

Simulation Module and Tools for XDense

Sensor Network

Conference Paper

CISTER-TR-170401

2017/06/13

João Loureiro

Pedro Santos

Raghu R.

Eduardo Tovar

Conference Paper CISTER-TR-170401 Simulation Module and Tools for XDense Sensor Network

© CISTER Research Center
www.cister.isep.ipp.pt

1

Simulation Module and Tools for XDense Sensor Network

João Loureiro, Pedro Santos, Raghu R., Eduardo Tovar

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: joflo@isep.ipp.pt, pjsol@isep.ipp.pt, raghu@isep.ipp.pt, emt@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract

We present a NS-3 module developed for wired 2D mesh grid sensor network systems, that resemble Network-on-
Chip architectures. It has been designed to enable complex feature extraction from sensed data in realtime with
distributed processing. We provide the design specifications, communicationand processing delay models and a
high level system model for XDense using NS-3. We validate our module by comparing its performance with a
hardware implementation.

Simulation Module and Tools for XDense Sensor Network

João Loureiro, Pedro Santos, Raghuraman Rangarajan, Eduardo Tovar
{jo�o,pjsol,raghu,emt}@isep.ipp.pt

CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto
Porto, Portugal

ABSTRACT

We present a NS-3 module developed for wired 2D mesh grid sensor

network systems, that resemble Network-on-Chip architectures.

It has been designed to enable complex feature extraction from

sensed data in realtime with distributed processing. We provide

the design speci�cations, communication and processing delay

models and a high level system model for XDense using NS-3. We

validate our module by comparing its performance with a hardware

implementation.

CCS CONCEPTS

•Networks →Network simulations; Network experimentation;

KEYWORDS

XDense, NS-3, sensor networks, network-on-chip, NoC

ACM Reference format:

João Loureiro, Pedro Santos, Raghuraman Rangarajan, Eduardo Tovar. 2016.

Simulation Module and Tools for XDense Sensor Network. In Proceedings

of , June 13-14, 2017, Porto, Portugal, (2017 WNS3), 7 pages.

DOI: h�p://dx.doi.org/10.1145/3067665.3067680

1 INTRODUCTION

�anks to current level of miniaturization on microelectronics and

microelectromechanics (MEMS), cyber physical systems can now

rely on dense deployments of sensors, allowing the sense of phe-

nomena with granularity as small as few millimeters of sensor inter

space and sampling rates up to kilohertz [3]. �is is leading to the

next generation of aerospace systems, able to sense its structural

state and the environment, to e�ectively interpret and react to

sensed data in real-time [10]. For example, sensors can be deployed

on aircra� wings, to detect undesirable turbulent air-�ow and en-

able closed-loop actuation for active-�ow-control (AFC). In [8] and

[6], authors survey MEMS sensors and actuator for AFC.

AFC systems have very high spatial and temporal constraints [2],

and such dense sensing poses huge challenges in terms sensing,

specially regarding interconnectivity and timely data acquisition

and processing. Current sensor networks fail to address this req-

uisites due to key scalability issues of cost, communication time,

interconnectivity, processing time, power and reliability [7]. Wired

solutions are usually based on shared buses, that lack of electrical

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.

2017 WNS3, June 13-14, 2017, Porto, Portugal

© 2017 ACM. 978-1-4503-5219-2/17/06. . . $15.00
DOI: h�p://dx.doi.org/10.1145/3067665.3067680

(a) (b)

Figure 1: (a) Deployment of XDense on a wing for Active

Flow Control (AFC); (b) XDense hardware prototype.

scalability, with limited number of nodes sharing the same band-

width. Wireless sensor networks (WSN) exceed in complexity, have

�nite power supply and limited bandwidth. �ey are also com-

monly susceptible to concurrency and noise issues. �is has been

the trigger for us to reason about a di�erent network design that

could be optimized in terms of latency.

