

Technical Report: Techniques and Analysis for
Mixed-criticality Scheduling with Mode-
dependent Server Execution Budgets

Technical Report

CISTER-TR-190202

Muhammad Ali Awan

Konstantinos Bletsas

Pedro F. Souto

Benny Akesson

Eduardo Tovar

Technical Report CISTER-TR-190202 Technical Report: Techniques and Analysis for ...

© CISTER Research Center
www.cister-labs.pt

1

Technical Report: Techniques and Analysis for Mixed-criticality Scheduling with
Mode-dependent Server Execution Budgets

Muhammad Ali Awan, Konstantinos Bletsas, Pedro F. Souto, Benny Akesson, Eduardo Tovar

CISTER Research Centre

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

https://www.cister-labs.pt

Abstract

In mixed-criticality systems, tasks of different criticality share system resources, mainly to reduce cost. Cost is
further reduced by using adaptive mode-based scheduling arrangements, such as Vestal's model, to improve
resource efficiency, while guaranteeing schedulability of critical functionality. To simplify safety certification,
servers are often used to provide temporal isolation between tasks. However, a server's computational
requirements may greatly vary in different modes, but state-of-the-art techniques and schedulability tests do not
allow different budgets to be used by a server in different modes. This results in a single conservative execution
budget for all modes, increasing system cost.

The goal of this paper is to reduce the cost of mixed-criticality systems through three main contributions: (i)a
scheduling arrangement for uniprocessor systems employing fixed-priority scheduling within periodic servers,
whose budgets are dynamically adjusted at run-time in event of a mode change, (ii) a new schedulability analysis
for such systems, and (iii) heuristic algorithms for assigning budgets to servers in different modes and ordering
the execution of the servers. Experiments with synthetic task sets demonstrate considerable improvements (up to
52.8%) in scheduling success ratio when using dynamic server budgets, compared to static "one-size-fits-all-
modes" budgets.

Technical Report: Techniques and Analysis for1

Mixed-criticality Scheduling with2

Mode-dependent Server Execution Budgets3

Muhammad Ali Awan4

CISTER Research Centre and ISEP, Porto, Portugal5

muaan@isep.ipp.pt6

Konstantinos Bletsas7

CISTER Research Centre and ISEP, Porto, Portugal8

ksbs@isep.ipp.pt9

Pedro F. Souto10

University of Porto, Faculty of Engineering and CISTER Research Centre, Porto, Portugal11

pfs@fe.up.pt12

Benny Akesson13

ESI (TNO), Eindhoven, the Netherlands14

benny.akesson@tno.nl15

Eduardo Tovar16

CISTER Research Centre and ISEP, Porto, Portugal17

emt@isep.ipp.pt18

Abstract19

In mixed-criticality systems, tasks of different criticality share system resources, mainly to reduce cost. Cost20

is further reduced by using adaptive mode-based scheduling arrangements, such as Vestal’s model, to improve21

resource efficiency, while guaranteeing schedulability of critical functionality. To simplify safety certification,22

servers are often used to provide temporal isolation between tasks. However, a server’s computational require-23

ments may greatly vary in different modes, but state-of-the-art techniques and schedulability tests do not allow24

different budgets to be used by a server in different modes. This results in a single conservative execution budget25

for all modes, increasing system cost.26

The goal of this paper is to reduce the cost of mixed-criticality systems through three main contributions:27

(i) a scheduling arrangement for uniprocessor systems employing fixed-priority scheduling within periodic28

servers, whose budgets are dynamically adjusted at run-time in event of a mode change, (ii) a new schedulability29

analysis for such systems, and (iii) heuristic algorithms for assigning budgets to servers in different modes30

and ordering the execution of the servers. Experiments with synthetic task sets demonstrate considerable31

improvements (up to 52.8%) in scheduling success ratio when using dynamic server budgets, compared to static32

“one-size-fits-all-modes" budgets.33

2012 ACM Subject Classification Computer systems organization → Real-time systems; Computer systems34

organization → Real-time operating systems; Computer systems organization → Real-time system architecture35

Keywords and phrases Mixed-criticality scheduling, Varying execution server, Vestal model36

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2337

1 Introduction38

Mixed-criticality systems are an important niche of real-time embedded systems. Their defining39

characteristic is the fact that computing tasks of different criticalities execute on the same hardware40

© Muhammad Ali Awan, Pedro F. Souto, Konstantinos Bletsas, Benny Akesson, and Eduardo Tovar;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

and share system resources, typically in order to reduce system costs1. A task’s criticality is a measure41

of the severity of the consequences of a task failing which in the context of real-time scheduling42

means missing its deadline. The higher it is, the more conservative, and costlier, in terms of effort,43

time and money, the approach employed to upper-bound that task’s worst-case execution time.44

Crucially for the certifiability of a mixed-criticality system, sufficient isolation must exist by45

design between the timing behavior of different applications. Namely, the timing behavior of one46

application must not possibly compromise the timeliness of a different application, especially if the47

former has low criticality and the latter has high criticality. If tasks of different criticalities share48

the same resources, even on a uniprocessor platform, which is the focus of this work, they must49

all be engineered to the same strict standard of safety as the highest-criticality task among them.50

This is evidently grossly resource-inefficient and such over-engineering can have severe real-world51

costs. Most mixed-criticality systems are embedded, often meaning that profit margins for the end52

product can be thin and/or that engineering constraints on size, weight and power (SWaP) can be53

tight. Examples of such domains include automotive, aerospace and avionics.54

Fortunately, the relevant guidelines (e.g., [1, 2] for the avionics domain), do not insist in zero55

interference among mixed-criticality applications, but instead expect any intra-application interference56

to be carefully accounted for and adequately mitigated. Two scheduling arrangements that can be57

useful to a designer faced with the above considerations, and trying to achieve both safety and58

efficiency, are servers and adaptive mode-based scheduling.59

Servers provide scheduling isolation via time partitioning. In the simplest arrangement, a server60

is a periodically repeating fixed-length contiguous time window on a given core. Only the tasks61

served by the particular server are allowed to use the core within the confines of that time window,62

scheduled under, e.g., a fixed-priority or an EDF policy. Conversely, task are not allowed to execute63

at all outside the confines of their respective server’s time window. This arrangement both provides64

a predictable supply of processing time to the set of tasks served and also ensures that they cannot65

interfere with other applications (tasks served by other servers). Crucially, the implications of any66

task misbehaving temporally are localised to the respective server.67

Meanwhile, mode-based scheduling arrangements [6] based on Vestal’s model [35] can be applied68

in order to more efficiently use the available processing capacity. Rather than using extremely69

pessimistic worst-case execution time (WCET) estimates for both low- and high-criticality tasks that70

interact, this approach uses less pessimistic estimates, by default – probably, but not provably safe.71

In the statistically unlikely case of a task executing for longer than its assumed WCET, a carefully72

managed mode change is triggered. The less critical (and/or less important [9]) tasks, as specified at73

design time, are dispensed with. The remaining tasks must then be provably schedulable, assuming74

more pessimistic WCET estimates. In the general case, there can be many such mode changes. A75

mode switch is not a failure – it constitutes system behavior explicitly accounted for at design time76

(including the set of tasks to drop, and the implications of doing so). This adaptive mode-based model77

improves resource efficiency without compromising the system requirements.78

Servers and Vestal’s mode-based model can be combined. In this work, we consider a time-79

partitioned system, with multiple servers that share the same period. To each server, one or more80

mixed-criticality applications are assigned, in turn consisting of multiple tasks. Every server is81

scheduled using fixed-priority scheduling (which is known as AMC [5], in the context of Vestal’s82

model). The use of Vestal’s model can reduce the processing budget requirements for the different83

servers (compared to a naive approach that would always assume pessimistic WCETs for all tasks)84

and the use of servers can provide timing isolation between applications assigned to different servers.85

1 When tasks of different criticalities exist but are completely isolated, such systems are multiple-criticality, as opposed
to mixed-criticality, and they constitute a different class of systems. See Footnote 1 in [12] and in [11].

However, it can still be inefficient if the execution time budgets used for the servers remain the86

same in different modes, because a given server can have very different processing needs in one87

mode than in another. This realisation motivates the present work, which considers a server- and88

AMC-based scheduling arrangement whereby the server budgets are dynamically adjusted, at mode89

change, for greater resource efficiency, at no detriment to the predictability of the system and the90

provision of safety guarantees. Such an arrangement requires new analysis, because, even if the91

original analysis for AMC can be applied to periodic server-based scheduling with minor changes2,92

this is no longer the case when the server budgets change, in response to a mode change. This is a93

short-coming of the state-of-the-art. By proposing varying server budgets and providing analysis for94

this arrangement, our work hence allows for greater resource efficiency and cost savings.95

The main contributions of our work are the following: First, we formulate new schedulability96

analysis for uniprocessor systems using periodic servers with AMC as their scheduling policy and97

whose execution time budgets are dynamically adjusted in response to a mode change. Secondly,98

we discuss the complex interdependencies between the parameters of different servers and propose99

heuristics for the ordering of servers in the schedule and the assignment of server execution budgets100

in the different modes, for good schedulability performance. Thirdly, we explore via experiments101

with synthetic task sets, the schedulability performance of dynamic server budgets under different102

server orderings and budget assignment heuristics, compared to the baseline of static-budget servers.103

The results strongly validate our approach by demonstrating up to 52.8% improvement in scheduling104

success ratio over the baseline heuristic.105

The rest of this paper is stuctured as follows. Section 2 discusses related work. Section 3 presents106

the task model and the server scheduling model assumed. Section 4 contains the formulation of our107

new scheduling analysis. Section 5 enumerates the different scheduling arrangements and heuristics108

considered in our experimental evaluation, while Section 6 contains the evaluation itself and discusses109

our findings. Section 7 concludes.110

2 Related work111

In the literature, several works try to combine an adaptive mixed-criticality task scheduling model112

with servers in different ways. There also exist other works that are more loosely related.113

