Technical Report

The Utilization Bound of Uniprocessor Preemptive Slack-Monotonic Scheduling is 50%

Björn Andersson

HURRAY-TR-071005
Version: 0
Date: 10-22-2007
The Utilization Bound of Uniprocessor Preemptive Slack-Monotonic Scheduling is 50%

Björn Andersson
IPP-HURRAY!
Polytechnic Institute of Porto (ISEP-IPP)
Rua Dr. António Bernardino de Almeida, 431
4200-072 Porto
Portugal
Tel.: +351.22.8340509, Fax: +351.22.8340509
E-mail: bandersson@dei.isep.ipp.pt
http://www.hurray.isep.ipp.pt

Abstract
Consider the problem of scheduling a set of sporadically arriving implicit-deadline tasks to meet deadlines on a uniprocessor. Static-priority scheduling is considered using the slack-monotonic priority-assignment scheme. We prove that its utilization bound is 50%.
The Utilization Bound of Uniprocessor Preemptive Slack-Monotonic Scheduling is 50%

Björn Andersson
IPP Hurray Research Group ISEP/IPP
Rua Dr. Antonio Bernardino de Almeida 431
4200-072 Porto, Portugal
bandersson@dei.isep.ipp.pt

ABSTRACT
Consider the problem of scheduling a set of sporadically arriving implicit-deadline tasks to meet deadlines on a uniprocessor. Static-priority scheduling is considered using the slack-monotonic priority-assignment scheme. We prove that its utilization bound is 50%.

Categories and Subject Descriptors
D.4 [Operating Systems]: Process Management

General Terms
Algorithms, Performance

Keywords
Real-time and embedded systems

1. INTRODUCTION
Consider the problem of preemptive scheduling of n sporadically arriving tasks on a uniprocessor. A task τi is given a unique index in the range 1...n. A task τi generates a (potentially infinite) sequence of jobs. The time when these jobs arrive cannot be controlled by the scheduling algorithm and the time of a job arrival is unknown to the scheduling algorithm before the job arrives. It is assumed that the time between two consecutive jobs from the same task τi is at least Ti. Every job released from task τi requests to finish the execution of Ci time units at most Ti. Every job after its arrival. It is assumed that 0 ≤ Ci ≤ Ti and Ti and Ci are real numbers. The utilization is defined as U = ∑i=1n Ci/Ti. The utilization bound U/UBA of an algorithm A is the maximum number such that if U ≤ UBA then all tasks meet their deadlines when scheduled by A.

Static-priority scheduling solves this problem by assigning a priority to each task and every job is given the priority of the task that released the job. At run-time, a dispatcher selects, among jobs that have not yet finished execution, the job with the highest priority and this selected job executes on the processor. Typically, priorities to tasks are assigned using the Rate-monotonic (RM) priority-assignment scheme; it assigns a task τi a higher priority than task τj if Ti < Tj. RM is well-explored. Unfortunately, it is known that RM is an optimal static-priority scheduling algorithm, meaning that if there is any priority-assignment that causes all deadlines to be met then the assignment performed by RM will cause all deadlines to be met as well. It is also known that the utilization bound of RM is 69%.

Slack-monotonic (SM) is an alternative priority-assignment scheme which assigns the highest priority to the task with the least slack, that is, the deadline minus the execution time. Intuitively, a task with small slack must not be delayed too much in order to meet its deadline and hence it is given a high priority. SM is known to perform well in simulation studies of multiprocessor scheduling [7, 1] but unfortunately no formally proven results are available and it has not been analyzed for uniprocessor scheduling. In particular, no utilization bound of SM is known.

In this paper, we analyze SM on a uniprocessor. In our system model with sporadic scheduling, SM assigns task τj a higher priority than task τi if Ti-Ci < Tj-Cj. We do not assume any specific tie-breaking rules between tasks with the same slack. With this behavior, we prove the utilization bound of SM; it is 50%.

The remainder of this paper is organized as follows. Section 2 presents results within static-priority scheduling that we will use. Section 3 gives the understanding of the performance of SM in order to understand why the utilization bound of SM is 50% and in particular why it performs differently from RM. Section 4 presents a formal proof of the utilization bound of SM. Section 5 gives conclusions and open questions.