So in order to deal with the key challenges related to eXtremely

Dense deployments of sensors we introduced XDense [12]. It is

a sensor network composed of regular structures (nodes) inter-

connected in a 2D-mesh network that goes physically a�ached to

the phenomena of interest. Figure 1(a) shows the deployment of

XDense on a wing surface, whereas Figure 1(b) shows our hardware

prototype. It resembles Network-on-Chip (NoC) architecture, and

shares similarities in routing schemes and distributed computing ca-

pabilities [11]. Targeting AFC, we validated XDense in [14], where

we perform distributed feature detection/extraction to achieve low

latency real-time sampling. We “feed” nodes with data from com-

putational �uid dynamics (CFD), and detect turbulent air-�ow in

real-time.

To realize XDense, we needed to examine its feasibility in many

aspects, being: (i) communication and routing protocols; (ii) tempo-

ral granularity; (iii) spatial granularity; (iv) resource requirements;

(v) practicality of distributed processing algorithms and how to

bene�t from them; (vi) scalability; (vii) accuracy. For this, we need

a robust simulator for our model that is modular, to allow the de-

velopment of reusable abstractions. It should be expandable, for

example, for adding support to new network architectures and

protocols, and allow simulating dense networks with low computa-

tional cost. We have kept portability in mind to make the simulator

suitable not only to XDense, but to 2D mesh NoC in general. With

this goal we developed a module for XDense on top of Network-

Simulator-3 (NS-3). We provide facilities for 2D mesh networks,

with con�gurable links, packets, communication ports, routers and

applications. We use packets, routing algorithms and addressing

schemes with low overhead tailored to this kind of network. We

2017 WNS3, , June 13-14, 2017, Porto, Portugal J. Loureiro et al.

Computation

C
o
m
m
u
n
ic
a
ti
o
n

Approximate Cycle

B D

E

A

A
p
p
ro

x
im

a
te

C
y
c
le

x x

x

A) Design specifications

B) Network communication

 model

C) Software components

 specification and modeling

D) High level system model

E) Implementation

x

C

Figure 2: Modeling stages

provide examples along with the module that should serve as a

starting point for custom network designs.

In this paper we present and detail each component of our mod-

ule. We explain its features, from pre-processing to simulation

and post-processing tools developed to enable detailed analysis. 1

We compare our simulator with the performance achieved on real

hardware to validate module’s temporal accuracy.

2 METHODOLOGY

Both XDense and NoCs have custom design architectures, that

suite their application target. For this kind of architectures, the

network performance is one of the major bo�lenecks [16]. Net-

work topology, link speed and width, communication protocol

algorithms, protocols processing overhead, resource requirements

and timeliness. �ese are all crucial aspects that must be considered

during the design phase of such systems, and it is fundamental to be

able to test and debug its functionalities, measure its performance

and identify its limitations at design time. For so, the simulation

of such systems can provide good insights on how to dimension

their components. �erefore, choosing the right abstraction level

and complexity of the simulation is important to achieve the right

trade-o� between speed and accuracy [15].

So in order to simplify the design process, the di�erent abstrac-

tion levels can be implemented independently, as a set of intermedi-

ate models, each one with its speci�c objectives. Since the models

can be simulated and estimated, the result of each of these design

stages can be independently validated. Relating the di�erent stages

of our system model, in Figure 2 we adapt the model representation

graph introduced in [5], to show the di�erent modeling stages we

adopt. �e x-axis shows the time-accuracy of the computation

component, and the y-axis shows the same for the communication

component for each model stage. �e components at each stage

are quanti�ed as un-timed, approximate-timed, and cycle-timed

(de�ned over the next paragraphs). However, for this work, we

only consider some of these stages, as follows:

(A) Design speci�cations: �is is an un-timed component model,

used to validate system’s functionalities and principles of op-

eration, without accounting for the delays associated. At this

point, given the application requirements, we de�ned XDense’s

1 Pre and post processing tools were developed using Python, and all of this source
code, as well as the simulator, is available online at https://bitbucket.org/joao�/noc.

network architecture, routing and communication protocols

in a simplistic implementation using event-driven simulation.

(B) Network communication model: Next stage consists of an

approximate-timed model, in which delays are taken into ac-

count, but in a simpli�ed manner, such that the computational

cost of simulating the system is reduced. �euing and com-

munication delays are accounted at the packet-level, therefore

we do not model the physical layers aspects such as electrical

interference and packet transmission errors. 2 Communica-

tion baudrate and packet size are de�ned, so that the temporal

behavior approximates the one observed on hardware imple-

mentation. Computation delays are absent at this point. At

this abstraction level nodes behave like a synchronous system,

since its an event-driven simulation with a single absolute time

reference, with no non-deterministic delays associated.

