opti-

mise themselves without the intervention of a user or any other central

entity, even when services exhibit unrestricted QoS inter-dependencies.

This chapter resumes its most relevant contributions and highlights some

lines of future work.

9.1 Introduction

As the complexity of open embedded real-time systems increases, driven by the need to

boost their capabilities and scope, the ability to support predictable, reliable Quality

of Service (QoS) must keep pace. This calls for a different and more flexible approach

than those typically used today for building fixed-purpose real-time systems, since the

set of applications to be executed and their aggregate resource and timing requirements

are unknown until runtime, implying that accurate optimisation models are then

difficult to obtain and quickly become outdated.

The challenge is how to efficiently execute applications in these new open real-time

systems while meeting non-functional requirements arising from the operating envi-

ronment, the users, and applications. This thesis advocates that the complex demands

of such systems are adequately handled through a cooperative decentralised model,

supported by anytime QoS optimisation algorithms and effective flexible scheduling

mechanisms.

In the previous chapters, we proposed and evaluated the mechanisms to achieve

179

180 CHAPTER 9. CONCLUSION

this goal. The CooperatES framework allows services to be executed by temporary

coalitions of nodes whenever a particular set of user-imposed QoS constraints cannot be

satisfyingly answered by a single node. Users encode their own relative importance of

the different QoS parameters for each service they want to execute and the framework

uses this information to determine the distributed resource allocation that maximises

the satisfaction of those constraints and minimises the impact on the current QoS

levels of previously accepted tasks.

Thanks to the anytime nature of the proposed QoS optimisation approach, it is possible

to interrupt the optimisation process, done according to each user’s specific QoS and

stability preferences, at any point in its execution and still be able to obtain a service

solution and a measure of its quality, which is expected to improve as the run time of

the algorithms increases. The binary notion of correctness associated with traditional

QoS optimisation algorithms is then replaced by a set of quality measured outputs.

Furthermore, in order to reduce the needed interactions among nodes until a collective

adaptation behaviour is determined, this thesis proposes an one-step decentralised

coordination model based on an effective feedback mechanism. Positive feedback is

used to reinforce the selection of the new desired global service solution, while negative

feedback discourages nodes to act in a greedy fashion as this adversely impacts on the

provided service levels at neighbouring nodes.

In addition, a new scheduling approach is proposed to handle the dynamic changes

of services’ requirements in a predictable fashion, enforcing timing constraints with a

certain degree of flexibility, aiming to achieve the desired tradeoff between predictable

performance and an efficient use of resources. CSS is a dynamic server-based scheduler

that supports the coexistence of guaranteed and non-guaranteed bandwidth servers to

efficiently handle soft-tasks’ overloads by making additional capacity available from

two sources: (i) residual capacity allocated but unused when jobs complete in less than

their budgeted execution time; (ii) stealing capacity from inactive non-isolated servers

used to schedule the anytime algorithms devoted to the framework’s management.

Another algorithm able to handle dependent tasks sets which share access to some of

the system’s resources and exhibit precedence constraints is proposed. CXP merges

the benefits of CSS with the concept of bandwidth inheritance to allow a task to be

executed on more than its dedicated server, efficiently exchanging capacities among

servers and reducing the undesirable effects caused by inter-application blocking.

The next sections summarise the most relevant contributions of this thesis to the de-

velopment of cooperative open real-time systems and outline areas for future research.

9.2. GENERAL CONCLUSIONS 181

9.2 General conclusions

Throughout the previous chapters of this thesis we have shown that:

• A semantically rich QoS specification interface for multidimensional QoS provi-

sioning allows users to define fine-grained service requests that are later used to

(i) dynamically select the cooperative set of nodes that maximises the satisfaction

of those service constraints; and (ii) adapt the services’ QoS configuration during

runtime.

• An anytime adaptive QoS management that quickly achieves a reasonable solu-

tion’s quality is a powerful approach to ensure a timely answer to events, despite

the imprecision, uncertainty, and complexity of open real-time environments,

where actual resource needs are only known at runtime and tasks may even

exhibit unrestricted QoS inter-dependency relations.

• A simple and effective feedback mechanism can be used to reduce the complexity

of the needed interactions among nodes until a collective adaptation behaviour

is determined, whenever the autonomous self-adaptations to the changing envi-

ronmental conditions have an impact on other coalition members.

• Unused reserved capacities in server-based schedulers can be more efficiently

used to meet deadlines of tasks whose resource usage exceeds their reservations

and minimise the degree of deviation from the ideal system’s behaviour, caused

by inter-application blocking due to shared resources or precedence constraints.

9.3 Summary of the main contributions

This section presents a summary of the main contributions of this thesis.

The fundamental basis of a QoS-aware cooperative framework

To tackle the increasing demand for performance and resources in open embedded

environments, this thesis has proposed the main architecture of the CooperatES frame-

work, a cooperative computing approach based on the concept of dynamically formed

coalitions of neighbour nodes. By redistributing the computational load across a set

of nodes, a cooperative environment enables the execution of far more complex and

resource-demanding services that otherwise would be able to be executed on a stand-

alone basis.

182 CHAPTER 9. CONCLUSION

Utility-based resource allocation and adaptation policies which take into consideration

the increasing demand for customisable service provisioning, tailored to each user’s

specific QoS preferences and needs, was explored. The proposed QoS negotiation

approach goes beyond the basic QoS scheme of delivering service in a prioritised fash-

ion. Instead, it allows users and applications to specify, through a QoS specification

interface semantically rich both in terms of expressiveness and customisation, the QoS

dimensions subject to negotiation, their attributes and the quality constraints in terms

of possible values for each attribute, as well as inter-dependency relations between

some of those QoS parameters. Then, the coalition formation and service proposal

formulation algorithms fully explore the QoS tradeoffs that maximise the satisfaction

of the QoS constraints associated with new services and minimise the impact on the

global QoS caused by a new service’s arrival.

Particular attention was devoted in also maximising the users’ influence on their

services’ adaptation behaviour at runtime, proposing that the dynamic QoS arbitration

among competing services should be done under the control of the user. While some

users may prefer to always get the best possible instantaneous QoS, independently

of the reconfiguration rate of their requested services, others may find that frequent

QoS reconfigurations are undesirable. This suggests that while a resource constrained

device may not be able to avoid a downgrade of the currently provided QoS level of

some services in order to accommodate a new service with a higher utility if its granted

stability period has already expired, upgrades to a higher QoS level can and should be

controlled by each user’s stability requirements. Upgrades of currently provided QoS

levels are subject to a comparison against each user’s stability requirements, namely a

minimum utility increment and minimum stability period. Promised stability periods

are periodically updated in response to fluctuations in the tasks’ traffic flow, relating

observations of past and present environmental conditions. The achieved results clearly

demonstrate that such influence can be achieved.

An anytime QoS optimisation and adaptation approach

The increased complexity and dynamism of open real-time environments may pre-

vent the possibility of computing both optimal local and global resource allocations

within a useful and bounded time. This is true for many soft real-time applications,

where it may be preferable to have approximate results of a poorer but acceptable

quality delivered on time to late results with the desirable optimal quality. Anytime

algorithms have shown themselves to be particularly appropriate in such settings, as

they usually provide an initial, possibly highly sub-optimal, solution very quickly and

then concentrate on improving this solution until the time available for planning runs

9.3. SUMMARY OF THE MAIN CONTRIBUTIONS 183

out. Nevertheless, there as been relatively little interaction between QoS management

and anytime algorithms. QoS management research has been concentrated on finding

single optimal, or with a fixed sub-optimality bound, solutions.