Papadopoulos et al. [31] consider the adaptive mixed-criticality model of Vestal [6] with two114

criticality levels and a uniprocessor whose processing time supply is partitioned into two servers, one115

for the tasks of each criticality level, with corresponding target execution time budgets. At run-time,116

the execution times of the tasks are monitored, and in a control feedback loop, the execution budgets117

of each successive server instance are adjusted, according to the principles of control theory [32].118

The budget adjustments may introduce some deviation from strict server periodicity. The aim of this119

approach is to preserve as much service to lower-criticality tasks as can be afforded by the state of the120

system, instead of dropping them altogether when a mode change occurs.121

Ren et al. [33] consider the same task model [6] with similar aims, but with a different approach.122

In a multicore, each core is assigned different high- and low-criticality tasks (i.e., task to core123

partitioning). On each core, disjoint groups of one high-criticality task and one or more low-criticality124

tasks are formed. For each group, different servers for the high- and low-criticality tasks are employed,125

such that the provision of scheduling guarantees to the former has the least impact on the latter. At126

the task group level, groups are scheduled on the corresponding core using EDF.127

2 We are refering to the use of a “fake interfering task", exactly as done for EDF servers in [3], that models the periodic
unavailability of the server.

The on-the-fly fast overrun budgeting mechanism by Hu et al. [23] improves the system’s quality128

of service for low-criticality tasks by postponing the mode-switch instance. This approach (inspired129

by procrastination techniques [4, 29]) utilises the collected static and dynamic slack for job overruns.130

Similarly, Gu et al. [18] compute the sufficient L-mode budget for high-criticality applications131

collectively at design time. This budget is utilised at run time to schedule the high-criticality132

applications in L-mode with the objective of postponing the mode switch as much as possible. The133

budget assignment can be tuned for system-wise objectives of schedulability and service guarantees for134

low-criticality applications. Similarly, Hu et al. [22] regulate the low-criticality workload considering135

the online demand of high-criticality applications with the objective of improving the quality of136

service for low-criticality applications.137

Lipari and Buttazzo’s [17] reservation-based approach, assigns to each high-criticality task a138

server with a computation bandwidth equal to its high-criticality-mode utilisation. A single low-139

criticality server (initially assigned the leftover utilisation) serves all low-criticality tasks. The140

bandwidth reclaimed from high-criticality servers is assigned to the low-criticality server. Fei et141

al. [20] adjust server budgets recurrently, based on a predictor of future job execution times. Evripidou142

and Burns [16] consider a uniprocessor platform with multiple partitions. There exist a periodic server143

for the periodic tasks and a deferable higher-priority server for the sporadic tasks in each partition.144

Missimer et al. [30] similarly employ sporadic servers and priority-inheritance bandwidth-preserving145

servers integrate I/O- and task-scheduling, albeit under a fixed-priority scheduling policy.146

Gu et al. [19] focused on component-based systems. Within a component, as long as the number147

of low-criticality mode execution time overruns does not exceed its predefined tolerance level, other148

tasks (of any criticality) in other components are unaffected. Collectively, tasks are scheduled with an149

EDF-based policy. Some recent studies [13, 21, 24, 27] explored the implementation-level details of150

scheduling approaches (including hierarchical ones) for mixed-criticality systems and how to combine151

adaptive mixed-criticality scheduling with predictable hardware.152

In [3], we considered different server-based arrangements for strict isolation between criticalities153

and good schedulability on multicores, using scaled-deadline EDF [15]. One approach uses one server154

per core for high-criticality tasks and uses the spare capacity for low-criticality task servers. At mode155

change, the latter are dropped and the high-criticality servers can use the entire core. Another approach156

uses fixed-budget servers serving tasks of mixed-criticalities. At mode change, low-criticality tasks in157

each server are dropped but the servers and their budgets persist, serving the remaining tasks.158

By comparison with [3], our present work brings fully adjustable server budgets at mode change159

and targets a fixed-priority-scheduled [5] uniprocessor platform. Multiple servers exist, each serving160

tasks of mixed criticalities. At mode change, the low-criticality tasks are still discarded, however the161

server budgets are adjusted (some upwards, others downwards), to account for the different processing162

needs in the new mode. This improves the efficiency in the use of processing capacity, allowing more163

demanding task sets to be schedulable, without using a faster processor.164

3 Task model and system model165

3.1 Task model166

This paper assumes the established adaptive variant of Vestal’s mixed-criticality model, with execution167

time monitoring and mode changes [5]. In particular, we assume a set τ
def
= {τ1, . . . , τn} of n mixed-168

criticality sporadic tasks. Each task has a minimum interarrival time Ti, a relative deadline Di that is169

constrained (i.e., Di ≤ Ti) and a criticality level κi. In the general case, these tasks may be grouped170

together into disjoint applications, possibly consisting of tasks of different criticalities.171

At run-time, the system operation is based on different modes wherein only tasks of a given172

criticality or higher execute. For each task, different execution time estimates are assumed with173

Figure 1 At mode change, the L-tasks are dropped and the remaining H-tasks must be schedulable as long
as they execute for up to their CH

i estimates (including any jobs thereof caught up in the mode change). However,
server execution budgets are only adjusted from XL

q to XH
q at the start of the next timeslot.

corresponding confidence in their safety. For simplicity, in this paper, we consider only two criticality174

levels, high (H) and low (L), hence two modes of operation (L-mode and H-mode). The H-mode175

worst-case execution time estimate (H-WCET) of a task τi is denoted by CH
i and it is demonstrably176

unexceedable, but typically very pessimistic. The L-mode worst-case execution time estimate (L-177

WCET) is denoted as CL
i ≤ CH

i . The system boots in L-mode, wherein all tasks execute and all their178

deadlines must be met. If any task attempts to execute for more than its execution time estimate for179

that mode, a mode change is triggered, whereupon all low-criticality tasks (L-tasks) are dispensed180

with. In H-mode, only the H-tasks execute and the deadlines of all jobs by H-tasks must be met,181

including any jobs released before the mode change.182

In this work, we consider scheduling based on fixed priorities. This implies that each task has183

a unique static priority assigned to it, which is the basis of scheduling decisions. Fixed-priority184

scheduling, in the context of the above mixed-criticality model is known as AMC. However, in our185

work, we assume that tasks are partitioned to servers that use AMC as their internal scheduling policy.186

We next introduce the server model that we assume.187

3.2 Server-based system model188

Consider a uniprocessor platform and a set of periodic servers {P̃q}, q = 1, 2, . . . , Q assigned to it.189

All servers share the same period S (called the “timeslot length", to stick to the terminology used in190

related work [3]) and they execute one after the other in the same order, in a form of cyclic executive191

with a periodicity of S. This fixed order in which the servers execute is specified by the designer, at192

design time. Each server P̃q is assigned a mixed-criticality set of tasks τ [P̃q] ⊆ τ which are scheduled193

within the server according to their fixed priorities.194

The system conforms to the task model defined in Section 3.1, meaning that there exist two195

modes, L and H. Each server P̃q has a fixed time budget XL
q in the L-mode and a respective fixed196

time budget XH
q for the H-mode. Additionally,

∑Q

q=1 XL
q ≤ S and

∑Q

q=1 XH
q ≤ S (i.e., in each197

mode, the servers are sized such that they fit into the timeslot S). When the system is in L-mode, all198

servers execute with their XL
q budgets and all tasks present in the L-mode must provably meet their199

deadlines under those budgets, as long as no job executes for more that its CL
i . However, if such200

an execution overrun occurs, a transition to H-mode is triggered. Then, all L-tasks are immediately201

dispensed with. The remaining tasks (including any jobs thereof released before the mode change)202

must meet their deadlines, assuming they can execute for up to their CH
i estimates. Additionally,203

the server budgets are adjusted to their respective XH
q values at the start of the next timeslot. This204

implies that there is a time interval of s′ time units (0 ≤ s′ < S) after the mode change, during which205

the system is already in H-mode, but the server budgets are not yet adjusted from the values (XL
i)206

used in the L-mode. Figure 1 illustrates this arrangement via an example schedule.207

4 Schedulability Analysis208

4.1 Schedulability analysis for an individual server209

In this subsection, we are going to derive a sufficient schedulability test for a server conforming210

to the model described earlier. More specifically, given as input the tasks assigned to a server P̃i,211

its period S and its execution time budgets (XL
i and XH

i) and starting offsets (OL
i and OH

i) for212

the two modes, our analysis will establish whether the server is mixed-criticality-schedulable. The213

questions of how these attributes (XL
i , XH

i , OL
i and OH

i) are determined for each server and how the214

derivations of these attributes of different servers inter-depend is discussed later, in Section 4.2, where215

the schedulability test for the entire system is formulated. Our analysis builds upon AMC-max [5]216

and tests the schedulability of a task (i) in L-mode and (ii) in H-mode separately.217

4.1.1 Steady L-mode analysis218

In L-mode (i.e., prior to the occurence of a mode switch), tasks behave as conventional Liu-and-219

Layland tasks with a WCET of CL
i . Therefore, as in AMC-max, to test the schedulability of a task220

τi in L-mode, we use the standard worst-case response time (WCRT) recurrence [26]. However, as221

in [34] and [3], we add a “fake" top-priority periodic interfering task τf that equivalently models the222

fact that the tasks do not execute directly on the processor, but within a periodic server:223

RL
i = CL

i +
∑

τj∈hp(i)