(C) So�ware components speci�cation and modeling: Here, pro-

cessing delays are analyzed separate from communication de-

lays. It is a model of the delays associated with the execution

of di�erent networking and data processing functions on the

destination hardware. Each of these functions can be seen, for

example, as so�ware function of the protocol, or as a delay

imposed by dedicated hardware peripheral.

�is is also an approximate model, since it simply accounts

a delay every time that function gets used. �is delay is not

�xed value, on the contrary, it is random, derived from statis-

tical distributions that re�ect measurements from hardware

implementation.

(D) High level system model: At this stage we integrate (B) and

(C) into a single system model, and model the delays associ-

ated with communication and processing approximately. It

still has a reasonable computational cost, but is very useful

in the study of protocols, and for the validation of analytical

models for time predictability. �e performance observed at

this simulation level should be approximately the one observed

on the real hardware. It enables capturing the e�ects of node’s

asynchronism due to non-deterministic delays.

(E) Implementation model: Cycle-timed models account commu-

nication delays at the bit-level. �at is, each bit transmit-

ted/received is timed and represents an event during simulation.

Computation delays are accounted at the Register Transfer

Level and Instruction Level. �e model also accounts for de-

lays associated with hardware peripherals. Cycle-timedmodels

are usually expensive to compute, hard to implement and prone

to bugs, and therefore unpractical[4].

We refrain from implementing this model abstraction, and

instead, we perform the desired validations directly with real

implementation [13], that is also useful to validate and tune

the accuracy of each of the previous modeling stages.

Having de�ned the modeling and validation steps adopted on

the development of our simulation model, in the next section we

provide details on the outcome of each of the modeling steps, and

the overall result.

2 �e 2D mesh networks we are interested on, utilize physically very short range
wired links, which are minimally subject to transmission errors, and for this reason
we give low priority to transmission error modeling.

https://bitbucket.org/joaofl/noc

Simulation Module and Tools for XDense Sensor Network 2017 WNS3, , June 13-14, 2017, Porto, Portugal

(a) Network

R

P

S

ND x4

(b) Node

SH

SPPS

Q
Q

(c) ND

Figure 3: Overview of XDense architecture. (a) It is a 2-

D mesh network; (b) Node internals: processor (P), router

(R), net-device (ND) and the sensor (S); (c) net-device’s in-

ternals: output queue (Q), tra�c shaper (SH), and a serial-

izer/deserializer (PS/SP).

3 MODELING STAGES

3.1 Design Speci�cation

XDense is a 2-D mesh network architecture inspired by NoC (Fig-

ure 3(a) shows a 5× 5 network). Despite the similarities, they di�er

greatly in physical dimension and node count, since XDense is

meant to be deployed on surfaces (like wings), and node count will

tend to be much higher compared to the number of cores on actual

NoCs. Each node can be seen as a self-contained system on chip

(SoC), with dedicated hardware peripherals and a CPU. �e node

internals are shown in Figure 3(b). Each node is composed of a

sensor, processor, router and four communication ports (one in

each direction). In the following paragraphs, we detail each of the

components, detailing its implementation using NS-3.

Processor. �e processor abstraction model can be seen as the

application layer. It provides high level functionalities that are

essential to ful�ll XDense goals. In our case, the processor is con-

nected to the sensor, and communicate over the network through

the router. �e processor implements di�erent mechanisms to ex-

change and process sensed data between nodes. It allows nodes to

request for sensed data from a single node, from groups of nodes, or

from the whole network, by unicasting, multicasting or broadcast-

ing requests for node(s)’ data. �e same applies for the transmission

of sensed data.

Data processing algorithms are also implemented at this layer,

consonant to the application scenario goals, but utilized, for exam-

ple, to compress or to detect features of interest on collected data.

Another functionality of the processor is the one of packet genera-

tion, utilized to set up nodes to perform periodic transmissions.

Sensor. �e sensor abstraction interacts with the physical world,

and is connected to the processor through it’s analogue-to-digital

interface. �e processor can interface with any kind of sensor,

consonant to the application’s monitoring goal. Also, the processor

should be able to accommodate applications that might require

measurements of quantities of various kinds of phenomena, from

more than one sensor simultaneously.