2. RESULTS WE WILL USE
Previous research [6] has explored a so-called critical instant. A critical instant of a task τi is an instant in time such that the response-time of task τi is maximized. It was found [6] that:

THEOREM 1. A critical instant for any task occurs whenever the task is requested simultaneously with requests for all higher priority tasks.

The result of Theorem 1 was originally used for RM but it is valid also for other priority-assignment schemes. This can be seen easily in [6] by the fact that Theorem 1 was
of the task set is \(\tau \) positive number which does not exceed 0.5.

Theorem 2. The response time of task \(\tau_i \), denoted \(R_i \), can be calculated as:
\[
R_i = C_i + \sum_{j \in hp(i)} \frac{R_j}{T_j} \cdot C_j
\]
where \(hp(i) \) is the set of indices of the tasks with a higher priority than \(\tau_i \).

The results in Theorem 2 is a cornerstone in the real-time scheduling theory for static-priority scheduling. It has been extended to cope with various practical concerns such as non-ideal effects of real-time kernels [3] and an alternative formulation has been proposed as well [5].

In our discussion later in the paper we will need Lemma 1, a slight variation of Theorem 2.

Lemma 1. If task \(\tau_i \) misses its deadline then it holds that
\[
T_i < C_i + \sum_{j \in hp(i)} \frac{T_j}{T_i} \cdot C_j
\]

Proof. Follows from Theorem 2. \(\square \)

3. UNDERSTANDING THE PERFORMANCE OF SM

Consider two tasks \(\tau_1 \) and \(\tau_2 \) with \(T_1=1, C_1=0.5+\epsilon \) and \(T_2=0.5+\epsilon \) and \(C_2=\epsilon \), where \(\epsilon=0.01 \). With RM, \(\tau_2 \) is assigned the highest priority and both tasks meet their deadlines (this can be easily seen because their utilization does not exceed 0.69.)

Let us now use SM on this task set. \(\tau_1 \) is assigned the highest priority and \(\tau_2 \) is assigned the lowest priority. Figure 1 illustrates the arrival times and the schedule when both tasks arrive simultaneously. It can be seen that \(\tau_2 \) misses a deadline. It is clear that SM performs worse than RM.

In order to get the intuition of why the utilization bound of SM is 50%, consider the same task set but let \(\epsilon \) be a positive number which does not exceed 0.5. With SM we obtain that \(\tau_1 \) has higher priority than \(\tau_2 \). The utilization of the task set is \(\frac{0.5+\epsilon}{0.5+\epsilon} + \frac{\epsilon}{0.5+\epsilon} \). \(\tau_2 \) misses a deadline for every choice of \(\epsilon \) with \(0 \leq \epsilon < 0.5 \). By letting \(\epsilon \to 0 \) we obtain a task set that misses a deadline and the utilization is marginally higher than 0.5. Hence, slack-monotonic has a utilization bound no greater than 50%. In the next section we will show that the utilization bound of SM is, in fact, 50%.

4. PROVING THE UTILIZATION BOUND OF SM

Theorem 3. If it holds for a task set \(\tau \) that \(\sum_{j=1}^{n} \frac{C_j}{T_j} \leq 0.5 \) and \(\tau \) is scheduled by SM on a uniprocessor then all deadlines are met.

