

The variability of application execution times
on a multi-core platform

Conference Paper

CISTER-TR-160608

Vincent Nélis

Patrick Meumeu Yomsi

Luís Miguel Pinho

Conference Paper CISTER-TR-160608 The variability of application execution times on a ...

© CISTER Research Center
www.cister.isep.ipp.pt

1

The variability of application execution times on a multi-core platform

Vincent Nélis, Patrick Meumeu Yomsi, Luís Miguel Pinho

CISTER Research Center

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

http://www.cister.isep.ipp.pt

Abstract

It is a known fact that processes running concurrently on different cores in a multicore environment interfere with
each other on the processor shared resources. The contention on these shared resources considerably slows
down the execution on every core since sometimes the cores must stall while their requests to access the
resources are being served. But by how much the execution may be slowed down due to this interference? In this
paper we answer this question with numbers coming from experimentation. That is, we quantify the magnitude of
the impact of the interference on the execution time by running programs taken from the TACLeBench benchmark
suite, a popular benchmark suite in the real-time research community, on the first generation of Kalray manycore
processor family, the MPPA-256 (the development board) that goes by the code name “Andey”.

The variability of application execution times on a

multi-core platform

Vincent Nélis, Patrick Meumeu Yomsi and Luís Miguel Pinho

CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto

{nelis, pamyo, lmp}@isep.ipp.pt

Abstract

It is a known fact that processes running concurrently on different cores in a multicore environ-

ment interfere with each other on the processor shared resources. The contention on these shared

resources considerably slows down the execution on every core since sometimes the cores must

stall while their requests to access the resources are being served. But by how much the execu-

tion may be slowed down due to this interference? In this paper we answer this question with

numbers coming from experimentation. That is, we quantify the magnitude of the impact of the

interference on the execution time by running programs taken from the TACLeBench benchmark

suite, a popular benchmark suite in the real-time research community, on the first generation

of Kalray manycore processor family, the MPPA-256 (the development board) that goes by the

codename “Andey”.

1998 ACM Subject Classification C.3 SPECIAL-PURPOSE AND APPLICATION-BASED

SYSTEMS.

Keywords and phrases Execution time variability, timing analysis, WCET estimates, multi-

cores, many-cores.

Digital Object Identifier 10.4230/OASIcs.xxx.yyy.p

1 The problem of inter-core interference

Determining the worst-case execution time (WCET) of a software application has always

been a major problem in the design of real-time systems. Those WCET estimates are at the

base of the whole stack of higher-level analyses defined to characterize the timing behaviour

of the system and verify its timing requirements. Computing estimates that are as close as

possible to the actual maximum execution time is crucial. Under-estimating the application

execution times during the analysis phase may result in designing an over-utilized system

that does not meet its timing requirements, whereas over-estimating them may result in an

over-dimensioned (costlier) system of which the resources are under-utilized and thus wasted.

In multi-core architectures, the problem of finding WCET upper-bounds is further

exacerbated by the high number of resources shared between the cores. In such platforms

running processes may execute concurrently on different processor cores but any of their

accesses to a memory (to fetch an instruction or data) traverses multiple layers of arbitration

in which the request may contend with others, emitted by processes running on other cores.

Contrasting with single-core architectures, on multi-cores the time during which a core stalls

waiting for a memory request to be served is a significant component of the overall execution

time of a program.

The research community has addressed the additional problem of estimating the time-

penalty caused by inter-core interference in various ways. One methodology consists in

estimating the worst-case interference that a program may incur at runtime and inflate the

individual WCET upper-bounds accordingly. This preserves the original analysis flow used

© Vincent Nélis, Patrick Meumeu Yomsi and Luís Miguel Pinho;
licensed under Creative Commons License CC-BY

16th International Workshop on Worst-Case Execution Time Analysis.
Editors: Billy Editor and Bill Editors; pp. 1–10

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

2 The variability of application execution times on a multi-core platform

Figure 1 Outline of the architecture of the Kalray MPPA-256 (Andey) manycore processor.

in single-core systems, in which individual WCET are estimated for every software program

and then fed as input into the higher-level schedulability analyses. Other works take into

consideration that the interference between processes effectively depends on the scheduling

decisions taken for these processes. In those works the estimated maximum interference is

accounted for at the schedulability level. Other initiatives acknowledge that the interference

between processes may be way too high on multi-cores and thus focus on how to temporally

isolate the processes to nullify, or at least mitigate, the interference between them.