�is is important in cases where the user is intended to investi-

gate on distributed processing algorithms, when it is indispensable

(a)

0 5 10
0

5

10

15

20

25

30

(b)

Figure 4: Pressure distribution over wing’s surface (view

from top). Data of a single time-frame, imported from Com-

putational Fluid Dynamics (CFD), used as input for XDense.

(a) Sensors displacement; (b) Normalized data, as seen by

each sensor.

to have access on the expected input data (for AFC for example).

�at is because the e�cacy of each data processing algorithm can

be tightly related to the nature of the input data, and its spatial

and temporal granularity. �is should allow taking decision on

the density of sensors deployment for example. Not only, but the

nature of the data may in�uence on node’s behavior, and therefore

on network load and performance.

For this reason, we developed a sensor model that, connected to

the Processor, provides it the capability of sampling temporal data.

�at is, we “feed” each Sensor of the network with temporal data

extracted from a reliable representation of a real computational

�uid dynamics (CFD) phenomena. Sensor’s data are according to

each node “physical” location relatively to the data set. To illus-

trate that, in Figure 4(a) we show a virtual deployment of nodes

evenly distributed, superimposed by the air pressure distribution

on a wing surface. It shows a single snapshot of actual temporal

data from CFD simulation. More speci�cally, we use the SU2 inte-

grated computational environment for multi-physics simulation to

generate such data [17]. Files from CFD output are converted into

a �le format readable by our sensor abstraction, that provides to

the processor on-demand “sensed” data.

Figure 4(b) shows a grid that represents our network, in which

each pixel re�ects a node and the corresponding data observed by its

sensor. �is is an intermediate results from our pre-processing tools,

that are also part of our contribution. �is is an interchangeable

model, potentially useful to any other NS-3 module for sensor

networks, in cases where the nature of sensor’s data in�uence on

the network operation.

Router. �e router (R) is the interface between each networking

device (ND) and the processor (P). �e router is able to receive and

transmit packets in parallel, from/to the processor and networking

devices. Packets generated by the processor are transferred and

2017 WNS3, , June 13-14, 2017, Porto, Portugal J. Loureiro et al.

(a) XY (b) YX

(c) Clockwise (d) Shi�ed-clockwise

Figure 5: Many-to-one scenarios, in which all nodes trans-

mit to the node located in the center, using the di�erent rout-

ing algorithms provided.

queued at the router, that holds a dedicated queue for that. Input

queues may be also enabled, depending on the application goals.

Packets may compete for output ND, in which case they are served

using prede�ned arbitration policy. We provide implementation

for both �rst-in-�rst-out (FIFO) and round-robin (RR) arbitration

policies.

Routers are connected to a single processor and four NDs (one in

each direction), that connect the node to the network. However, the

router is extensible, and can contain multiples of four NDs, allowing

it to be connected to more than one network simultaneously. �is

is useful for example, to simulate networks in which signaling is

required for packet �ow control, in a way that signals are trans-

ferred in a network apart, without interfering with the data. �is

implementation aims to suite more elaborate NoC architectures, 3

since XDense only uses a single network for its operation.

Packets are transmi�ed in the network in a multi-hop fash-

ion from a source node to a unicast, multicast or broadcast des-

tination. �e router analyses incoming packet’s headers, and ap-

plies con�gured routing protocols to decide where to forward the

packet. We use di�erent Dimension Order Routing (DOR) protocols

known from NoC [9] in order to provide deterministic and minimal

deadlock-free routes. In DOR protocols, all packets must follow

the same order when traversing. First, the progress occurs only on

one of the axis, and upon reaching the desired coordinate of the

destination, (if necessary) the transfer is continued along the other

axis, until reaching the destination. We provide implementation of

common DOR routing mechanisms such as XY or YX routing [9], as

well as clockwise, counterclockwise routing and other two variants

of it proposed for XDense. Figure 5 shows many-to-one scenarios,

in which all nodes transmit to the node in the center, using four

di�erent routing algorithms. �is is an output of our visualization

tool, that shows networking devices and processor’s activity (red

for outgoing and green for incoming packets).

