pd

&
CISTER

Research Center in

Computing Systems

Technical Report

The challenge of time-predictability in
modern many-core architectures

Vincent Nélis Patrick Meumeu Yomsi
Luis Miguel Pinho José Fonseca

Marko Bertogna Eduardo Quiifiones
Roberto Vargas Andrea Marongiu

CISTER-TR-140624
Version:
Date: 1/1/2014

Technical Report CISTER-TR-140624 The challenge of time-predictability in modern many-core architectures

The challenge of time-predictability in modern many-core architectures

Vincent Nélis, Patrick Meumeu Yomsi, Luis Miguel Pinho, José Fonseca, Marko Bertogna, Eduardo
Quinones, Roberto Vargas, Andrea Marongiu

CISTER Research Unit

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. Ant6nio Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: nelis@isep.ipp.pt, pamyo@isep.ipp.pt, Imp@isep.ipp.pt, jaf@det.ua.pt, , ,,
http://www.cister.isep.ipp.pt

Abstract

The recent technological advancements and market trends are causing an interesting phenomenon towards the
convergence of High-Performance Computing (HPC) and Embedded Computing (EC) domains. Many recent HPC
applications require huge amounts of information to be processed within a bounded amount of time while EC
systems are increasingly concerned with providing higher performance in real-time. The convergence of these two
domains towards systems requiring both high performance and a predictable time-behavior challenges the
capabilities of current hardware architectures. Fortunately, the advent of next-generation many core embedded
platforms has the chance of intercepting this converging need for predictability and high-performance, allowing
HPC and EC applications to be executed on efficient and powerful heterogeneous architectures integrating
general-purpose processors with many-core computing fabrics. However, addressing this mixed set of
requirements is not without its own challenges and it is now of paramount importance to develop new techniques
to exploit the massively parallel computation capabilities of many-core platforms in a predictable way.

© CISTER Research Unit
www.cister.isep.ipp.pt

The challenge of time-predictability in modern
many-core architectures®

Vincent Nélis!, Patrick Meumeu Yomsi!, Luis Miguel Pinho!, José
Carlos Fonsecal, Marko Bertogna?, Eduardo Quifniones®, Roberto
Vargas®, and Andrea Marongiu*

1 CISTER/INESC-TEC Research Center, Porto, Portugal
{nelis, pamyo, lmp, jcnfol}@isep.ipp.pt

2 University of Modena, Italy
marko.bertogna@unimore.it

3 Barcelona Supercomputing Center, Spain
{eduardo.quinones, rvargas}@bsc.es

4 IIS - ETH Ziirich, Switzerland
a.marongiu@iis.ee.ethz.ch

—— Abstract

The recent technological advancements and market trends are causing an interesting phenomenon
towards the convergence of High-Performance Computing (HPC) and Embedded Computing (EC)
domains. Many recent HPC applications require huge amounts of information to be processed
within a bounded amount of time while EC systems are increasingly concerned with providing
higher performance in real-time. The convergence of these two domains towards systems requir-
ing both high performance and a predictable time-behavior challenges the capabilities of current
hardware architectures. Fortunately, the advent of next-generation many-core embedded plat-
forms has the chance of intercepting this converging need for predictability and high-performance,
allowing HPC and EC applications to be executed on efficient and powerful heterogeneous ar-
chitectures integrating general-purpose processors with many-core computing fabrics. However,
addressing this mixed set of requirements is not without its own challenges and it is now of
paramount importance to develop new techniques to exploit the massively parallel computation
capabilities of many-core platforms in a predictable way.

1998 ACM Subject Classification C.3 SPECIAL-PURPOSE AND APPLICATION-BASED
SYSTEMS

Keywords and phrases time-predictability, many-cores, multi-cores, timing analysis

Digital Object Identifier 10.4230/0OASIcs.xxx.yyy.p

1 Current Trends in Application Requirements

Nowadays, computing systems are subject to a wide continuum of requirements, spanning
from high-performance computing (HPC) systems to real-time embedded computing (EC)
systems. Sitting on one extremity of that spectrum, HPC systems have been for a long time

This work was partially supported by National Funds through FCT (Portuguese Foundation for
Science and Technology) and by ERDF (European Regional Development Fund) through COMPETE
(Operational Programme "Thematic Factors of Competitiveness’), within project(s) FCOMP-01-0124-
FEDER-037281 (CISTER), and by the European Union, under the Seventh Framework Programme
(FP7/2007-2013), grant agreement n° 611016 (P-SOCRATES), and by EU project TACLe (ICT COST
Action IC1202).