⌈
RL

i

Tj

⌉

CL
j +

⌈
RL

i

S

⌉

(S − XL)

︸ ︷︷ ︸

fake task

(1)224

In (1), the server index is omitted for clarity of presentation and hp(i) is the set of higher-priority225

tasks served by the same server as τi. The fake task’s WCET is (S − XL) (equal to the time interval226

between the ending of one server instance and the start of the next instance of the same server); its227

interarrival time is S. A server P̃q is schedulable in L-mode if all of its tasks are schedulable in that228

mode (i.e., if RL
i ≤ Di ∀ i ∈ τ [P̃q]).229

4.1.2 Schedulability testing in H-mode230

To test for the schedulability of an H-task in the event of a mode change, which, in the general case,231

also entails a potential server budget change (though not necessarily coincident), we have to consider232

four mutually exclusive and jointly exhaustive cases (elaborated below). The task under analysis must233

meet its deadline in all of those cases. The reason for having to consider four separate cases is the234

following: If the server budgets change after a mode change (not necessarily immediately), then the235

worst-case scenario, maximising the response time of a job that completes in the H-mode, does not236

necessarily involve that job being released before the mode change – unlike what holds for classic237

AMC.238

Let tidle
hp(i) denote the first instant after the mode change that the server is active and no task in239

hp(i) is executing inside it. Note that, in the general case tidle
hp(i) might be located before the server240

budget change instant or after it, or may coincide with it. The four cases to consider are:241

Case 1: The H-task underconsideration is released before the mode change instant s (or even at242

the mode change instant, as a corner case), but completes after the mode change.243

Case 2: The H-task is released after the mode change, but before tidle
hp(i).244

Case 3: The H-task is released at or after tidle
hp(i) and also before the server budget change instant.245

Figure 2 All possible relative orderings between the mode change instant (s), the budget change instant (b),
the arrival time (ai) of the H-task under analysis and tidle

hp(i), for the four cases.

Case 4: The H-task is released at or after tidle
hp(i) and also at or after the budget change instant.246

Figure 2 depicts the possible relative orderings between the mode change instant (s), the budget247

change instant (b), the arrival time (ai) of the H-task under analysis and tidle
hp(i), for the four cases.248

Case 1: This case considers H-tasks that are caught in their execution window by the mode249

switch, and hence may suffer the interference both from L-tasks and H-tasks of higher priority. The250

interference from such tasks can be upper-bounded according to the existing AMC-max analysis.251

However, the task in consideration also suffers interference from the unavailability of the server252

(which we model as a fake task). Below, we will upper-bound that separately for in each mode.253

Assume that the mode change occurs some s′ time units after the last timeslot boundary. Then,254

s′ ∈ [0, S). Let W
H|tr.

f (s′, ∆t) denote the worst-case workload function of the fake task modelling255

the unavailability of the reserve, for the interval [s, s + ∆t). The first parameter denotes the phasing256

of the mode change relative to the timeslot boundary, as explained earlier. Since s′ cannot be known257

offline (but only established a posteriori), to upper-bound that workload function in the general case258

would need to upper bound W
H|tr.

f (s′, ∆t) for all s′ ∈ [0, S). Fortunately, since the scheduling is by259

fixed priorities, we need only consider two values for s′. Namely, s′ = 0 and s′ = OL + XL. The260

first value (s′ = 0) involves a mode change coincident with a timeslot boundary; the server is denied261

the processor for the next OL time units (i.e., until its starting offset). For any s′ > 0, up to the value262

of OL, this initial interference would be smaller (i.e., OL − s′ < OL). The other value that we need263

to consider (s′ = OL + XL) corresponds to the mode change occurring just as the server has ran out264

budget. Smaller values of s′ (i.e., OL ≤ s′ < OL + XL) would mean that the server is executing265

immediately after the mode change; greater values (OL + XL < s′ < S) would only decrease the266

amount of time (i.e., S − OL − XL + OH) until the server gets to execute for the first time after the267

mode change. Figure 3 illustrates these cases. Accordingly,268

W
H|tr.

f (∆t) = max
s′∈[0,S)

W
H|tr.

f (s′, ∆t) = max
(

W
H|tr.

f (0, ∆t), W
H|tr.

f (OL + XL, ∆t)
)

(2)269

Figure 3 A mode change occurs s′ time units after a timeslot boundary (0≤s′<S). However, the joint
consideration of cases (s′=0) and (s′=OL+XL) dominates all other s′∈[0,S) under our analysis, because
(i) shifting s′ from s′ = 0 to the right, by up to OL time units can only decrease the post-mode-change
interference from the fake task and, similarly, (ii) shifting s′ from s′ = OL + XL to the left by up to XL time
units, or by any amount to the right, within the same timeslot, has the same effect. Plotted at the top (blue) and
bottom (red) are the corresponding workload curves, W

H|tr.

f (0, ∆t) and W
H|tr.

f (OL + XL, ∆t) for the fake
task after the mode change.

Equation (2) upper-bounds the fake task’s “execution" (i.e., unavailability of the server) over any270

interval of length ∆t starting at s, the mode change instant. By inspection of Figure 3 (blue plot):271

W
H|tr.

f (0, ∆t) =

∆t, ∆t ≤ OL

OL, OL < ∆t ≤ OL + XL

∆t − XL, OL+XL<∆t≤S+OH

S + OH − XL +
⌊

∆t−(S+OH)
S

⌋

(S − XH)

+ max
(

0, ∆t − (S + OH) − (
⌊

∆t−(S+OH)
S

⌋

S) − XH
)

, S+OH<∆t

(3)272

Likewise, by inspecting Figure 3 (red plot), we obtain for W
H|tr.

f (OL + XL, ∆t) the expression:273

W
H|tr.

f (OL + XL, ∆t) = W
H|tr.

f (0, ∆t+OL+XL) − OL (4)274

Accordingly, the corresponding equivalent request-bound functions for any interval [s, s + ∆t)) are:275

I
H|tr.

f (0, ∆t) = OL + min

(

1,

⌈
∆t − OL − XL

S

⌉

0

)

(S−XL−OL+OH)276

+

⌈
∆t − S − OH − XH

S

⌉

0

(S − XH) (5)277

I
H|tr.

f (OL + XL, ∆t) = (S − XL − OL + OH)278

+

⌊
∆t − S + OL − OH + XL − XH

S

⌋

0

(S − XH) (6)279

Analogously as before,280

I
H|tr.

f (∆t) = max
(

I
H|tr.

f (0, ∆t), I
H|tr.

f (OL + XL, ∆t)
)

(7)281

Next, we will incorporate I
H|tr.

f (∆t) into a hybrid AMC-max schedulability test for this case.282

Namely, we can upper-bound the response time of an H-task τi, released at or before the mode change283

instant s but not yet completed by s, as284

R
H|1
i = max(R

s|1
i), ∀s ∈ [0, RL

i) (8)285

where286

R
s|1
i = CH

i +
∑

τj∈hpL(i)

ILj(s) +
∑

τk∈hpH(i)

IHk(s, R
s|1
i) + ILf (s) + I

H|tr.

f (R
s|1
i − s)

︸ ︷︷ ︸

fake task

(9)287

where hpL(i) and hpH(i) are the sets of higher-priority low- and high-criticality tasks in the288

same server, respectively, and289

ILj(s) =

(⌊
s

Tj

⌋

+ 1

)

CL
j (10)290

ILf (s) =

(⌊
s

Tj

⌋

+ 1

)

(S − XL) (11)291

IHk(s, t) = M(k, s, t)CH
k +

(⌈
t

Tk

⌉

− M(k, s, t)
)

CL
k (12)292

where, classically from [5], M(k, s, t) = min
(⌈

t−s−Tk−Dk)
Tk

⌉

+ 1,
⌈

t
Tk

⌉)

.293

By replacing IHk in (9) with the RHS of (12), we obtain:294

R
s|1
i = CH

i +
∑

τj∈hpL(i)

ILj(s) +
∑

τk∈hpH(i)

(

M(k, s, R
s|1
i)CH

k +
(⌈

t
Tk

⌉

− M(k, s, R
s|1
i)

)

CL
k

)

+ ILf (s) + I
H|tr.

f (R
s|1
i − s)295

Splitting the second summation and reordering the terms:296

R
s|1
i = CH

i +
∑

τj∈hpL(i)

ILj(s) + ILf (s)

+
∑

τk∈hpH(i)

(⌈
t

Tk

⌉

− M(k, s, R
s|1
i)

)

CL
k +

∑

τk∈hpH(i)

M(k, s, R
s|1
i)CH

k + I
H|tr.

f (R
s|1
i − s)297

Finally, in a slight accuracy optimisation of ours,298

R
s|1
i = CH

i +
r

IL(s, R
s|1
i)

③s

+ IH(s, R
s|1
i) (13)299

where:300

IL(s, R
s|1
i) =

∑

τj∈hpL(i)

ILj(s) + ILf (s) +
∑

τk∈hpH(i)

(⌈
t

Tk

⌉

− M(k, s, R
s|1
i)

)

CL
k

IH(s, R
s|1
i) =

∑

τk∈hpH(i)

M(k, s, R
s|1
i)CH

k + I
H|tr.

f (R
s|1
i − s)301

and the operator ❏·❑max is defined as ❏x❑max def
=

{

x if x ≤ max

max if x > max
.302

Under the original AMC-max, the operator ❏·❑s is not used. Our slight improvement acknowledges303

that the interference from all jobs completed before the mode change cannot exceed s. 3
304