3 For example, the Epiphany processor uses three separate mesh networks to intercon-
nect its many cores for data exchange. �ese are: one for “read” transactions, another
one for “write” transactions and the third one for o�-chip communication [1].

3.6 3.8 4.0 4.2 4.4 4.6 4.8
Transmission Time Slot (TTS)

0

1

2

3

4

5

No
rm

al
ize

d
De

ns
ity

Figure 6: Single-hop internal delay distribution.

Table 1: XDense packet structure

Field Protocol xo yo xd yd Payload CS

Bytes 1 1 1 1 1 10 1

We use custom addressing scheme, based on the Cartesian coor-

dinate system. It can be con�gure to use either absolute or relative

addressing. When using absolute addressing, the origin is �xed

at the lower-le� corner of the network, and nodes are addressed

accordingly with �xed address. When using relative addressing,

all nodes see themselves as located at the origin, and transmis-

sions between nodes are done on the basis of o�sets, by specifying

the number of hops that a packet should travel before reaching

its destination (± x ,± y). Relative addressing adds scalability in

many aspects, but mainly because nodes do not need to be uniquely

addressed in a distinguished setup phase, and it allows having a

network greater than the actual address space. �e address space

only limits nodes to a con�ned “horizon of events”, which is how

far each node can communicate to.

Network Devices. Networking devices (ND) are full-duplex,

with queue (Q), tra�c shaper (SH) and serializing unit (PS) at the

output port, and at the input port, a queue and a deserializing unit

(SP). �e internal representation of ND is shown in Figure 3(c).

Incoming packets are deserialized and queue, then dequeued and

served by the router according, to con�gured arbitration policy.

Outgoing packets are �rst queued, then dequeued by the tra�c

shaper, serialized and transmi�ed. In case FIFO arbitration is used,

packets only get queued at the output port, and incoming packets

are immediately served. In case of RR, packets are queued at the

input port, and dequeued as their targeted output port becomes

available. In this case packets do not get queued at the output port.

�e purpose of the tra�c shaper is to make packet transmissions

periodic, such that we can provide determinism to the outgoing

tra�c, and consequently make it amenable to real-time analysis and

real-time applications. It is con�gured in terms of an initial o�set

and desired transfer rate, therefore this is an optional peripheral,

disabled by default. �e serializer and deserializer are used on

XDense, once we have established communication between nodes

to use serial links. However, it is an optional con�guration, and

can be disabled for NoC architectures with parallel links.

Simulation Module and Tools for XDense Sensor Network 2017 WNS3, , June 13-14, 2017, Porto, Portugal

0 20 40 60 80 100
Number of Hops

0

100

200

300

400

500

Tr
an

sm
iss

io
n

Ti
m

e
Sl

ot
 (T

TS
) Hardware

Sim with delay
Sim without delay

Figure 7: Average trip delay in amulti-hop scenario for vary-

ing trip distances.

Packet. XDense packet structure was designed for low resource

utilization and for ease of routing and processing by simple hard-

ware. It uses 16 bytes size, which is a common UART bu�er size

on microcontrollers (µC), allowing easy handling of packets for

increased reliability and decreased delays. Its current structure is

de�ned in Table 1.

�e �rst byte is allocated for the communication protocol (P)

and de�nes the routing protocol used, and hence determines how

to interpret and use the remaining content of packet’s header. Two

coordinate pair are used to specify origin (xo ,yo) and destination

(xd ,yd) of the packet. If relative addressing scheme is used, origin

and destination coordinates are updated by router at each hop, to

maintain its relativity to the origin, otherwise kept �xed. Payload

(PL) is used by the application layer to transmit sensed data, and

any other application protocol required. Checksum (CS) is utilized

for error checking.

Link. Links are meant to simulate a full-duplex serial (UART)

port, commonly found on COTS µCs. It adds two extra bits for

each byte of the packet as start and stop bits. We chose UART to

interconnect nodes because of its low complexity, low cost and

availability. �is allows XDense nodes to be implemented on mid

to low-range µCs, having the router and NDs are implemented in

so�ware. However, like mentioned earlier, links are con�gurable,

and can be easily setup to simulate parallel buses found in NoC

architectures.