© Vincent Nélis, Patrick M. Yomsi, Luis M. Pinho, José C. Fonseca, Marko Bertogna, Eduardo

oberto Vargas, and Andrea Marongiu;
oy

licensed under Creative Commons License CC-BY
Conference/workshop/symposium title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1-10

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

The challenge of time-predictability in modern many-core architectures

the realm of a specific community within academia and specialized industries; in particular,
those targeting demanding analytic- and simulation-oriented applications that require massive
amounts of data to be processed. For HPC system designers, “the faster, the better” is
the mantra. On the other side of the spectrum, EC systems have also focused on very
specific systems; in particular those with pre-set and specialized functionalities for which
timing requirements prevail over performance requirements. Historically, the key objective
for designers of EC systems was to design highly predictable systems where the time taken
by every computing operation is upper-bounded and these upper-bounds are known at design
time; Being fast was secondary.

With the new generation of computing platforms and the ever-increasing demand for
safer but more complex applications, the conceptual boundary that was pulling HPC and EC
systems apart is getting thinner every day. HPC systems require more and more guarantees
on the timing behavior of their applications while EC systems face an increasing demand
for computational performance. As a result, these HPC and EC systems that used to be
torn apart by orthogonal requirements are now converging towards a brand new category of
systems that share both HPC and EC requirements. This is the case of real-time complex
event processing (CEP) systems [6], a new area of computing systems that literally cross the
boundaries between the HPC and the EC domains.

In these CEP systems, the data come from multiple event streams and is correlated in
order to extract and provide meaningful information within a pre-defined time bound. In
cyber-physical systems for instance, ranging from automotive and aircraft to smart grids and
traffic management, CEP systems are embedded in a physical environment and their behavior
obeys technical rules dictated by this environment. Another example is the banking/financial
markets where CEP systems process large amounts of real-time stock information in order
to detect time-dependent patterns, automatically triggering operations in a very specific and
tight time-frame when some pre-defined patterns occur [12].

The underlying commonality of the systems described above is that they are time-critical
(whether business-critical or mission-critical) and with high-performance requirements. In
other words, for such systems, the correctness of the result is dependent on both performance
and timing requirements, and the failure to meet either of them is critical to the functioning
of the system. In this context, it is essential to guarantee the timing predictability of the
performed computations, meaning that arguments and analysis are needed to be able to make
arguments of correctness, e.g., performing the required computations within well-specified
time bounds.

2 Trends in the High-performance and Embedded Computing
Domains

Until now, trends in high-performance and embedded computing domains have been running
in opposite directions. On the one hand, HPC systems are traditionally designed to make
the common case as fast as possible, without concerning themselves for the timing behavior
(in terms of execution time) of the not-so-often cases. The techniques developed for HPC are
usually based on complex hardware and software structures that make any reliable time bound
almost impossible to derive. On the other hand, real-time embedded systems are typically
designed to provide energy-efficient and predictable solutions, without heavy performance
requirements. Instead of fast response times, they aim at having predictable response times,
in order to guarantee that deadlines are met in all possible execution scenarios. Hence these
systems are typically based on simple hardware architectures, using fixed-function hardware

Vincent Nélis et. al.

accelerators that are strongly coupled with the application domain.
This section presents the evolution of both the HPC and the EC computing domains
from a hardware and software point of view.

2.1 Hardware Trends

Owing to the immense computational capabilities needed to satisfy the performance re-
quirements of HPC systems and because the resulting exponential increments of power
requirements exceeded the technological limits of classic single-core architectures (typically
referred to as the power-wall), multi-core processors have entered both computing markets
in the last years [11]. The leading hardware manufacturers are now offering an increasing
number of computing platforms that integrate multiple cores within a chip, which contributes
to an unprecedented phenomenon sometimes referred to as the multi-core revolution.

