

Tightening the CRPD Bound for Multilevel non-
Inclusive Caches

Technical Report

*CISTER Research Centre

CISTER-TR-211009

2021

Syed Aftab Rashid*

Geoffrey Nelissen

Eduardo Tovar*

Technical Report CISTER-TR-211009 Tightening the CRPD Bound for Multilevel non-Inclusive ...

© 2021 CISTER Research Center
www.cister-labs.pt

1

Tightening the CRPD Bound for Multilevel non-Inclusive Caches

Syed Aftab Rashid*, Geoffrey Nelissen, Eduardo Tovar*

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: syara@isep.ipp.pt, gnn@isep.ipp.pt, emt@isep.ipp.pt

https://www.cister-labs.pt

Abstract

Tasks running on microprocessors with cache memories are often subjected to cache related preemption delays
(CRPDs). CRPDs may significantly increase task execution times, thereby, affecting their schedulability.
Schedulability analysis accounting for the impact of CRPD has been extensively studied over the past two decades
for systems with a single level of cache. Yet, the literature on CRPD for multilevel non-inclusive caches is relatively
scarce. Two main challenges exist when analyzing multilevel caches: (1) characterization of the indirect effect of
preemption, i.e., capturing the increase in cache interference at lower cache levels (e.g., L2 cache) due to the
evictions of cache content from a higher cache level (e.g., L1 cache), and (2) upper bounding the maximum CRPD
suffered by tasks at lowercache levels (e.g., L2 cache), i.e., determining the cache content of tasks that can be
evicted from lower cache levels in case of preemptions. Existing analysis that focus on bounding CRPD for
multilevel non-inclusive caches overestimate the values of (1) and (2) leading to pessimistic worst-case response
time (WCRT) estimations. In this work, we reducethe excessive pessimism of the state-of-the-art CRPD analysis for
multilevel non-inclusive caches by (i) introducing the notion of multi-level useful cache blocks, i.e., cache blocks
that can cause CRPD at different cache levels, and use it to compute a tighter bound on the indirect effect of
preemption of tasks; and (ii) deriving a new analysis to compute tighter bounds on the CRPD of tasks at lower
cache levels (e.g., L2 cache). We performed a thorough experimental evaluation using benchmarks to compare
the performance of our proposed CRPD analysis against the state-of-the-art CRPD analysis. Experimental results
show that our proposed CRPD analysis dominates the existing analysis and improves task set schedulability by up
to 20% percentage points

Tightening the CRPD Bound for Multilevel non-Inclusive Caches

Syed Aftab Rashida,b, Geoffrey Nelissenc, Eduardo Tovara

aCISTER, ISEP, Polytechnic Institute of Porto, Porto, Portugal
bVORTEX CoLab, Porto, Portugal

cEindhoven University of Technology, Eindhoven, The Netherlands

Abstract

Tasks running on microprocessors with cache memories are often subjected to cache related preemption delays (CR-

PDs). CRPDs may significantly increase task execution times, thereby, affecting their schedulability. Schedulability

analysis accounting for the impact of CRPD has been extensively studied over the past two decades for systems with

a single level of cache. Yet, the literature on CRPD for multilevel non-inclusive caches is relatively scarce. Two

main challenges exist when analyzing multilevel caches: (1) characterization of the indirect effect of preemption, i.e.,

capturing the increase in cache interference at lower cache levels (e.g., L2 cache) due to the evictions of cache content

from a higher cache level (e.g., L1 cache), and (2) upper bounding the maximum CRPD suffered by tasks at lower

cache levels (e.g., L2 cache), i.e., determining the cache content of tasks that can be evicted from lower cache levels in

case of preemptions. Existing analysis that focus on bounding CRPD for multilevel non-inclusive caches overestimate

the values of (1) and (2) leading to pessimistic worst-case response time (WCRT) estimations. In this work, we reduce

the excessive pessimism of the state-of-the-art CRPD analysis for multilevel non-inclusive caches by (i) introducing

the notion of multi-level useful cache blocks, i.e., cache blocks that can cause CRPD at different cache levels, and use

it to compute a tighter bound on the indirect effect of preemption of tasks; and (ii) deriving a new analysis to compute

tighter bounds on the CRPD of tasks at lower cache levels (e.g., L2 cache). We performed a thorough experimental

evaluation using benchmarks to compare the performance of our proposed CRPD analysis against the state-of-the-art

CRPD analysis. Experimental results show that our proposed CRPD analysis dominates the existing analysis and

improves task set schedulability by up to 20% percentage points.

1. Introduction

Modern processors use a hierarchy of cache memories to reduce average main memory access time. This hierarchy

may comprise two or more cache levels, providing a trade-off between cost and speed. The cache level closest to the

processor (also referred to as level-one or L1 cache) is the fastest with the least capacity. The level-two cache (also

referred to as L2 cache) is usually slower than the L1 cache but has a larger capacity. Some processors also use

a level-three cache to further expand caching capacity. Although, the presence of a cache hierarchy improves the

average performance by reducing task’s accesses to the main memory, it also causes large variations in the worse-case

execution time (WCET) and worst-case response time (WCRT) of tasks. These variations strongly depend on the

availability of task’s data and instructions at different cache levels (i.e., the number of cache hits and cache misses).

In systems that use preemptive scheduling strategies, the use of a cache hierarchy poses additional challenges.

These challenges stem from cache sharing between tasks at different cache levels with the execution of one task

potentially evicting memory blocks previously loaded into one or more cache levels by other tasks. These cache

evictions may lead to additional execution delays referred to as, Cache Related Preemption Delays (CRPDs). CRPDs

are delays suffered by the preempted tasks in reloading useful cache blocks (UCBs) (memory blocks cached before the

preemption and potentially reused after) that were evicted from the cache during the execution of preempting tasks.

CRPDs can significantly affect task set schedulability. Considering the same, CRPD for single-level caches and

its impact on schedulability has been extensively studied over the last two decades [1–5]. However, as mentioned

in [6, 7], existing analysis methods used to compute CRPD for single-level caches cannot be easily extended to

multilevel caches. This is mainly because when considering only a single cache level, e.g., L1 cache, the CRPD

any task τi can suffer due to preemptions solely depends on the inter-task cache conflicts between τi and tasks with

Preprint submitted to Elsevier October 25, 2021

Overestimation in the indirect effect of
preemption

IDA,p= {}, IDB,p= {A}, IDm,p= {A,B}

A

LRU Age

m

m A

m A

LRU Age

A

A

A

A m

m A

LRU Age

B

B A

B m

LRU Age

m

m B

m B

LRU Age

L1
L2

(L1-hit) (L2-hit)

rP

Non-preempted Execution

τi

A

LRU Age

m

m A

m A

LRU Age

A

A

P

X m

m A

LRU Age

A

A X

A m

LRU Age

B

B A

B A

LRU Age

m

m B

m B

LRU Age

Preemption
at P evicts A
from L1

L1
L2

r

Preempted Execution

τi

(L2-hit) (L2-miss)

(a) Normal execution of task τi

Overestimation in the indirect effect of
preemption

IDA,p= {}, IDB,p= {A}, IDm,p= {A,B}

A

LRU Age

m

m A

m A

LRU Age

A

A

A

A m

m A

LRU Age

B

B A

B m

LRU Age

m

m B

m B

LRU Age

L1
L2

(L1-hit) (L2-hit)

rP

Non-preempted Execution

τi

A

LRU Age

m

m A

m A

LRU Age

A

A

P

X m

m A

LRU Age

A

A X

A m

LRU Age

B

B A

B A

LRU Age

m

m B

m B

LRU Age

Preemption
at P evicts A
from L1

L1
L2

r

Preempted Execution

τi

(L2-hit) (L2-miss)
(b) Preempted execution of task τi

Figure 1: Illustration of the indirect effect of preemption during the execution of a task τi. L1 and L2 caches are assumed to be two-way set-

associative and all memory blocks used by task τi, i.e., A, B and m, are mapped to the same L1/L2 cache set. The cache replacement policy is

Least-Recently-Used (LRU), i.e., blocks are placed in the cache from most- to least-recently-used (from left to right) and on a cache miss the

least-recently-used block is replaced.

higher priorities than τi. However, when considering more than one cache level, the CRPD of a task τi does not only

depend on its inter-task cache conflicts but also on the increase in τi’s intra-task cache conflicts (i.e., between different

memory blocks of τi) at lower cache levels, e.g., L2 cache.

In architectures with multiple cache levels, a task τi may access a lower cache level (e.g., L2 cache) only after

preemption , i.e., in case of a L1 cache miss after preemption. This additional access to L2 cache only during the

preempted execution of τi may change the position of existing memory blocks in the L2 cache, thereby, generating

additional cache conflicts. To illustrate, consider the sequence of memory references (from left to right) during the

execution of a task τi depicted in Fig. 1. Fig. 1a and 1b respectively shows the contents of the L1 and L2 cache

during a non-preempted and a preempted execution of τi, with a preemption at point P. Fig. 1a shows that during

the non-preempted execution of τi, the second reference to memory block m is a L2 cache hit. However, the same

reference to m results in a L2 cache miss during the preempted execution of τi (see Fig. 1b). This is mainly because,

memory block A is evicted from the L1 cache due to preemption, and is accessed from the L2 cache when τi resumes

after preemption. This additional access to A in the L2 cache changes the position of memory block m in L2, which

eventually leads to a L2 cache miss for the second reference to m after preemption.

The phenomenon suffered by memory block m in the above example is referred to as the indirect effect of preemp-

tion [6]. Few existing works [6, 7] that focus on the CRPD analysis of multilevel caches show that a sound CRPD

estimate can only be obtained by accurately quantifying the indirect effect of preemption that can be suffered by every

memory block used by tasks. However, these existing approaches [6, 7] overestimate the number of memory blocks

that can contribute to the indirect effect of preemption of memory blocks used by a task τi. Similarly, the existing

analysis in the state-of-the-art [6, 7] also overestimate the CRPD task τi can suffer due to memory blocks that are

used from lower cache levels. For example, when computing the CRPD due to a memory block mx,i of task τi that has

multiple references categorized as L2 cache hits after a program point P in τi, the existing analysis [6, 7] assume that

all references to mx,i after P can contribute to the CRPD of τi. Clearly, this assumption is pessimistic, considering that

multiple references to memory block mx,i after a preemption may result in L2 cache hits but, only those references of

mx,i that are impacted directly or indirectly due to preemption can contribute to the CRPD.

In this work, we first identify the source of pessimism in the SoA CRPD analysis for multilevel caches. Then, we

provide solutions to reduce that pessimism. The main contributions of this paper are as follows: (1) We define the

notion of useful cache blocks (UCBs) for multilevel caches based on the cache level from which those UCBs may be

re-used. We also show how these UCBs can be determined; (2) using this notion of multilevel UCBs, we reduce the

overestimation in the computation of the indirect effect of preemption; (3) we present a tighter analysis to compute the

CRPD of tasks at lower cache levels, e.g., L2. At the L2 cache, tasks can suffer CRPD due to memory blocks that have

one or more references categorized as L2 cache hit(s). Our approach identifies how many references to such memory

blocks can be impacted directly or indirectly due to preemptions and therefore may contribute to the CRPD; (4) we

perform an extensive experimental evaluation that compares the performance of our proposed CRPD analysis against

an existing analysis from the state-of-the-art using a set of benchmarks. Results show that our analysis improves task

set schedulability by up to 20 percentage points in comparison to the state-of-the-art analysis.

2

2. System Model and Assumptions

We focus on a single-core processor with a two-level non-inclusive cache hierarchy (i.e., with a L1 and L2 cache).

Non-inclusive cache hierarchy implies that the content in the L1 cache may or may not be duplicated in the L2 cache.

We only consider instruction references and assume that L1 and L2 are set-associative LRU caches. W1 and W2

respectively denote the number of cache ways or cache associativity of L1 and L2 cache. Note that LRU caches

conceptually assign each cached memory block an age indicating its position in the cache, i.e., the most-recently used

element in the cache set of level Lx has an age 0 and the least-recently used element will have an age Wx − 1. The set

of all L1/L2 cache sets is denoted by S1/S2. The total number of cache sets in the L1 and L2 are given by |S1| and |S2|,

respectively. Specifically, we focus on architectures with a cache configuration such that, |S1| ≤ |S2| and W1 ≤ W2.

We consider a task set Γ composed of n sporadic tasks {τ1, τ2, ...τn}. Each task τi ∈ Γ is defined using a triplet,

(Ci,Ti,Di). Ci denote the worst-case execution time (WCET) of task τi, Ti is its minimum inter-arrival time and Di is

the relative deadline of each job of τi. We assume tasks have constrained deadlines, i.e., Di ≤ Ti and each task has a

unique priority. Ri denote the WCRT of τi, i.e., the longest time between the arrival and the completion of any job of

τi. Tasks can be scheduled using any fixed-priority preemptive scheduling (FPPS) algorithm such as Rate or Deadline

Monotonic [8]. Furthermore, we use hp(i) and lp(i) to denote the set of tasks with priorities higher, respectively lower,

than that of τi. We use hep(i) and aff(i, j) as short notations for hep(i) = hp(i) ∪ {τi} and aff(i, j) = hep(i) ∩ lp(j). The

latter denoting the set of intermediate tasks that may preempt τi but may themselves be preempted by some higher

priority task τ j.

The set of all memory blocks used by a task τi during its execution is given by Mi = {m1,i,m2,i, ...,mz,i}. For

any memory reference, the L1 cache is always accessed. If a memory block is not available in the L1 cache but it is

available in the L2 cache (i.e., a L1 miss but a L2 hit), that memory block will be first loaded into L1 from the L2.