Related work and contribution: It is important to understand that the present work

does not aim at measuring or determining the worst-case execution time of a given program.

For that particular problem, the interested reader may consult [7] for an overview of the

state-of-the-art solutions. Broadly speaking there are three main methodologies to estimate

the worst-case execution time of a software program: static, measurement-based, and hybrid

analyses, with their respective advantages and drawbacks discussed in [5]. More recently, the

research community has been focusing on statistic methods as well (see [4] for an interesting

starting point). In this work we performed a set of experiments to measure and quantify

the variability in the execution time of a program due to resource contention when run

concurrently with other programs on a multi-core processor. That is, we like to point out the

magnitude of the time-overhead due to the interference on the processor shared resources.

To do so, we have run a collection of programs taken from various application benchmark

suites on the Kalray MPPA-256 development board. We have run the selected programs

numerous times, always over the same set of input data, and varied the execution conditions.

2 Our test-case platform and applications

Platform settings: Our experiments have been carried out on the first generation of Kalray

manycore processor family, the MPPA-256 that goes by the codename “Andey” [3] (we used

the development board). It is a clustered many-core platform composed by an array of 16

clusters and 4 I/O subsystems, themselves connected by two NoCs (illustrated in Fig. 1).

Cores are grouped in clusters connected by a Round-Robin (RR) arbitrated Network-on-Chip

(NoC) in a 2D-torus topology [2]. Each cluster contains 17 identical VLIW cores: 16 compute

cores that are dedicated to general-purpose computations and one Resource Manager (RM)

core whose responsibility is to manage the processor resources on the behalf of the entire

cluster (maps and schedules threads on compute cores) and organize the communication

between its cluster and the other clusters, as well as with the main off-chip memory. Every

V. Nélis, P. M. Yomsi and L. M. Pinho 3

Figure 2 Memory request arbitration of the Kalray MPPA-256.

compute core has a private instruction and data cache. All the cores are fully timing

compositional [6] in the sense that they do not exhibit timing anomalies. Additionally each

cluster also contains a Debug Support Unit, a network interface for receiving data requests

from the Data-NoC and a DMA engine used for data transmission over the Data-NOC.

Regarding the organization of the memory subsystem, each cluster has a local shared

memory comprising 16 banks, each with a capacity of 128 KB, for a total memory capacity of

2 MB per cluster. The memory banks are organized into two groups of equal sizes, referred to

as the banks on the left and right sides of the memory, respectively. Similarly, the 16 compute

cores are grouped into 8 core-pairs1. Although the cluster address space can be divided

among banks in an interleaved fashion (useful for high-performance and parallel applications),

this work uses the blocked memory mode where the address space is divided in a sequential

manner. This results in more predictable system behavior, which is a desired characteristic

in systems subject to timing requirements.

The arbitration of memory requests is performed in four levels (stages), as depicted

in Fig. 2. The first three levels use the Round-Robin arbitration scheme. The first level

arbitrates memory requests issued from the two data caches and instruction caches of each

core-pair. At the second level, the requests issued from each core-pair compete against the

requests coming from the other core-pairs. At the third level, requests from all core-pairs

compete against requests from the RM, the DSU, and the DMA. Finally, at the fourth level,

the scheduled requests compete with those coming from the D-NOC (Rx) under static-priority

arbitration, where requests from the NoC always have a higher priority. Note: in order to

minimize contention, the second, third, and fourth levels of arbitration are replicated for each

memory bank. The first level is only duplicated for memory banks located on the left and

the right side of the memory, respectively, so that paired cores can access banks on different

sides in parallel without interfering with each other. From the organization of the memory

and its four-stages arbitration mechanism, it is easy to discern that there can be substantial

interferences arising from different sources, e.g., from the concurrent accesses to memory

banks from different cores or the contention on the NoC for the access to off-chip memory.

Application test-cases: We measure the execution time of a set of programs taken

1 This organization in core-pairs is specific to the “Andey”. The second generation of Kalray’s manycore
processor family, the MPPA2 high-speed I/O processor (codename “Bostan”) dropped this architectural
choice.