3.2 Network Communication Model

Having speci�ed our design, the next stage consists of de�ning

the temporal aspects of our network model. For that we need to

chose a hardware platform that suites XDense, keeping in mind

the trade-o� between performance and cost. For this, we survey

COTS µCs that meet the minimum requirements of XDense. �ese

are, with at least four UART ports, with minimum 16 bytes bu�er

per port, preferably with dynamic memory access (DMA) between

each UART port and the CPU for acceptable performance.

In [13] we presented XDense node based on the Atmel AT-

SAM4N8A chip, with a 32-bit ARM Cortex-M4 processor. �is

is a mid-range general purpose µC that run at up-to 100 MHz, with

5 UART ports, each one with an individual DMA channel. �e

UART ports communicate 16 byte packets at 3Mbps, leading to

53.3µs packet duration (further details can be found in the refer-

enced paper). With this information in hand, we are able to add

communication delays to our network model.

3.3 So�ware Components Speci�cation and
Modeling

Chosen the target hardware, at this stage, we want to measure how

much internal delays that may impact on the network performance.

�is is a challenging task to accomplish, since there are numerous

sources of internal delays, either imposed by the hardware compo-

nents of the µC, or due to processing at the so�ware layers, and

determining the exact sources is not trivial.

In order to simplify this task, we opt to perform measurement

base modeling, which means that we did a statistical survey of the

delay imposed by each node on forwarding a packet. As said, this

is a simpli�ed internal delay model, which accounts statistically

only for the most signi�cant source of delays overall.

For this purpose, we use a single hardware node (running dedi-

cated �rmware), and perform automated measurements on the time

it takes to forward a single packet (with the aid of an oscilloscope).

We perform ten thousand measurements, in order to converge to a

consistent statistical distribution. �e result is shown in Figure 6.

It is a random distribution, whose form is strictly related to the µC

�rmware implementation. With this data in hand, we can move to

the next stage, which is to take internal delays into account along

with our network communication model.

3.4 High Level System Model

Having in hand information on communication and internal delays,

we are able to consolidate the High Level System Model. For that,

we feed the router model with the list of delay measurements taken.

�e router randomly picks a value from this list before forwarding

a packet, delaying its transmission by that value.

With this, we are able to simulate communication and internal

delays approximately. �is lowers computational cost, but at the

same time bringing our model much closer to reproduce the perfor-

mance observed in real hardware. �is is specially useful to study

the e�ects of asynchrony between nodes due to non-deterministic

delays. �is also provides statistical bounds on communication

delays.

4 MODEL STAGES VERIFICATION

To evaluate ourmodel accuracy, we compare it against our hardware

implementation. We want to identify how the high level system

model perform compared to the hardware implementation, in terms

of communication delay. We also measure the packet drop ratio

observed in hardware to quantify its signi�cance. We also want

to identify the e�ect of composing the so�ware delay model with

the network delay model, by looking at the last one separately. For

clarity, we show delay values in terms of transmission time slots

(TTS), where 1 TTS is the time required to transmit a single packet

(packet duration, equal to 53.333µs).

We start by measuring both for simulation and hardware deploy-

ment, the time taken for a single packet to travel through many

hops, from origin to destination (on the network without concur-

rent workload). We vary the trip distance from 2 to 100 hops and

2017 WNS3, , June 13-14, 2017, Porto, Portugal J. Loureiro et al.

SIM HW
9.0

9.5

10.0

10.5

11.0

11.5

Tr
an

sm
iss

io
n

Ti
m

e
Sl

ot
 (T

TS
)

(a) 2 hops

SIM HW

101

102

103

104

105

106

107

Tr
an

sm
iss

io
n

Ti
m

e
Sl

ot
 (T

TS
)

(b) 20 hops

SIM HW

302.5

305.0

307.5

310.0

312.5

315.0

317.5

Tr
an

sm
iss

io
n

Ti
m

e
Sl

ot
 (T

TS
)

(c) 60 hops

SIM HW

505

510

515

520

525

530

Tr
an

sm
iss

io
n

Ti
m

e
Sl

ot
 (T

TS
)

(d) 100 hops

Figure 8: Comparison between simulation and hardware of the packet trip delay distribution, for di�erent number of hops.