The time needed to load that block from L2 to L1 is given by dL1. If the required memory block is not present in both

levels, it will be loaded from the main memory to both cache levels. The time needed to load that block from the main

memory to both cache levels is given by dL1 + dL2, where dL2 denote the L2 cache miss penalty.

3. Background

In this section, we provide definitions for a number of key concepts and summarize the existing CRPD analyses

for multilevel non-inclusive caches, which we later build upon.

Useful Cache Blocks (UCBs) [1]: A memory block mx,i of task τi is a UCB w.r.t a program point P, if mx,i is cached

at P and mx,i may be reused at a program point Q that can be reached from P without eviction of mx,i.

Evicting Cache Blocks (ECBs) [2]: All cache blocks used by a task during its execution are called its ECBs.

For single-level caches, CRPD is usually computed using the set of UCBs and ECBs of tasks.

Cache Related Preemption Delay (CRPD): CRPD is the additional execution time incurred by task τi in reloading

its UCBs that may be evicted from the cache due to preemptions by higher priority tasks in hp(i). CRPD suffered by

a task τi due to preemptions by a higher priority task τ j ∈ hp(i) is usually denoted by γi, j.

3.1. State-of-the-art CRPD Analysis for Multilevel non-Inclusive Caches

To the best of our knowledge, the only existing work that focus on the CRPD analysis of multilevel non-inclusive

caches is by Chattopadhyay et al. [6].

Chattopadhyay et al. [6] argued that due to the indirect effect of preemption the traditional UCB concept used

to analyze CRPD for single-level caches is hard to use in case of multilevel caches. Consequently, they introduced

an updated notion of UCBs in the context of two-level caches and used those UCBs to analyze CRPD for multilevel

non-inclusive caches.

Definition 1 (Useful Cache Blocks (UCBs) in a two-level cache [6]). For a two-level cache, a memory block mx,i

of task τi is considered a UCB w.r.t a program point P if (i) mx,i is cached at P in either L1, L2 or both and (ii) mx,i is

reused at a program point Q that must be reached from P without eviction of mx,i from both L1 and L2 caches.

Based on the above definition, the CRPD analysis of [6] computes the set of UCBs of tasks using the Must-cache

analysis [9, 10] and a backward flow analysis. Must-cache analysis (see [9, 10]) determines the set of memory blocks

3

that are in the cache at any given program point under all circumstances, i.e., the reference to such memory blocks

will always be cache hits w.r.t that program point. The result of their UCB analysis is a tuple CUP
mx,i
= (CU

P,1
mx,i
,CU

P,2
mx,i

)

that captures the fixed-point on the maximum LRU-age of a memory block mx,i of task τi at a program point P in both

L1 and L2 cache.

Maximum LRU-age [3]: The maximum LRU-age of memory block mx,i w.r.t a program point P (and cache level-l)

is the sum of the maximal number of distinct accesses to l; from the last use of mx,i to program point P and from

program point P to the next hit to mx,i, under the constraint that mx,i is not evicted from level l cache before its reuse.

If memory block mx,i is not present in the level-l cache at program point P then its maximum-LRU age CU
P,l
mx,i
= ∞.

To compute the set of ECBs of a preempting task τ j, the analysis in [6] use the May-cache analysis [10]. The May-

cache analysis (see [9, 10]) determines all memory blocks that may be in the cache at a given program point, i.e., it

over-approximate the content of the cache w.r.t a program point. For any cache set S , the set of ECBs of the preempting

task τ j in S is computed by applying the May-cache analysis at the end point e of task τ j. The May-cache state of

cache set S at e will always include all possibly accessed memory blocks by τ j in S . The output of the May-cache

analysis w.r.t a cache set S is given by the tuple Maye,j(S) = (Maye,j,1(S),Maye,j,2(S)), where Maye,j,1(S)/Maye,j,2(S)

contain all memory blocks that may be cached in a L1/L2 cache set S during the execution of task τ j.

If the mapping of a memory block mx,i of task τi in L1(L2) cache is defined by the tuple S mx,i,1(S mx,i,2) such that

S mx,i,1 (resp. S mx,i,2) denote the cache set where mx,i is mapped in the L1 (resp. L2), then, the number of ECBs of a

higher priority task τ j ∈ hp(i) that may overlap with mx,i in L1(L2) cache are given by

|ECB
S mx,i ,1

j
| = |Maye,j,1(S mx,i ,1)| and |ECB

S mx,i ,2

j
| = |Maye,j,2(S mx,i ,2)| (1)

where ECB
S mx,i ,1

j
(ECB

S mx,i ,2

j
) is the set of ECBs of task τ j that map to the same L1(L2) cache set as mx,i.

Using the maximum LRU-age of memory block mx,i and the set of ECBs of task τ j ∈ hp(i) that may overlap with

mx,i in the L1(L2) cache, the CRPD analysis in [6] determines if mx,i will be evicted from the L1(L2) cache in case of

a preemption of τi by τ j at a program point P. Formally, if

CUP,l
mx,i
+ |ECB

S mx,i ,l

j
| ≥ Wl (2)

then memory block mx,i will be evicted from the level-l cache due to a preemption of task τi by any task τ j ∈ hp(i) at

a preemption point P.

It is shown in [3, 11] that in case of nested/multiple preemption of task τi by different tasks in hp(i), the CRPD cost

can be computed by simulating nested preemptions, i.e., when computing the CRPD due to a single preemption of task

τi by any higher priority task τ j ∈ hp(i), it is assumed that τ j has itself already been preempted by all higher priority

tasks in hp(j). Therefore, to evaluate if a memory block mx,i will remain cached after nested/multiple preemptions of

task τi by higher priority tasks in hp(i), Eq. (2) is adapted as follows

CUP,l
mx,i
+
∣

∣

∣

⋃

∀h∈hep(j)

ECB
S mx,i ,l

h

∣

∣

∣ ≥ Wl (3)

where
∣

∣

∣

⋃

∀h∈hep(j) ECB
S mx,i ,l

h

∣

∣

∣ is the union of set of ECBs of all tasks in hep(j) that map to the same cache set as mx,i.

3.1.1. Computing the Indirect Effect of Preemption

As we explained in the introduction, the indirect effect of preemption is an increase in the intra-task cache conflicts

at a lower cache level, e.g., L2, due to eviction of memory blocks from a higher cache level, e.g., L1, in case of

preemptions. Formally,

Definition 2 (Indirect Effect of Preemption). The indirect effect of preemption is the maximum increase in the age

of a memory block mx,i ∈Mi in the level l+ 1 cache, that results from the eviction(s) of one or more memory block(s)

from the level l cache due to preemptions.

From the analysis in [6], the indirect effect of preemption any memory block my,i ∈Mi can suffer due to preemption

of task τi by a higher priority task τ j ∈ hp(i) at a preemption point P is given by |IDr,P
my,i
|, where ID

r,P
my,i

is a set comprising

all memory blocks mx,i ∈Mi \ my,i that satisfy the following expression, i.e.,

IDr,P
my,i
=
{

mx,i|mx,i ∈ D f ,r ∧ (S mx,i ,2 == S my,i ,2) ∧CUP
mx,i
, (∞,∞) ∧CUP,1

mx,i
+
∣

∣

∣

⋃

∀h∈hep(j)

ECB
S mx,i ,1

h

∣

∣

∣ ≥ W1

}

(4)

4

Eq. (4) states that any memory block mx,i ∈Mi can contribute to the indirect effect of preemption of another memory

block my,i ∈ Mi \ mx,i (accessed at any program point r after the preemption point P), if mx,i satisfies all conditions in

Eq. (4). These conditions are explained below in detail.

• By definition only the memory blocks that are accessed from the L1 cache in absence of preemption, i.e., L1-hits,

can cause the indirect effect of preemption. Therefore, for any memory block mx,i to contribute to the indirect effect

of preemption of another memory block my,i, mx,i must have at least one reference categorized as a L1-hit before an

access to my,i at program point r, i.e., mx,i ∈ D f ,r. Where D f ,r is a set that contains all memory blocks of task τi that

have at least one reference categorized as a L1-hit along any execution path of τi starting from the entry node of τi

and ending at r. In [6] D f ,r is computed using a forward-flow analysis and the Must-cache analysis [9]. The analysis

starts from the entry point of task τi and ends at r, performing a set union of all memory blocks with L1-hits along

the path.

• S mx,i,2 == S my,i,2 implies that any memory block mx,i ∈ Mi \ my,i can only contribute to the indirect effect of

preemption of any other memory block my,i ∈Mi if both mx,i and my,i are mapped to the same L2 cache set. This is

intuitive, since in a set-associative cache each cache set can be analyzed independently. Therefore, any reference to

memory block mx,i can only impact the ages of other memory blocks that are mapped to the same cache set as mx,i.

• CUP
mx,i
, (∞,∞) states that any memory block mx,i can contribute to the indirect effect after a preemption at any

program point P, if mx,i is categorized as a UCB at P, i.e., mx,i must be re-used after P. Moreover, mx,i must also

be evicted from the L1 cache due to preemption, i.e., CU
P,1
mx,i
+ |ECB

S mx,i ,1

j
| ≥ W1. Again, this is intuitive, since mx,i

can only impact the ages of other memory blocks (including my,i) in the L2 cache if mx,i is accessed either from L2

or the main memory after the preemption. Finally, the set ID
r,P
my,i

contains all memory blocks mx,i ∈ Mi \ my,i that

satisfy all the above mentioned conditions.

Considering that a memory block my,i can be accessed at several different program locations (i.e., r) that are

reachable from the preemption point P, the worst-case indirect effect of preemption that my,i can suffer is computed by

maximizing Eq. (4) over all program points reachable from P and where my,i may be accessed. Let R denote the set

of all such program locations then, the worst-case indirect effect my,i may suffer due to a preemption at program point

P is given by IDmax
my,i,P

, where

IDmax,P
my,i

= max
∀r∈R
|IDr,P

my,i
| (5)

3.1.2. CRPD Computation

Under the analysis of [6], the CRPD task τi may suffer due to a preemption by any higher priority task τ j ∈ hp(i)

at any arbitrary preemption point P is made of four components; CRT
P,1
i, j

, CRT
P,2
i, j

, ICRT
P,1
i, j

, and ICRT
P,2
i, j

.

CRT
P,1
i, j

captures the CRPD due to all those memory blocks of τi that are evicted from the L1 cache due to preemp-

tion by τ j at program point P but may still be available in the L2 cache, i.e.,

CRT
P,1
i, j
= dL1 × |Mi,L1

| (6)

where Mi,L1
is a set of memory blocks defined as

Mi,L1
=
{

mx,i|CUP
mx,i
, (∞,∞) ∧CUP,1

mx,i
+
∣

∣

∣

⋃

∀h∈hep(j)

ECB
S mx,i ,1

h

∣

∣

∣ ≥ W1 ∧CUP,2
mx,i
+
∣

∣

∣

⋃

∀h∈hep(j)

ECB
S mx,i ,2

h

∣

∣

∣ + IDmax,P
mx,i

< W2

}

(7)

Similarly, CRT
P,2
i, j

accounts for the CRPD due to all those memory blocks of τi that are evicted from both L1 and L2

caches due to preemption, i.e.,
CRT

P,2
i, j
= (dL1 + dL2) × |Mi,L1L2

| (8)

where

Mi,L1L2
=
{

mx,i|CUP
mx,i
, (∞,∞) ∧CUP,1

mx,i
+
∣

∣

∣

⋃

∀h∈hep(j)

ECB
S mx,i ,1

h

∣

∣

∣ ≥ W1 ∧CUP,2
mx,i
+
∣

∣

∣

⋃

∀h∈hep(j)

ECB
S mx,i ,2

h

∣

∣

∣ + IDmax,P
mx,i

≥ W2

}

(9)

All memory blocks in Mi with one or more references categorized as L2-hits during normal execution of task τi are

not classified as UCBs according to Definition 1. Therefore, to account for the CRPD due to all such memory blocks,

5

the analysis in [6] checks all program locations with L2-hits after the preemption point P. The set of all program

locations with L2 cache hit that are reachable from preemption point P is denoted by P2.

The analysis assumes that any reference to a memory block my,i ∈ Mi at any program point r ∈ P2, can suffer

multiple L2-misses due to preemptions. The first reference to my,i after preemption may result in a L2-miss due to the

combined affect of the ECBs of the preempting task τ j that map to the same cache set as my,i, and the indirect effect

of preemption suffered by my,i at that program point r ∈ P2, i.e., |IDr,P
my,i
|. Consequently, ICRT

P,1
i, j

captures the resulting

CRPD cost for the first reference to memory block my,i after preemption, i.e.,

ICRT
P,1
i, j
=
∑

r∈P2

0 if MustAge(my,i, r, 2) +
∣

∣

∣

⋃

∀h∈hep(j) ECB
S my,i ,2

h

∣

∣

∣ + |IDr,P
my,i
| < W2

dL2 otherwise.
(10)

where MustAge(my,i, r, 2) is the LRU-age of memory block my,i in the L2 cache immediately before the program point

r ∈ P2 and is computed using the Must-cache analysis [10]. The CRPD analysis in [6] assume that the same memory

block, i.e., my,i, can also be evicted solely due to the indirect effect of preemption. Consequently, ICRT
P,2
i, j

captures the

CRPD cost due to references to my,i that may suffer an L2 cache miss penalty after preemption only due to the indirect

effect of preemption, where ICRT
P,2
i, j

is given as

ICRT
P,2
i, j
= IL2ind ×

∑

r∈P2

0 if MustAge(my,i, r, 2) + |IDr,P
my,i
| < W2

dL2 otherwise.
(11)

In Eq. (11), IL2ind denotes an upper bound on the number of L2 cache misses to any memory reference solely due to

the indirect effect of preemption. It is proved in [6] that if the cache configuration is such that |S1| ≤ |S2| and W1 ≤ W2

then the value of IL2ind is upper bounded by 1, i.e., IL2ind ≤ 1 (see Theorem 5.3 of [6]).