4 The variability of application execution times on a multi-core platform

Name Description LoC Origin

ammunition C compiler arithmetic stress test 2508 misc

cjpeg_jpeg6b_transupp JPEG image transcoding routines 1599 MediaBench

cjpeg_jpeg6b_wrbmp JPEG image bitmap writing code 1296 MediaBench

dijkstra All pairs shortest path 227 MiBench

epic Efficient pyramid image coder 994 MediaBench

gsm_decode
GSM 06.10 provisional standard

decoder
1368 MediaBench

gsm_encode
GSM 06.10 provisional standard

encoder
1940 MediaBench

h264dec_ldecode_block H.264 block decoding functions 1574 MediaBench

mpeg2 MPEG2 motion estimation 1533 MediaBench

ndes Complex embedded code 407 MRTC

rijndael_decoder Rijndael AES decryption 3043 MiBench

rijndael_encoder Rijndael AES encryption 1024 MiBench

statemate
Statechart simulation of a car

window lift control
1053 MRTC

Table 1 The 13 benchmark programs for which we measured the execution time. “LoC” is the

total number of lines of code of all source code files belonging to a benchmark, empty lines and

comments are not counted. This information as been taken as is from [1].

from the TACLeBench benchmark suite (from those labelled as “sequential benchmarks”).

TACLeBench provides a freely available and comprehensive benchmark suite for timing

analysis, featuring complex multi-core benchmarks [1]. We selected 13 programs out of

the 102 programs available in the TACLeBench suite (see Table 1). Those programs are

provided as ANSI-C 99 source codes that are 100% self-contained, i.e. no dependencies to

system-specific header files via “#include” directives (eventually used functions from math

libraries are also provided in C source code) [1].

3 Our approach to measuring the execution times

Our timing analysis methodology is based on the intuitive idea that the total execution

time of any piece of code, e.g. a basic block, a software function, or an entire application,

can be seen as composed of two main terms: the “intrinsic” time spent executing every

instruction of the code and the time spent waiting for a shared software or hardware resource

to become available. It is fundamental to clearly understand the difference between these

two components.

The maximum intrinsic execution time (MIET): For a given set of input data, it is

the time that the program takes to produce the corresponding output2, assuming that all

software and hardware services provided by the execution environment and shared among

different cores are always available (the core running that program never stalls waiting for

one of these resources to become available). That is, the intrinsic execution time of a program

is its execution time when it runs in isolation, i.e. with no interference whatsoever with

2 We assume that there is no functional random behaviours involved in the definition of the analysed
program. That is, the outcome of evaluating a condition is never the result of an operation involving
randomly-generated numbers. Under this assumption of not involving randomness in the control flow
of the program, running it multiple times over a same set of input data always results in taking the
same path throughout the program’s code and thus execute the exact same sequence of instructions
and eventually, it always produces the same output.

V. Nélis, P. M. Yomsi and L. M. Pinho 5

the rest of the system on the shared resources. Note that it does not mean that the code

and data of the program are preloaded in the caches before execution, rather it means that

wherever the information is stored, there will be no interference when fetching it.

On an “ideal” hardware architecture every instruction should take a constant number

of cycles to execute (i.e. there is no time variation what-so-ever) and thus running the

same program in isolation over the same set of input arguments always results in the exact

same execution time. Although this may sound like a very strong assumption to make in

practice, we will see that on a platform such as the Kalray MPPA-256 this assumption is

reasonable. By running a preliminary set of tests with the same program an arbitrary number

of times over the same inputs, we experienced a variation of its execution time of typically

less than 0.1% of the maximum observed.

The maximum extrinsic execution time (MEET): For a given set of input data, it is

the time that the program takes to produce its output assuming a maximum interference

on all the shared resources. That is, the extrinsic execution time of a function is its

execution time assuming that all the software and hardware services provided by the execution

environment and shared among the cores are constantly saturated by requests from other

system components. As we will see, contrary to the intrinsic execution time, the extrinsic

execution time is generally subject to substantial variations due to the high number of

processor resources shared amongst software functions.