Case 2: In this case, the H-task τi under analysis is released at some instant ai, after the mode305

change instant s, but before tidle
hp(i).306

Since τi is not released before the mode change, it does not suffer any direct interference from307

jobs of L-tasks. However, in the general case, it may suffer indirect push-through interference by308

such tasks that executed before its release. By this, we mean that any higher-priority H-task jobs309

released before the mode change instant s and not completed before time ai (the release of τi) may310

have suffered interference from L-tasks of even higher priority (if any), before the mode change. This311

would comensurately push their execution to the right, along the time axis. In any case, we do not312

need to quantify the push-through interference from L-tasks in Case 2 (or even test schedulability in313

Case 2 at all!), because, as we will prove below, if τi is proven to be schedulable in the L-mode and314

in Case 1, it will always also be schedulable in Case 2.315

◮ Lemma 1. If an H-task τi is schedulable in L-mode and schedulable in H-mode under the316

assumptions of Case 1, then it is also schedulable in H-mode under the assumptions of Case 2.317

Proof. Assume that a H-task τi is schedulable in L-mode and in H-mode under Case 1. Then,318

consider some schedule σ wherein ai is the first time instant strictly after the mode change s that τi is319

released and it also holds that ai < tidle
hp(i). This schedule then fulfills the assumptions of Case 2. Any320

immediately preceding job by τi will have been released no later than s, so it would fall under Case 1321

or will have completed before the mode change, so in either case, it would have been schedulable;322

this means that the job by τi released at time ai suffers no interference by previous jobs of the same323

task; it only suffers interference from higher-priority tasks (including the fake task).324

Let us then transform this original schedule σ to another schedule σ′ where, all other things325

remaining equal, the release of the job by τi under analysis is shifted earlier, to some time instant326

t′′ (with the releases of all other jobs by τi also shifted earlier by the same amount), such that the327

following things hold:328

The instant t′′ is located at or before the mode change (i.e., t′′ ≤ s).329

The entire interval [t′′, ai) is occupied by execution of tasks in hp(i) or the fake task.330

The fact that in the original schedule, the entire interval [s, ai] was busy by higher-priority tasks331

(including the fake tasks), means that such an instant t′′ exists. It could be time instant s itself, or332

some even earlier time instant.333

Then, the response time of the job under analysis cannot decrease as a result of the schedule334

transformation. Namely, in the transformed schedule σ′, the task τi does not execute at all over335

[t′′, ai) (where ai refers to its release in the original schedule σ), and from time ai onwards, its336

3 Not enclosing the expression by the operator ❏·❑s, would allow the analysis to hold even for a variant model that
permits any L-jobs caught up in the mode change to complete, executing for up to the respective L-WCETs. This
follows from the original AMC-max – see [5].

execution intervals are the same as in the original schedule. Therefore its absolute completion time337

fi is unchanged, even though its release is shifted earlier, to time t′′ < ai. In turn, the transformed338

schedule σ′ belongs to Case 1, analysed earlier (i.e., τi being released no later than s but completing339

after s). Therefore, the increased response time of the job is upper-bounded by Di, from the340

assumption that τi is schedulable in Case 1. Therefore the original response time of the job in341

schedule σ was also upper-bounded by Di.342

We will now show by contradiction that, if τi is schedulable in L-mode and in H-mode under343

Case 1, there cannot be more than one job of τi released strictly after s and strictly before tidle
hp(i).344

Assume that in schedule σ the next job by τi, after the one released at ai, was released at time a′
i and345

that a′
i <idle

hp(i). Then, the job released at time ai does not receive any execution time at all during the346

interval [ai, a′
i), therefore it misses its deadline at time ai + Di ≤ a′

i. This contradicts the fact that it347

is schedulable, which we proved earlier. ◭348

This means that the schedulability test for Case 2 is subsumed by the one for Case 1. In other349

words, if τi provably meets its deadline in L-mode and in H-mode under Case 1, then it also does so350

under Case 2. Accordingly, since we have to test for Case 1 anyway, it is redundant to test for Case 2.351

Case 3: In this case, because the H-task τi under analysis is released at tidle
hp(i) or later, there can352

be no push-through interference from L-tasks. Therefore, there is only direct interference, from the353

tasks in hpH(i) and from the unavailability of the server (i.e., from the fake task). The worst-case, in354

terms of interference from tasks in hpH(i), is when these are released simultaneously as τi, at time355

ai. This is the same as the worst-case interference from those tasks when we are in Case 1 and s = 0.356

As for the worst-case interference from the fake task, given that in Case 3 the release time ai of τi357

is before the server budget change instant, it is upper-bounded by (7), as in Case 1 (using the exact358

same reasoning).359

Combining our observations, the schedulability test for Case 3 is also subsumed by the test for360

Case 1.361

Case 4: Since τi is released at tidle
hp(i) or later and also at the server budget change or later, it is not362

subject to any transitive effects either from the mode change or from the budget change. Therefore, to363

compute the WCRT of the task, we can apply classic fixed-priority response time analysis, considering364

(i) the tasks present in the H-mode and their respective WCET estimates for that mode, and (ii) a fake365

top-priority task, modelling the unavailability of the server, with a WCRT of S − XH and a period of366

S. The corresponding equation is:367

R
H|4
i = CH

i +
∑

τj∈hpH(i)

⌈

R
H|4
i

Tj

⌉

CH
j +

⌈

R
H|4
i

S

⌉

(S − XH)

︸ ︷︷ ︸

fake task

(14)368

Note that the worst-case processor request by the fake task in Case 4, during an interval of ∆t369

time units, which is
⌈

R
H|4
i

S

⌉

(S − XH) is not necessarily upper-bounded, in the general case, by the370

expression I
H|tr.

f (∆t) (Equation (7)) that describes the request by the fake task in Cases 1, 2 and 3371

(i.e., when τi is released before the budget change). Therefore, the schedulability test for Case 4 is372

not dominated by the schedulability test for Case 1, so we need to test for Case 4 separately.373

4.2 Schedulability analysis at the system level374

Having formulated how to test for the schedulability of a given server, we can now explain how the375

schedulability of the entire system is tested and how the assignments of execution budgets and starting376

offsets for the different servers in the two modes interdepend.377

A system is schedulable if all servers are assigned non-overlapping execution windows inside the378

timeslot in both modes and if they are all found schedulable by the server schedulability test from379

Section 4.1 with the assigned execution budgets and starting offsets. In notation:380

(∀ i : P̃i is schedulable with (XL
i , XH

i , OL
i , OH

i))381

∧ (∀ i : (OL
i + XL

i ≤ S) ∧ (OH
i + XH

i ≤ S))382

∧ (∀ i, j, i 6= j : (OL
i + XL

i ≤ OL
j) ∨ (OL

j + XL
j ≤ OL

i))383

∧ (∀ i, j, i 6= j : (OH
i + XH

i ≤ OH
j) ∨ (OH

j + XH
j ≤ OH

i))384

If the servers appear in the same order inside the timeslot in both modes (as we already assume)385

and their time windows are arranged back-to-back, with the first server aligned with the start of the386

timeslot, then (if, without loss of generality, the servers are indexed from left to right), we have387

OL
1 = 0; OL

i = OL
i−1 + XL

i−1, ∀i > 1 (15)388

OH
1 = 0; OH

i = OH
i−1 + XH

i−1, ∀i > 1 (16)389

This allows the schedulability condition to be simplified to390

(

∀ i : P̃i is schedulable with (XL
i , XH

i , OL
i , OH

i)
)

∧
(∑

XL
i ≤ S

)

∧
(∑

XH
i ≤ S

)

391

4.2.1 Interdependencies between the parameters of different servers392

From (15) and (16), one can see that for a given ordering (indexing) of the servers, the execution393

budgets of preceding servers in one mode determine the starting offset of a given server in that394

mode. In turn, these offsets (OL
i and OH

i) are inputs (along with the budgets XL
i and XH

i) to395

the schedulability test for that server P̃i. Therefore the execution budgets of all preceding servers396

indirectly affect whether or not a server P̃i is schedulable with a given budget pair (XL
i , XH

i). The397

ordering of the servers within the timeslot thus matters a lot for the system schedulability.398

Intuitively, one would expect that ordering the servers such that they appear in the timeslot by399

non-decreasing XH
i − XL

i would be a helpful heuristic for achieving good scheduling performance.400

The reasoning is that if the servers appear in order of XH
i − XL

i in the timeslot, then OL
i − OH

i ≥ 0401

for all servers – and, in the timeslot where a mode change occurs, this “benign" jitter would mean402

that the interval between a server completing with a budget of XL
i and the start of the execution of403

the next server instance, with budget XH
i , would be S or (in most cases) smaller than S. This implies404

a shorter effective transition time to the new budgets (greater responsiveness to the new processing405

requirements), compared to the case of OL
i − OH

i > 0. However, in the general case, we cannot know406

a priori in which order to arrange the servers such that they appear in order of XH
i − XL

i , because the407

budgets can only be computed a posteriori, using the offsets OL
i and OH

i as input, which themselves408

depend on the server ordering, as we just explained earlier.409

Additionally, in the general case, and for a given pair of starting offsets (OL
i , OH

i) there may410

exist multiple budget pairs (XL
i , XH

i) for which a server is schedulable. If sensitivity analysis (e.g.,411

binary search) is used to determine the least feasible budget XH
i for a given offset pair (OL

i , OH
i) as412

a function of XL
i , then the pair (XL

i , XH
i) will exhibit the Pareto property. Namely, a more generous413

L-mode budget XL
i might require a smaller XH

i budget for the L-mode (as, intuitively, the server414

will have comparatively less “catching up" to do with the tasks’ demand) – and vice versa.415

All these different interdependencies between the parameters of different servers and their ordering,416

complicate the task of devising good heuristics for ordering the servers inside the timeslot and417