0 20 40 60 80 100
Number of Hops

0

5

10

15

20

25

30

Pa
ck

et
 D

ro
p

Ra
te

 (%
)

Hardware
Sim

Figure 9: Packet drop ratio in a multi-hop scenario for vary-

ing trip distances.

measure the end-to-end delay at each scenario ten thousand times.

Figure 7 shows the average end-to-end delay for each scenario. It

shows the measurements for our hardware deployment, and sim-

ulation, with and without using the internal delay model. �ere

is an expected linear growth on the trip delay as we increase the

trip distance, for all three scenarios. Adding internal delays to the

network model represents an approximate �ve-fold increase in the

total delay. Furthermore, in this scenario, our high level system

model approaches considerably the hardware performance, with

linear increasing error.

Lets look closer and compare the measurements for the hardware

and high level system model. In Figure 8, we show the statistical

distribution of our measurements, for trip distances 2, 20, 60 and

100 hops. For short trip distances (2 hops), both scenarios show

approximate same average value, whereas simulation present more

contained normal distribution, compared to the random and more

wide distribution observed in hardware. �erefore, that does not

hold as we increase the trip distance, quite the contrary, the aver-

ages diverge, while the distribution for the hardware tends to get

more concentrated around the average, more than compared to the

simulation.

Finally, in Figure 9 we show the comparison between packet

drop ratio for simulation and hardware. Obviously, since we did

not implement error models to complement our high level system

model, for the simulation we experience zero packet drops. While in

hardware, we experienced linear growth on packet drops, reaching

around 30% drops at 100 hops trip distance.

5 CONCLUSIONS

We provide a complete module implementation of our network

model, that approaches satisfactorily the performance observed

on real implementation platform. �e implementation proved to

be robust, with stable operation, providing access to a diversity of

performance metrics from XDense.

�is is still a simpli�ed model. We must still account for trans-

mission errors, and any other source of internal delays, which has

yet to be investigated. In addition, e�orts are still needed to make

this module more suitable to speci�c NoC architectures. It is still a

good starting point.

Future Work

As future work, we intend to compare our model with the hardware

in a bigger diverse set of scenarios and metrics. We also intend to

bring concurrent workloads in many-to-one scenarios, taking into

account queue sizes.

ACKNOWLEDGMENTS

�is work was partially supported by National Funds through

FCT/MEC (Portuguese Foundation for Science and Technology)

and co-�nanced by ERDF (European Regional Development Fund)

under the PT2020 Partnership, within the CISTER Research Unit

(CEC/04234); also by FCT/MEC and the EU ARTEMIS JU within

project ARTEMIS/0004/2013 - JU grant nr. 621353 (DEWI, www.dewi-

project.eu).

REFERENCES
[1] Adapteva 2014. Epiphany 64-core Microprocessor. Adapteva. Rev. 2.
[2] Andreas Berns and Ernst Obermeier. 2009. AeroMEMS sensor arrays for time

resolved wall pressure and wall shear stress measurements. In Imaging Measure-
ment Methods for Flow Analysis. Springer, 227–236.

[3] Ulrich Buder, Ralf Petz, Moritz Ki�el, Wolfgang Nitsche, and Ernst Obermeier.
2008. AeroMEMS polyimide based wall double hot-wire sensors for �ow separa-
tion detection. Sensors and Actuators A: Physical 142, 1 (2008), 130–137.

[4] Lukai Cai and Daniel Gajski. 2003. Transaction Level Modeling: An Overview.
In Proceedings of the 1st IEEE/ACM/IFIP International Conference on Hard-
ware/So�ware Codesign and System Synthesis (CODES+ISSS ’03). ACM, New York,
NY, USA, 19–24. DOI:h�p://dx.doi.org/10.1145/944645.944651

[5] Lukai Cai, Shireesh Verma, and Daniel D Gajski. 2003. Comparison of Spec�c
and SystemC languages for system design. CECS, University of California, Irvine,
CA, USA, Tech. Rep (2003).

[6] Louis N Ca�afesta III and Mark Sheplak. 2011. Actuators for active �ow control.
Annual Review of Fluid Mechanics 43 (2011), 247–272.