Multi-core processors are much more energy-efficient and have a better performance-per-
cost ratio than their single-core counterpart as they improve the application performance
by exploiting thread-level parallelism (TLP). Applications are split into multiple tasks that
run in parallel on different cores, which has for consequence to spread into the multi-core
world an important challenge that was already faced by HPC designers at multi-processor
system level: the parallelization. In the HPC domain, many-core platforms are seen as a
highly scalable multi-core architecture that overcomes the limits of traditional multi-cores
(such as the contention for memory bus for example) and considerably increases the degree
of parallelization of the tasks that can be exploited.

In the EC domain, the necessity of developing more flexible and powerful systems have
pushed the embedded market in the same direction. For instance, the mobile phone market
evolved from selling cellphones with a limited number of well-defined functions to selling
smart-phones and tablets with an unlimited access to a virtual store full of user-made
applications. As newest applications are more and more greedy in term of performance,
multi-core architecture have been increasingly considered as the solution to cope with the
performance and cost requirements [3], because they allow multiple application services to be
scheduled on the same processor, which maximizes the hardware utilization while reducing
its cost, size, weight and power requirements. Unfortunately, most of multi-core architectures
have been designed to provide increased performance rather than towards offering time-
predictability to the application system and broadly speaking, these platforms failed to
provide an appropriate execution environment to time-critical embedded applications. This
is why those applications are still executed on simple architectures that are able to guarantee
a predictable execution pattern while avoiding timing anomalies [7], which makes real-time
embedded platforms still relying on either single-core or simple multi-core CPUs, integrated
with fixed-function hardware accelerators into the same chip: the so-called System-on-Chip
(SoC).

The needs for time-predictability, energy-efficiency, and flexibility, coming along with
Moore’s law greedy demand for performance and the advancements in the semiconductor
technology, have progressively paved the way for the introduction of many-core systems in
both the HPC and EC domains. Examples of many-core architectures include the Tilera
Tile CPUs [13] (shipping versions feature 64 cores) in the embedded domain and the Intel
MIC [4] and Intel Xeon Phi [5] (featuring 60 cores) in the HPC domain. The introduction of
many-core systems has set up an interesting trend wherein both the HPC and the real-time
embedded domains converge towards similar objectives and requirements. Figure 1 shows
the trend towards the integration of both domains. In this current trend, challenges that
were previously specific to each computing domain start to be common to both (including

The challenge of time-predictability in modern many-core architectures

HPC Embedded Computing
Evolution Evolution

Single-Core Slng:‘ea-:::‘:’::;I’U y
+ Energy-efficient R accelerators + Flexibility

+ Performance + Performance

+ Timing predictability

Multi-core + Performance
CPU

Multi-core CPU +
hardware v
+ Flexibility accelerators

+ Energy-efficient

Multi-Core CPU +

Many-core
accelerator

Figure 1 Trend towards the integration of HPC and embedded computing platforms.

energy-efficiency, parallelisation, compilation, software programming) and are magnified by
the ubiquity of many-cores and heterogeneity across the whole computing spectrum. In
that context, cross-fertilization of expertise from both computing domains is mandatory. In
our opinion, there is still one fundamental requirement that has not yet been considered:
time predictability as a mean to address the time criticality challenge when computation is
parallelised to increase the performance. Although some research in the embedded computing
domain has started investigating the use of parallel execution models (by using customized
hardware designs and manually tuning applications by using specialized software parallel
patterns [10]), a real cross-fertilization of expertise between HPC and embedded computing
domains is still missing.

2.2 Software Trends

Industries with both high-performance and real-time requirements are eager to benefit
from the immense computing capabilities offered by these new many-core embedded designs.
However, these industries are also highly unprepared for shifting their earlier system designs to
cope with this new technology, mainly because such a shift requires adapting the applications,
operating systems, and programming models in order to exploit the capabilities of many-core
embedded computing systems. Neither many-core embedded processors have been designed
to be used in the HPC domain, nor HPC techniques have been designed to apply embedded
technology. Furthermore, real-time methods that determine the timing behavior of an
embedded system are not prepared to be directly applied to the HPC domain and many-core
platforms, leading to a number of significant challenges. Although customized processor
designs could better fit real-time requirements [10], the design of specialized processors for
each real-time system domain is not a desired option for obvious financial reasons.
Different parallel programming models and multiprocessor operating systems have been
proposed and are increasingly being adopted in today’s HPC computing systems. In recent
years, the emergence of accelerated heterogeneous architectures such as GPGPUs, have
introduced parallel programming models such as OpenCL [9], the currently dominant open
standard for parallel programming of heterogeneous systems, or CUDA [8], the dominant
proprietary framework of NVIDIA. Unfortunately, they are not easily applicable to systems
with real-time requirements since, by nature, many-core architectures are designed to integrate
as many functionalities as possible into a single chip and thus they inherently share as many

Vincent Nélis et. al.

resources as possible amongst the cores, which heavily impacts the ability to provide timing
guarantees.