Finally, the worst-case CRPD suffered by task τi due to a preemption by task τ j ∈ hp(i) is given by maximizing

Eq. (6)-(11) over the set of all program point P, i.e.,

γH
i, j = max

P∈P

(

CRT
P,1
i, j
+ CRT

P,2
i, j
+ ICRT

P,1
i, j
+ ICRT

P,2
i, j

)

(12)

Readers are directed to [6] for details on the formulation of Eq. (1)-(12).

4. Multi-level Useful Cache Blocks

The state-of-the-art definition of UCBs for multilevel caches(i.e., Definition 1) states that any memory block mx,i

of task τi can only be categorized as a UCB w.r.t a program point P, if mx,i is not evicted from both L1 and L2 before

being reused at a later program point Q. However, considering that multilevel non-inclusive caches do not strictly

enforce content inclusion, it is likely that memory block mx,i can be available in only one cache level (e.g., L1 or L2)

at program point Q and hence will be re-used from that cache level. For example, in Fig. 1a both memory blocks

A and m are cached in L1 and L2 cache at program point P, however, only memory block A remains cached in both

L1 and L2 before its next reuse. Therefore, when using Definition 1 only memory block A will be categorized as a

UCB at program point P. However, we can see in Fig. 1a that memory block m is only evicted from L1 cache and is

later reused from the L2 cache. In a non-inclusive multilevel cache, a memory block can be available in any of the

cache levels. Therefore, using this insight, we can re-define the notion of UCBs for multilevel caches based on the

cache level from which a memory block might be reused. Specifically, in a memory hierarchy with two cache levels

a memory block mx,i can be categorized as a L1- or L2-UCB as follows:

Definition 3 (L1-Useful Cache Blocks (L1-UCBs)). A memory block mx,i of task τi is a L1-UCB w.r.t a program

point P if (i) mx,i is certainly cached in L1 at P and (ii) mx,i is reused at a program point Q that must be reachable from

P without eviction of mx,i from the L1 cache, i.e., the reference to mx,i at program point Q should be categorized as a

L1 hit. The set of memory blocks of task τi categorized as L1-UCBs w.r.t a program point P is given by UCBP
i,1.

Definition 4 (L2-Useful Cache Blocks (L2-UCBs)). A memory block my,i of task τi is a L2-UCB w.r.t a program

point P if (i) my,i is certainly cached at P in L2, (ii) my,i is reused at a program point Q that must be reachable from P

without eviction of my,i from the L2 cache, i.e., the reference to my,i at program point Q is a L2 cache hit, and (iii) my,i

6

is not a L1-UCB w.r.t P, i.e., if the reference to my,i at program point Q is always a cache hit in both L1 and L2, then,

my,i is not a L2-UCB but a L1-UCB instead. The set of memory blocks of task τi categorized as L2-UCBs w.r.t P is

denoted by UCBP
i,2.

It is argued in the existing works [6, 7] that the concept of UCBs is difficult to use for the analysis of CRPDs for

multilevel cache. However, by categorizing UCBs based on the cache level from which they might be re-used, the

UCB concept can be used to compute CRPD for multilevel caches.

4.1. Finding L1/L2-UCBs

The set of L1- and L2-UCBs of a task τi w.r.t a program point P can be determined by using the UCB analysis

proposed in [6], i.e., by using the Must-cache analysis [10] along with a backward flow analysis. As mentioned earlier,

the result of the UCB analysis in [6] is a tuple CUP
mx,i
= (CU

P,1
mx,i
,CU

P,2
mx,i

) that captures the fixed-point on the maximum

LRU-age of a memory block mx,i of task τi w.r.t a program point P. Consequently, the set of L1-UCBs of a task τi w.r.t

a program point P can be computed as follows

UCBP
i,1 =
{

mx,i|mx,i ∈Mi ∧CUP,1
mx,i
, ∞
}

(13)

Eq. (13) implies that given a program point P, all memory blocks mx,i ∈Mi with a maximum LRU-age in L1 , ∞ are

L1-UCBs of τi w.r.t P.

Similarly, the set of L2-UCBs of task τi w.r.t a program point P can be computed as follows

UCBP
i,2 =
{

my,i|my,i ∈Mi ∧
(

CUP,1
my,i
= ∞∧CUP,2

my,i
, ∞
) }

(14)

Eq. (14) states that any memory block my,i ∈Mi is a L2-UCBs w.r.t a program point P, if my,i is evicted from L1 cache

along at least one path from P to some other program point Q accessing my,i, i.e., CU
P,1
my,i
= ∞, but it remains cached

in L2 along any path to such program point Q, i.e., CU
P,2
my,i
, ∞.

To compute the number of ECBs of a higher priority task τ j ∈ hp(i) that may map to the same L1(L2) cache set as

the L1/L2-UCBs of task τi, we use the May-cache analysis [10] and Eq. (1).

5. Tightening the Bound on the Indirect Effect of Preemption

The existing approach to calculate the indirect effect of preemption (i.e., Eq. (4)) is sound. However, it may be

pessimistic due to an over-approximation of the set of memory blocks that can cause the indirect effect of preemption.

Example 1. Fig. 2 shows a sequence of memory references (from left to right) during the non-preempted (left) and

preempted (right) execution of task τi. We assume that L1 and L2 are two-way set-associative LRU-caches, i.e.,

W1 = W2 = 2. All memory blocks used by task τi, i.e., A, B and m, are mapped to the same L1 and L2 cache set.

For clarity, we only focus on the computation of indirect effect of preemption suffered by memory block m due to a

preemption at program point P. We can see in Fig. 2 that the second reference to memory block m is a L2-hit in both

Overestimation in the indirect effect of
preemption

A

LRU Age

B

B A

B A

LRU Age

A

A

P
A

A B

B A

LRU Age

B

B A

B A

LRU Age

m

m B

m B

LRU Age

B

B m

m B

LRU Age

C

C B

C m

LRU Age

m

m B

m C

LRU Age

r1 r2

L1-hit L1-hit L2-hitL1-hit

τi

Non-preempted Execution

L1
L2

A

LRU Age

B

B A

B A

LRU Age

A

A

P

X X

X X

LRU Age

A

A X

A X

LRU Age

B

B A

B A

LRU Age

m

m B

m B

LRU Age

B

B m

m B

LRU Age

C

C B

C m

LRU Age

m

m B

m C

LRU Age

Preemption by
τj evicts both A
and B from L1
and L2

L1-miss L1-miss L1-hit L2-hit

τi

Preempted Execution

L1
L2

r1A r1B

Figure 2: Highlighting the pessimism in the calculation of indirect effect of preemption by [6].

the non-preempted and preempted execution of τi. Now, if we use the analysis of [6] we get D f ,r1
= D f ,r2

= {A, B} w.r.t

program locations r1 and r2 where m is accessed after the preemption. Also, memory block A and B satisfy all the other

constraints in Eq. (4). Therefore, the analysis in [6] concludes that memory blocks A and B can both cause an indirect

7

effect of preemption on memory block m, i.e., ID
r1,P
m = ID

r2,P
m = {A, B} and ID

max,P
m = 2. Consequently, Eq. (11)

concludes to the eviction of m from L2 due to the indirect effect of preemption, i.e., MustAge(m, r2, 2) + |ID
r2,P
m | =

2+ 2 > W2. However, we can see in Fig. 2 that this is not true. The second reference to memory block m remains a L2

cache hit even after preemption.

Example 1 shows that [6] overestimates the indirect effect of preemption which may lead to pessimistic CRPD

values. Therefore, we propose an improved analysis that computes a tighter bound on the indirect effect of preemption

using Algorithm 1. The algorithm computes the indirect effect of preemption of every memory block my,i ∈ Mi of

task τi due to a preemption at program point P by upper bounding the set of memory blocks that can cause the indirect

effect of preemption given by IndP
my,i

. We prove the correctness of Algorithm 1 using the following Lemma

Algorithm 1 Returns the set of memory blocks of task τi that can cause an indirect effect of preemption to a memory

block my,i ∈Mi, when τ j preempts τi at a program point P

Output: The indirect effect of preemption suffered by every memory block my,i ∈ Mi due to preemption at program point P, i.e.,

IndP
my,i

.

1: for ∀my,i ∈Mi do

2: IndP
my,i

:= ∅

3: end for

4: for ∀mx,i ∈ UCBP
i,1

do

5: if CU
P,1
mx,i
+
∣

∣

∣

⋃

∀h∈hep(j) ECB
S mx,i ,1

h

∣

∣

∣ ≥ W1 then

6: FAP
mx,i

:= GetFirstAccess(mx,i, P)

7: for ∀my,i ∈Mi \ mx,i do

8: if ((MustAge(my,i,FAP
mx,i
, 2) , ∞) ∧ (Smy,i ,2 == Smx,i ,2) ∧ (MustAge(mx,i,FAP

mx,i
, 2) > MustAge(my,i,FAP

mx,i
, 2)) then

9: IndP
my,i

:= IndP
my,i
∪ mx,i;

10: end if

11: end for

12: end if

13: end for

Lemma 1. The indirect effect of preemption that can be suffered by any memory block my,i of task τi, when τi is

preempted by a higher priority task τ j ∈ hp(i) at any program point P is upper bounded by |IndP
my,i
|.

Proof. We prove that the cardinality of the set IndP
my,i

(computed using Algorithm 1) is an upper bound on the indirect

effect of preemption that can be suffered by any memory block my,i due to a preemption by any task τ j ∈ hp(i) at a

program point P.

(1). By definition, the indirect effect of preemption is caused by memory blocks of task τi that are fetched from the

L1 cache during the normal execution of τi but are fetched from the L2 cache or the main memory after preemption.

Therefore, the set of memory blocks that can cause the indirect effect after a preemption of τi at point P is upper

bounded by the set of L1-UCBs of τi at P, i.e., UCBP
i,1. Thus, the external loop (i.e., lines 4 to 13) of Algorithm 1 only

checks memory blocks in UCBP
i,1.

(2). A L1-UCB mx,i ∈ UCBP
i,1 can cause an indirect effect of preemption on any other memory block my,i ∈ Mi at a

preemption point P, only if mx,i is evicted from the L1 cache due the preemption at P. As shown in Equation 3, this

may happen only if CU
P,1
mx,i
+ |
⋃

∀h∈hep(j) ECB
S mx,i ,1

h
| ≥ W1, which is checked at line 5 of Algorithm 1.

(3). In case of a preemption at program point P, the first reachable references to a memory block mx,i ∈ UCBP
1,i after

P determines whether mx,i is still in the L1 cache or not. When computing the indirect effect mx,i can cause on other

memory blocks, only considering the first reference to mx,i after P is sufficient because of two possible scenarios; (i)

if the first reference to mx,i after preemption is still a L1-hit, then, by definition, mx,i will not cause any indirect effect

of preemption; and (ii) if the first reference to mx,i after preemption results in a L1-miss, then, mx,i will be reloaded in

the L1 either from L2 or main memory. Therefore, only in case (ii), mx,i can contribute to the indirect effect of other

memory blocks. In Algorithm 1, the function GetFirstAccess(mx,i, P) (line 6) is used to determine the first reachable

reference to every mx,i ∈ UCBP
1,i, i.e., given by program point FAP

mx,i
.

(4). If the access to mx,i at FAP
mx,i

is a L1-miss, then, mx,i will be fetched either from L2 or main memory. However,

in both cases, mx,i can cause an indirect effect of preemption only on memory blocks that are already in the L2 cache

8

at FAP
mx,i

, i.e., reloading mx,i from the main memory or from the L2 cache can only increase the LRU-age of memory

blocks that are already in L2 cache at FAP
mx,i

. This is considered by the nested loop (lines 7 to 11) in Algorithm 1. The

nested loop determines all memory blocks my,i ∈ Mi \ mx,i that can suffer an indirect effect of preemption due to mx,i.

The computation is performed using the following three conditions:

(4.1). mx,i can only cause an indirect effect of preemption on any other memory block my,i ∈ Mi \ mx,i, if my,i is in

the L2 cache at FAP
mx,i

. This is determined using the Must-age [10] of my,i at program point FAP
mx,i

, i.e., my,i can only

suffer an indirect effect of preemption due to mx,i if (MustAge(my,i, FAP
mx,i
, 2) , ∞). Otherwise, the additional access

to mx,i in L2 after preemption does not increase the LRU-age of my,i in L2.

(4.2). mx,i can cause an indirect effect of preemption on my,i if both mx,i and my,i map to the same L2 cache set, i.e.,

S mx,i,2 == S my,i,2. Otherwise, mx,i can not interfere with my,i.