Figure 4 The two server schedules depicted are identical (since each server occupies exactly the same time
windows in both), the only difference being which time instant is considered as the start of the periodic timeslot
of length S. Therefore, one system being (un)schedulable implies that the other one is too.

assigning budgets to them for the two modes. However, as we will show in the next section, it is still418

possible to leverage them in a useful way, and attain good performance.419

5 Server budget assignment heuristics420

We consider two different scheduling arrangements (static-server budgets and dynamic server budgets)421

and different heuristics for assigning the server budgets in each case.422

5.1 Static server budgets (SSB)423

Under the static server budget (SSB) arrangement, the execution budget of a server remains the same424

in both modes (i.e., XL
i =XH

i =Xi ∀i). Additionally, the first server is positioned at the beginning of425

timeslot (OL
1 =OH

1 =0) and every subsequent server starts when its predecessor ends. These properties426

imply that OL
i =OH

i ∀i. In other words, neither the starting offset nor the execution budget of any427

server ever changes. Consequently, there is no need to apply the analysis formulated in Section 4.428

Rather, we can apply the original AMC-max schedulability test [5], for sizing each server, with the429

addition of a top-priority fake H-task τf with attributes CL
f =CH

f =S − Xi and Tf =S. The minimum430

feasible server budget Xi for a given server can be identified via binary search [3,34] over the interval431

(0, S]. Note that for this arrangement, each server can be sized independently of other servers and432

their attributes. Moreover, the order in which the servers are arranged on a processor is irrelevant.433

The previously mentioned independence between servers also holds when our analysis is used434

instead of the original AMC-max analysis to test the feasibility while sizing servers with static budgets.435

Indeed, the offsets of the server under analysis (and all other servers) can be disregarded because436

any static-budget server execution pattern can be transformed via shift-rotation along the temporal437

axis into an equivalent schedule where the server under consideration has a given offset (which can438

conveniently be OL
i = OH

i = 0), as Figure 4 illustrates. Crucially, the unavailability intervals for the439

server all have a duration of S − Xi and occur strictly periodically with a period of S.440

Nevertheless, even if our new analysis can accommodate static server budgets as a special case,441

it does not necessarily perform better than the original AMC-max for this arrangement because of442

the slight pessimism introduced by upper-bounding the interferences from the unavailability of the443

server in L-mode and in H-mode separately from each other (see Equation 9). In any case, for greater444

insight, in Section 6, we plot results for SSB using either the original AMC-max or the new analysis.445

5.2 Dynamic server budgets (DSB)446

Under this arrangement, for which our analysis was developed, a server can have a different budget447

after a mode switch. As in the SSB arrangement, we assume that the servers execute back-to-back448

and the first server is aligned with the start of the timeslot. Both the L-mode and H-mode budgets of449

a server are computed offline. To compute the minimum feasible budget XH
i of a server in H-mode,450

we need to know its starting offsets in each mode (OL
i and OH

i) and its L-mode budget XL
i . In turn,451

the offset of a given server in a given mode can only be computed if we already know the budgets of452

all predecessor servers. This implies that the order in which the servers are arranged in the schedule453

is already decided. In Section 5.2.1, we discuss heuristics for selecting that ordering.454

For the DSB arrangement, we explore two different heuristics. First, we consider a simple455

heuristic that assigns L-mode budgets (XL
i) to all servers, proportionally to the minimum feasible456

L-mode budget Xmin
i for each server (identified with a binary search algorithm [34]). All server457

offsets and H-mode budgets are eventually computed from that set of L-mode budgets, directly or458

indirectly. As a second option, we explore a metaheuristic (Simulated Annealing [28]), which accepts459

the output of the previous heuristic as a starting solution (if not already feasible), and tries to mutate460

the original set of XL
i budgets until it becomes feasible.461

Simulated annealing attempts to replace the current solution of a problem with another (randomly462

obtained) solution in each iteration. A candidate solution that improves on the current one is always463

accepted. However, occasionally, the algorithm will also accept a “worse" candidate solution with464

a probability that depends on the value of a probability function. This function takes as parameters465

a variable Θ (dubbed “the temperature") and the difference of the “utilities" of the current solution466

and the candidate solution. Higher temperatures and lower reduction in utility raise the acceptance467

probability for a “worse" solution. Occasionally accepting “worse" solutions helps avoid the pitfall468

of getting stuck at a local optimum of the optimization problem. The temperature Θ is gradually469

decreased with the number of iterations. In our particular problem, a solution is represented by the470

set of XL
i values (which uniquely determines all eventual OL

i and OH
i offsets and XH

i budgets). As471

utility of a given solution, we define the sum of the XH
i budgets calculated separately for each server,472

assuming the corresponding XL
i value and OL

i = OH
i = 0.473

In more detail, the pseudocode for both heuristics is presented in Algorithm 1.474

Initial Phase (Simple heuristic): Initially, we determine the minimum feasible L-mode budget475

Xmin
i for each server. To do that, for each server separately, we assume that its H-mode budget is equal476

to S (the entire timeslot) and its starting offsets are equal to zero (i.e., XH
i = S and OL

i = OH
i = 0.477

With these assumptions, we compute, using our new analysis as feasibility test, the corresponding478

minimum feasible L-mode size Xmin
i for each server with a binary search algorithm [34]. If the479

sum of Xmin
i for all servers is greater than S or if any of the servers are infeasible with the maximal480

H-mode server size of S, we declare failure as the system is provably unschedulable, with any481

assignment of server budgets. Otherwise, once Xmin
i has been computed for all servers, we set482

XL
i = Xmin

i ∗ S∑
∀i

Xmin
i

for each server. The factor S∑
∀i

Xmin
i

proportionally scales up the Xmin
i483

value of each server to fill up entirely the L-budget timeslot S. So by construction,
∑

∀i XL
i ≤ S.484

The initial XL
i server budgets in L-mode are in turn used to compute the actual H-mode server485

budgets. With a server order given a priori, the H-mode budget (XH
i) of any ith server can be486

computed with a binary search algorithm assuming offsets of OL
i =

∑i−1
j=1 XL

j and OH
i =

∑i−1
j=1 XH

j .487

If for the computed XH
i values it holds that

∑

∀i XH
i ≤ S, we declare a success. Otherwise, we try488

the metaheuristic (Simulated Annealing), implemented in the main loop:489

Main Loop (Simulated Annealing): In any iteration k, two servers (P̃a and P̃b) are selected490

randomly. This heuristic increments XL
a of P̃a and decrements XL

b of P̃b by a same value of β, where491

β represents the server variation length parameter for this iteration. Adding and subtracting the same492

value of β from two selected servers keeps the sum of L-mode server budgets in the kth iteration493

equal to that of the (k − 1)th iteration, i.e.,
∑

∀i XL
i (k) =

∑

∀i XL
i (k − 1).494

By construction, the heuristic keeps
∑

∀i XL
i ≤ S. Hence, the parameter β is computed through495

Algorithm 2 in such a way that this condition is never violated. In Algorithm 2, initially, βmax =496

−(∆ ∗ S) + (2 ∗ γ) gives the maximum length to vary in this iteration, where ∆ ∈ (0, 1] is an input497

parameter, and γ is a randomly generated variable in (0, ∆ ∗ S]. Afterwards, βa and βb are selected498

Algorithm 1 Simple heuristic and Simulated Annealing algorithm

Input: Sorted P̃ , S, ∆, Θ and Cooling Rate
Output: XL

i , XH
i , ∀i

1: Initial Phase:

2: Generate Xmin
i for each server P̃i using a binary search algorithm [34] assuming XH

i =S.
3: if (

∑

∀i Xmin
i > S || any P̃i infeasible with XH

i =S) then return Failure
4: else ⊲ scale up XL

i values
5: Set XL

i = Xmin
i × S∑

∀i
Xmin

i

, ∀i

6: Compute XH
i for each server, given XL

i values ∀i, with offsets
7: if (

∑

∀i XH
i ≤ S) then return XL

i , XH
i , ∀i

8: Main Loop:

9: while (Θ > 1) do

10: Select two random servers P̃a and P̃b

11: Compute β for servers P̃a and P̃b with Algorithm 2
12: Set XL

a (k) = XL
a (k-1) + β and XL

b (k) = XL
b (k-1) − β

13: Set other servers XL
i (k) = XL

i (k − 1), ∀i /∈ a, b

14: Compute XH
i (k), ∀i in kth iteration with offsets

15: if (
∑

∀i XH
i ≤ S) then return XL

i (k), XH
i (k), ∀i

16: else

17: Compute XH
i (0, k), ∀i with OL

i = OH
i = 0 offset in iteration k

18: if (
∑

∀i XH
i (0, k) <

∑

∀i XH
i (0, k − 1)) then

19: Keep XL
i (k), XH

i (0, k), ∀i for k+1th iteration

20: else if (z∈(0,1]≤e

∑
∀i

XH
i

(0,k−1)<
∑

∀i
XH

i
(0,k)

Θ) then

21: Keep XL
i (k), XH

i (0, k), ∀i for k+1th iteration
22: else

23: Discard this and keep (k-1)th iteration solution

24: Θ = Θ ∗ (1− Cooling Rate)

25: k = k + 1

26: On while loop termination without success, return Failure

such that XL
a + βa remains in [Xmin

a , S] and XL
b − βb remains in [Xmin

b , S]. Between βa and βb,499

the one that gives the least change in server size is selected as β.500

After selecting β, XL
a (k) and XL

b (k) are updated to XL
a (k−1)+β and XL

b (k−1)−β, respectively.501

All other severs get the previous-iteration values, i.e., XL
i (k) = XL

i (k − 1), ∀i 6= a, i 6= b.502

Once L-server budgets are available for the kth iteration, the corresponding H-mode server sizes503

are computed (employing binary search and our analysis as schedulability test), using the offsets504