3.1 Extraction of the MIET: the isolation mode

In order to extract the MIET of an application, the platform is configured in what we call

the “isolation mode”: the entire application is assigned to a single thread that is pinned

to a core and all the other cores are shut down and kept idle. This is done to minimize

the interference with the rest of the system. To enforce this mode of execution, we have

implemented a platform-specific API for the Kalray MPPA-256. This API provides a set of

functions and global parameters to perform the following tasks:

Enforce that the thread running the analyzed program is executed, uninterruptedly, on a

single core,

Synchronise the IO cores and the cluster cores so that it is guaranteed that nothing runs

in the background that could interfere with the execution of the analysed program, and

Perform additional operations on the demand of the user to [re]configure the cluster before

processing. Specifically, any of the following actions, or a combination of them can be

performed: (a) Activate/deactivate the data cache; (b) Invalidate the data cache; (c) Flush

the data cache; (d) Change the operating mode of the data cache (i.e. make the cores

stall on access or not); (e) Invalidate the Data-TLB; (f) Activate the instruction cache;

(g) Invalidate the instruction cache; (h) Set the address mapping scheme of the 2MB

shared memory in each cluster (i.e., set the address mapping scheme to “interleaved” or

“sequential” mode).

With these configuration options, we define two different configurations of the platform

in order to give a hint of the type of results that can be expected from applications with

very different memory access profiles:

The High-Performance (HP) configuration. In this configuration, the data cache

is enabled; The content of the data cache is neither invalidated nor flushed before each

execution; The “stall-on-access” mode is disabled (that is, the core does not stall while

waiting for a data to be fetched); The content of the data TLB is not invalidated before

each execution; The instruction cache is enabled; The content of the instruction cache is

6 The variability of application execution times on a multi-core platform

not invalidated before each execution; and the 2MB shared memory of the cluster is set

in “interleaved” mode, to allow data to span several banks.

The Low-performance (LP) Configuration. In this configuration, the data cache is

disabled; The “stall-on-access” mode is enabled; The instruction cache is disabled; and

the 2MB shared memory of the cluster is set in “sequential” mode, to allow data to span

multiple adjacent banks if and only if it does not fit in the bank currently in use.

Clearly, using the LP or HP configuration has a substantial impact on the execution time of

the application. The reason for defining these two platform configurations is not to assess

the level of performance that is achievable in general on the Kalray-MPPA 256. Rather, we

want to give a hint at the type of results that can be expected from applications with very

different memory access profiles. To understand this relation between the platform settings

and the memory access pattern of the application, it is important to understand that if the

memory footprint of the analyzed program (instruction + data) is small enough, it will fit

entirely in the private cache of the core on which the application is run. Therefore, when

executing the program using the HP configuration, the instructions and data will be loaded

once in the private cache and the program will not need to communicate further with the

shared memory. That is, running a program with a small memory footprint using the HP

configuration is equivalent to running a program with very limited communication with the

shared memory. As it will be seen, when using the HP configuration the execution time of

some of the benchmark programs used in our experiments is not, or almost not, affected

by the execution of other programs running concurrently on other cores. On the contrary,

when the LP configuration is used, since the caches are disabled, the analyzed program must

frequently communicate with the shared memory during its execution. As a result, it is way

more subject to interference with other programs running concurrently on the other cores

and accessing the shared memory as well.

3.2 Extraction of the MEET: the contention mode

In order to extract the MEET of each application, the platform is configured in what we

call the “contention mode”. In this mode, we start each application and try to interfere as

much as possible with its execution while it is running. The objective of the contention

mode is to create the “worst” execution conditions for the application so that its execution is

constantly suspended due to interference with other programs. This gives us an estimation

of the maximum execution time of the application when it suffers maximum interference

from other programs on the shared resources.

The contention mode is similar to the isolation mode in that the analyzed program is

assigned to a single thread that is pinned to a core (here, core 0 of cluster 0). However, on

the contrary to the isolation mode that shuts down all the other cores of the cluster (thereby

nullifying all possible interference within that cluster), we deploy onto all these other cores

small programs that we call “Interference Generators” (or IG for short). Those programs

are essentially tiny pieces of code that have for sole purpose to saturate all the resources

(e.g., interconnection, memory banks) that are shared with the application under analysis

running on core 0. Remember that the objective of the contention mode is to create the worst

execution conditions for the execution of the analyzed program, i.e. conditions in which its

execution is slowed down as much as possible due to contention for shared resources. The

IGs are deployed and started before the analyzed program starts executing, and they are

stopped after it has run for a pre-defined number of times.