This thesis has reformulated the distributed resource allocation problem for sets of

both independent and dependent task sets as a heuristic-based anytime optimisation

problem in which there is a range of acceptable solutions with varying qualities,

adapting the distributed service allocation to the available deliberation time that is

dynamically imposed as a result of emerging environmental conditions. The achieved

results clearly demonstrate that proposed anytime algorithms are able to quickly find

a good initial solution and effectively optimise the rate at which the quality of the

current solution improves at each iteration of the algorithms, with an overhead that

can be considered negligible when compared to the introduced benefits.

Support for unrestricted QoS inter-dependencies among tasks

While runtime adaptation is widely recognised as valuable, adaptations in most ex-

isting systems are limited to changing independent execution parameters. However,

embedded applications increasingly consist of interacting components that may exhibit

unrestricted QoS inter-dependencies among them. This thesis provided support for

dependent runtime adaptations that span multiple hosts and multiple components in

open distributed systems.

Whenever the outputted QoS of some task depends not only on the amount and type

of used resources but also on the quality of the received inputs sent by other tasks,

the QoS negotiation process was extended to ensure that a source task provides a QoS

which is acceptable to all consumer tasks and lies within the QoS range supported by

the source task. A service’s feasible QoS level was then defined as the set of compatible

QoS regions provided by all the dependent components that compose the service.

With inter-dependencies among local tasks, it was ensured that a valid service solution

was available at any time by tracking QoS dependencies and propagating the performed

changes to all the affected attributes, at each iteration of the proposed anytime QoS

optimisation and adaptation algorithms.

With inter-dependencies that span multiple hosts, runtime autonomous adaptations

were coordinated in order to maintain the service’s correctness. Note that a lack

of coordination among nodes in a cooperative distributed system can then lead to

interference between the different nodes’ self-management behaviour, conflicts over

shared resources, sub-optimal system performance and hysteresis effects. This thesis

has proposed an one-step decentralised coordination model, based on an effective

184 CHAPTER 9. CONCLUSION

feedback mechanism to reduce the complexity of the needed interactions until a collec-

tive adaptation behaviour is determined. Positive feedback was used to reinforce the

selection of the new desired global service solution, while negative feedback discouraged

nodes to act in a greedy fashion as this adversely impacts on the provided service levels

at neighbour nodes.

The achieved results clearly demonstrate that, while achieving similar coordinated

global QoS levels, the proposed one-step decentralised coordination model is faster and

requires few messages to be exchanged among nodes than other possible approaches

for coordinating autonomous adaptations of nodes in cooperative environments.

Novel scheduling algorithms for open systems

Predictability in open real-time environments is strictly related to the capacity of

controlling the incoming workload, preventing abrupt and unpredictable performance

degradations. As such, it is necessary to prevent a service that needs more than the

expected resource reservations to introduce unbounded delays on other services’ execu-

tion, jeopardising their performance. On the other hand, unused reserved capacities,

originated whenever a task needs less than its budgeted execution time, should be

donated to overloaded servers, in order to improve the response times of soft real-time

tasks, particularly in systems where the needed computation time is highly variable

and data dependent.

Based upon a careful study of the ways in which unused reserved capacities can

be more efficiently used to meet deadlines of tasks whose resource usage exceeds

their reservations, this thesis has presented the Capacity Sharing and Stealing (CSS)

scheduler. CSS considers the coexistence of the traditional isolated servers with a novel

non-isolated type of servers, combining an efficient reclamation of residual capacities

with a controlled isolation loss. As such, it handles overloads with additional capacity

available from two sources: (i) by greedily reclaiming unused allocated capacity when

jobs complete in less than their budgeted execution time; and (ii) by stealing allocated

capacities to inactive non-isolated servers used to schedule aperiodic best-effort jobs.

By giving priority to the overload control of guaranteed services, the achieved re-

sults demonstrate that CSS has a better performance than other available scheduling

solutions, particularly when tasks’ computation times have a large variance.

The effectiveness and reduced complexity of CSS in managing unused reserved capac-

ities, without any previous complete knowledge about the tasks’ runtime behaviour,

was used as the basis of a more powerful scheduler, able to handle dependent tasks

sets which share access to some of the system’s resources and exhibit precedence

9.4. FUTURE RESEARCH DIRECTIONS 185

constraints. Rather than trying to account borrowed capacities and exchanging them

later in the exact same amount, the proposed Capacity Exchange Protocol (CXP)

focus on greedily exchanging extra capacities as early, and not necessarily as fairly, as

possible and introduces a novel approach to integrate precedence constraints into the

task model.

The achieved results clearly justify the use of a capacity exchange mechanism that

reclaims as much capacity as possible and does not restrict itself to exchange capacities

only within a resource sharing group. It was proven that CXP achieves a better

system’s performance when compared to other available solutions and has a lower

overhead.

9.4 Future research directions

In this thesis, most of the effort has been spent on the theoretical formalisation and

evaluation of adaptive QoS management and scheduling policies for cooperative open

real-time systems. The next important step is to continue the development of the

CooperatES framework and subject the proposed algorithms to actual workloads from

real QoS-aware applications. This means that some existing applications need to be

modified, or new adaptive QoS-aware applications that can be distributed across a set

of nodes need to be developed.

Given the widespread use of embedded systems and the trend to rely more and more

on them, increased demands for dependability are expected to arise. Therefore, the

issue of dependability should play a very important role in future developments of

the CooperatES framework in order to exhibit crucial attributes such as availability,

reliability, or safety. Particular attention should be devoted into devising what will be

the future applications’ needs and what kind of support and technologies of dependable

embedded systems must be provided.

While both CSS and CXP focus on temporal aspects and constraints, they can also

include non-temporal objectives. With the current trends towards higher integration

and embedding processors in battery-powered devices, energy consumption becomes

an increasingly important issue. Dynamic Power Management (DPM) and dynamic

Voltage Scaling (DVS) have both proven to be highly effective techniques for reducing

power dissipation. DPM refers to a selective shut-off of idle system components,

while DVS slows down underutilised resources and decreases their operating voltages.

From this perspective, the goal of an energy-aware version of the proposed scheduling

186 CHAPTER 9. CONCLUSION

algorithms should not be only to select the task to be scheduled and which reserved

capacity to use, but also the CPU’s operating frequency, in order to minimise the

consumed energy but without jeopardising the schedulability of real-time tasks.

The proposed CooperatES framework assumes nodes are willing to cooperate, enabling

the formation of coalitions of nodes that share computation power for free. In a

business environment, mechanisms are needed to provide incentive for both consumers

and resource owners for being part of a shared environment. There are various

economic models for setting the price of services based on suply-and-demand and

their value to the user. It would be interesting to integrate them into the CooperatES

framework and operate in environments populated by economically motivated nodes.

Bibliography

[AAS00] T. F. Abdelzaher, E. M. Atkins, and K. G. Shin. Qos negotiation

in real-time systems and its application to automated flight control.

IEEE Transactions on Computers, Best of RTAS ’97 Special Issue,

49(11):1170–1183, November 2000.

[AB98] Luca Abeni and Giorgio Buttazzo. Integrating multimedia applications

in hard real-time systems. In Proceedings of the 19th IEEE RTSS, page 4,

Madrid, Spain, December 1998.

[Abe98] Luca Abeni. Server mechanisms for multimedia applications. Technical

report, Scuola Superiore S. Anna, 1998.

[ACH+01] M. Addlesee, R. Curwen, S. Hodges, J. Newman, P. Steggles, A. Ward,

and A. Hopper. Implementing a sentient computing system. IEE

Computer, 34(8):50–56, August 2001.