The embedded computing domain world has always seen many application-specific
accelerators with custom architectures on which applications are manually tuned to achieve
predictable performance. Such types of solutions have a limited flexibility which complicates
the development of embedded systems. However, we firmly believe that commercial-off-
the-shelf (COTS) components based on many-core architectures are likely to dominate the
embedded computing market in the near future. Assuming that embedded systems will
evolve in this way, migrating real-time applications to many-core execution models with
predictable performance requires a complete redesign of current software architectures. Real-
time embedded application developers will therefore either need to adapt their programming
practices and operating systems to future many-core components, or they will need to
content themselves with stagnating execution speeds and reduced functionalities, relegated
to niche markets using obsolete hardware components. This new trend in the manufacturing
technology, alongside the industrial need for enhanced computing capabilities and flexible
heterogeneous programming solutions of accelerators for predictable parallel computations,
bring to the forefront important challenges for which solutions are urgently needed. To
that end, we envision the necessity to bring together next-generation many-core accelerators
from the embedded computing domain with the programmability of many-core accelerators
from the HPC computing domain, supporting this with real-time methodologies to provide
time-predictability. Time-predictability is an essential feature to allow system designers to
model the timing behavior of the system through timing analysis techniques and then, based
on these models, check that all its timing requirements are fulfilled.

3 Background on timing analysis techniques

What is it?

Timing analysis is any structured method or tool applied to the problem of obtaining
information about the execution time of a program, a part of a program, or even any kind of
computer operation such as a fetching a data in the cache or sending a packet over a network.
The fundamental problem that timing analysis techniques have to deal with is the fact that
the execution time of an operation is not a fixed constant, but rather varies across a range
of possible execution times. Variations in the execution time of an operation occur due to
variations in input data, as well as the characteristics and execution history of the software,
the processor architecture, and the computer system in which the operation is executed.

What is it needed for?

Timing analysis is needed to assess that all the timing requirements of the system are
fulfilled. In the EC domain, most of systems with real-time requirements require a reliable
timing analysis to be efficiently designed and verified, in particular when the system is used
to control safety critical components in application areas such as vehicles, aircraft, medical
equipment, and industrial plants. In these application domains, in order for the whole system
to be validated and assessed as safe, it is commonplace that only a subset of tasks has to
fulfill strict timing requirements (i.e., they are required to complete their operations within
specified time limits). That is, only few components of the entire system are “critical” and
in need of precise timing analysis. An accurate timing analysis is consequently not always

The challenge of time-predictability in modern many-core architectures

required as many components may be subject to real-time requirements but are in essence
not critical. It is currently the case, for example, for most of modern applications that share
HPC and real-time requirements.

Although the high criticality of some applications is beyond doubt, for many functions
it is rather a business matter to evaluate whether the costs and consequences of a timing-
related failure is worth the cost of the various mechanisms that must be implemented to
prevent /handle this failure. In industrial systems, there is a continuum of criticality levels in
the set of components of a real-time system. Depending on the criticality of each component
an approximate or less accurate analysis might be acceptable. Real-time applications are
commonly categorized as safety-critical (or life-critical), mission-critical, and non-critical. A
failure or malfunction of a safety-critical application may result in death or serious injury to
people, loss or severe damage to equipment or environmental harm, whereas a failure of a
mission-critical application may result in a failure of the entire system, but without damaging
it nor its embedding environment, and a failure of a non-critical application has no severe
consequences. While safety- and mission-critical components must be certified with a very
high level of confidence (through extremely accurate and thorough analyses), components
that are less or not critical at all need only to maintain a “decent” average throughput and
should be proven not to affect the execution behavior of the critical components.