(4.3). mx,i can only cause an indirect effect on my,i if the access to mx,i at FAP
mx,i

is (i) a L2-miss or (ii) a L2-hit

and the LRU-age of mx,i in L2 is greater than the LRU-age of my,i in L2. The condition MustAge(mx,i, FAP
mx,i
, 2) >

MustAge(my,i, FAP
mx,i
, 2) accounts for both these scenarios explained as follows. If the access to mx,i at FAP

mx,i
is a

L2-miss, then, MustAge(mx,i, FAP
mx,i
, 2) = ∞ > MustAge(my,i, FAP

mx,i
, 2). Hence, mx,i will be reloaded from the main

memory to both L2 and L1 cache, which will increase the LRU-age of all existing memory blocks in the L2 cache

including my,i. Similarly, if the access to mx,i at FAP
mx,i

is a L2-hit, then mx,i will be reloaded from L2 to L1 cache and

the access to mx,i will only change the LRU-ages of memory blocks that are younger than mx,i in the L2 cache. So, my,i

will only suffer an indirect effect of preemption due to mx,i if MustAge(mx,i,FAP
mx,i
, 2) > MustAge(my,i,FAP

mx,i
, 2) holds.

If all the above conditions hold for any memory block my,i ∈Mi \mx,i then, mx,i will be added to the set of memory

blocks that can cause an indirect effect of preemption on my,i, i.e., IndP
my,i
∪ mx,i (line 9). Finally, after iterating over

all memory blocks mx,i ∈ UCBP
i,1, the set IndP

my,i
will contain all memory blocks that can cause the indirect effect of

preemption on my,i and the cardinality of the set IndP
my,i

will upper bound the maximum increase in the LRU-age of

memory block my,i ∈Mi due to the indirect effect of preemption at P.

Note that the worst-case time complexity of Algorithm 1 is quadratic w.r.t the number of memory blocks used by

tasks.

Example 2. We use Algorithm 1 to compute the indirect effect of preemption of memory block m in Fig. 2. From

the UCB analysis in Section 4, it results that both memory blocks A and B are L1-UCBs w.r.t program point P, i.e.,

{A, B} ∈ UCBP
i,1. Also, both A and B will be evicted from L1 due to preemption at P and they also map to the same L2

cache set as memory block m. However, m is not in the L2 cache at the first access of A (and B) after the preemption

point P, i.e., MustAge(m, FAP
A
, 2) = ∞ (and MustAge(m, FAP

B
, 2) = ∞). Therefore, Algorithm 1 concludes that the

indirect effect of preemption of m is 0 , i.e., |IndP
m| = 0, which can also be confirmed in Fig. 2.

6. Improved CRPD Analysis for Multilevel caches

Having bounded the indirect effect of preemption in the previous section, in this section, we will demonstrate how

to compute the CRPD for multilevel non-inclusive caches using the notion of multilevel UCBs.

6.1. CRPD due to the Eviction of L1-UCBs

To compute the CRPD due to the eviction of L1-UCBs of task τi in case of a preemption by any higher priority

task τ j ∈ hp(i) at any arbitrary program point P, we use a similar approach as presented in [6] (i.e., Eq. (6) and (8)).

L1-UCBs of task τi can be evicted from the L1 cache because of preemption but may still be available in the L2

cache. We use γ
P,L1

i, j
to denote the CRPD cost due to all those L1-UCBs of task τi, where γ

P,L1

i, j
is computed as follows:

γ
P,L1

i, j
=

∣

∣

∣

∣

∣

∣

{

mx,i|mx,i ∈ UCBP
i,1 ∧CUP,1

mx,i
+
∣

∣

∣

⋃

∀h∈hep(j)

ECB
S mx,i ,1

h

∣

∣

∣ ≥ W1 ∧ CUP,2
mx,i
+
∣

∣

∣

⋃

∀h∈hep(j)

ECB
S mx,i ,2

h

∣

∣

∣ + |IndP
mx,i
| < W2

}

∣

∣

∣

∣

∣

∣

× dL1 (15)

Eq. (15) states that all L1-UCBs of task τi that are evicted from the L1-cache due to preemption (i.e., their LRU-age in

L1 plus the maximum interference by higher or equal priority tasks is larger than or equal to the L1-associativity) but

are still available in the L2-cache (i.e., LRU-age in L2 plus interference is smaller than the L2-associativity) will only

9

incur a L1-miss penalty. Also, note that when computing the L2 cache conflicts to a L1-UCB mx,i ∈ UCBP
1,i, Eq. (15)

also considers the indirect effect that may be suffered by mx,i, i.e., |IndP
mx,i
|, computed using Algorithm. 1.

Similarly, some L1-UCBs of task τi might be evicted from both L1 and L2 caches due to preemptions. We use

γ
P,L12

i, j
to denote the CRPD cost due to all those L1-UCBs of task τi, where γ

P,L12

i, j
is computed as follows:

γ
P,L12

i, j
=

∣

∣

∣

∣

∣

∣

{

mx,i|mx,i ∈ UCBP
i,1 ∧CUP,1

mx,i
+
∣

∣

∣

⋃

∀h∈hep(j)

ECB
S mx,i ,1

h

∣

∣

∣ ≥ W1 ∧CUP,2
mx,i
+
∣

∣

∣

⋃

∀h∈hep(j)

ECB
S mx,i ,2

h

∣

∣

∣+ |IndP
mx,i
| ≥ W2

}

∣

∣

∣

∣

∣

∣

× (dL1 + dL2) (16)

Eq. (16) implies that all L1-UCBs of task τi that are evicted from both L1 and L2 cache due to preemption, will be

loaded from the main memory to both cache levels. The total time to load one block from the main memory to both

cache levels is given by (dL1 + dL2).

6.2. CRPD due to the Eviction of L2-UCBs

L2 UCBs of task τi can be evicted from the cache in several ways; (i) directly due to interference by the preempting

tasks or (ii) due to the indirect effect of preemption or (iii) due to a combination of both (i) and (ii). However, before

presenting our analysis to compute the CRPD due to the eviction of L2-UCBs of tasks, we highlight a source of

pessimism in the CRPD analysis of [6]. This pessimism lies in Eq. (10) and (11) that are used to compute the CRPD

due to memory references that were L2 cache hits during the normal execution of a task τi but may become L2 cache

misses after the preemption of τi. To illustrate, consider the following example.

Example 3. We calculate the CRPD costs ICRT
P,1
i, j

and ICRT
P,2
i, j

, i.e., respectively using Eq. (10) and (11), for the

example scenario shown in Fig. 3. We have W1 = 2 and W2 = 3 and we assume that all memory blocks used by task

τi, i.e., A,B,C,D and m, map to the same L1/L2 cache set. We can see in Fig. 3 that three references to memory block

m are L2 cache hits during the normal/non-preempted execution of task τi, i.e., the references at program points r1,

r2 and r3. Therefore, the set of program locations with L2 cache hits w.r.t to program point P, i.e., P2, is given by

P2 = {r1, r2, r3}. The Must-age of m at r1, r2 and r3 is MustAge(m, r1, 2) = MustAge(m, r2, 2) = MustAge(m, r3, 2) = 2.

The number of ECBs of the preempting task, i.e., τ j, that map to the same L2 cache set as m are given by |ECB
S m,2

j
| = 2.

Similarly, using Eq. (4) to calculate the indirect effect of preemption suffered by m at r1, r2 and r3, we get |ID
r1,P
m | = 0

and |ID
r2,P
m | = |ID

r3,P
m | = 1.Note that since we assume |S1| ≤ |S2| and W1 ≤ W2 we use IL2ind = 1 in Eq. (11) (see

Theorem 5.3 in [6]).

Finally, by inserting all required values in Eq. (10), we will get MustAge(m, r, 2) + |ECB
S m,2

j
| + |ID

r,P
m | > W2 for

every r ∈ P2. Hence, the resulting value of ICRT
P,1
i, j

will be 3 × dL2. Similarly, using the values of Must-age and the

indirect effect of preemption of m in Eq. (11) we have MustAge(m, r, 2) + |IDr,P
m | > W2 for r2 and r3 in P2. Therefore,

the resulting value of ICRTP,2 will be 2 × dL2. Consequently, the total CRPD cost due to L2 cache misses resulting

from preemption is calculated to be ICRT
P,1
i, j
+ ICRT

P,2
i, j
= (3 + 2) × dL2 = 5 × dL2. However, we can see from the

preempted execution scenario shown in Fig. 3 that this bound on the CRPD is very pessimistic and the actual CRPD

cost due to all references to memory block m after preemption is only 2 × dL2.

The analysis of [6] overestimates the CRPD due to L2 cache misses resulting from preemptions because it assumes

that all memory references that were L2 cache hit during the normal execution of a task may be impacted both directly

and indirectly due to preemptions, i.e., it evaluates Eq. (10) and (11) for all program locations with L2 cache hits.

Although, it is true that multiple references to the same memory block may result in L2 cache hits, e.g., if the memory

block is accessed in a loop or for a particular execution scenario shown in Fig. 3, however, not all those references

can be impacted both directly and indirectly due to preemptions.

To reduce the above mentioned pessimism in the existing analysis [6], the proposed analysis focuses on bounding

the number of references to memory blocks that can be impacted directly/indirectly due to preemptions. We start by

computing the set ˆUCB
P

i,2 of L2-UCBs of a task τi reachable from a program point P. ˆUCB
P

i,2 is the set of memory

blocks that have at least one reference categorized as a L2 cache hit, starting from the program point under analysis,

i.e., P, until the end point e of task τi. Formally,

ˆUCB
P

i,2 =
⋃

∀r∈P2

UCBr
i,2 (17)

10

Overestimation in the computation of CRPD
due to L2-hits

m

LRU Age

A

A m

A m

LRU Age

m

m

P

B

B A

B A m

LRU Age

m

m B

m B A

LRU Age

B

B m

m B A

LRU Age

C

C B

C m B

LRU Age

D

D C

D C m

LRU Age

m

m D

m D C

LRU Age

r1 r2

L2-hit L2-hit

τi

Non-preempted Execution

Preempted Execution

L1
L2

L1-hit
A

A m

A m D

LRU Age

B

B A

B A m

LRU Age

m

m B

m B A

LRU Age

L2-hit

r3

……

m

LRU Age

A

A m

A m

LRU Age

m

m

P

B

B A

B A m

LRU Age

C

C B

C B m

LRU Age

D

D C

D C B

LRU Age

m

m X

m X X

LRU Age

r1

L2-miss
m

m D

m D C

LRU Age

r2

L2-miss

τi

L1
L2

B

B m

B m X

LRU Age

L1-miss
A

A m

A m D

LRU Age

B

B A

B A m

LRU Age

m

m B

m B A

LRU Age

L2-hit

r3

….X X

X X B

LRU Age

Preemption
by τj insert
two ECBs in
L1 and L2

Figure 3: Example scenario to demonstrate the pessimism of [6] when calculating the CRPD due to L2 cache misses resulting from preemption.

where P2 is the set of all program locations between P and e with L2 cache hits.

Let ˆUCB
P

i,2 = {m1,i,m2,i,m3,i, ...,mn,i} be the result of Eq. (17), then for every memory block my,i in ˆUCB
P

i,2 we

define a set RP
my,i

that contains all program locations after the preemption point P where a reference to my,i is a L2

cache hit, i.e., RP
my,i
= {R

1,P
my,i
,R

2,P
my,i
, ...,R

k,P
my,i
}. The rationale of defining R

P
my,i

is to investigate how many references to

memory block my,i can be impacted directly or indirectly due to preemptions and therefore may contribute to CRPD.

The analysis in [6] assumes that a memory block my,i ∈ ˆUCB
P

i,2 can be impacted both directly and indirectly at all

program points in R
P
my,i

. However, in this work, we prove that in fact for any memory block my,i ∈ ˆUCB
P

i,2 it is only the

first reference to my,i after P, i.e., at R
1,P
my,i

, that can be directly impacted due to preemptions. All subsequent references

to my,i after R
1,P
my,i

, i.e., at {R2,P
my,i
, ...,R

k,P
my,i
}, can only be impacted due to the indirect effect of preemption.

Lemma 2. Given an arbitrary preemption point P and a memory block my,i ∈ ˆUCB
P

i,2, it is only the first reference to

my,i after P, i.e., at R
1,P
my,i

, that can be directly impacted due to preemption at P. All subsequent references to my,i after

R
1,P
my,i

, i.e., at {R2,P
my,i
, ...,R

k,P
my,i
}, can only be impacted due to the indirect effect of preemption suffered by my,i w.r.t P.

Proof. By definition if my,i ∈ ˆUCB
P

i,2 then the reference to memory block my,i at program point R
1,P
my,i

will be a L2 cache

hit during the normal execution of task τi. So, after an access to my,i at R
1,P
my,i

, my,i will be the youngest element in both

L1 and L2 caches. Now, after the preemption of τi at P, the access to my,i at R
1,P
my,i

may result in a L2 cache hit or miss.

If the reference to my,i at R
1,P
my,i

is still a L2 cache hit after preemption, my,i will become the youngest element in L1 and

L2 cache after R
1,P
my,i

. Hence, the sate of L1 and L2 cache w.r.t my,i will be the same as during the normal execution of

τi. Similarly, even if the reference to my,i at R
1,P
my,i

becomes a L2 cache miss after preemption, my,i will be reloaded from

the main memory into both L1 and L2 caches at R
1,P
my,i

. Again, this will make my,i the youngest element in both L1 and

L2 caches after R
1,P
my,i

. Therefore, the direct impact of preemption on my,i will be neutralized after a L2 cache hit/miss

at R
1,P
my,i

and all subsequent references to my,i can only be impacted due to the indirect effect of preemption suffered by

my,i w.r.t the preemption point P.