[ACS03] M. Agrawal, D. Cofer, and T. Samad. Real-time adaptive resource

management for advanced avionics. IEEE Control Systems Magazine,

23(1):6–86, February 2003.

[AL97] Emile Aarts and Jan Karel Lenstra, editors. Local search in combinatorial

optimization. John Wiley & Sons, 1997.

[ART04] ARTIST (IST-2001-34820). Selected topics in Embedded Systems Design:

Roadmaps for Research. Part III - Adaptive Real-Time Systems for Qual-

ity of Service Management, May 2004. Available at http://www.artist-

embedded.org/.

[AS98] T. Abdelzaher and K.G. Shin. End-host architecture for qos-adaptive

communication. In Proceedings of the 4th IEEE Real-Time Technology

and Applications Symposium, pages 121–130, Denver, Colorado, USA,

June 1998.

187

188 BIBLIOGRAPHY

[AS99] T.F. Abdelzaher and K.G. Shin. Qos provisioning with q contracts in

web and multimedia servers. In Proceedings of the 20th IEEE Real-Time

Systems Symposium, pages 43–53, Phoenix, Arizona, USA, December

1999.

[Bak90] Theodore P. Baker. A stack-based resource allocation policy for realtime

processes. In Proceedings of the IEEE Real-Time Systems Symposium,

pages 191–200, Lake Buena Vista, Florida, USA, December 1990.

[Bak01] D. E. Bakken. Middleware. Kluwer Academic Press, 2001.

[Bar06] Sanjoy K. Baruah. Resource sharing in edf-scheduled systems: A closer

look. In Proceedings of the 27th IEEE Real-Time Systems Symposium,

pages 379–387, Rio de Janeiro,Brazil, December 2006.

[BB02] Guillem Bernat and Alan Burns. Multiple servers and capacity sharing

for implementing flexible scheduling. Real-Time Systems, 22(1-2):49–75,

2002.

[BB04] R. Bhattacharya and G. J. Balas. Anytime control algorithm: Model

reduction approach. Journal of Guidance, Control, and Dynamics,

27(5):767–776, October 2004.

[BB06] Giorgio Buttazzo and Enrico Bini. Optimal dimensioning of a constant

bandwidth server. In Proceedings of the 27th IEE International Real-

Time Systems Symposium, pages 169–177, Rio de Janeiro, Brasil,

December 2006.

[BBB04] G. Bernat, I. Broster, and A. Burns. Rewriting history to exploit gain

time. In Proceedings of the 25th IEEE RTSS, pages 328–225, December

2004.

[BCA+01] G. S. Blair, G. Coulson, A. Andersen, M. Clarke, F. M. Costa, R. Moreira

H. A. Duran, N. Paralavantzas, and K. B. Saikoski. The design and

implementation of open orb version 2. IEEE Distributed Systems Online

Journal, 2(6), June 2001.

[BCD98] G. Blair, G. Coulson, and N. Davies. Adaptive middleware for mobile

multimedia applications. In Proceedings of the 7th International Work-

shop on Network and Operating System Support for Digital Audio and

Video, pages 259–273, St. Louis, Missouri, USA, May 1998.

BIBLIOGRAPHY 189

[BCHS01] P.G. Bridges, Wen-Ke Chen, M.A. Hiltunen, and R.D. Schlichting.

Supporting coordinated adaptation in networked systems. In Proceedings

of the Eighth Workshop on Hot Topics in Operating Systems, page 162,

Oberbayern, Germany, May 2001.

[BCRP98] G. S. Blair, G. Coulson, P. Robin, and M. Papathomas. An architecture

for next generation middleware. In Proceedings of the IFIP International

Conference on Distributed Systems Platforms and Open Distributed

Processing, pages 191–206, The Lake District, England, September 1998.

[BCS94] R. Branden, D. Clark, and S. Shenker. IETF RFC 1633: Integrated

services in the internet architecture: an overview, 1994.

[BDK+03] Craig Boutilier, Rajarshi Das, Jeffrey O. Kephart, Gerald Tesauro, and

William E. Walsh. Cooperative negotiation in autonomic systems using

incremental utility elicitation. In In Proceedings of the 19th Conference

on Uncertainty in Artificial Intelligence, pages 89–97, Acapulco,Mexico,

August 2003.

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control

and Recovery in Database Systems. Addison Wesley, 1987.

[BJ90] George Edward Pelham Box and Gwilym Jenkins. Time Series Analysis,

Forecasting and Control. Holden-Day, Incorporated, 1990.

[Bla77] Jacek Blazewicz. Scheduling dependent tasks with different arrival times

to meet deadlines. In Proceedings of the International Workshop on

Modelling and Performance Evaluation of Computer Systems, pages 57–

65, Ispra,Italy, October 1977.

[BMB+00] J. Bacon, K. Moody, J. Bates, Chaoying Ma, A. McNeil, O. Seidel, and

M. Spiteri. Generic support for distributed applications. IEE Computer,

33(3):68–76, March 2000.

[BN84] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls.

ACM Transactions on Computer Systems, 2(1):39–59, March 1984.

[BNBM98] S. Brandt, G. Nutt, T. Berk, and J. Mankovich. A dynamic quality

of service middleware agent for mediating application resource usage.

Proceedings of the 19th IEEE Real-Time Systems Symposium, pages 307–

317, December 1998.

190 BIBLIOGRAPHY

[BP04] Ricardo Barbosa and Lúıs Miguel Pinho. Mechanisms for reflection-based

monitoring of real-time systems. In Work-In-Progress Session of the 16th

ECRTS, June 2004.

[Bro63] Robert Goodell Brown. Smoothing, forecasting and prediction of discrete

time series. Prentice-Hall, Englewood Cliffs, NJ, 1963.

[BSLH05] Henrike Berthold, Sven Schmidt, Wolfgang Lehner, and Claude-Joachim

Hamann. Integrated resource management for data stream systems. In

Proceedings of the 2005 ACM Symposium on Applied Computing, pages

555–562. ACM Press, 2005.

[Bur03] M. Burgess. On the theory of system administration. Science of Computer

Programming, 49:1, 2003.

[CBCP01] M. Clarke, G. S. Blair, G. Coulson, and N. Parlavantzas. An efficient

component model for the construction of adaptive middleware. Lecture

Notes in Computer Science, 2218:160–178, 2001.

[CBS00] Marco Caccamo, Giorgio Buttazzo, and Lui Sha. Capacity sharing for

overrun control. In Proceedings of 21th IEEE RTSS, pages 295–304,

Orlando, Florida, 2000.

[CBT05] Marco Caccamo, Giorgio C. Buttazzo, and Deepu C. Thomas. Efficient

reclaiming in reservation-based real-time systems with variable execution

times. IEEE Transactions on Computers, 54(2):198–213, February 2005.

[CKK+04] Guangyu Chen, Byung-Tae Kang, Mahmut Kandemir, Narayanan Vi-

jaykrishnan, Mary Jane Irwin, and Rajarathnam Chandramouli. Study-

ing energy trade offs in offloading computation/compilation in java-

enabled mobile devices. IEEE Transactions on Parallel and Distributed

Systems, 15(9):795–809, 2004.

[CL90] Min-Ih Chen and Kwei-Jay Lin. Dynamic priority ceilings: a concurrency

control protocol for real-time systems. Real-Time Systems, 2(4):325–346,

1990.

[Cora] Microsoft Corporation. Distributed component object model. Available

at http://msdn.microsoft.com/en-us/library/ms809340.aspx.

[Corb] Microsoft Corporation. Microsoft .net framework. Available at http:

//msdn.microsoft.com/en-us/netframework/default.aspx.