Implementing the IG that generates the worst possible interference that an application

could ever suffer is a very challenging task, if not impossible. This is because the exact

V. Nélis, P. M. Yomsi and L. M. Pinho 7

behaviour of the application to be interfered with (i.e. its utilization pattern of every shared

resources and the exact time-instants of accessing it) should be known, as well as all the

detailed specifications of the platform. Besides, even if those information were known, the

execution scenario causing the maximum interference may be impossible to reproduce. Rather

than concentrating our efforts on creating such a worst IG, we opted for the implementation

of an IG that is “bad enough” and used it as a proof of concept to demonstrate how large

can be the time-overhead incurred by the application under analysis due to the interference.

Our implementation of the IG consists of a single function “IG_main()” that is executed

by a thread dispatched to every core on which the analyzed program is not assigned (recall

that the application under analysis is executed sequentially on core 0). That is, every

core that is not running the analyzed program runs a thread that executes IG_main().

Essentially, IG_main() executes three functions, namely: IG_init_interference_process(),

IG_generate_interference(), and IG_exit_interference_process(). The first one is called

upon deployment, at the beginning of execution of IG_main(), before the analyzed program

start to execute and be timed. The second one is the main function. It creates interference

on the shared resources. The call to that function is encapsulated in a loop that terminates

only when the IG is explicitly told to stop. Finally, the third function is called when the

analyzed application has been timed and the analysis process is about to end.

Let us now briefly describe our implementation of these three functions on the Kalray

MPPA-256. We use a global array of integer called “my_array” and declare the three main

functions described above as follows.

int* my_array;

inline void IG_init_interference_process() __attribute__((always_inline));

inline void IG_generate_interference() __attribute__((always_inline));

inline void IG_exit_interference_process() __attribute__((always_inline));

The first function “IG_init_interference_process()” simply allocates memory space to

“my_array” (the size of 1024 integers) and fills that array with arbitrary values. Note that on

the Kalray MPPA-256, a thousand integers occupy roughly half of the private data cache of a

VLIW core in a compute cluster. The third function “IG_exit_interference_process()” simply

frees the memory space held by “my_array”. The second function, “IG_generate_interference()”,

is the main one and a snippet of its code is presented below.

inline void IG_generate_interference() {

__builtin_k1_dinval();

__builtin_k1_iinval();

register int *p = my_array;

volatile register int var_read;

var_read = __builtin_k1_lwu(p[0]);

var_read = __builtin_k1_lwu(p[8]);

var_read = __builtin_k1_lwu(p[16]);

// ...

var_read = __builtin_k1_lwu(p[1015]);

var_read = __builtin_k1_lwu(p[1023]);

}

The function starts by invalidating the content of the data and instruction caches. Then, it

reads every element of “my_array”, starting from the element K=0 and moving on iteratively

from element K to element ((K+8) modulo 1024), until K reaches 1023. This way, every

element of the array is read exactly once and every two consecutive readings access data that

8 The variability of application execution times on a multi-core platform

ISO CON

Name min max var (%) min max var (%) factor

ammunition 1148.3 1148.3 0 8675.44 8676.04 0.007 7.56

cjpeg_jpeg6b

_wrbmp
1.09 1.09 0 8.04 8.05 0.14 7.37

cjpeg_transupp 39.84 39.84 0 279.97 280 0.012 7.03

dijkstra 472.61 472.61 < 0.001 1552.71 1557.35 0.3 3.3

epic 64.15 64.15 0 510.87 511.03 0.031 7.97

gsm_decode 19.69 19.7 < 0.022 151.69 151.84 0.099 7.71

gsm_encode 47.19 47.19 0 340.17 340.22 0.013 7.21

h264_dec 0.46 0.46 0 3.83 3.83 0.126 8.39

mpeg2 2890.55 2890.55 0 20237.81 20238.08 0.002 7

ndes 0.63 0.63 < 0.548 4.46 4.5 0.753 7.09

rijndael_decoder 31.06 31.06 < 0.001 228.46 228.48 0.011 7.36

rijndael_enc 35.16 35.16 < 0.001 256.62 256.73 0.046 7.3

statemate 0.39 0.39 0 3.15 3.15 0.187 8.02

Table 2 Results in the LP configuration, in which the instruction and data caches are disabled.