Using Lemma 2 we can compute the CRPD cost task τi may endure due to the eviction of one of it’s L2-UCB,

after a preemption by any higher priority task τ j ∈ hp(i) at a program point P. We use two equations to compute that

CRPD cost, i.e., Eq. (18) and (19). Eq. (18) computes the CRPD cost due to the first reference to memory block

my,i ∈ UCBP
i,2 after the preemption point P, whilst Eq. (19) computes the CRPD cost due to all subsequent reference

to my,i

γ
P,L2, f irst

my,i , j
=

0 if MustAge(my,i,R
1,P
my,i
, 2) +

∣

∣

∣

⋃

∀h∈hep(j) ECB
S my,i ,2

h

∣

∣

∣ + |IndP
my,i
| < W2

dL2 otherwise.
(18)

11

γ
P,L2,next

my,i , j
=

∑

∀r∈RP
my ,i
\R

1,P
my,i

0 if MustAge(my,i, r, 2) + |IndP
my,i
| < W2

dL2 otherwise.
(19)

It is straightforward to see that if any reference to a memory block my,i ∈ ˆUCB
P

i,2 is not in a loop, it can contribute

only once to the CRPD. However, the problem emerges when one or more references to memory block my,i are inside

a loop, in which case we need to bound how many times each reference to my,i can contribute to the CRPD.

Lemma 3. Any reference to a memory block my,i ∈ UCBP
i,2 which is inside a loop, e.g., Ref (my,i), can contribute at

most two L2 cache misses to the CRPD suffered by task τi due to preemption at a program point P.

Proof. Any reference to a memory block my,i ∈ ˆUCB
P

i,2 which is inside a loop, e.g., Ref (my,i), can be classified as

a L2-hit in the absence of preemption w.r.t a program point P under two conditions; (1) if there are fewer than W2

conflicting L2 memory blocks accessed between two references to my,i w.r.t to P and (2) if at least W2 conflicting L2

memory blocks are accessed between two access to my,i w.r.t P, however there exist at least one memory reference

which is a L1 cache hit, i.e., it does not generate an L2 cache conflict to my,i. If (1) is true, then the reference Ref (my,i)

can only be a L2-miss after preemption if my,i is directly evicted due to preemption at P, and Ref (my,i) can suffer at

most one L2-miss after preemption. Also, if (2) holds then the reference Ref (my,i) may also become a L2-miss after

preemption due to the indirect effect of preemption caused by memory references that were L1-hits in the absence of

preemption but may access the L2 after preemption. However, it is proved in [6] that if the cache configuration is such

that |S1| ≤ |S2| and W1 ≤ W2, then, any memory reference that was a L2 cache hit in the absence of preemption, e.g.,

Ref (my,i), can lead to at most one L2-miss due to the indirect effect after preemption. Knowing that Ref (my,i) is in a

loop so both (1) and (2) can be true along different paths between P to Ref (my,i). Therefore, if reference Ref (my,i) is

inside a loop, it may cause up to two L2 cache misses after preemption.

We also know from Lemma 2 that after a preemption at any program point P, it is only the first reference to

memory block my,i after P, i.e., at program point R
1,P
my,i

, that can be directly impacted by the preemption. This leads to

the following Lemma

Lemma 4. Any reference to a memory block my,i ∈ ˆUCB
P

i,2 which is inside a loop, i.e., Ref (my,i), can cause up to two

L2 cache misses after a preemption at any program point P only when Ref (my,i) is the first reference to my,i after P.

Proof. We prove this lemma by contradiction. Let us assume there exist a memory reference to my,i, e.g., ˆRef (my,i),

which is inside a loop and can cause up to two L2 cache misses after the preemption at P but ˆRef (my,i) is not the first

reference to my,i after the preemption point P.

For ˆRef (my,i) to cause two L2 cache misses after the preemption at P, there must be at least two paths reachable

to ˆRef (my,i) after P where my,i will be evicted either directly or indirectly. However, we know from Lemma 2 that

it is only the first reference of my,i after preemption, i.e., at R
1,P
my,i

, that can cause an L2 cache miss directly due to a

preemption at P and all subsequent references to my,i after the program point R
1,P
my,i

can only be evicted from the L2

cache due to the indirect effect of preemption. Moreover, it is proved in [6] that any reference to a memory block

my,i can lead to at most one L2 miss solely due to the indirect effect of preemption. Therefore, if ˆRef (my,i) is not the

first reference to my,i after preemption it can cause at most one L2 cache miss due to the indirect effect of preemption

suffered by my,i. Hence, we reach a contradiction.

Finally, by using Lemmas 2, 3 and 4 we can bound the maximum number of times any memory block my,i ∈ ˆUCB
P

i,2

can contribute to the CRPD of task τi when τi is preempted by a task τ j ∈ hp(i) at an arbitrary program point P.

Lemma 5. The contribution of a memory block my,i ∈ ˆUCB
P

i,2 to the CRPD suffered by task τi due to a preemption

by any higher priority task τ j ∈ hp(i) at an arbitrary program point P is upper bounded by min(k, |IndP
my,i
| + 1) × dL2.

Where k is the cardinality of the set RP
my,i

.

Proof. We prove that for a memory block my,i ∈ ˆUCB
P

i,2 both k and |IndP
my,i
| + 1 are upper bounds on the number of

additional L2 cache misses that can be generated due to preemption at a program point P. Therefore, min(k, |IndP
my,i
| +

1) × dL2 upper bounds the contribution of my,i to the CRPD suffered by task τi at a program point P.

12

If memory block my,i has k memory references classified as L2 cache hits in the absence of preemption after the

program point P, then, in the worst-case all k references to my,i may result in L2 cache misses due to preemption

at P. Considering that the penalty of a single L2 cache miss is dL2, therefore, the product k × dL2 upper bounds the

contribution of my,i to the CRPD due to preemption at a program point P.

From Lemma 2, we know that only the first reference to memory block my,i after preemption may result in a L2

cache miss directly due to preemption and all subsequent reference to my,i after the first reference can result in a L2

cache miss only due to indirect effect of preemption. Also, we proved in Section 5 that |IndP
my,i
| is an upper bound

on the number of memory blocks that can cause an indirect effect of preemption on my,i after a preemption at P.

So, the worst-case scenario is when each memory block in IndP
my,i

is accessed between every two references to my,i

and every access to a memory block in IndP
my,i

leads to a L2 cache miss for my,i. Consequently, my,i can suffer up to

|IndP
my,i
| L2 cache misses due to the indirect effect of preemption caused by memory blocks in IndP

my,i
. Furthermore,

from Lemma 4, we know that if the first reference to memory block my,i after preemption is in loop we can have one

additional L2 cache miss after preemption. Consequently, a total of |IndP
my,i
| + 1 L2 cache misses can be generated by

the references to memory block my,i after a preemption at P. Therefore, (|IndP
my,i
| + 1) × dL2 is also an upper bound on

the contribution of my,i to the CRPD suffered by task τi due to a preemption at P.

6.2.1. CRPD Computation

We use Algorithm 2 to compute the CRPD of task τi due to all its L2-UCBs that can be evicted when τi is

preempted by any higher priority task τ j ∈ hp(i). The working of Algorithm 2 is explained as follows:

The output of Algorithm 2 is the maximum CRPD cost γ
P,L2

i, j
that can be suffered by task τi due to the eviction of all

memory blocks in UCBP
i,2. γ

P,L2

i, j
is computed by first computing the CRPD γ

P,L2

my,i, j
for every memory block my,i ∈ ˆUCB

P

i,2

independently (line 3).

The external loop (lines 5 to 28) is used to compute CRPD for every L2-UCB in ˆUCB
P

i,2. The set of L2 cache

hit locations for every memory block my,i ∈ ˆUCB
P

i,2 is computed using the function GetHitLocations(.) (line 6). The

output of GetHitLocations(.) is the set RP
my,i

. The algorithm then computes the CRPD of my,i due to its first reference

after preemption point P, i.e., at R
1,P
my,i

(lines 7 to 17). If the reference to my,i at R
1,P
my,i

is in a loop (line 7), that reference

may result in up to two L2 cache misses (see Lemmas 3 and 4). So, the algorithm checks for the eviction of my,i from

the L2 cache at R
1,P
my,i

using both Eq. (18) and (19) (lines 8 to 13) and adds the resulting CRPD to γ
P,L2

my,i, j
. However, if

the reference to my,i at R
1,P
my,i

is not in a loop, it can only suffer a cache miss due to the combination of ECBs of the

preempting task τ j and the indirect effect of preemption. Hence, in this case, the algorithm only computes the CRPD

using Eq. (18) (i.e., lines 14 to 17).

All reference to my,i after R
1,P
my,i

, i.e., at {R2,P
my,i
, ...,R

k,P
my,i
}, can only result in L2-misses due to the indirect effect of

preemption (see Lemma 2). Therefore, Algorithm 2 checks for the eviction of my,i at all references except R
1,P
my,i

using

only Eq. (19) (lines 19 to 21). Also, we know that the maximum CRPD task τi can suffer due to a memory block

my,i ∈ ˆUCB
P

i,2 is upper bounded by min(|RP
my,i
|, |IndP

my,i
|+1)×dL2 (from Lemma 5). This is considered in the last construct

of Algorithm 2 (lines 24 and 26). Finally, the CRPD cost suffered by task τi due to a memory block my,i ∈ ˆUCB
P

i,2

is available in γ
P,L2

my,i, j
, and the total CRPD cost task τi may suffer due to all its L2-UCBs is summed in γ

P,L2

i, j
(line 27).

Note that the worst-case time complexity of Algorithm 2 is O(kn), where n is the cardinality of the set of L2-UCBs of

tasks and k is the number of references to L2-UCBs.

6.3. Handling Nested/Multiple Preemptions

The CRPD analysis presented in [6] assumes that nested/multiple preemptions of a task τi by higher priority tasks

in hp(i) can be handled by simulating nested preemptions. Consequently, the CPRD τ j can cause on τi is computed by

using the union of set of ECBs of all tasks in hep(j) instead of only using the set of ECBs of task τ j (e.g., see Eq. (7)).

However, when computing CPRD for multilevel caches in the presence of multiple preemptions, only simulating

nested preemptions of tasks may not be enough. This is mainly due to the indirect effect of preemption that exists

in multilevel caches. Due to the indirect effect of preemption, multiple preemptions by the same or different task(s)

can “collaborate” to cause more indirect effect than they would in “isolation”. To illustrate, consider the following

example:

13

Algorithm 2 Algorithm to compute the CRPD cost due to the eviction of all L2-UCBs of task τi

Output: The total CRPD cost, i.e., denoted by γ
P,L2

i, j
, that can be suffered by task τi due to the eviction of all its L2-UCBs in ˆUCB

P

i,2, in case of

a preemption at program point P by any higher priority task τ j ∈ hp(i).

1: γ
P,L2

i, j
:= 0

2: for ∀my,i ∈ ˆUCB
P

i,2 do

3: γ
P,L2

my,i , j
:= 0

4: end for

5: for ∀my,i ∈ ˆUCB
P

i,2 do

6: R
P
my,i
= GetHitLocations(my,i, P)

7: if R
1,P
my,i

is in loop then

8: if MustAge(my,i,R
1,P
my,i
, 2) +

∣

∣

∣

⋃

∀h∈hep(j) ECB
S my,i ,2

h

∣

∣

∣ + |IndP
my,i
| ≥ W2 then

9: γ
P,L2

my,i , j
:= γ

P,L2

my,i , j
+ dL2

10: end if

11: if MustAge(my,i,R
1,P
my,i
, 2) + |IndP

my,i
| ≥ W2 then

12: γ
P,L2

my,i , j
:= γ

P,L2

my,i , j
+ dL2

13: end if

14: else

15: if MustAge(my,i,R
1,P
my,i
, 2) +

∣

∣

∣

⋃

∀h∈hep(j) ECB
S my,i ,2

h

∣

∣

∣ + |IndP
my,i
| ≥ W2 then

16: γ
P,L2

my,i , j
:= γ

P,L2

my,i , j
+ dL2

17: end if

18: end if

19: for ∀r ∈ RP
my,i
\ R

1,P
my,i

do

20: if MustAge(my,i, r, 2) + |IndP
my,i
| ≥ W2 then

21: γ
P,L2

my,i , j
:= γ

P,L2

my,i , j
+ dL2

22: end if

23: end for

24: if γ
P,L2

my,i , j
> min(|RP

my,i
|, |IndP

my,i
| + 1) × dL2 then

25: γ
P,L2

my,i , j
:= min(|RP

my,i
|, |IndP

my,i
| + 1) × dL2

26: end if

27: γ
P,L2

i, j
:= γ

P,L2

i, j
+ γ

P,L2

my,i , j

28: end for

Example 4. Fig. 4 shows a sequence of memory references during the execution of a task τi considering different

preemption scenarios. We assume that L1 and L2 are 4-way set-associative LRU caches and all memory blocks used

by task τi and the preempting task τ j map to the same L1 and L2 cache set. Note that we only focus on computing the

indirect effect of preemption that can be suffered by memory block m due to preemptions at program points P1 and P2.