BIBLIOGRAPHY 191

[CP03] Antoine Colin and Stefan M. Petters. Experimental evaluation of code

properties for wcet analysis. In Proceedings of the 24th IEEE RTSS, pages

190–199, December 2003.

[CPM+04] Tommaso Cucinotta, Luigi Palopoli, Luca Marzario, Giuseppe Lipari,

and Luca Abeni. Adaptive reservations in a linux environment. In

Proceedings of the 10th IEEE Real-Time and Embedded Technology and

Applications Symposium, pages 238–245, Toronto, Canada, May 2004.

[Crn02] Ivica Crnkovic. Building Reliable Component-Based Software Systems.

Artech House, Inc., Norwood, MA, USA, 2002.

[CS01] Marco Caccamo and Lui Sha. Aperiodic servers with resource constraints.

In Proceedings of the 22nd IEEE Real-Time Systems Symposium, pages

161–170, London, UK, December 2001.

[CSB90] H. Chetto, M. Silly, and T. Bouchentouf. Dynamic scheduling of real-time

tasks under precedence constraints. Real-Time Systems, 2(3):181–194,

1990.

[CSKO02] A. Corsaro, D. Schmidt, R. Klefstad, and C. O’Ryan. Virtual component

- a design pattern for memory constrained embedded applications. In

Proceedings of the 9th Conference on Pattern Language of Programs,

Monticello, Illinois, September 2002.

[CSZ92] D. Clark, S. Shenker, and L. Zhangn. Supporting real-time applications

in an integrated services packet network: Architecture and mechanism.

In Proceedings of the SIGCOMM’92 Symposium on Communications

Architectures and Protocols, pages 14–26, October 1992.

[CT94] C.L. Compton and D.L. Tennenhouse. Collaborative load shedding for

media-based applications. Proceedings of the International Conference

on Multimedia Computing and Systems, pages 496–501, May 1994.

[Dav93] R. I. Davis. Approximate slack stealing algorithms for fixed priority

preemptive systems. Technical report, Department of Computer Science,

University of York, November 1993.

[DB88] T. Dean and M. Boddy. An analysis of time-dependent planning. In

Proceedings of the 7th National Conference on Artificial Intelligence,

pages 49–54, 1988.

192 BIBLIOGRAPHY

[DC99] Marco Dorigo and Gianni Di Caro. The ant colony optimization meta-

heuristic. New ideas in optimization, pages 11–32, 1999.

[DC07] Ivana Dusparic and Vinny Cahill. Research issues in multiple policy

optimization using collaborative reinforcement learning. In Proceedings

of the 2007 International Workshop on Software Engineering for Adaptive

and Self-Managing Systems, page 18, Washington, DC, USA, 2007. IEEE

Computer Society.

[DdIA] Politecnico di Milano Dipartimento di Ingegneria Aerospaziale. Realtime

application interface for linux. Available at http://www.rtai.org/.

[DH08] Jim Dowling and Seif Haridi. Decentralized Reinforcement Learning

for the Online Optimization of Distributed Systems, chapter in Rein-

forcement Learning: Theory and Applications, pages 142–167. I-Tech

Education and Publishing, Vienna, Austria, 2008.

[DLS97] Z. Deng, J.W.-S. Liu, and J. Sun. A scheme for scheduling hard real-

time applications in open system environment. In Proceedings of the

9th Euromicro Workshop on Real-Time Systems, pages 191–199, Toledo,

Spain, June 1997.

[DTB93] R. I. Davis, K. W. Tindell, and A. Burns. Scheduling slack time in fixed

priority preemptive systems. In Proceedings of the 14th RTSS, pages

222–231, 1993.

[DWH03] T. De Wolf and T. Holvoet. Towards autonomic computing: agent-based

modelling, dynamical systems analysis, and decentralised control. Pro-

ceedings of the IEEE International Conference on Industrial Informatics,

pages 470–479, August 2003.

[EEGL03] Viktor S. Wold Eide, Frank Eliassen, Ole-Christoffer Granmo, and

Olav Lysne. Supporting timeliness and accuracy in distributed real-

time content-based video analysis. In Proceedings of the 11th ACM

international conference on Multimedia, pages 21–32. ACM Press, 2003.

[EM] Valerie J. Easton and John H. McColl. Statistics glosarry. Available at

http://www.stats.gla.ac.uk/steps/glossary/index.html.

[Emb] Embedded.com. The rtos buyers guide. Available at http://www.

embedded.com/.

BIBLIOGRAPHY 193

[Emm00] W. Emmerich. Software engineering and middleware: a roadmap. In

Proceedings of the Conference on the future of software engineering, pages

117–129, Limerick, Ireland, June 2000.

[Fan95] Changpeng Fan. Realizing a soft real-time framework for supporting

distributed multimedia applications. In Proceedings of the 5th IEEE

Workshop on Future Trends of Distributed Computing Systems, page 128,

Washington, DC, USA, 1995. IEEE Computer Society.

[FDC02] A. Friday, N. Davies, and K. Cheverst. Utilising the event calculus

for policy driven adaptation on mobile systems. In Proceedings of

the 3rd International Workshop on Policies for Distributed Systems

and Networks, page 13, Washington, DC, USA, 2002. IEEE Computer

Society.

[FFR+04] Ian Foster, Markus Fidlerc, Alain Royd, Volker Sandere, and Linda

Winkler. End-to-end quality of service for high-end applications. Elsevier

Computer Communications Journal, 27(14):1375–1388, September 2004.

[Foh95] G. Fohler. Joint scheduling of distributed complex periodic and hard

aperiodic tasks in statically scheduled systems. In Proceedings of the 16th

IEEE Real-Time Systems Symposium, page 152, Pisa, Italy, December

1995.

[Fou] Real-Time Linux Foundation. List of real-time linux variants. Available

at http://www.realtimelinuxfoundation.org/variants/variants.

html.

[FWMM97] K. Fukuda, N. Wakamiya, M. Murata, and H. Miyahara. Qos mapping

between user’s preference and bandwidth control for video transport.

In Proceedings of the 5th International Workshop on Quality of Service,

pages 291–302, New York,USA, 1997.

[GAKT03] Sven Graupner, Artur Andrzejak, Vadim Kotov, and Holger Trinks.

Adaptive control overlay for service management. In First Workshop on

the Design of Self-Managing Systems, San Francisco, USA, June 2003.

[Gar99] Goutham Garimella. Advance cpu reservations with the dynamic soft

real-time scheduler. Master’s thesis, Department of Computer Science,

University of Illinois at Urbana-Champaign, May 1999.

194 BIBLIOGRAPHY

[GC92] David Gelernter and Nicholas Carriero. Coordination languages and their

significance. Communications of the ACM, 35(2):96–107, 1992.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:

Elements od Reusable Object-Oriented Software. Professional Computing

Series. Addison-Wesley, 1995.

[GHRL04] Sourav Ghosh, Jeffery Hansen, Ragunathan (Raj) Rajkumar, and John

Lehoczky. Adaptive qos optimizations with applications to radar

tracking. In Proceedings of the 10th International Conference on Real-

Time and Embedded Computing Systems and Applications, Gothenburg,

Sweden, August 2004.

[GJST81] M. R. Garey, D. S. Johnson, B. B. Simons, and R. E. Tarjan. Scheduling

unit-time tasks with arbitrary release times and deadlines. SIAM Journal

on Computing, 10(2):256–269, May 1981.

[GK04] Dina Goldin and David Keil. Toward domain-independent formalization

of indirect interaction. In Proceedings of the 13th IEEE International

Workshops on Enabling Technologies: Infrastructure for Collaborative

Enterprises, pages 393–394, Washington, DC, USA, 2004. IEEE Com-

puter Society.