OL
i (k) =

∑i−1
j=1 XL

j (k) and OH
i (k) =

∑i−1
j=1 XH

j (k), for any server P̃i.505

If the process of computing XH
i (k) with the above offsets for the kth iteration is successful and506

∑

∀i XH
i (k) ≤ S, we declare a success and exit the loop. Otherwise, the “utility" of the current507

solution is computed. For that purpose, we calculate for each server what its least feasible H-mode508

budget would be (XH
i (0, k)), with the current XL

i (k) budget and assuming OL
i = OH

i = 0. The509

utility of the solution is the sum of those XH
i values. If

∑

∀i XH
i (0, k) <

∑

∀i XH
i (0, k−1) (i.e., if it510

is a “better" solution than the previous iteration), or if a randomly generated number z in (0, 1] is less511

than or equal to acceptance probability of e

∑
∀i

XH
i

(0,k−1)<
∑

∀i
XH

i
(0,k)

Θ (i.e., occasionally accepting the512

worse solution), then the XL
i (k) and XH

i (0, k), ∀i are accepted for the (k +1)th iteration. Otherwise,513

these values are discarded, and XL
i (k − 1) and XH

i (0, k − 1), ∀i are used for the (k + 1)th iteration.514

Algorithm 2 Server variation length parameter (β) computation algorithm

Input: P̃a, P̃b, S and ∆

Output: Server size variation factor β

1: βmax = −(∆ ∗ S) + (2 ∗ γ) ⊲ Parameter ∆ ∈ (0, 1]; γ uniformly distributed over (0, ∆ ∗ S].
2: if (XL

a + βmax > S) then

3: βa = S − XL
a

4: else if (XL
a + βmax < Xmin

a) then

5: βa = Xmin
a − XL

a

6: else

7: βa = βmax

8: if (XL
b − βmax > S) then

9: βb = XL
b − S

10: else if (XL
b − βmax < Xmin

b) then

11: βb = XL
b − Xmin

b

12: else

13: βb = βmax

14: if (βmax ≥ 0) then

15: β = min{βa, βb}

16: else

17: β = max{βa, βb}
return β

Finally, if the system cools downs without finding any feasible solution, a failure is declared.515

5.2.1 Server ordering heuristics516

To achieve efficient dynamic server budget assignment, the order of servers is an important initial517

step. We propose to sort the servers in non-decreasing order of UH(P̃i) − UL(P̃i), where UH(P̃i)518

and UL(P̃i) represent the H and L-mode utilisation of server P̃i, respectively. The reason we chose519

this ordering was because it would result in a server ordering that would approximate an ordering520

by non-decreasing XH
i − XL

i . Recall that in Section 4.2.1, we identified that ordering servers by521

non-decreasing XH
i − XL

i would likely promote good performance. However one can only confirm522

whether a given server ordering meets this property a posteriori, due to the interdependencies of the523

servers’ parameters with each other and the ordering. Therefore, we simply chose UH(P̃i) − UL(P̃i)524

(which is verifiable a priori) as a good proxy. In our set of experiments, we also experimented with525

server ordering by non-increasing UH (P̃i)

UL(P̃i)
, but it performed slightly worse.526

6 Evaluation527

6.1 Experimental setup528

We have developed a Java tool to implement the proposed analysis and explore the scheduling per-529

formance of different scheduling arrangements and budget assignment heuristics and the effectiveness530

of the schedulability analysis. Our tool has two modules. The first module generates the synthetic531

workload (task sets and servers) for the given platform parameters. A second module performs the532

feasibility analysis with the proposed techniques.533

Task set generation: Task periods are generated with a log-uniform distribution in the 10-100534

Table 1 Overview of Parameters

Parameters Values Default

Number of Servers (q) {2, 3, 4, 5, 6} 3

Task-set size (n) {9, 12, 15, 18, 21, 24} 3/server

H-tasks share {20 : 10 : 80}% 30%

HWCET scaling factor (κ) {2 : 1 : 6} 3

Temperature (Θ) {.025, .05, .1, .5, 1, 5, 10}*1000 10000

Cooling rate {.001, .005, .01, .05, .1, .3, .5, .7, .9, 1} 0.005

Server size variation (β) {.001, .005, .01, .02, .05, .1, .2, .3, .4, .5, .6, .7, .8, .9} 0.5

Server ordering {UH(P̃i) − UL(P̃i),
UH (P̃i)

UL(P̃i)
} 1st

Inter-arrival time (Ti) 10ms to 100ms N/A

Nominal utilisation {0.1 : 0.1 : 1} N/A

msec range. We generate implicit-deadline tasks (Di = Ti), even though the analysis holds for535

the more general constrained deadline model (Di ≤ Ti). The given target L-mode utilisation is536

distributed among tasks by the UUnifast algorithm [8,14] in an unbiased way. Then, a task’s L-WCET537

CL
i is computed to Ti ∗ UL

i , where UL
i is the task’s L-mode utilisation. The fraction of H-tasks is a538

user-defined parameter. The H-WCET of a task is a linearly scaled up value of its L-WCET, according539

to an an input parameter κ (i.e., CH
i = κCL

i . Tasks are assigned priorities based on their arrival rates540

(Deadline Monotonic). The generated task set is indexed in order of increasing deadlines and tasks541

are assigned to servers using round-robin. To better utilise the system’s resources, one can explore542

the problem of efficiently assigning tasks-to-servers. However, we assume that the designer may not543

have control over this, since the grouping of tasks is functional, on the basis of appplication. Finally,544

for each system, the timeslot length (S), corresponding to the common period of all servers, is set to545

the shortest task interarrival time in the task set.546

The target L-mode system utilisation is varied within a range of (0, 1]. Different random class547

objects are used to generate period and utilisation values. Each random object is seeded with a548

different odd number and reused in successive replications [25]. For each set of input parameters, we549

generate 1000 random task sets. The default values of the aforementioned parameters are: q = 3,550

n = q ∗ 3, 30% H-tasks and κ = 3. The range of values considered for all the parameters is presented551

in Table 1. By default the servers are sorted in order of non-decreasing UH(P̃i) − UL(P̃i). The552

triple given in this table corresponds to {minimum : increment granularity : maximum} values of553

a parameter. In our experiments, we vary one parameter from Table 1 at a time, while the others554

conform to their default values.555

Instead of providing plots comparing the approaches in terms of scheduling success ratio (i.e., the556

fraction of task-sets deemed schedulable under the respective schedulability test), we condense this557

information by providing plots of weighted schedulability. This performance metric [7,10] condenses558

what would have been three-dimensional plots into two dimensions. It is a weighted average that gives559

more weight to task-sets with higher utilisation, which are supposedly harder to schedule. Specifically,560

using notation from [10], let Sy(τ, p) represent the result (0 or 1) of the schedulability test y for a561

given task-set τ with an input parameter p. Then Wy(p), the weighted schedulability for that test562

y as a function p, is Wy(p) =
∑

∀τ (U(τ) ∗ Sy(τ, p)) /
∑

∀τ U(τ), where U(τ) is the utilisation of563

task set τ . In this paper, the weighing is according to the L-mode schedulability. Nevertheless, the564

schedulability success ratio plots are presented in Appendix A.565

6.2 Scheduling arrangements and server ordering heuristics566

The following scheduling arrangements and heuristics are compared in this section.567

Static Server Budgets (SSB): This scheduling arrangement (presented in Section 5) maintains568

the same size of a server in both modes. We use the original AMC-max analysis [5] for the569

schedulability test, for fair comparison. A server’s budget is set to the minimal value that ensures570

schedulability, according to sensitivity analysis (binary search).571

Static Server Budgets with our analysis (SSBO): This is the same as SSB, except that in place572

of the original AMC-max test, our new analysis is used with server offsets set to zero, i.e.,573

OL
i = OH

i = 0 ∀i. Comparing SSBO with SSB assess the pessimism, compared to AMC-max,574

when the new analysis deals with the special case of XL
i = XH

i ∀i. Any such pessimism can be575

attributed to the independent bounding of the fake task’s interference in the two modes, in the576

design of our analysis, to be able to analyse the general case of dynamic budgets.577

Dynamic Server Budgets with Simple heuristic (SH): This approach for dynamic server578

budgets declares a success, if the system is feasible using the simple heuristic for assigning579

budgets that we described in Section 5, i.e., the “Initial Phase" from Algorithm 1. Our new580

analysis is used for schedulability testing.581

Dynamic Budgets with Simulated Annealing (SA): The simulated annealing heuristic is also582

presented in Section 5, in the latter part of Algorithm 1. Once again, our new analysis is used for583

schedulability testing. The corresponding curve plots success if a task set is either schedulable584

using just SH, or, if it is not schedulable by SH, but the metaheuristic in the second stage is able to585

find a feasible assignment of server budgets for the two modes. The variation in three parameters586

(Temperature, Cooling Rate and ∆) used to configure the simulated annealing metaheuristic is587

presented in Table 1.588

Simulated Annealing with all possible server orderings (SAAO): Instead of picking a pre-589

defined server ordering, all possible orderings in which the servers can be arranged are tested590

for a feasible solution. For each of them, the SA heuristic (Dynamic Budgets with Simulated591