During the non-preempted execution of τi (see Fig. 4a), first reference to memory block A after P1 and the first

reference to memory block B after P2 are L1 cache hits. Moreover, the second reference to memory block m is also a

L2 cache hit. We assume that task τi can be preempted by a higher priority task τ j ∈ hp(i) at program points P1 and

P2 such that τ j only has one L1 cache conflict with τi, i.e., τ j only loads ECB X in the L1 cache. When considering

preemptions of τi by τ j at P1 and P2 separately or in isolation (i.e., Fig. 4b), we can see that by just considering the

preemption at P1, only the first reference to memory block A will be impacted and it will result in a L1 cache miss

(but a L2 cache hit). Similarly, a preemption at P2 in isolation can only impact the first reference to memory block

B after P2 which results in a L2 cache miss. Furthermore, since both preemptions, i.e., at P1 and P2, can only evict

one L1-UCB, the maximum indirect effect (computed using Algorithm 1) that memory block m may suffer due to a

preemption at P1 or P2 will be 1. Consequently, we can see in Fig. 4b that the second reference to memory block m

will remain a L2 cache hit when considering both preemptions in isolation.

However, when considering consecutive preemptions of task τi by task τ j (see Fig. 4c) we can see that the preemp-

tion at program point P1 can collaborate with the preemption at P2. This collaboration generates an indirect effect of

2 on memory block m, leading to the eviction of memory block m from the L2 cache after P2 (see Fig. 4c).

Example 4 shows that Algorithm 1 can underestimate the indirect effect of preemption of memory blocks in the

14

Preempted Execution (at P1 only)

E

P1

m A(L1-hit) m(L2-hit)B(L1-hit)B(L1-hit)

P2

F A(L1-hit) E(L1-hit) B(L1-hit)

E A B m

E m D A

LRU Age

τi

L1
L2

m D B A

m D A C

LRU Age

A B m D

m D A C

LRU Age

m B E A

m F E D

LRU Age

B E A M

E m D A

LRU Age

B m D A

m D A C

LRU Age

F B E A

F E m D

LRU Age

A F B E

F E m D

LRU Age

E A F B

F E m D

LRU Age

B E A F

F E m D

LRU Age

E A X B

E A m D

LRU Age

τi

L1

L2

A X B m

A m D C

LRU Age

m B E A

m F E A

LRU Age

B E A X

E A m D

LRU Age

F B E A

F E A m

LRU Age

A F B E

F E A m

LRU Age

E A F B

F E A m

LRU Age

B E A F

F E A m

LRU Age

X B m D

m D A C

LRU Age

Non-Preempted Execution

E

P1

A(L2-hit) m(L2-hit)B(L1-hit) F A(L1-hit) E(L1-hit) B(L1-hit)

m B X E

m B F E

LRU Age

X E A F

F E m D

LRU Age

B X E A

B F E m

LRU Age

m(L2-hit)

P2

B(L1-miss)

Preempted Execution (at P2 only)

P1

m B(L1-hit)

P2

E

E A X B

E A m D

LRU Age

τi

L1
L2

m D B A

m D A C

LRU Age

A(L2-hit)

A X B m

A m D C

LRU Age

m(L2-miss)

m B E A

m F E D

LRU Age

B(L1-hit)

B E A X

E A m D

LRU Age

B m D A

m D A C

LRU Age

F

F B E A

F E A m

LRU Age

A(L1-hit)

A F B E

F E A m

LRU Age

E(L1-hit)

E A F B

F E A m

LRU Age

B(L1-miss)

B X E A

B F E A

LRU Age

Preempted Execution (at P1 + P2)

X B m D

m D A C

LRU Age

X E A F

F E A m

LRU Age

Preemption at
P1 by τjevicts
A from L1

Preemption at
P2 by τjevicts
B from L1

Preemption at
P1 by τjevicts
A from L1

Preemption at
P2 by τjevicts
B from L1

(a) Non-Preempted Execution of τi.

Preempted Execution (at P1 only)

E

P1

m A(L1-hit) m(L2-hit)B(L1-hit)B(L1-hit)

P2

F A(L1-hit) E(L1-hit) B(L1-hit)

E A B m

E m D A

LRU Age

τi

L1
L2

m D B A

m D A C

LRU Age

A B m D

m D A C

LRU Age

m B E A

m F E D

LRU Age

B E A M

E m D A

LRU Age

B m D A

m D A C

LRU Age

F B E A

F E m D

LRU Age

A F B E

F E m D

LRU Age

E A F B

F E m D

LRU Age

B E A F

F E m D

LRU Age

E A X B

E A m D

LRU Age

τi

L1

L2

A X B m

A m D C

LRU Age

m B E A

m F E A

LRU Age

B E A X

E A m D

LRU Age

F B E A

F E A m

LRU Age

A F B E

F E A m

LRU Age

E A F B

F E A m

LRU Age

B E A F

F E A m

LRU Age

X B m D

m D A C

LRU Age

Non-Preempted Execution

E

P1

A(L2-hit) m(L2-hit)B(L1-hit) F A(L1-hit) E(L1-hit) B(L1-hit)

P1

m B(L1-hit)

P2

E

E A X B

E A m D

LRU Age

τi

L1
L2

m D B A

m D A C

LRU Age

A(L2-hit)

A X B m

A m D C

LRU Age

m(L2-miss)

m B E A

m F E D

LRU Age

B(L1-hit)

B E A X

E A m D

LRU Age

B m D A

m D A C

LRU Age

F

F B E A

F E A m

LRU Age

A(L1-hit)

A F B E

F E A m

LRU Age

E(L1-hit)

E A F B

F E A m

LRU Age

B(L1-miss)

B X E A

B F E A

LRU Age

Preempted Execution (at P1 + P2)

X B m D

m D A C

LRU Age

X E A F

F E A m

LRU Age

Preemption at
P1 by τjevicts
A from L1

m B X E

m B F E

LRU Age

X E A F

F E m D

LRU Age

B X E A

B F E m

LRU Age

m(L2-hit)

P2

B(L1-miss)

Preempted Execution (at P2 only)

Preemption at
P2 by τjevicts
B from L1

Preemption at
P1 by τjevicts
A from L1

Preemption at
P2 by τjevicts
B from L1

(b) Isolated Preemptions of τi by τ j at program point P1 and P2.

Preempted Execution (at P1 only)

E

P1

m A(L1-hit) m(L2-hit)B(L1-hit)B(L1-hit)

P2

F A(L1-hit) E(L1-hit) B(L1-hit)

E A B m

E m D A

LRU Age

τi

L1
L2

m D B A

m D A C

LRU Age

A B m D

m D A C

LRU Age

m B E A

m F E D

LRU Age

B E A M

E m D A

LRU Age

B m D A

m D A C

LRU Age

F B E A

F E m D

LRU Age

A F B E

F E m D

LRU Age

E A F B

F E m D

LRU Age

B E A F

F E m D

LRU Age

E A X B

E A m D

LRU Age

τi

L1

L2

A X B m

A m D C

LRU Age

m B E A

m F E A

LRU Age

B E A X

E A m D

LRU Age

F B E A

F E A m

LRU Age

A F B E

F E A m

LRU Age

E A F B

F E A m

LRU Age

B E A F

F E A m

LRU Age

X B m D

m D A C

LRU Age

Non-Preempted Execution

E

P1

A(L2-hit) m(L2-hit)B(L1-hit) F A(L1-hit) E(L1-hit) B(L1-hit)

P1

m B(L1-hit)

P2

E

E A X B

E A m D

LRU Age

τi

L1
L2

m D B A

m D A C

LRU Age

A(L2-hit)

A X B m

A m D C

LRU Age

m(L2-miss)

m B E A

m F E D

LRU Age

B(L1-hit)

B E A X

E A m D

LRU Age

B m D A

m D A C

LRU Age

F

F B E A

F E A m

LRU Age

A(L1-hit)

A F B E

F E A m

LRU Age

E(L1-hit)

E A F B

F E A m

LRU Age

B(L1-miss)

B X E A

B F E A

LRU Age

Preempted Execution (at P1 + P2)

X B m D

m D A C

LRU Age

X E A F

F E A m

LRU Age

Preemption at
P1 by τjevicts
A from L1

m B X E

m B F E

LRU Age

X E A F

F E m D

LRU Age

B X E A

B F E m

LRU Age

m(L2-hit)

P2

B(L1-miss)

Preempted Execution (at P2 only)

Preemption at
P2 by τjevicts
B from L1

Preemption at
P1 by τjevicts
A from L1

Preemption at
P2 by τjevicts
B from L1

(c) Combined Preemptions of τi by τ j at program point P1 and P2

Figure 4: Multiple preemption scenarios with collaborating and isolated preemptions. The indirect effect of preemption suffered by memory block

m due to consecutive preemptions, i.e., at P1 and P2, is higher than the indirect effect caused by individual preemptions.

presence of multiple preemptions. This is mainly because Algorithm 1, computes the indirect effect of preemption that

can be caused at a preemption point P by only considering the number of evicted L1-UCBs of tasks w.r.t P. However,

as we just demonstrated in Example 4, two consecutive accesses to the memory block under analysis, e.g., my,i, may

enclose two or more preemption points (e.g., P1 and P2 in Fig. 4). So, all L1-UCBs that may be evicted between

two accesses to my,i can contribute to the indirect effect of preemption of my,i. Therefore, to have a sound estimate

on the indirect effect that can be caused due to multiple preemptions w.r.t a program point P, we need to consider

all L1-UCBs that may be evicted from the L1 cache between the preemption point under analysis and the program

point where a memory block is first accessed after P. For example, if my,i is first accessed at program point r after

the preemption point P. Then, the indirect effect of preemption that my,i can suffer due to one or more preemptions is

upper bounded by the maximum number of distinct L1-UCBs of task τi that can be evicted from the L1 cache along

any path between P to r.

We use Algorithm 3 to compute the indirect effect of preemption in the presence of nested/multiple preemptions.

Algorithm 3 is similar to Algorithm 1 but with some key differences explained as follows; The main difference between

Algorithm 1 and 3 is the function GetProgamPoints(P, FAP
my,i

) which computes P1 (line 4). P1 is a set that contains all

program locations between the preemption point under analysis, i.e., P, and the program point where memory block

my,i is first accessed after P, i.e., FAP
my,i

. Note that FAP
my,i

is computed using the same GetFirstAccess(.) function as in

Algorithm 1. Lines 7 to 10 in Algorithm 3 then computes the indirect effect of preemption for all program locations

P
′

∈ P1 using the exact same steps as used in Algorithm 1 (see Section 5 for details).

The second difference between Algorithm 1 and 3 is the additional condition mx,i < Ind
mul,P
my,i

(line 7). This condition

ensures that every memory block mx,i ∈ UCBP
′

i,1 that can be evicted from the L1 cache at any program point P
′

∈ P1

is considered only once in the indirect effect of preemption of my,i. This is mainly because, if any access to memory

15

Algorithm 3 Calculating the indirect effect of preemption in the presence of nested/multiple preemptions

Output: Upper bound on the indirect effect of preemption that can be suffered by every memory block my,i of task τi w.r.t a preemption point

P, when considering multiple preemptions of τi by a higher priority task τ j ∈ hp(i), i.e., |Ind
mul,P
my,i
|.

1: for ∀my,i ∈Mi \ mx,i do

2: Ind
mul,P
my,i

:= ∅

3: FAP
my,i

:= GetFirstAccess(my,i, P)

4: P1 := GetProgamPoints(P, FAP
my,i

)

5: for ∀P
′
∈ P1 do

6: for ∀mx,i ∈ UCBP
′

i,1
do

7: if
(

(CU
P
′
,1

mx,i
+ |
⋃

∀h∈hep(j) ECB
Smx,i ,1

h
| ≥ W1)∧(mx,i < Ind

mul,P
my,i

)
)

then

8: FAP
′

mx,i
:= GetFirstAccess(mx,i, P

′
)

9: if ((MustAge(my,i,FAP
′

mx,i
, 2) , ∞) ∧ (Smy,i ,2 == Smx,i ,2)∧(MustAge(mx,i,FAP

′

mx,i
, 2) > MustAge(my,i,FAP

′

mx,i
, 2))) then

10: Ind
mul,P
my,i

:= Ind
mul,P
my,i

∪ mx,i;

11: end if

12: end if

13: end for

14: end for

15: end for

block mx,i at any program location in P1 results in a L1 cache miss then, mx,i will be reloaded to the L1 cache from

the L2 cache or from the main memory. In both cases, mx,i will become the youngest element in the L1 and L2 cache.

Therefore, mx,i cannot contribute to the indirect effect of preemption of my,i more than once.

Considering that every memory block mx,i ∈ UCBP
′

i,1 that satisfies all conditions in line 9 can contribute to the

indirect effect of preemption of my,i ∈ Mi, the set Ind
mul,P
my,i

is used to holds all such memory blocks. Consequently,

the indirect effect of preemption of a memory block my,i of task τi can suffer due to one or more preemptions by any

higher priority task τ j ∈ hp(i) is upper bounded by |Ind
mul,P
my,i
|.

6.4. Computing total CRPD and the WCRT Analysis

In this section, we explain how the total CRPD task τi can suffer due to a preemption by any higher priority task

τ j ∈ hp(i) is computed and incorporated into the WCRT analysis.

We know that the sum of Eq. (15) and (16) upper bound the CRPD any task τi may suffer due to evictions of its

L1-UCBs by any higher priority task τ j ∈ hp(i). Similarly, Algorithm 2 computes an upper bound on the CRPD of τi

due to eviction of its L2-UCBs. Therefore, the CRPD task τi can suffer due to a preemption by task τ j is obtained by

maximizing Eq. (15), (16) and Algorithm 2 over all program points in τi, i.e.,

γH
i, j = max

P∈P
(γ

P,L1

i, j
+ γ

P,L12

i, j
+ γ

P,L2

i, j
) (20)

Note that when computing γH
i, j

the indirect effect of preemption is computed using Algorithm 3.