[GMG+04] Xiaohui Gu, Alan Messer, Ira Greenberg, Dejan Milojicic, and Klara

Nahrstedt. Adaptive offloading for pervasive computing. IEEE Pervasive

Computing Magazine, 3(3):66–73, 2004.

[GP99] Vera Goebel and Thomas Plagemann. Mapping user-level qos to system-

level qos and resources in a distributed lecture-on-demand system. In

IEEE Computer Society, editor, Proceedings of The 7th IEEE Workshop

on Future Trends of Distributed Computing Systems, page 197, 199.

[GRH+03] Sourav Ghosh, Ragunathan Rajkumar, Jeffery P. Hansen, , and John P.

Lehoczky. Scalable resource allocation for multi-processor qos optimiza-

tion. In Proceedings of the 23rd International Conference on Distributed

Computing Systems, page 174, Rhode Island, USA, May 2003. IEEE

Computer Society.

[GRHL04] Sourav Ghosh, Ragunathan (Raj) Rajkumar, Jeffery Hansen, and John

Lehoczky. Integrated resource management and scheduling with multi-

resource constraints. In Proceedings of the 25th IEEE Real-Time Systems

Symposium, pages 12–22, Lisbon, Portugal, December 2004.

BIBLIOGRAPHY 195

[Groa] Object Management Group. The common object request broker:

Architecture and specification revision 3.1. Available at http://www.

omg.org/technology/documents/corba_spec_catalog.htm.

[Grob] Object Management Group. The common object request broker archi-

tecture for embedded specification. Available at http://www.omg.org/

docs/formal/08-11-06.pdf.

[Groc] Object Management Group. Real-time corba specification version 1.2.

Available at http://www.omg.org/docs/formal/05-01-04.pdf.

[Gro97] Open Group. Dce 1.1: Remote procedure calls, 1997.

[GS96] L. Gilman and R. Schreiber. Distributed Computing with IBM MQSeries.

Wiley, 1996.

[GVARG02] M. Garćıa-Valls, A. Alonso, J. F. Ruiz, and A. Groba. An architecture of

a quality of service resource manager middleware for flexible multimedia

embedded systems. In Proceedings of the 3rd International Workshop on

Software Engineering and Middleware, pages 39–57, Orlando, Florida,

USA, May 2002.

[Hal96] C. L. Hall. Building Client/Server Applications Using TUXEDO. Wiley,

1996.

[Haw03] Nicholas Hawes. Anytime Deliberation for Computer Game Agents. PhD

thesis, School of Computer Science, The University of Birmingham,

November 2003.

[Hay97] R. Hayton. Flexinet open orb framework. Technical report, APM Ltd,

Cambridge, UK, October 1997.

[HB01] J. Hightower and G. Borriello. Location systems for ubiquitous comput-

ing. IEE Computer, 34(8):57–66, August 2001.

[HBS99] M. Hapner, R. Burridge, and R. Sharma. Java message service

specification. Technical report, Sun Microsystems, 1999.

[HFL95] D. L. Hull, W. Feng, and J. W.-S. Liu. Enhancing the performance

and dependability of real-time systems. In Proceedings of the IEEE

International Computer Performance and Dependability Symposium,

pages 174–182, Erlangen, Germany, April 1995.

196 BIBLIOGRAPHY

[HLR01] Jeffery P. Hansen, John Lehoczky, and Ragunathan Rajkumar. Opti-

mization of quality of service in dynamic systems. In Proceedings of

the 9th International Workshop on Parallel and Distributed Real-Time

Systems, April 2001.

[HLS97] T. Harrison, D. Levine, and D. Schmidt. The design and performance of

a real-time corba event service. In Proceedings of the ACM Conference

on Object Oriented Programming Systems, Languages and Applications,

pages 184–200, Atlanta, Georgia, USA, October 1997.

[Hor88] Eric J. Horvitz. Reasoning under varying and uncertain resource

constraints. In Proceedings of the 7th National Conference on Artificial

Intelligence, pages 111–116, 1988.

[Hud94] E. S. Hudders. CICS: A Guide to Internal Structure. Wiley, 1994.

[Iba88] T. Ibaraki. Enumerative approaches to combinatorial optimization - part

i. Annals of Operation Research, 10(1-4):3–342, 1988.

[IK75] O. Ibarra and C. Kim. Fast approximation algorithms for the knapsack

and sum of subset problems. Journal of ACM, 22:463–468, 1975.

[IT95] ITU-T/ISO. Reference Model for Open Distributed Processing, RM-ODP

(ISO/IEC 10746) X.901-X.904, 1995.

[JB95] Kevin Jeffay and David Bennett. A rate-based execution abstraction for

multimedia computing. In Proceedings of the 5th International Workshop

on Network and Operating System Support for Digital Audio and Video,

pages 64–75, London, UK, 1995. Springer-Verlag.

[Jef92] Kevin Jeffay. Scheduling sporadic tasks with shared resources in hard-

real-time systems. In Proceedings of the IEEE Real-Time Systems

Symposium, pages 89–99, Phoenix, Arizona, USA, December 1992.

[JLDB95] M. Jones, P. Leach, R. Draves, and J. Barrera. Modular real-time resource

management in the rialto operating system. In Proceedings of the Fifth

Workshop on Hot Topics in Operating Systems, page 12. IEEE Computer

Society, 1995.

[JLT85] E. D. Jensen, C. D. Locke, and H. Tokuda. A time-driven scheduling

model for real-time operating systems. In Proceedings of the 6th IEEE

Real-Time Systems Symposium, December 1985.

BIBLIOGRAPHY 197

[JMB04] Mark Jelasity, Alberto Montresor, and Ozalp Babaoglu. A modular

paradigm for building self-organizing peer-to-peer applications. In In

Engineering Self-Organising Systems, G. Di Marzo Serugendo, pages

265–282. Springer, 2004.

[JN04] Jingwen Jin and Klara Nahrstedt. Qos specification languages for

distributed multimedia applications: A survey and taxonomy. IEEE

MultiMedia, 11(3):74–87, 2004.

[JRR97] Michael B. Jones, Daniela Roşu, and Marcel-Cătălin Roşu. Cpu

reservations and time constraints: efficient, predictable scheduling of

independent activities. In Proceedings of the 16th ACM Symposium on

Operating Systems Principles, pages 198–211, October 1997.

[KBH+01a] R. Koster, A. P. Black, J. Huang, J. Walpole, and C. Pu. Infopipes

for composing distributed information flows. In Proceedings of the In-

ternational Workshop on Multimedia Middleware, pages 44–47, Ottawa,

Ontario, Canada, October 2001.

[KBH+01b] R. Koster, A. P. Black, J. Huang, J. Walpole, and C. Pu. Thread

transparency in information flow middleware. In Proceedings of the

IFIP/ACM International Conference on Distributed Systems Platforms

and Open Distributed Processing, pages 121–140, Heidelberg, Germany,

November 2001.

[Kha98] S. Khan. Quality Adaptation in a Multisession Multimedia System:

Model, Algorithms and Architecture. PhD thesis, University of Victoria,

1998.

[KHR01] Ulrich Kermer, Jamey Hicks, and James Rehg. A compilation framework

for power and energy management on mobile computers. In 14th

International Workshop on Parallel Computing, pages 115–131, 2001.

[Kos02] R. Koster. A Middleware Platform for Information Flows. PhD thesis,

Department of Computer Science, University of Kaiserslautern, Germany,

July 2002.