How does timing analysis work?

The worst-case execution time of an operation depends not only on the intrinsic nature
of the operation and its inner sub-operations, but also on external events that may occupy
or lock a resource that the operation needs to access. For example, the worst-case traversal
time of a packet throughout a network-on-chip does not only depend on intrinsic properties
like the size of the data sent, the routing algorithm employed, or the capacity of the links
between the source and the destination, but also on the current traffic on the network at
the time the packet is sent. This means that, in order to provide a safe upper-bound on
the execution time of an operation, timing analysis techniques must consider not only the
nature of the operation and the characteristics of the executing environment, but also they
must identify the worst “context” in which the operation can be performed. Owing to this
influence of the context of execution, the body of knowledge developed in academia further
sub-categorizes the timing analysis objectives and distinguishes between (i) the worst-case
execution time (WCET) analysis and (ii) the interference analysis.

What is WCET analysis?

The WCET analysis is the context-independent part of the timing analysis that focuses
on deriving a safe upper-bound on the execution time of a program (or any piece of code). It
assumes that the analyzed program runs in isolation and without interruption, i.e., there is no
other user-tasks running concurrently with the analyzed task, interrupts from the operating
system are disabled, and the analyzed task gets immediate access to a resource as soon as
it needs to. Under these circumstances, the WCET of a program is defined as the longest
execution time that will ever be observed when the program is run on the target hardware.
It is the most critical measure for most real-time work. For example, as mentioned earlier,
the WCET of tasks is a key component for the higher-level schedulability analysis, but in
practice it is also used at a lower level analysis, e.g., to ensure that software interrupts will
have sufficiently short reaction times, or to guarantee that operating system calls return to

Vincent Nélis et. al.

the user application within pre-defined time-bounds.

WCET analysis can be performed in a number of ways using different tools, but the main
methodologies employed can be broadly classified in three categories: (1) static analysis
techniques, (2) measurement-based analysis techniques, and (3) hybrid techniques. Broadly
speaking, measurement-based techniques are suitable for software that are less time-critical
and for which the average-case behavior (or a rough WCET estimate) is more meaningful or
relevant than an accurate estimate. For example, systems where the worst-case scenario is
extremely unlikely to occur and/or the system can afford to ignore it if it does occur. For
highly time-critical software, where every possible execution scenario must be covered and
handled, the WCET estimate must be as accurate as possible and static analysis or some
type of hybrid method is therefore preferable.

What is interference analysis?

The interference analysis is the execution-context aware part of the timing analysis. It
focuses on deriving safe upper-bounds on the extra execution time-penalty that the analyzed
task may suffer during its run-time because of the interference with other tasks and with
the system. It takes into account the context in which each operation is performed and
identifies the worst-case interference scenario for the analysis. Typically, interference analysis
will supplement the outputs of the WCET analysis by factoring in extra delays due to, for
example, sporadic SW/HW interrupts or the interference from other tasks on the shared
communication bus, network, or caches. Specifically, for every shared software and hardware
components (such as the caches, the main memory, the shared data, etc.) and for each access
to these resources that the analyzed task may request, the interference analysis techniques
identify the worst initial “state” of the component and the worst-case scenario of interference
(from the system and the other tasks) on that component that would induce the largest
execution time for the analyzed access. These upper-bounds are then used to adjust the
WCET estimates obtained from the WCET analysis techniques. It must be noted that both
the WCET analysis techniques and the interference analysis techniques may analyze the
same SW/HW resources, but their main focus and objectives are not the same. For example,
some WCET analysis tools include cache analysis, during which the tool may substantially
tighten the WCET estimate by taking into account that the requested data will not always
have to be fetched from the main memory as it may have been loaded already and is thus
available in the local cache. In contrast, interference analysis techniques also analyze the
cache(s) but relax the assumption that the analyzed task is the only one that can use it, thus
allowing tasks to evict cache lines from each other. Relaxing this assumption trivially causes
the tasks to experience extra delays during their execution and the WCET estimates must
therefore be augmented accordingly.