Considering that a higher priority task τ j ∈ hp(i) can preempt any task τk ∈ aff(i, j) during the response time of

task τi Therefore, to ensure that the maximum CRPD cost is considered for every preemption of τi by τ j, Eq. (20) is

further maximized over all tasks in aff(i, j), i.e.,

γ
H,max

i, j
= max
∀k∈aff(i, j)

γH
i, j (21)

Eq. (21) is built using the same principle as the ECB-union approach presented in [4] (see Eq.10 of [4]). It accounts

for both nested preemptions (i.e., τi preempted by τk which is preempted by τ j) and consecutive preemptions (of τi

by τk and τ j). The CRPD cost of a direct preemption of task τi by task τ j ∈ hp(i) is accounted for in the term γH,max
i, j

,

whereas the indirect CRPD cost task τ j may generate due to preemption of any task τk ∈ aff(i, j) during the response

time of τi (i.e., a nested preemption) will be accounted for in the term γH,max

i,k
, i.e., due to the use of union of ECBs of

all tasks hep(k) when computing γH
i,k

. Thus, for every preemption of task τi by task τ j, taking the maximum CRPD

cost over all tasks in aff(i, j) ensures that the highest number of cache evictions are considered.

16

6.4.1. WCRT Computation

The WCRT analysis for fixed priority preemptive systems (FPPS) that accounts for CRPDs was proposed in [12].

We incorporate γH,max
i, j

into the same WCRT formulation proposed in [12] to compute the WCRT Ri of task τi, i.e.,

Ri = Ci +
∑

∀ j∈hp(i)

⌈

Ri

T j

⌉

×

(

C j + γ
H,max

i, j

)

(22)

where γH,max
i, j

represent the CRPD cost due to each job of a higher priority preempting task τ j ∈ hp(i) executing within

the response time of task τi. Note that Eq. (22) is recursive. However, a solution can be found using simple fixed-point

iteration on Ri by initializing Ri to Ci. The iteration stops as soon as Ri converges or Ri > Di, in which case the task

is deemed unschedulable.

7. Experimental Evaluation

This section details how our proposed CRPD analysis for non-inclusive multilevel caches compares against the

state-of-the-art analysis of [6]. First, we explain how the input quantities required by the analyses are computed and

then detail experiments that were conducted to compares the performance of both analyses.

7.1. Deriving Parameters for the Analyses

We have used the Heptane [13] static WCET analysis tool to derive parameters needed to compare our CRPD

analysis against the analysis of [6]. Heptane is an open source WCET analysis tool that supports multilevel non-

inclusive caches and implements the WCET analysis presented in [10]. However, currently the output of Heptane is

the WCET of the analyzed benchmark and few cache statistics. Therefore, we had to modify Heptane1 to compute all

the required parameters.

We have added a new module named MultiCRPDAnalysis to Heptane that enables us to compute different

parameters needed for the analysis. The set of L1- and L2-UCBs of tasks are computed using the Must-cache analysis

along with a backward flow analysis on the control flow graph. The backward flow analysis computes the abstract

cache state at the exit of a basic block by using the join operation on all the abstract cache states at the entry of its

successors. For every memory block mx,i used by task τi the analysis starts by assuming CUP
mx,i
= (∞,∞). Then for

every program point P, the analysis checks the accessed memory block and update the abstract cache state using the

Must-update and Must-join operations defined in [10]. A memory block mx,i is considered a L1-UCB at program

point P if it satisfies Eq. (13). Similarly, all memory blocks that satisfy Eq. (14) w.r.t a program point P are considered

L2-UCBs at that program point. Note that our analysis to derive the set of L1-UCBs for multilevel caches is similar

to the UCB analysis in [6] however, we additionally derive the set of L2-UCBs w.r.t every program point P. The set

of ECBs of task τi are computed using the May-cache analysis [10] that determines the set of all memory blocks used

by task τi at each cache level.

To compute the indirect effect of preemption, we use a forward flow analysis along with the Must-cache analy-

sis [9]. Knowing that the indirect effect of preemption is caused by memory blocks that were L1 cache hits in the

absence of preemption but may be accessed from the L2 cache or main memory after preemption, the forward flow

analysis (along with Must-case analysis) determines all memory blocks with L1 cache hits. For the analysis in [6], the

forward flow analysis is performed starting from the entry point of the program and ending at program point r, where

the memory block under analysis, e.g., mx,i, can be accessed. For our analysis, the forward flow analysis is performed

for each pair of program locations between two accesses to the memory block mx,i. In both cases, the largest set of

memory blocks is used when computing the indirect effect of preemption of mx,i. Since Heptane allows to analyze

each cache level separately, other parameters needed for the implementation of Eq. (4) and Algorithm 1 are extracted

using the Must-cache analysis [10]. Similarly, the cfglib library used by Heptane allows to compute loop bound for

each basic block. This information is then used in Algorithm 2 to compute the CRPD due to the eviction of L2-UCBs.

Note that our proposed MultiCRPDAnalysis is based on the cache analysis presented in [10], that uses Abstract

Interpretation (AI) based cache analysis [9]. It is demonstrated in [9], that the domain of the AI based cache analysis

is finite and the fixpoint iterations terminate in a reasonable computation time.

1The Modified version of Heptane is available on demand by contacting the first author.

17

Table 1: Benchmarks parameters from the Mälardalen Benchmark Suite [14] used during the experiments.

Name Ci L1-ECBs L2-ECBs L1-UCBs L2-UCBs Name Ci L1-ECBs L2-ECBs L1-UCBs L2-UCBs

bs 4020 11 6 11 2 bsort100 5811344 20 10 19 3

crc 1782419 43 22 43 10 expint 647343 19 11 18 3

fibcall 14023 8 4 8 3 insertsort 52245 16 8 16 4

lcdnum 8640 12 6 12 1 matmult 1795585 28 14 28 3

ns 129598 20 10 20 5 qurt 111554 53 33 53 24

fir 96215 22 11 22 4 prime 248299 17 9 17 7

select 145160 26 14 26 3 sqrt 20159 26 13 25 5

minmax 4435 17 9 16 6 ud 145170 75 38 74 6

minver 58155 167 84 167 58 fft 1252363 141 71 140 13

statemate 229575 261 133 254 37 fdct 101944 106 53 106 2

jfdctint 100331 96 48 96 2 ludcmp 341583 98 49 98 8

nsichneu 515015 1377 512 1377 422

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0.6 0.625 0.65 0.675 0.7 0.725 0.75 0.775 0.8 0.825 0.85 0.875 0.9 0.925 0.95 0.975 1

S
ch

ed
ul

ab
le

 T
as

ks
et

s

Taskset Utilization

No Preemption Cost
Proposed Multilevel CRPD Analysis

SoA Multilevel CRPD Analysis

(a) Varying total task set utilization

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

5 10 15 20 25

W
e
ig

h
te

d
 S

c
h
e
d
u
la

b
ili

ty

Number of Tasks

No Preemption Cost
Proposed Multilevel CRPD Analysis

SoA Multilevel CRPD Analysis

(b) Varying the number of tasks

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2 4 8 16 32

W
e

ig
h

te
d

 S
c
h

e
d

u
la

b
ili

ty

Number of Ways in the L1 Cache (W1)

No Preemption Cost
Proposed Multilevel CRPD Analysis

SoA Multilevel CRPD Analysis

(c) Varying the number of ways in the L1 cache

Figure 5: Task set schedulability by varying the total task set utilizations, the total number of tasks in a task set, and the L1 cache size

7.2. Experimental Setup

All experiments were performed using the Mälardalen benchmark suite [14]. Mälardalen benchmark suite com-

prise of different benchmarks that are representative of typical workloads used in real-time applications. For every

benchmark, parameters such as the WCET, set of L1- and L2-UCBs, set of L1- and L2-ECBs, maximum LRU-ages

of memory blocks, total number of references, number of references in loops etc., were extracted using Heptane. The

target architecture was a single core MIPS R2000/R3000 processor with a two level instruction cache hierarchy such

that, L1 cache is 2-way set-associative with 32 sets and line size of 32-bytes, and L2 cache is 4-way set-associative

with 64 sets and line size of 64-bytes. The L1 cache miss penalty was 10 processor cycles, i.e., dL1 = 10, and the L2

cache miss penalty was 100 processor cycles. Table 1 shows the benchmark parameters used in the experiments.

The other task set parameters were randomly generated as follows. The default number of tasks in each task set

were 10 with task utilization generated using UUnifast [15]. Each task was randomly assigned values of one of the

benchmark in Table 1. Task deadlines were implicit with priorities assigned in a deadline monotonic order. Task

periods were set such that Ti = Ci/Ui.

7.3. Experiments

We performed several experiments by varying different parameters and used task set schedulability, i.e., the total

number of task sets deemed schedulable, as the performance metric. The WCRT formulation in Eq. (22) is used to

compute the WCRT of tasks. For all the analyzed approaches, a given task set Γ is deemed schedulable only if for

every task τi ∈ Γ, the WCRT Ri is less than the deadline of τi, i.e., Ri ≤ Di. Otherwise, Γ is deemed unschedulable.

1. Task set Utilizations: In this experiment, we varied the total task set utilization from 0.025 to 1 in steps of 0.025

and randomly generated 1000 task sets per utilization point. Fig. 5a shows the number task sets that were deemed

schedulable using the “SoA Multilevel CRPD analysis [6]” and our “Proposed Multilevel CRPD analysis”. The

18

green line marked as “No Preemption cost” provides an upper bound on the number of task sets that were deemed

schedulable without considering any CRPD cost. For clarity, we only show a cropped version of the plot in Fig. 5a

starting from a utilization of 0.6. All approaches produce identical results below this point. Fig. 5a shows that our

proposed approach performs significantly better in comparison to the SoA analysis. The proposed analysis dominates

the SoA analysis mainly due to two reasons: (i) it provides a tighter bound on the indirect effect of preemption and (ii)

it accurately estimates the CRPD of tasks at the L2 cache. Although, the major improvement in the CRPD computation

results from the treatment of memory blocks with L2 cache hits, however, we can see that the number of L2-UCBs

of tasks (see Table 1) is very small in comparison to the number of L1-UCBs. However, our proposed analysis still

results in scheduling more task sets and improving task set schedulability by up to 20% percentage points over the

existing analysis.

2. Number of Tasks: In this experiment, we varied the total number of tasks per task set between 5 to 25 in steps

of 5. For all other parameters default values were considered. Since we vary both the total task set utilizations

and the number of tasks, we have used the weighted schedulability [16, 17] measure to generate the plot shown in

Fig. 5b. The weighted schedulability measure reduces what would otherwise be a 3-dimensional plot to 2-dimensions

by eliminating the axis of task set utilization.

Intuitively, increasing the number of tasks tends to decrease task set schedulability. This is due to an increase

in the number of preemptions, which also leads to an increase in the overall CRPD cost. Fig. 5b also confirms this

decrease in task set schedulability. However, we can see that our proposed CRPD analysis always dominates the SoA

CRPD analysis. In fact, for higher number of tasks per task set (e.g., for 20 or 25 tasks per task set) the difference

between the weighted schedulability of both approaches tends to increase. This is due to the excessive pessimism in

the SoA CRPD analysis that can count the evictions of same memory blocks several times. This pessimism is reduced

by our analysis by bounding the number of times each memory block can contribute to the CRPD.

3. Number of Ways in the L1 Cache (W1): In this experiment, we varied the L1 cache associativity, i.e., W1, and

evaluated its impact on the performance of all the analyzed approaches. All other parameters were set to their default

values. However, since we focus on a cache configuration where L1 cache associativity is always less than or equal

to the L2 cache associativity, i.e., W1 ≤ W2. Therefore, for this experiment, we also fixed the L2 cache associativity

to 32, i.e., W2 = 32. We then varied the number of ways in the L1 cache between 2 to 32 and plotted the weighted

schedulability for both approaches as shown in Fig. 5c. Note that increasing the number of ways in the L1 cache will

also increase the size of the L1 cache.

We can see in Fig. 5c that by varying the number of ways in the L1 cache (i.e., L1 cache size), both approaches

produce similar results with the proposed approach marginally improving task set schedulability. This is mainly

because, for both approaches the CRPD analysis for the L1 cache is very similar except for the computation of the

indirect effect of preemption. Moreover, with the number of ways in the L2 cache set to 32, the L2 cache size becomes

relatively larger w.r.t the analyzed benchmarks, which leads to almost no CRPD due to the L2 cache. Therefore, we

can observe that increasing the number of ways in the L1 cache has a similar effect on both analyses.

4. Number of Ways in the L2 Cache (W2): We also performed an experiment by varying the number of ways in the

L2 cache, i.e., W2, between 2 to 32. Default values were used for all the other parameters. The results are shown in

Fig. 6a. Note that increasing the number of ways in the L2 cache also increases its size.

Fig. 6a shows that when varying the number of ways in the L2 cache (i.e., increasing the L2 cache size), the

difference between the performance of both analyses becomes more prominent. This is because our analysis provides

much tighter bound on the CRPD of task at the L2 cache than the existing analysis. We can see in Fig. 6a that when

the L2 cache is smaller, i.e., the potential CRPD due to the L2 cache is higher, our approach performs significantly

better than the existing analysis. However, by increasing the number of ways in the L2 cache, the difference between

the performance of both analysis tends to reduce. This is mainly due to an overall reduction in the L2 CRPD due to

a larger L2 cache. Note that we also performed experiments by varying the number of sets in the L1/L2 cache and

respectively observed a similar trend as shown in Fig. 5c and 6a.