[KR06] K. Kwiat and Shangping Ren. A coordination model for improving

software system attack-tolerance and survivability in open hostile en-

vironments. In Proceedings of the IEEE International Conference on

198 BIBLIOGRAPHY

Sensor Networks, Ubiquitous, and Trustworthy Computing, pages 394–

402, Taichung, Tawain, June 2006.

[KRL+00] F. Kon, M. Roman, P. Liu, J. Mao, T. Yamane, L. C. Magalhaes,

and R. H. Campbell. Monitoring, security, and dynamic configuration

with the dynamictao reflective orb. In Proceedings of the IFIP/ACM

International Conference on Distributed Systems Platforms, pages 121–

143, New York, USA, 2000.

[KRP+93] Mark H. Klein, Thomas Ralya, Bill Pollak, Ray Obenza, and

Michael González Harbour. A practitioner’s handbook for real-time

analysis. Kluwer Academic Publishers, Norwell, MA, USA, 1993.

[Lab] Ericsson Computer Science Laboratory. Open source erlang. Available

at http://www.erlang.org/.

[LB00] Giuseppe Lipari and Sanjoy Baruah. Greedy reclamation of unused

bandwidth in constant-bandwidth servers. In Proceedings of the 12th

ECRTS, pages 193–200, Stockholm, Sweden, 2000.

[LB05] Caixue Lin and Scott A. Brandt. Improving soft real-time performance

through better slack reclaiming. In Proceedings of the 26th IEEE RTSS,

pages 410–421, 2005.

[LK00] Averill M. Law and W. David Kelton. Simulation modeling and analysis.

McGraw-Hill, 3rd edition, 2000.

[LKRM96] C. Lee, Y. Katsuhiko, R. Rajkumar, and C. Mercer. Predictable

communication protocol processing in real-time mach. In Proceedings

of the IEEE Real-Time Technology and Applications Symposium, June

1996.

[LL73] C. L. Liu and J. Layland. Scheduling algorithms for multiprogramming

in a hard-real-time environment. Journal of the ACM, 1(20):40–61, 1973.

[LL07] Chunlin Li and Layuan Li. Utility-based qos optimisation strategy for

multi-criteria scheduling on the grid. Journal of Parallel and Distributed

Computing, 67(2):142–153, 2007.

[LLA01] Gerardo Lamastra, Giuseppe Lipari, and Luca Abeni. A bandwidth

inheritance algorithm for real-time task synchronization in open systems.

BIBLIOGRAPHY 199

In Proceedings of the 22nd IEEE Real-Time Systems Symposium, pages

151–160, London, UK, December 2001.

[LLA04] Giuseppe Lipari, Gerardo Lamastra, and Luca Abeni. Task synchro-

nization in reservation-based real-time systems. IEEE Transactions on

Computers, 53(12):1591–1601, 2004.

[LLB+94] Jane W. S. Liu, Kwei-Jay Lin, Riccardo Bettati, David Hull, and Albert

Yu. Use of imprecise computation to enhance dependability of real-

time systems. Foundations of Dependable Computing: Paradigms for

Dependable Applications, pages 157–182, 1994.

[LLS+91] Jane W.S. Liu, Kwei-Jay Lin, Wei-Kuan Shih, Albert Chuang shi Yu,

Jen-Yao Chung, and Wei Zhao. Algorithms for scheduling imprecise

computations. IEEE Computer, 24(5):58–68, 1991.

[LLS+99] Chen Lee, John Lehoczky, Dan Siewiorek, Ragunathan Rajkumar, and

Jef Hansen. A scalable solution to the multi-resource qos problem. In

Proceedings of the 20th IEEE Real-Time Systems Symposium, pages 315–

326, 1999.

[LRT92] J. P. Lehoczky and S. Ramos-Thuel. An optimal algorithm for scheduling

soft-aperiodic tasks fixed-priority preemptive systems. In Proceedings of

the 13th RTSS, pages 110–123, December 1992.

[LW82] J. Leung and J. Whitehead. On the complexity of fixed-priority

scheduling of periodic real-time tasks. Performance Evaluation, 2(4):237–

250, December 1982.

[LWX01] Zhiyuan Li, Cheng Wang, and Rong Xu. Computation offloading to save

energy on handheld devices: a partition scheme. In Proceedings of the

2001 International Conference on Compilers, Architecture and Synthesis

for Embedded Systems, pages 238–246. ACM Press, 2001.

[LWX02] Zhiyuan Li, Cheng Wang, and Rong Xu. Task allocation for distributed

multimedia processing on wirelessly networked handheld devices. In Pro-

ceedings of the 16th International Symposium on Parallel and Distributed

Processing, page 79. IEE Computer Society, 2002.

[MAC+82] S. Makridakis, A. Andersen, R. Carbone, R. Fildes, M. Hibon,

R. Lewandowski, J. Newton, E. Parzen, and R. Winkler. The accuracy of

200 BIBLIOGRAPHY

extrapolation (time series) methods: Results of a forecasting competition.

Journal of Forecasting, 1:111–153, 1982.

[MC94] Thomas W. Malone and Kevin Crowston. The interdisciplinary study of

coordination. ACM Computing Surveys, 26(1):87–119, 1994.

[MC02] R. Meier and V. Cahill. Steam: Event-based middleware for wireless

ad-hoc networks. In Proceedings of the International Workshop on

Distributed Event-Based Systems, pages 639–644, Vienna, Austria, July

2002.

[MFSV06] L. Mangeruca, A. Ferrari, and A. L. Sangiovanni-Vincentelli. Uniproces-

sor scheduling under precedence constraints. In Proceedings of the 12th

IEEE Real-Time and Embedded Technology and Applications Symposium,

pages 157–166, San Jose, CA, USA, April 2006.

[Mica] Sun Microsystems. Java remote method invocation. Available at http:

//java.sun.com/javase/technologies/core/basic/rmi/index.jsp.

[Micb] Sun Microsystems. Jini. Available at http://www.jini.org/.

[MJ95] S. McCanne and V. Jacobson. Vic: A flexible framework for packet video.

In Proceedings of the ACM Multimedia’ 95, November 1995.

[MLBC04] Luca Marzario, Giuseppe Lipari, Patricia Balbastre, and Alfons Crespo.

Iris: A new reclaiming algorithm for server-based real-time systems. In

Proceedings of the 10th IEEE RTAS, page 211, Toronto, Canada, 2004.

[MMB03] Alberto Montresor, Hein Meling, and Özalp Babaoglu. Toward self-

organizing, self-repairing and resilient distributed systems. In Future

Directions in Distributed Computing, pages 119–126, 2003.

[MN98] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-

dimensionally equidistributed uniform pseudo-random number generator.

ACM Transactions on Modeling and Computer Simulation (TOMACS),

8(1):3–30, 1998.

[MOFR01] L. Marcenaro, F. Oberti, G. L. Foresti, and C. S. Regazzoni. Distributed

architectures and logical-task decomposition in multimedia surveillance

systems. Proceedings of the IEEE, 89(10):1419–1440, October 2001.

BIBLIOGRAPHY 201

[Mok83] A.K. Mok. Fundamental Design Problems of Distributed Systems for the

Hard Real-Time Environment. PhD thesis, Massachusetts Institute of

Technology, 1983.

[MR02] Sebastian Möller and Alexander Raake. Telephone speech quality

prediction: towards network planning and monitoring models for modern

network scenarios. Speech Communication, 38(1):47–75, 2002.

[MST94] Clifford W. Mercer, Stefan Savage, and Hideyuki Tokuda. Processor

capacity reserves: Operating system support for multimedia applications.

In Proceedings of the IEEE International Conference on Multimedia

Computing and Systems, pages 90–99, 1994.