Interference between tasks and applications are typically reduced by ensuring a certain
degree of “isolation” between those tasks and applications. Isolation can come in different
flavors: tasks can be isolated in the time domain, the space domain, or both, and it can
be symmetric or asymmetric. Isolation between system components also provides other
advantages: it is fostered by system designers to avoid fault propagation for example, and
when system timeliness is of concern, it helps provide two major features:

Time compositionality: the timing properties of interest at system level can be
determined from the timing properties of its constituent components.

Time Composability: the timing properties determined for individual components in
isolation should hold after the composition with other components.

8

The challenge of time-predictability in modern many-core architectures

What we have What we want
Observed Guaranteed Observed Guaranteed
Performance - Performance —-> Performance - Performance ->

+
+

S

Performance
Performance

! Dynamicity in the ' ! Dynamicity in the I

Dynamic system) Static system Dynamic system . Static system
(HPC) management/allocation (4/q geal-time) (HPC) management/allocation 6y geal-time)
of the processor shared of the processor shared
resources resources

Figure 2 Performance degradation and guarantees improvement.

Typically, these two properties (and in particular the time-composability property) are ob-
tained by enforcing spatial and temporal isolation between software components at run-time.

4 Glance at a few forthcoming challenges in ensuring
time-predictability

The challenge of ensuring time-predictability for this new generation of systems with mixed
requirements is twofold. On one side, the software solutions used in HPC systems must be
adapted to be more predictable while preserving (as much as possible) their efficiency and
on the other side, timing analysis techniques used to validate EC systems must be adapted
to these new software solutions.

What does it imply to adapt the HPC software solutions?

It mostly implies reducing the dynamicity of all the mechanisms that are responsible for
the management of the communication, memory, and computing resources. Instead of taking
decisions on-the-fly based on the execution history and/or the current state of the system (as
it is done in HPC systems), most of the decisions regarding the allocation of the resources
among the tasks should ideally be taken before the run-time to enable a thorough offline
analysis of the system timing behavior. Figure 2 (left side) illustrates the expected trends in
the (observed) average performance and in the guaranteed performance when the dynamicity
of the resource allocation schemes is reduced. Typically, as we shift the decision-taking
process from the run-time to the design-time we limit the dynamicity of the system, which
has for effect to decrease the observed performance as the system becomes less “flexible”
while the guaranteed performance increases as the system becomes more predictable. The
challenge here is to obtain high performance and tight guarantees of this high performance as
depicted on the right-hand side of Figure 2 or, if this turns out not to be possible, one should
at least find an appropriate trade-off between the observed performance and the guaranteed
performance.

Vincent Nélis et. al.

What are the changes needed at the programming model level?

In a nutshell, programming models need to be extended to provide detailed information
about the code including for instance information on the control flow, timing properties, and
functional and data dependencies between parts of the code. These annotations of the code
could be used to extract an accurate and complete model of the application where all the
dependencies between the functions (or any piece of code) are clearly documented. Together
with the control flow information and the estimations of the worst-case execution time of
each part of the code, this information could be used by timing analysis techniques to derive
safe bounds (exact or probabilistic) on the overall execution time of the application.

To the best of our knowledge, the greatest effort in that direction is provided at Barcelona
SuperComputing Center (BSC) where researchers have developed OmpSs, a programming
model that integrates features from the StarSs programming model developed also at BSC
into a single programming model. In particular, the objective of OmpSs is to extend OpenMP
with new directives to support asynchronous parallelism and heterogeneity (devices like
GPUs)!. However, it can also be understood as new directives extending other accelerator
based APIs like CUDA or OpenCL. The OmpSs environment is built on top of the Mer-
curium compiler and the Nanos+4 run-time environment. More details about OmpSs and
its objective can be found in [2].

Once we have a time-predictable setup, can we apply commercially-available
WCET analysis tools?

It is very unlikely that all the existing methods will be applicable to the next-gen
applications that share HPC and real-time requirements, especially it is the case for static
approaches. Although static approaches have proven to be very efficient for safety-critical
embedded systems these next-gen applications are not (yet?) safety-critical even though
they present real-time requirements, which means that they are not subject to the hard and
fast programming rules that are idiosyncratic to the safety-critical domain. They typically
use pointers, dynamic memory allocation, recursive functions, variable-length loops, etc.,
and sometimes these applications are implemented by third party companies that are not
concerned at all by the validation of the overall system, i.e. the code is not annotated with
timing-related information that could be helpful for the timing analysis like loop-bounds
for instance. Because of the lack of strict programming rules and the lack of information
related to timing aspects of the code, static approaches are likely to fail to provide tight
upper-bounds on the execution time and we foresee a rising popularity of measurement-based
and probabilistic approaches in a near future.