Annealing) explained earlier is applied, with the specifed maximum number of iterations, until592

success. The SAAO heuristic allows us: (a) to analyze the effect of the order in which the servers593

are arranged, and (b) to quantify the quality of the default ordering of UH(P̃i) − UL(P̃i) and,594

indirectly, the validity of the intuition behind its selection.595

Simple heuristic assuming all possible server orderings (SHAO): It is similar to SH except596

that all possible ordering of servers on the given processor are checked instead of the default597

order.598

6.3 Results599

Figures 5 and 6 present the weighted schedulability for different number of servers. The number of600

tasks per server is constant (3/Server) in Figure 5, while the total number of tasks to distribute among601

servers via a round robin policy is constant (task set size = 18) in Figure 6. Increasing the server602

count results in lower schedulability, due to the reduced average per-server budget in a given time603

slot. All curves follow this trend. The difference between SAAO and SA is small which indicates that604

the selected server ordering by non-decreasing (UH(P̃i) − UL(P̃i)) is a reasonable choice. At low605

server counts, SH performs similar to SA as the scaling of L-mode budgets to fully utilise the timeslot606

of length S helps finding more feasible H-mode budgets, already in the initial phase. An increase in607

the number of servers makes it harder to fit the servers in the timeslot and hence, the main loop in SA608

(Algorithm 1) becomes useful. Similar behaviour can be seen when comparing SHAO and SAAO. In609

the majority of the cases, SHAO performs better than SA, which indicates that the order of servers610

2 3 4 5 6

0.35

0.4

0.45

0.5

Number of Servers

W
e
ig

h
te

d
 S

c
h
e
d
u
la

b
ili

ty

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 5 (Fixed number of tasks per server)

2 3 4 5 6

0.35

0.4

0.45

0.5

Number of Servers

W
e
ig

h
te

d
 S

c
h
e
d
u
la

b
ili

ty

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 6 (Fixed number of total tasks)

9 12 15 18 21 24

0.4

0.42

0.44

0.46

0.48

0.5

0.52

Number of Tasks

W
e
ig

h
te

d
 S

c
h
e
d
u
la

b
ili

ty

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 7

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1

0.2

0.3

0.4

0.5

Number of Htasks

W
e
ig

h
te

d
 S

c
h
e
d
u
la

b
ili

ty

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 8

has high impact on the feasibility of the solution. SSB and SSBO behave almost the same. The slight611

improvement of SSBO over SSB, where present, is attributed to the optimisation in (13), where all612

L-mode interference is upper-bounded by s. This seems to mask the pessimism from the independent613

bounding of the fake task’s interference in the two modes. SSB and SSBO perform similarly when614

the servers are fewer. However, their slight performance difference increases with more servers in the615

system. On the other hand, the difference between SA and SSB increases with more servers. This616

indicates that the proposed analysis performs better with its intended dynamic setting. In general,617

SAAO and SA diplay superior performance to SSB and other variants.618

The number of tasks per server is larger in Figure 6 when compared to Figure 5. For a given619

system utilisation, many light tasks per server are, more often than not, easier to schedule compared620

to fewer, heavy tasks per server. Hence, the weighted schedulablity is slightly higher in Figure 6621

against Figure 5. This observation is consistent with the result shown in Figure 7, as the weighted622

schedulablity improves with a larger task set size. The number of servers is constant in Figure 7623

and the increase in task set size only increases the number of tasks per server, and consequently, the624

improvement in weighted schedulability.625

A higher number of H-tasks (Figure 8) in a task set and a higher H-mode utilisation scaling626

factor κ (Figure 9) both increase the H-mode utilisation, making the task sets harder to schedule.627

Hence, the weighted schedulability decreases with an increase in these parameters for all heuristics.628

A higher temperature and a lower cooling rate increases the number of solution mutations during the629

iterations of the main loop in SA, and appear to improve the weighted schedulability, as shown in630

Figures 10 and 11, respectively. A larger value of ∆ provides a bigger area of the design space to631

explore in each iteration of the simulated annealing metaheuristic, and, from the results, this improves632

the weighted schedulability, as shown in Figure 12. The order of servers is important for both SH633

and SA. The servers sorted in non-increasing order of UH(P̃i) − UL(P̃i) show up to 0.5% and 0.8%634

better schedulability success ratio than non-increasing order of UH (P̃i)

UL(P̃i)
, for SA and SH, respectively.635

When compared to the baseline SSB, the absolute difference in terms of schedulability success636

Table 2 Maximum absolute difference in schedulability ratio of all heuristics from baseline SSB.

SA SH SAAO SSBO SHAO

39.6% 27.9% 52.8% 5.6% 40.4%

2 3 4 5 6

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

HModeMultiplier

W
e
ig

h
te

d
 S

c
h
e
d
u
la

b
ili

ty

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 9

25 50 100 500 1000 5000 10000

0.4

0.42

0.44

0.46

0.48

0.5

Temperature

W
e
ig

h
te

d
 S

c
h
e
d
u
la

b
ili

ty

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 10

0.001 0.005 0.01 0.05 0.1 0.3 0.5 0.7 0.9 1

0.4

0.42

0.44

0.46

0.48

0.5

Cooling rate

W
e
ig

h
te

d
 S

c
h
e
d
u
la

b
ili

ty

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 11

.0010.0050.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.42

0.44

0.46

0.48

0.5

Server variation delta

W
e
ig

h
te

d
 S

c
h
e
d
u
la

b
ili

ty

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 12

U^H−U^L U^H/U^L

0.4

0.42

0.44

0.46

0.48

0.5

Server Ordering

W
ei
g
h
te
d
S
ch
ed
u
la
b
il
it
y

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 13

ratio of all heuristics is presented in Table 2. The change in server’s budget can achieve up to 52.8%637

more in schedulability success ratio. For more insights, please see the schedulability success ratio638

plots in Appendix A.639

7 Conclusions640

In this paper, we proposed a new schedulability analysis for mixed-criticality uniprocessor systems641

executing periodic servers (varying budgets in response to mode switch) in a cyclic executive manner642

and use the AMC-max scheduling policy to schedule the tasks within each server. Our proposed643

approach provides strict temporal isolation among applications with additional ability to efficiently644

utilise the available execution capacity across mode switches. We also proposed number of heuristics645

that assigns budgets to servers in both modes and define the order of the servers in the cyclic executive646

schedule. The experimental evaluation with synthetic task-sets showed by varying budgets in response647

to mode switch improves schedulablity ratio by up to 52.8%, compared to the baseline static server648

budget algorithm. Even with a simple heuristic, we can achieve up to 27% of improvements in649

schedulability ratio. The order of the servers in the cyclic executive schedule has high impact on the650

schedulability ratio and the proposed heuristic to select the ordering of servers performs well in our651

experiments. In the future, we intend to extend this approach to multicore platforms and include the652

effect of other shared resources in the schedulability analysis.653

References654

1 Certification authorities software team (cast), position paper (cast-32a) multicore processors. Certification655

authorities in North and South America, Europe, and Asia, November 2016.656

2 AERONAUTICAL RADIO, INC. Avionics Application Software Standard Interface, Part 1, Required657

Services, ARINC SPECIFICATION 653P1-3 edition, November 2010.658

3 Muhammad Ali Awan, Konstantinos Bletsas, Pedro F. Souto, and Eduardo Tovar. Semi-partitioned mixed-659

criticality scheduling. In Proceedings of the 30th International Conference Architecture of Computing660

Systems, pages 205–218, 2017.661

4 Muhammad Ali Awan and Stefan M. Petters. Intra-task device scheduling for real-time embedded systems.662

In Journal of Systems Architecture, 2013.663

5 S. K. Baruah, A. Burns, and R. I. Davis. Response-time analysis for mixed criticality systems. In664

Proceedings of the 32nd IEEE Real-Time Systems Symposium, pages 34–43, 2011.665

6 Sanjoy Baruah and Alan Burns. Implementing mixed criticality systems in Ada. In 16th Ada-Europe666

Conference, pages 174–188, 2011.667

7 Andrea Bastoni, Björn Brandenburg, and James Anderson. Cache-related preemption and migration668

delays: Empirical approximation and impact on schedulability. Proceedings of OSPERT, pages 33–44,669

2010.670

8 E. Bini and G.C. Buttazzo. Measuring the performance of schedulability tests. Journal of Real–Time671

Systems, 30(1-2):129–154, 2009.672

9 Konstantinos Bletsas, Muhammad Ali Awan, Pedro F. Souto, Benny Akesson, Alan Burns, and Eduardo673

Tovar. Decoupling criticality and importance in mixed-criticality scheduling. In Proceedings of the 6th674

Workshop on Mixed-Criticality Systems, 2018.675

10 A. Burns and R.I. Davis. Adaptive mixed criticality scheduling with deferred preemption. In Proceedings676

of the 35rd IEEE Real-Time Systems Symposium, pages 21–30, Dec 2014.677

11 Alan Burns and Robert Davis. Mixed criticality systems – a review (11th edition). Technical report,678

Department of Computer Science, University of York, UK, Aug. 2018.679

12 Alan Burns and Robert I. Davis. A survey of research into mixed criticality systems. ACM Computing680

Surveys, 50(6):82:1–82:37, November 2017.681

13 Micaiah Chisholm, Namhoon Kim, Stephen Tang, Nathan Otterness, James H. Anderson, F. Donelson682

Smith, and Donald E. Porter. Supporting mode changes while providing hardware isolation in mixed-683

criticality multicore systems. In Proceedings of the 25th Conference Real-Time and Networked Systems,684