[MT90] Silvano Martello and Paolo Toth. Knapsack Problems: Algorithms and

Computer Implementations. John Wiley & Sons, 1990.

[Nak98] Kaoru Nakazono. Frame rate as a qos parameter and its influence on

speech perception. Multimedia Systems, 6(5):359–366, 1998.

[NBBB98] K. Nichols, S. Blake, F. Baker, and D. Black. IETF RFC 2474: Definition

of the differentiated services field (ds field) in the ipv4 and ipv6 headers,

1998.

[NhCN98] K. Nahrstedt, H. hua Chu, and S. Narayan. Qos-aware resource

management for distributed multimedia applications. Journal of High

Speed Networks, 7(3-4):229–257, December 1998.

[NL97] Jason Nieh and Monica Lam. The design, implementation and evaluation

of smart: a scheduler for multimedia applications. In Proceedings of the

16th ACM Symposium on Operating Systems Principles, pages 184–197,

October 1997.

[NP05] Lúıs Nogueira and Lúıs Miguel Pinho. Dynamic qos-aware coalition

formation. In Proceedings of the 19th IEEE International Parallel and

Distributed Processing Symposium, page 135, Denver, Colorado, April

2005.

[NP06a] Lúıs Nogueira and Lúıs Miguel Pinho. Building adaptable, qos-aware

dependable embedded systems. In Proceedings of the 3rd International

Workshop on Dependable Embedded Systems, pages 72–77, Leeds, United

Kingdom, October 2006.

202 BIBLIOGRAPHY

[NP06b] Lúıs Nogueira and Lúıs Miguel Pinho. Dynamic adaptation of stability

periods for service level agreements. In Proceedings of the 12th IEEE In-

ternational Conference on Embedded and Real-Time Computing Systems

and Applications, pages 77–81, Sydney, Australia, August 2006.

[NP06c] Lúıs Nogueira and Lúıs Miguel Pinho. Iterative refinement approach

for qos-aware service configuration. IFIP From Model-Driven Design to

Resource Management for Distributed Embedded Systems, 225:155–164,

2006.

[NP07a] Lúıs Nogueira and Lúıs Miguel Pinho. Capacity sharing and stealing in

dynamic server-based real-time systems. In Proceedings of the 21th IEEE

International Parallel and Distributed Processing Symposium, page 153,

Long Beach,CA,USA, March 2007.

[NP07b] Lúıs Nogueira and Lúıs Miguel Pinho. Handling shared resources and

precedence constraints in open systems. In Proceedings of the WiP session

of the 19th Euromicro Conference on Real-Time Systems, Pisa, Italy, July

2007.

[NP08a] Lúıs Nogueira and Lúıs Miguel Pinho. Dynamic qos adaptation of inter-

dependent task sets in cooperative embedded systems. In Proceedings of

the 2nd ACM International Conference on Autonomic Computing and

Communication Systems, page 97, Turin,Italy, September 2008.

[NP08b] Lúıs Nogueira and Lúıs Miguel Pinho. Handling qos dependencies in

distributed cooperative real-time systems. IFIP Distributed Embedded

Systems: Design, Middleware and Resources, September 2008.

[NP08c] Lúıs Nogueira and Lúıs Miguel Pinho. Shared resources and precedence

constraints with capacity sharing and stealing. In Proceedings of the

22th IEEE International Parallel and Distributed Processing Symposium,

page 97, Miami,Florida,USA, April 2008.

[NP09a] Lúıs Nogueira and Lúıs Miguel Pinho. Coordinated runtime adap-

tations in cooperative open real-time systems. In Proceedings of the

7th IEEE/IFIP International Conference on Embedded and Ubiquitous

Computing, Vancouver, Canada, August 2009.

[NP09b] Lúıs Nogueira and Lúıs Miguel Pinho. Time-bounded distributed qos-

aware service configuration in heterogeneous cooperative environments.

Journal of Parallel and Distributed Computing, 69(6):491–507, June 2009.

BIBLIOGRAPHY 203

[Off] DARPA Information Technology Office. An integrated multi-layer

approach to software enabled control: Mission planning to vehicle con-

trol. Available at http://www.aem.umn.edu/people/faculty/balas/

darpa_sec/index.html.

[OH98] Mazliza Othman and Stephen Hailes. Power conservation strategy for

mobile computers using load sharing. SIGMOBILE Mobile Computing

Communications Review, 2(1):44–51, 1998.

[PNB05] Lúıs Miguel Pinho, Lúıs Nogueira, and Ricardo Barbosa. An ada

framework for qos-aware applications. In Proceedings of the 10th

Ada-Europe International Conference on Reliable Software Technologies,

pages 25–38, York, UK, June 2005.

[PVC+05] L. Palopoli, P. Valente, T. Cucinotta, L. Marzario, and A. Mancina.

A unified framework for multiple type resource scheduling with qos

guarantees. In Proceedings of the Workshop on Operating Systems

Platforms for Embedded Real-Time Applications, pages 67–75, Palma de

Mallorca, Spain, July 2005.

[Riva] Wind River. Real-time linux. Available at http://www.windriver.com/

products/platforms/real-time_core/.

[Rivb] Wind River. Vxworks rtos. Available at http://www.windriver.com/

products/vxworks/.

[RJM+98] R. Rajkumar, K. Juvva, A. Molano, , and S. Oikawa. Resource kernels:

A resource-centric approach to real-time and multimedia systems. In

Proceedings of the SPIE/ACM Conference on Multimedia Computing and

Networking, 1998.

[RLLS97] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A resource

allocation model for qos management. In Proceedings of the 18th IEEE

Real-Time Systems Symposium, page 298. IEEE Computer Society, 1997.

[Rod02] G. Rodosek. Quality aspects in it service management. In Proceedings

of the 13th IFIP/IEEE Internation Workshop on Distributed Systems:

Operations and Management, pages 82–93, Montereal, Canada, October

2002.

[RRPK98] Alexey Rudenko, Peter Reiher, Gerald J. Popek, and Geoffrey H.

Kuenning. Saving portable computer battery power through remote

204 BIBLIOGRAPHY

process execution. Mobile Computing and Communications Review,

2(1):19–26, 1998.

[RS94] K. Ramamritham and J.A. Stankovic. Scheduling algorithms and

operating systems support for real-time systems. Proceedings of the

IEEE, 82(1):55–67, January 1994.

[RST06] Shangping Ren, Limin Shen, and J. Tsai. Reconfigurable coordination

model for dynamic autonomous real-time systems. In Proceedings of

the IEEE International Conference on Sensor Networks, Ubiquitous, and

Trustworthy Computing, pages 60–67, Taichung, Tawain, June 2006.

[RtMSL] Real-time and Carnegie Mellon University Multimedia Systems Labo-

ratory. Linux/resource kernel. Available at http://www.cs.cmu.edu/

~rajkumar/linux-rk.html.

[Sah75] S. Sahni. Approximation algorithms for the 0-1 knapsack problem.

Journal of ACM, 23:555–565, 1975.

[SB94] Marco Spuri and Giorgio Buttazzo. Efficient aperiodic service under

earliest deadline scheduling. In Proceedings of the 15th IEEE Real-Time

System Symposium, pages 2–11, San Juan, Puerto Rico, December 1994.

[SCC04] John Shackleton, Darren Cofer, and Saul Cooper. Anytime scheduling

for real-time embedded control applications. In Proceedings of the 23rd

Digital Avionics Systems Conference, volume 2, pages 101–110, Salt Lake

City, UT, USA, October 2004.

[SCFJ96] H. Schulzrinne, S. Casner, R. Frederic, and V. Jacobson. IETF RFC

1889: Rtp: A transport protocol for real-time applications, 1996.