Furthermore, it must be noted that it is unreasonable (if not impossible) to perform an
exhaustive testing of these next-gen applications. Besides the fact that the size and the
complexity of the software are constantly increasing, forthcoming platforms may chose to
continue to increase their performance by borrowing more and more techniques from the
HPC domain, including advanced computer architecture features such as caches, pipelines,
branch prediction, and out-of-order execution. These features increase the speed of execution
on average, but also make the timing behavior much harder to predict by parsing the code,
since the variation in execution time between fortuitous and worst cases increases. The

1 Note that this objective has been achieved by now and the latest version of openMP already integrates
the research results obtained at BSC in that domain.

10

The challenge of time-predictability in modern many-core architectures

problem was already central in single-core platforms but is now further exacerbated in a
multi/many-core setting where low-level hardware resources like caches and communication
medium are shared by several cores, thereby inducing situations in which several entities
contend for accessing the same resource.

And what about interference analysis techniques?

As introduced before, the existing WCET techniques cannot be applied as is and need to
be augmented by further analyses to factor in all the extra delays due to contention for the
shared resources. Although preliminary results have already been presented in that direction
(see [1] for a list of potential sources of interference between tasks), most of the scientific
papers on the subject present techniques to estimate the extra delay due the contention for a
single shared resource. That is, the authors focus on one and only one source of interference
at a time, such as the cache, the network, the memory bus, etc., while the challenge of
making these analyses work together has almost never been studied and we firmly believe
that interference analysis need to be tackled in a holistic, integrated perspective.

—— References

1 Dakshina Dasari, Bjorn Andersson, Vincent Nelis, Stefan M. Petters, Arvind Easwaran, and
Jinkyu Lee. Response time analysis of cots-based multicores considering the contention on
the shared memory bus. In Proceedings of the 2011IEEE 10th International Conference on
Trust, Security and Privacy in Computing and Communications, TRUSTCOM ’11, pages
1068-1075, Washington, DC, USA, 2011. IEEE Computer Society.

2 Alejandro Duran, Eduard Ayguadé, Rosa M. Badia, Jests Labarta, Luis Martinell, Xavier
Martorell, and Judit Planas. Ompss: A proposal for programming heterogeneous multi-core
architectures, 2011-03-01 2011.

3 T. Ungerer et. al. MERASA: Multi-core execution of hard real-time applications supporting
analysability. In IEEE Micro, Special Issue on European Multicore Processing Projects,
volume 30:5, pages 66-75. IEEE Computer Society, aug 2010.

4 Intel Corporation. Intel Many Integrated Core (MIC) Architecture -
http://www.intel.com/content /www/us/en/architecture-and-technology/many-
integratedcore/ intel-many-integrated-core-architecture.html, last access Nov 2013.

5 Intel Corporation. Intel Xeon Phi - http://www.intel.com/content/www/us/en/
processors/zeon/xeon-phi-detail.html, last access Nov 2013.

6 David C. Luckham. The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co., Inc., 2001.

7 T. Lundqvist and P. Stenstrom. Timing anomalies in dynamically scheduled micropro-
cessors. In Proc. of the 20th IEEFE Real-Time Systems Symposium, pages 12-21, 1999.

8 NVIDIA Corporation. NVIDIA CUDA Compute Unified Device Architecture, Version 2.0,
2008.

9 OpenCL. The open standard for parallel programming of heterogeneous systems -
http://www.khronos.org/opencl/, 2013.

10 parMERASA FP7 European Project - grant agreement 287519. Multi-Core
Ezecution of Parallelised Hard Real-Time Applications Supporting Analysability,
http://www.parmerasa.eu, 2011 - 2014.

11 Sutter, Herb. Welcome to the Jungle, hitp://herbsutter.com /welcome-to-the-jungle/.

12 R. Tieman. Algo trading: the dog that bit its master. Financial Times, March, 2008.

13 Tilera Corporation. Tile Processor, User Architecture Manual, release 2.4, DOC.NO.
UG101, May 2011.