RTNS ’17, pages 58–67, 2017.685

14 Robert I. Davis and Alan Burns. Priority assignment for global fixed priority pre-emptive scheduling686

in multiprocessor real-time systems. In Proceedings of the 30th IEEE Real-Time Systems Symposium,687

pages 398–409, 2009.688

15 Pontus Ekberg and Wang Yi. Bounding and shaping the demand of generalized mixed-criticality sporadic689

task systems. Journal of Real–Time Systems, 50(1):48–86, 2014.690

16 C. Evripidou and A. Burns. Scheduling for mixed-criticality hypervisor systems in the automotive domain.691

In Proceedings of the 4th Workshop on Mixed-Criticality Systems, 2016.692

17 Lipari Giuseppe and C. Buttazzo Giorgio. Resource reservation for mixed criticality systems. In Workshop693

on Real-Time Systems: The past, The present, and the future, March 2013.694

18 X. Gu and A. Easwaran. Dynamic budget management with service guarantees for mixed-criticality695

systems. In Proceedings of the 37rd IEEE Real-Time Systems Symposium, pages 47–56, 2016.696

19 Xiaozhe Gu, Arvind Easwaran, Kieu-My Phan, and Insik Shi. Resource efficient isolation mechanisms in697

mixed-criticality scheduling. In Proceedings of the 27th Euromicro Conference on Real-Time Systems,698

pages 13–24, 2015.699

20 Fei Guan, Long Peng, Luc Perneel, Hasan Fayyad-Kazan, and Martin Timmerman. Adaptive reservation700

into mixed-criticality systems. Scientific Programming, 2017, 2017.701

21 J. L. Herman, C. J. Kenna, M. S. Mollison, J. H. Anderson, and D. M. Johnson. Rtos support for multicore702

mixed-criticality systems. In Proceedings of the 18th IEEE Real-Time and Embedded Technology and703

Applications Symposium, pages 197–208, April 2012.704

22 Biao Hu, Kai Huang, Gang Chen, Long Cheng, and Alois Knoll. Adaptive workload management in705

mixed-criticality systems. ACM Transactions on Embedded Computing Systems, 16, 10 2016. ❞♦✐✿706

✶✵✳✶✶✹✺✴✷✾✺✵✵✺✽.707

23 Biao Hu, Lothar Thiele, Pengcheng Huang, Kai Huang, Christoph Griesbeck, and Alois Knoll. FFOB:708

Efficient online mode-switch procrastination in mixed-criticality systems. Journal of Real–Time Systems,709

2018. ❞♦✐✿✶✵✳✶✵✵✼✴s✶✶✷✹✶✲✵✶✽✲✾✸✷✸✲①.710

24 Huang-Ming Huang, Christopher Gill, and Chenyang Lu. Implementation and evaluation of mixed-711

criticality scheduling approaches for periodic tasks. In Proceedings of the 18th IEEE Real-Time and712

Embedded Technology and Applications Symposium, pages 23–32, 2012.713

25 Raj Jain. The art of computer systems performance analysis - techniques for experimental design,714

measurement, simulation, and modeling. Wiley professional computing. Wiley, 1991.715

26 M. Joseph and P. Pandya. Finding Response Times in a Real-Time System. The Computer Journal,716

29(5):390–395, 1986.717

27 Namhoon Kim, Bryan C. Ward, Micaiah Chisholm, Cheng-Yang Fu, James H. Anderson, and F. Donelson718

Smith. Attacking the one-out-of-m multicore problem by combining hardware management with mixed-719

criticality provisioning. Journal of Real–Time Systems, 53(5):709–759, 2017.720

28 S. Kirkpatrick, C. D. Gelatt, , and M. P. Vecchi. Optimization by simulated annealing. Science, 220:671—721

-680, 1983.722

29 Yann-Hang Lee, K.P. Reddy, and C.M. Krishna. Scheduling techniques for reducing leakage power in723

hard real-time systems. In Proceedings of the 15th Euromicro Conference on Real-Time Systems, pages724

105–112, Jul. 2003.725

30 E. Missimer, K. Missimer, and R. West. Mixed-criticality scheduling with I/O. In Proceedings of the 28th726

Euromicro Conference on Real-Time Systems, pages 120—-130, 2016.727

31 Alessandro Vittorio Papadopoulos, Enrico Bini, Sanjoy Baruah, and Alan Burns. AdaptMC: A control-728

theoretic approach for achieving resilience in mixed-criticality systems. In Proceedings of the 30th729

Euromicro Conference on Real-Time Systems, pages 14:1–14:22, 2018.730

32 Alessandro Vittorio Papadopoulos, Martina Maggio, Alberto Leva, and Enrico Bini. Hard real-time731

guarantees in feedback-based resource reservations. Journal of Real–Time Systems, 51(3):221–246, 2015.732

33 Jiankang Ren and Linh Thi Xuan Phan. Mixed-criticality scheduling on multiprocessors using task733

grouping. In Proceedings of the 27th Euromicro Conference on Real-Time Systems, pages 25–34, 2015.734

34 Paulo Baltarejo Sousa, Konstantinos Bletsas, Eduardo Tovar, Pedro Souto, and Benny Åkesson. Unified735

overhead-aware schedulability analysis for slot-based task-splitting. Journal of Real–Time Systems,736

50(5-6):680–735, 2014.737

35 S. Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of execution time738

assurance. In Proceedings of the 28th IEEE Real-Time Systems Symposium, 2007.739

Appendix A740

The following figures present the schedulability ratio of the proposed heuristics with different741

parameters. The variation in a parameter is given in the label of a figure, while the other parameters742

are considered to be default.743

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

CoolingRate =0.001

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 14 Cooling rate = 0.001

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

CoolingRate =0.005

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 15 Cooling rate = 0.005

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

CoolingRate =0.01

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 16 Cooling rate = 0.01

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

CoolingRate =0.05

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 17 Cooling rate = 0.05

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

CoolingRate =0.1

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 18 Cooling rate = 0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

CoolingRate =0.3

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 19 Cooling rate = 0.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

CoolingRate =0.5

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 20 Cooling rate = 0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

CoolingRate =0.7

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 21 Cooling rate = 0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

CoolingRate =0.9

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 22 Cooling rate = 0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

CoolingRate =1

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 23 Cooling rate = 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

HWCET scaling factor =2

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 24 HWCET scaling = 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

HWCET scaling factor =3

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 25 HWCET scaling = 3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

HWCET scaling factor =4

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 26 HWCET scaling = 4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

HWCET scaling factor =5

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 27 HWCET scaling = 5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

HWCET scaling factor =6

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 28 HWCET scaling = 6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

H−tasks share =0.2

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 29 H-tasks share = 20%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

H−tasks share =0.3

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 30 H-tasks share = 30%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

H−tasks share =0.4

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 31 H-tasks share = 40%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

H−tasks share =0.5

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 32 H-tasks share = 50%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

H−tasks share =0.6

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 33 H-tasks share = 60%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

H−tasks share =0.7

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 34 H-tasks share = 70%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

H−tasks share =0.8

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 35 H-tasks share = 80%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Number of servers =2

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 36 Fixed tasks per server, Servers = 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Number of servers =3

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 37 Fixed tasks per server, Servers = 3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Number of servers =4

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 38 Fixed tasks per server, Servers = 4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Number of servers =5

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 39 Fixed tasks per server, Servers = 5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Number of servers =6

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 40 Fixed tasks per server, Servers = 6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Number of servers =2

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 41 Fixed task-set size, servers = 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Number of servers =3

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 42 Fixed task-set size, servers = 3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Number of servers =4

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 43 Fixed task-set size, servers = 4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Number of servers =5

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 44 Fixed task-set size, servers = 5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Number of servers =6

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 45 Fixed task-set size, servers = 6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Task−set size =9

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 46 Task-set size = 9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Task−set size =12

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 47 Task-set size = 12

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Task−set size =15

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 48 Task-set size = 15

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Task−set size =18

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 49 Task-set size = 18

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Task−set size =21

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 50 Task-set size = 21

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Task−set size =24

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 51 Task-set size = 24

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Server order =0

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 52 Server order = UH(P̃i) − UL(P̃i)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Server order =1

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 53 Server order = UH(P̃i)/UL(P̃i)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Server size variation =0.001

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 54 Server size variation β = 0.001

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Server size variation =0.005

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 55 Server size variation β = 0.005

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Server size variation =0.01

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 56 Server size variation β = 0.01

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Server size variation =0.02

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 57 Server size variation β = 0.02

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Server size variation =0.05

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 58 Server size variation β = 0.05

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Server size variation =0.1

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 59 Server size variation β = 0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Server size variation =0.2

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 60 Server size variation β = 0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Server size variation =0.3

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 61 Server size variation β = 0.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Server size variation =0.4

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 62 Server size variation β = 0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Server size variation =0.5

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 63 Server size variation β = 0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Server size variation =0.6

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 64 Server size variation β = 0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Server size variation =0.7

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 65 Server size variation β = 0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Server size variation =0.8

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 66 Server size variation β = 0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Server size variation =0.9

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 67 Server size variation β = 0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Temperature =25

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 68 Temperature = 25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Temperature =50

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 69 Temperature = 50

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Temperature =100

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 70 Temperature = 100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Temperature =500

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 71 Temperature = 500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Temperature =1000

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 72 Temperature = 1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Temperature =5000

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 73 Temperature = 5000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System L−mode utilisation (U
L
)

S
c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

Temperature =10000

SSB

SSBO

SH

SA

SAAO

SHAO

Figure 74 Temperature = 10000

	Introduction
	Related work
	Task model and system model
	Task model
	Server-based system model

	Schedulability Analysis
	Schedulability analysis for an individual server
	Steady L-mode analysis
	Schedulability testing in H-mode

	Schedulability analysis at the system level
	Interdependencies between the parameters of different servers

	Server budget assignment heuristics
	Static server budgets (SSB)
	Dynamic server budgets (DSB)
	Server ordering heuristics

	Evaluation
	Experimental setup
	Scheduling arrangements and server ordering heuristics
	Results

	Conclusions