[Sch93] D. C. Schmidt. The adaptive communication environment: An object-

oriented network programming toolkit for developing communication

software. Concurrency: Practice and Experience, 5(4):269–286, 1993.

[SCZ05] Michael Stonebraker, Ugur Cetintemel, and Stan Zdonik. The 8

requirements of real-time stream processing. SIGMOD Record, 34(4):42–

47, 2005.

[SdML99] Mallikarjun Shankar, Miguel de Miguel, and Jane W. S. Liu. An

end-to-end qos management architecture. In Proceedings of the 5th

BIBLIOGRAPHY 205

IEEE Real-Time Technology and Applications Symposium, pages 176–

191, Washington, DC, USA, 1999. IEEE Computer Society.

[Ser06] G. Di Marzo Serugendo. Autonomous Systems with Emergent Behaviour,

chapter Handbook of Research on Nature Inspired Computing for

Economy and Management, pages 429–443. Idea Group, Inc., Hershey-

PA, USA, September 2006.

[SH02] D. C. Schmidt and S. D. Huston. C++ Network Programming: Mastering

Complexity Using ACE and Patterns. Addison-Wesley, 2002.

[SLM98] D. C. Schmidt, D. L. Levine, and S. Mungee. The design of the tao

real-time object request broker. Computer Communications, 21:294–324,

April 1998.

[SLS04] Rodrigo Santos, Giuseppe Lipari, and Jorge Santos. Scheduling open

dynamic systems: The clearing fund algorithm. In Proceedings of the

10th International Conference on Real-Time and Embedded Computing

Systems and Applications, pages 114–129, Gothenburg, Sweden, August

2004.

[SLS+06] Praveen Kaushik Sharma, Joseph Loyall, Richard E. Schantz, Jianming

Ye, Prakash Manghwani, Matthew Gillen, and George T. Heineman.

Managing end-to-end qos in distributed embedded applications. IEEE

Internet Computing, 10(3):16–23, 2006.

[SLSL05] Sven Schmidt, Thomas Legler, Daniel Schaller, and Wolfgang Lehner.

Real-time scheduling for data stream management systems. In Proceed-

ings of the 17th Euromicro Conference on Real-Time Systems, pages 167–

176, 2005.

[SMK03] S. M. Sadjadi, P. K. McKinley, and E. P. Kasten. Architecture and

operation of an adaptable communication substrate. In Proceedings of

the 9th IEE International Workshop on Future Trends of Distributed

Computing Systems, pages 46–55, May 2003.

[Sri95] R. Srinivasan. IETF RFC 1831: Open network computing remote

procedure call – version 2, 1995.

[SRL90] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance proto-

cols: an approach to real-time synchronisation. IEEE Transaction on

Computers, 39(9):1175–1185, 1990.

206 BIBLIOGRAPHY

[SS94] Marco Spuri and John A. Stankovic. How to integrate precedence con-

straints and shared resources in real-time scheduling. IEEE Transactions

on Computers, 43(12):1407–1412, 1994.

[SSL89] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for hard

real-time systems. Journal of Real-Time Systems, 1(1):27–60, 1989.

[Sta88] John A. Stankovic. Misconceptions about real-time computing: A serious

problem for next-generation systems. Computer, 21(10):10–19, 1988.

[SWM95] Richard Staehli, Jonathan Walpole, and David Maier. A quality-of-

service specification for multimedia presentations. Multimedia Syst., 3(5-

6):251–263, 1995.

[TK93] H. Tokuda and T. Kitayama. Dynamic qos control based on real-time

threads. In Proceedings of the Fourth International Workshop on Network

and Operating System Support for Digital Audio and Video, pages 113–

122, November 1993.

[TUoA] Computer Science Department The University of Arizona. The cactus

project. Available at http://www.cs.arizona.edu/projects/cactus/.

[vdBFK06] Jur van den Berg, David Ferguson, and James Kuffner. Anytime path

planning and replanning in dynamic environments. In Proceedings of

the IEEE International Conference on Robotics and Automation, pages

2366– 2371, Orlando, Florida, USA, May 2006.

[vHtT00] F. van Harmelen and A. ten Teije. Describing problem solving methods

using anytime performance profiles. In Proceedings of ECAI’00, pages

181–186, Berlin, August 2000.

[VN97] Nalini Venkatasubramanian and Klara Nahrstedt. An integrated metric

for video qos. In MULTIMEDIA ’97: Proceedings of the fifth ACM

international conference on Multimedia, pages 371–380, New York, NY,

USA, 1997. ACM.

[WEE+07] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,

Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand,

Reinhold Heckmann, Tulika Mitra, Frank Muller, Isabelle Puaut, Peter

Puschner, Jan Staschulat, and Per Stenström. The worst-case execution

time problem - overview of methods and survey of tools. ACM

Transactions on Embedded Computing Systems, 2007.

BIBLIOGRAPHY 207

[WF08] G. R. Wiedenhoft and A. A. Fröhlich. Using imprecise computation

techniques for power management in real-time embedded systems. In

Proceedings of the 6th IFIP Working Conference on Distributed and

Parallel Embedded Systems, pages 121–130, Milano, Italy, September

2008.

[WL04] Cheng Wang and Zhiyuan Li. Parametric analysis for adaptive computa-

tion offloading. In Proceedings of the ACM SIGPLAN 2004 Conference

on Programming Language Design and Implementation, pages 119–130.

ACM Press, 2004.

[WLP02] Song Wang, Kwei-Jay Lin, and Song Peng. Bwe: A resource sharing

protocol for multimedia systems with bandwidth reservation. In Proceed-

ings of the 4th IEEE International Symposium on Multimedia Software

Engineering, pages 158–165, New-port Beach,CA,USA, December 2002.

[WS00] X. Wang and H Schulzrinne. An integrated resource negotiation, pricing,

and qos adaptation framework for multimedia applications. IEEE Journal

on Selected Areas in Communications, 18(12):2514–2529, December 2000.

[WSK03] N. Wang, D. C. Schmidt, and M. Kircher. Towards an adaptive and

reflective middleware framework for qos-enabled corba component model

applications. IEE Distributed System Online Special Issue on Reflective

Middleware, 2003.

[WWGF08] Geovani Ricardo Wiedenhoft, Lucas Francisco Wanner, Giovani Gracioli,

and Antônio Augusto Fröhlich. Power management in the epos system.

ACM SIGOPS Operating Systems Review, 42(6):71–80, October 2008.

[YVH08] Heng Yu, Bharadwaj Veeravalli, and Yajun Ha. Dynamic scheduling of

imprecise-computation tasks in maximizing qos under energy constraints

for embedded systems. In Proceedings of the 13th Conference on Asia

and South Pacific Design Automation, pages 452–455. IEEE Computer

Society Press, January 2008.

[ZBS97] J. Zinky, D. Bakken, and R. Schantz. Architecture support for quality of

service for corba objects. Theory and Practice of Object Systems, 3(1),

January 1997.

[ZDE+93] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala. Rsvp: A

new resource reservation protocol. IEEE Network, pages 8–18, September

1993.

208 BIBLIOGRAPHY

[Zil93] Shlomo Zilberstein. Operational Rationality Through Compilation of

Anytime Algorithms. PhD thesis, Department of Computer Science,

University of California at Berkeley, 1993.

[Zil96] Shlomo Zilberstein. Using anytime algorithms in intelligent systems.

Artificial Inteligence Magazine, 17(3):73–83, 1996.

[ZR96] Shlomo Zilberstein and Stuart Russel. Optimal composition of real-time

systems. Artificial Inteligence Magazine, 82(1-2):181–213, 1996.