Proof. The proof is by contradiction. Suppose that the theorem was false. Then there must be a task set \(\tau \) such that \(\sum_{j=1}^{n} \frac{C_j}{T_j} \leq 0.5 \) and \(\tau \) is scheduled by SM on a uniprocessor and a deadline was missed. Of all tasks that missed a deadline, let \(i \) denote the index of the task with the highest priority. We can now delete all tasks with a lower priority than \(i \) and still the theorem is false. Since \(\tau_i \) missed a deadline it follows that an exact schedulability test for that task must be false. For this reason, we have (from Lemma 1) the following:
\[
T_i < C_i + \sum_{j \in hp(i)} \frac{T_j}{T_i} \cdot C_j
\]
where \(hp(i) \) is the set of indices of tasks with higher priority than task \(\tau_i \). Let us define \(hlong(i) \) and \(hshort(i) \) as:
\[
hlong(i) = \{ \tau_j \in hp(i) : T_j > T_i \}
\]
and
\[
hshort(i) = \{ \tau_j \in hp(i) : T_j \leq T_i \}
\]
It is clear that the set \(hp(i) \) can be partitioned into \(hlong(i) \) and \(hshort(i) \). Applying this knowledge on Inequality 1 gives us:
\[
T_i < C_i + \sum_{j \in hlong(i)} \frac{T_j}{T_i} \cdot C_j + \sum_{j \in hshort(i)} 2 \cdot \frac{T_j}{T_i} \cdot C_j
\]
Dividing by \(T_i \) and rewriting yields:
\[
1 < \frac{C_i}{T_i} + \sum_{j \in hlong(i)} \frac{1}{T_j} \cdot \frac{C_j}{T_i} + \sum_{j \in hshort(i)} 2 \cdot \frac{C_j}{T_j}
\]
From the definition of \(hlong(i) \), it follows that for those terms with index \(j \in hlong(i) \), it holds that \([T_i/T_j]=1 \). Using that yields:
\[
1 < \frac{C_i}{T_i} + \sum_{j \in hlong(i)} \frac{1}{T_j} \cdot \frac{C_j}{T_i} + \sum_{j \in hshort(i)} 2 \cdot \frac{C_j}{T_j}
\]
Since \(\sum_{i=1}^{n} \frac{C_i}{T_i} \leq 0.5 \) and \(i \leq n \) it follows that \(\sum_{i=1}^{n} \frac{C_i}{T_i} \leq 0.5 \). Let us now summarize what we have. We have that:
\[
1 < \frac{C_i}{T_i} + \sum_{j \in hlong(i)} \frac{1}{T_j} \cdot \frac{C_j}{T_i} + \sum_{j \in hshort(i)} 2 \cdot \frac{C_j}{T_j}
\]
and
\[
\sum_{j=1}^{n} \frac{C_j}{T_j} \leq 0.5
\]
and
\[
\forall j \in hp(i) : T_j - C_j \leq T_i - C_i
\]
and
\[
\forall j \in \{1, 2, \ldots, n\} : 0 < C_j \leq T_j
\]
Let us reason about Inequality 4. Since \(C_i \) is non-negative (follows from Inequality 5) we have:
\[
\forall j \in hp(i) : T_j - C_j \leq T_i
\]
rewriting it yields:
\[
\forall j \in hp(i) : 1 - \frac{C_j}{T_j} \leq \frac{T_i}{T_j}
\]
Applying Inequality 7 on Inequality 2 yields:

\[1 < \frac{C_i}{T_i} + \sum_{j \in \text{hplong}(i)} \frac{1}{T_j} \cdot \frac{C_j}{T_j} + \sum_{j \in \text{hpshort}(i)} 2 \cdot \frac{C_j}{T_j} \]

From Inequality 3 and Inequality 5 we have that \(\forall j \in \text{hplong}(i) \) \(C_j/T_j \leq 0.5 \). Applying this yields:

\[1 < \frac{C_i}{T_i} + \sum_{j \in \text{hplong}(i)} 2 \cdot \frac{C_j}{T_j} + \sum_{j \in \text{hpshort}(i)} 2 \cdot \frac{C_j}{T_j} \]

From Inequality 5 it follows that \(C_i/T_i \leq 2 \cdot C_i/T_i \). Applying this yields:

\[1 < 2 \cdot \frac{C_i}{T_i} + \sum_{j \in \text{hplong}(i)} 2 \cdot \frac{C_j}{T_j} + \sum_{j \in \text{hpshort}(i)} 2 \cdot \frac{C_j}{T_j} \]

(8)

Dividing Inequality 8 by two and simplifying yields:

\[0.5 < \sum_{j=1}^{i} \frac{C_j}{T_j} \]

(9)

But Inequality 9 contradicts Inequality 3. Hence the theorem is correct.

5. CONCLUSIONS AND FUTURE WORK

Very little is known about SM-scheduling on a uniprocessor. Nonetheless, we have proven the utilization bound of SM for scheduling tasks on a uniprocessor; the utilization bound is 50%.

It has been a long-standing open question in the real-time scheduling literature [2] whether there is an polynomial time-complexity algorithm for exact schedulability testing of RM. And no progress is currently in sight. For this reason, it is interesting to explore whether a polynomial time-complexity algorithm can be designed for non-optimal priority assignment schemes (such as SM).

Acknowledgements

This work was partially funded by the Portuguese Science and Technology Foundation (Fundaçao para Ciência e Tecnologia - FCT) and the ARTIST2 Network of Excellence on Embedded Systems Design.

6. REFERENCES