The columns “min” and “max” are expressed in millions of cycles; the columns “var” are expressed

in % and correspond to (max − min)/ min; the column “factor” is the ratio between the maxima in

contention and isolation, i.e. factor = max (CON) / max (ISO).

are located exactly 8 × 4 = 32 bytes apart in the memory (the size of an integer is standard

on the Kalray, i.e. 4 bytes). This is done on purpose knowing that the private data cache

line of every VLIW core in the compute clusters of the Kalray MPPA-256 is 32 bytes long.

Consequently, every reading causes a cache miss and the value must then be fetched from the

2MB in-cluster shared memory, hence it creates traffic on the shared memory communication

channels and potentially interfere with the application being analysed. At runtime, this

function is called repeatedly in an infinite while-loop until the IG receives the command to

stop (that command is sent at the end of the execution of the program under analysis).

By running the application concurrently with these IGs, every request that it sends to

read or write a data in the shared memory is very likely to interfere with a read request from

one of the IGs. As reported in Section 4, the variation in the execution time between the

isolation and contention modes is substantial.

4 Experimental results

We ran each benchmark application one thousand times, each time over the same input data3,

in isolation and contention modes and both with the HP and LP configurations. Tables 2

and 3 expose the results in the LP and HP configurations, respectively. It is important to

stress here that for each program, we used the same input set for the thousand runs! We did

so in order to focus solely on the variation of execution time due to the interference between

concurrently-running processes. The input data set that we used is the one provided “by

default” that is available immediately on downloading the source code of the benchmark

programs from the TACLe website [1]. From the results we made few interesting observations:

With the LP configuration (Table 2), for 8 out of 13 tested programs, the execution takes

3 Since the inputs are fixed, the remaining variability in the MIET should be caused by the initial
hardware state (like contents of caches, state of the branch predictor, etc.).

V. Nélis, P. M. Yomsi and L. M. Pinho 9

ISO CON

Name min max var (%) min max var (%) factor

ammunition 247.24 247.25 < 0.002 248.07 248.09 < 0.008 1.003

cjpeg_jpeg6b

_wrbmp
0.23 0.23 < 0.067 0.23 0.23 < 0.217 1.003

cjpeg_transupp 8.9 8.9 < 0.004 8.9 8.9 < 0.005 1.00003

dijkstra 101.92 101.92 < 0.001 101.39 101.4 < 0.009 0.995

epic 18.81 18.81 < 0.002 18.84 18.84 < 0.023 1.002

gsm_decode 4.44 4.44 < 0.017 4.44 4.45 < 0.042 1.002

gsm_encode 11.08 11.08 < 0.001 11.1 11.1 < 0.028 1.002

h264_dec 0.09 0.09 < 0.149 0.09 0.09 < 0.347 1.002

mpeg2 619.77 619.77 < 0.001 620.31 620.33 < 0.003 1.0009

ndes 0.13 0.13 < 0.679 0.13 0.13 < 0.937 1.003

rijndael_decoder 9.29 9.29 < 0.002 9.54 9.55 < 0.102 1.03

rijndael_enc 10.13 10.14 < 0.105 10.31 10.32 < 0.164 1.02

statemate 0.09 0.09 < 0.33 0.1 0.1 < 1.83 1.11

Table 3 Results in the HP configuration, in which the instruction and data caches are enabled.

The columns “min” and “max” are expressed in millions of cycles; the columns “var” are expressed

in % and correspond to (max − min)/ min; the column “factor” is the ratio between the maxima in

contention and isolation, i.e. factor = max (CON) / max (ISO).

the exact same time, to the nearest CPU cycle, when running in isolation one thousand

times over the same set of inputs. This is true even for the “mpeg2” program that

executes in about 2890 millions of cycles. Its execution time remains constant throughout

the 1000 runs. Although this constance is commonly assumed in theoretical works (same

input → same execution path → same output and same duration), we did not expect it

to be 100% true in practice.

With the HP configuration (Table 3), still in the isolation mode, all the programs have

experienced a different execution time, which is thus due to the non-determinism of the

cache. Sometimes this variation is small, still it is always there.