5. L1 and L2 Cache Miss Penalties (dL1 and dL1): We conducted two more experiments by varying the L1 and L2

cache miss penalties. Default values were used for all other parameters.

In the first experiment, we varied the L1 cache miss penalty between 10 to 100 processor cycles and the resulting

weighted schedulability measure is shown in Fig. 6b. For most architectures, L1 cache miss penalty is much smaller

than the L2 cache miss penalty, therefore, for this experiment, we set dL2 = 100 cycles. Fig. 6b shows that by increas-

ing the L1 cache miss penalty the weighted schedulability for both approaches decreases. However, the difference

19

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2 4 8 16 32

W
e

ig
h

te
d

 S
c
h

e
d

u
la

b
ili

ty

Number of Ways in the L2 Cache (W2)

No Preemption Cost
Proposed Multilevel CRPD Analysis

SoA Multilevel CRPD Analysis

(a) Varying number of ways in the L2 cache

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 20 40 60 80 100
W

e
ig

h
te

d
 S

c
h

e
d

u
la

b
ili

ty
L1 Miss Penalty (dL1), with dL2=100

No Preemption Cost
Proposed Multilevel CRPD Analysis

SoA Multilevel CRPD Analysis

(b) Varying the L1 cache miss penalty (dL1)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

40 60 80 100 120 140

W
e

ig
h

te
d

 S
c
h

e
d

u
la

b
ili

ty

L2 Miss Penalty (dL2), with dL1=10

No Preemption Cost
Proposed Multilevel CRPD Analysis

SoA Multilevel CRPD Analysis

(c) Varying the L2 cache miss penalty (dL2)

Figure 6: Weighted schedulability results by varying the size of L1 and L2 caches

between the performance of both analysis remains nearly constant due to a similar L1 CRPD analysis.

For the second experiment, we varied the L2 cache miss penalty between 40 to 140 processor cycles. Default

value was used for L1 cache miss penalty. The results are shown in Fig. 6c. We can see that for lower values of L2

cache miss penalty the difference between the weighted schedulability of both approaches is smaller. However, by

increasing the value of L2 miss penalty the difference between the performance of both approaches also increases,

which is due to a tighter bound on the L2 CRPD by the proposed analysis.

Analysis Time: The proposed CRPD analysis is performed in two steps. In the first step, the WCET of tasks and the

set of L1/L2 ECBs and UCBs of tasks is determined using Heptane as discussed in Section 7.1. In the second step, the

WCRT of tasks is computed by first computing the CRPD of tasks using our proposed analysis and the state-of-the-art

CRPD analysis [6].

For a two-level cache hierarchy, Heptane can compute the WCET of the benchmarks given in Table 1 in less than

one minute on an Intel core i-7 processor (3.4GHz) with 16GB RAM. With the addition of our MultiCRPDAnalysis

module to Heptane the total time taken to analyze the benchmarks in Table 1 increases on average by 20%. The

WCRT analysis however, is much more compute intensive. On an Intel core i-7 processor (3.4GHz) with 16GB

RAM, it takes on average 25 minutes to produce the plot shown in Fig. 5a. However, the difference between the

run-time of our proposed analysis and [6] is negligible since we essentially built on the CRPD analysis in [6] and use

additional information to improve the CRPD bounds.

8. Related Work

Many different approaches have been proposed in the state-of-the-art to bound CRPDs considering single-level

caches. Lee et al. [1] introduced the notion of UCBs and used the number of UCBs of the preempted tasks to

bound CRPD. Tomiyama and Dutt [2] formally introduced the notion of ECBs and used the number of ECBs of the

preempting tasks to bound CRPD. Tan and Mooney [18] presented an approach to bound CRPD using UCBs of the

preempted tasks and ECBs of the preempting tasks. Staschulat et al. [19] and Altmeyer et al. [4, 20] also used both the

UCBs of the preempted tasks and ECBs of the preempting tasks in order to come up with more precise bounds on the

CRPD cost. Building on the analysis in [4], Markovic et al. [21] have recently proposed an analysis that dominate all

the existing approaches for CRPD calculation for single-level cache. Rashid et al. [22–24] have also presented several

approaches that use the notion of cache persistence along with CRPD to improve the bounds on preemption related

cache overheads for single-level caches.

Due to the added complexity of analyzing cache conflicts at multiple cache levels only few existing approaches [6,

7] have focused on the CPRD analysis for multilevel caches. The work of Zhang et al. [7] focus on the computation of

CRPD for multilevel inclusive caches. Their analysis identifies challenges in the computation of CRPD due to cache

inclusion policy and use the notion of useful positive reference (UPR), i.e., references that are positively classified by

the intra-task cache analysis (e.g., cache hits), to compute CRPD. The analysis derives the set of positive references

that can be considered as UPRs and bound the number of times each of them may act as a UPR. This information is

then used to upper bound the CRPD. However, the analysis in [7] only use the UPRs of the preempted task to bound

20

CRPD and does not consider the preempting tasks, which might lead to overly pessimistic CRPD bounds. Zhang et

al. [25] also presented a WCET analysis that focuses on the write-back mechanism of multilevel caches.

The only existing work that focus on the CRPD analysis for multilevel non-inclusive cache is presented in [6]. It

relies on the cache behavior analysis for non-inclusive cache hierarchies that is proposed in [10]. The analysis in [6]

identifies challenges in the computation of CRPD for multilevel inclusive caches, i.e., the indirect effect of preemption,

and provide solutions to overcome those challenges. However, as we have shown in this work, the analysis in [6] may

lead to pessimistic CRPD bounds by overestimating the indirect effect of preemption and the CRPD suffered by tasks

due to L2 cache hits.

9. Conclusion and Future Work

In this paper, we presented an analysis to compute CRPDs for multilevel non-inclusive caches. We redefined the

notion of UCBs for multilevel caches, showed how to find those UCBs and used them to compute the CRPD. We

showed that a tighter bound on the indirect effect of preemption can be obtained by calculating the indirect effect of

preemption that can be caused instead of calculating the indirect effect of preemption that can be suffered by memory

blocks. We then presented a new analysis to compute the CRPD due to memory blocks that were categorized as L2

cache hits in the absence of preemptions but may become L2 cache misses after preemptions. Our analysis provides a

tighter CRPD bound than the existing analysis by identifying how many references to a memory block can be impacted

due to preemptions and therefore may contribute to the CRPD.

We evaluated the performance of our proposed CRPD analysis against an existing analysis from the state-of-

the-art. Experiments were performed by varying different parameters with most values taken from the Mälardalen

benchmarks. Experimental results show that our proposed CRPD analysis dominates the existing analysis and results

in up to 20% percentage points higher task schedulability.

As future work, we aim to extend this analysis to consider shared last-level cache in multicore platforms.

Acknowledgment

This work was partially supported by National Funds through FCT/MCTES (Portuguese Foundation for Science and Tech-

nology), within the CISTER Research Unit (UIDP/UIDB/04234/2020); also by the Operational Competitiveness Programme and

Internationalization (COMPETE 2020) under the PT2020 Partnership Agreement, through the European Regional Development

Fund (ERDF), and by national funds through the FCT, within project PREFECT (POCI-01-0145-FEDER-029119); also by the

European Union’s Horizon 2020 - The EU Framework Programme for Research and Innovation 2014-2020, under grant agreement

No. 732505. Project ”TEC4Growth - Pervasive Intelligence, Enhancers and Proofs of Concept with Industrial Impact/NORTE-01-

0145-FEDER000020” financed by the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL

2020 Partnership Agreement.

21

References

[1] C. G. Lee, J. Hahn, Y. M. Seo, S. L. Min, R. Ha, S. Hong, C. Y. Park, M. Lee, C. S. Kim, Analysis of cache-related preemption delay in

fixed-priority preemptive scheduling, Computers, IEEE Transactions on 47 (6) (1998) 700–713.

[2] H. Tomiyama, N. D. Dutt, Program path analysis to bound cache-related preemption delay in preemptive real-time systems, in: CODES,

2000, pp. 67–71.

[3] S. Altmeyer, C. Maiza, J. Reineke, Resilience analysis: Tightening the crpd bound for set-associative caches, in: LCTES, ACM, 2010, pp.

153–162.

[4] S. Altmeyer, R. I. Davis, C. Maiza, Improved cache related pre-emption delay aware response time analysis for fixed priority pre-emptive

systems, Real-Time Systems 48 (5) (2012) 499–526.

[5] M. Lv, N. Guan, J. Reineke, R. Wilhelm, W. Yi, A survey on static cache analysis for real-time systems, Leibniz Transactions on Embedded

Systems 3 (1) (2016) 05–1.

[6] S. Chattopadhyay, A. Roychoudhury, Cache-related preemption delay analysis for multilevel noninclusive caches, ACM Transactions on

Embedded Computing Systems (TECS) 13 (5s) (2014) 1–29.

[7] Z. Zhang, X. Koutsoukos, Cache-related preemption delay analysis for multi-level inclusive caches, in: Proceedings of the 13th International

Conference on Embedded Software, 2016, pp. 1–10.

[8] C. L. Liu, J. W. Layland, Scheduling algorithms for multiprogramming in a hard-real-time environment, JACM 20 (1) (1973) 46–61.

[9] H. Theiling, C. Ferdinand, R. Wilhelm, Fast and precise wcet prediction by separated cache and path analyses, Real-Time Systems 18 (2-3)

(2000) 157–179.

[10] D. Hardy, I. Puaut, Wcet analysis of multi-level non-inclusive set-associative instruction caches, in: 2008 Real-Time Systems Symposium,

IEEE, 2008, pp. 456–466.

[11] S. Altmeyer, Analysis of preemptively scheduled hard real-time systems, epubli GmbH, 2013.

[12] J. Busquets-Mataix, J. J. Serrano, R. Ors, P. Gil, A. Wellings, Adding instruction cache effect to schedulability analysis of preemptive real-time

systems, in: RTAS, 1996, pp. 204–212.

[13] D. Hardy, B. Rouxel, I. Puaut, The heptane static worst-case execution time estimation tool, in: 17th International Workshop on Worst-Case

Execution Time Analysis (WCET 2017), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[14] J. Gustafsson, A. Betts, A. Ermedahl, B. Lisper, The Mälardalen WCET benchmarks: Past, present and future, in: OASIcs-OpenAccess

Series in Informatics, Vol. 15, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2010.

[15] E. Bini, G. C. Buttazzo, Measuring the performance of schedulability tests, Real-Time Systems 30 (1-2) (2005) 129–154.

[16] A. Bastoni, B. Brandenburg, J. Anderson, Cache-related preemption and migration delays: Empirical approximation and impact on schedu-

lability, Proceedings of OSPERT (2010) 33–44.

[17] A. Burns, R. I. Davis, Adaptive mixed criticality scheduling with deferred preemption, in: 2014 IEEE Real-Time Systems Symposium, IEEE,

2014, pp. 21–30.

[18] Y. Tan, V. Mooney, Timing analysis for preemptive multitasking real-time systems with caches, ACM TECS 6 (1) (2007) 7.

[19] J. Staschulat, S. Schliecker, R. Ernst, Scheduling analysis of real-time systems with precise modeling of cache related preemption delay, in:

ECRTS, 2005, pp. 41–48.

[20] S. Altmeyer, R. I. Davis, C. Maiza, Cache related pre-emption delay aware response time analysis for fixed priority pre-emptive systems, in:

RTSS, 2011, pp. 261–271.

[21] F. Marković, J. Carlson, S. Altmeyer, R. Dobrin, Improving the accuracy of cache-aware response time analysis using preemption partitioning,

in: 32nd Euromicro Conference on Real-Time Systems (ECRTS 2020), Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[22] S. A. Rashid, G. Nelissen, D. Hardy, B. Akesson, I. Puaut, E. Tovar, Cache-persistence-aware response-time analysis for fixed-priority

preemptive systems, in: ECRTS, 2016, pp. 262–272.

[23] S. A. Rashid, G. Nelissen, S. Altmeyer, R. I. Davis, E. Tovar, Integrated analysis of cache related preemption delays and cache persistence

reload overheads, in: RTSS, IEEE, 2017, pp. 188–198.

[24] S. A. Rashid, G. Nelissen, E. Tovar, Bounding cache persistence reload overheads for set-associative caches, in: 2020 IEEE 26th International

Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), IEEE, 2020, pp. 1–10.

[25] Z. Zhang, Z. Guo, X. Koutsoukos, Handling write backs in multi-level cache analysis for wcet estimation, in: Proceedings of the 25th

International Conference on Real-Time Networks and Systems, 2017, pp. 208–217.

22

	Introduction
	System Model and Assumptions
	Background
	State-of-the-art CRPD Analysis for Multilevel non-Inclusive Caches
	Computing the Indirect Effect of Preemption
	CRPD Computation

	Multi-level Useful Cache Blocks
	Finding L1/L2-UCBs

	Tightening the Bound on the Indirect Effect of Preemption
	Improved CRPD Analysis for Multilevel caches
	CRPD due to the Eviction of L1-UCBs
	CRPD due to the Eviction of L2-UCBs
	CRPD Computation

	Handling Nested/Multiple Preemptions
	Computing total CRPD and the WCRT Analysis
	WCRT Computation

	Experimental Evaluation
	Deriving Parameters for the Analyses
	Experimental Setup
	Experiments

	Related Work
	Conclusion and Future Work