Comparing the results of the contention mode between the LP and HP configurations,

we see that using the caches has somewhat isolated the programs from each other. Under

the HP configuration, The IGs are able to increase the execution time of the analyzed

program only by a small factor (1.11 being the worst-case observed). This is because

once the program is loaded into the cache (both instructions and data), the program does

not need to further communicate with the 2MB of shared in-cluster memory. Therefore

the IGs do not have a mean to interfere substantially with its execution. In the LP

configuration however, the execution time is increased by a factor up to 8, which means

that the analyzed program is 8 times slower due to interference with concurrently-running

processes! This slow-down factor clearly advocates the use of specialized techniques to

prevent processes from interfering with each other at runtime (or at least mechanisms

should be set to mitigate the effect of this interference). We believe that a slow-down

factor of similar magnitude could be observed even with the caches enabled (i.e. in the HP

configuration) if the analyzed program had to communicate frequently with the shared

memory, hence giving the opportunity to the other processes running on the other cores

to interfere with its execution.

Important note: All the benchmarks that we have analysed seem to have data sets that

mostly fit into the data cache of the core on which they are deployed. It would be useful and

10 The variability of application execution times on a multi-core platform

highly interesting to conduct further experiments on benchmarks with larger data set sizes.

Intuitively, it seems that the results of the “contention” mode for benchmarks with larger

data set sizes would be somewhere in between what we see in this paper for the LP and HP

configurations. Due to time and space constraints, we were not able to include such results

in this paper.

5 Conclusion

The paper aimed at quantifying the effect of the inter-process interference on the processor

shared resources. We showed that on the Kalray MPPA-256 (Andey) manycore platform

the interference can slow down the execution of a program by a factor of 8, and this slow

down factor is obtained in conditions that may not even be the worst (the IGs certainly do

not generate the maximum interference). Of course, many questions remain open: What is

the maximum slow-down factor that we could experience at runtime? What is the relation

between the slow down factor and the memory access pattern of the analyzed program?

And of course, how to totally isolate the processes from each other without degrading too

much the performance? We plan to make more elaborated experiments in the near future to

answer those questions, or at least to provide insights that would enable us to answer them.

Acknowledgements

This work was partially supported by National Funds through FCT/MEC (Portuguese Foundation for

Science and Technology) and co-financed by ERDF (European Regional Development Fund) under the

PT2020 Partnership, within the CISTER Research Unit (CEC/04234); also by the European Union under

the Seventh Framework Programme (FP7/2007-2013), grant agreement n° 611016 (P-SOCRATES).

References

1 Timing analysis on code-level. http://http://www.tacle.eu/index.php/activities/

taclebench. Accessed: 2016-05-06.

2 B. Dupont de Dinechin, Y. Durand, D. van Amstel, and A. Ghiti. Guaranteed services

of the NoC of a manycore processor. In Int. Workshop on Network on Chip Architectures,

pages 11–16, Cambridge, United Kingdom, 2014.

3 B. Dupont de Dinechin, D. van Amstel, M. Poulhiès, and G. Lager. Time-critical computing

on a single-chip massively parallel processor. In Design, Automation & Test in Europe

Conference & Exhibition, pages 1–6, Dresden, Germany, 2014.

4 B. Lesage, D. Griffin, S. Altmeyer, and R. I. Davis. Static probabilistic timing analysis for

multi-path programs. In Real-Time Systems Symposium, 2015 IEEE, pages 361–372, 2015.

5 V. Nélis, P. M. Yomsi, and L. M. Pinho. Methodologies for the wcet analysis of parallel

applications on many-core architectures. In Digital System Design (DSD), 2015 Euromicro

Conference on, pages 748–755, 2015.

6 R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and C. Ferdinand. Memory

hierarchies, pipelines, and buses for future architectures in time-critical embedded sys-

tems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

28(7):966–978, July 2009.

7 Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,

David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra,

Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström. The

worst-case execution-time problem; overview of methods and survey of tools. ACM Trans.

Embed. Comput. Syst., 7(3):36:1–36:53, 2008.

http://http://www.tacle.eu/index.php/activities/taclebench
http://http://www.tacle.eu/index.php/activities/taclebench

	The problem of inter-core interference
	Our test-case platform and applications
	Our approach to measuring the execution times
	Extraction of the MIET: the isolation mode
	Extraction of the MEET: the contention mode

	Experimental results
	Conclusion