[7] Deepak Ganesan, Alberto Cerpa, Wei Ye, Yan Yu, Jerry Zhao, and Deborah Estrin.
2004. Networking issues in wireless sensor networks. J. Parallel and Distrib.
Comput. 64, 7 (2004), 799–814.

http://dx.doi.org/10.1145/944645.944651

Simulation Module and Tools for XDense Sensor Network 2017 WNS3, , June 13-14, 2017, Porto, Portugal

[8] Nobuhide Kasagi, Yuji Suzuki, and Koji Fukagata. 2009. Microelectromechanical
systems-based feedback control of turbulence for skin friction reduction. Annual
review of �uid mechanics 41 (2009), 231–251.

[9] N. K. Kavaldjiev and G. J. M. Smit. 2003. A Survey of E�cient On-Chip Com-
munications for SoC. h�p://eprints.eemcs.utwente.nl/833/. In 4th PROGRESS
Symposium on Embedded Systems, Nieuwegein, �e Netherlands. Technology
Foundation STW, Utrecht, �e Netherlands, 129–140.

[10] Fotis Kopsa�opoulos, Raphael Nardari, Yu-Hug Li, PengchuanWang, and Fu-Kuo
Chang. STATE-SENSING AND AWARENESS FOR A BIO-INSPIRED INTELLI-
GENT COMPOSITE UAV WING. (��).

[11] Shashi Kumar, Axel Jantsch, J-P Soininen, Mar�i Forsell, Mikael Millberg, Johny
Oberg, Kari Tiensyrja, and Ahmed Hemani. 2002. A network on chip architecture
and designmethodology. In VLSI, 2002. Proceedings. IEEE Computer Society Annual
Symposium on. IEEE, 105–112.

[12] João Loureiro, Vikram Gupta, Nuno Pereira, Eduardo Tovar, and Raghuraman
Rangarajan. 2013. XDense: A Sensor Network for Extreme Dense Sensing.
Proceedings of the Work-In-Progress Session at the 2013 IEEE Real-Time Systems
Symposium (2013), 19–20.

[13] Joao Loureiro, Raghuraman Rangarajan, and Eduardo Tovar. 2015. Demo Ab-
stract: Towards the Development of XDense, A Sensor Network for Dense
Sensing. 12th European Conference on Wireless Sensor Networks (EWSN) (2015),
23.

[14] J. Loureiro, R. Rangarajan, and E. Tovar. 2015. Distributed Sensing of Fluid
Dynamic Phenomena with the XDense Sensor Grid Network. In Cyber-Physical
Systems, Networks, and Applications (CPSNA), 2015 IEEE 3rd International Confer-
ence on. 54–59. DOI:h�p://dx.doi.org/10.1109/CPSNA.2015.19

[15] Laurent Maillet-Contoz and Frank Ghenassia. 2005. Transaction level modeling.
In Transaction Level Modeling with SystemC. Springer, 23–55. h�p://link.springer.
com/chapter/10.1007/0-387-26233-4 2

[16] Simone Medardoni. 2009. Driving the Network-on-Chip Revolution to Remove
the Interconnect Bo�leneck in Nanoscale Multi-Processor Systems-on-Chip. Ph.D.
Dissertation. Università degli studi di Ferrara.

[17] Francisco Palacios, Juan Alonso, Karthikeyan Duraisamy, Michael Colonno, Jason
Hicken, Aniket Aranake, Alejandro Campos, Sean Copeland, �omas Economon,
Amrita Lonkar, and others. 2013. Stanford University Unstructured (SU 2): an
open-source integrated computational environment for multi-physics simulation
and design. In 51st AIAA Aerospace Sciences Meeting Including the New Horizons
Forum and Aerospace Exposition. 287.

A PRE AND POST-PROCESSING TOOLS

For the veri�cation we developed post processing tools, to allow

analyzing the results of our simulations. Figure 10 shows our vi-

sualization tool. It works based on the analysis of log �les, that

contains information on packets tra�c. It shows the activity by the

application layer and NDs. Incoming and outgoing tra�c is shown

in red and green respectively, from and to each ND and application.

Our post processing tools also allow to easily extract relevant

information from the simulation logs, such as the maximum queue

size per node and maximum per-hop delay (Figure 11(a) and (b)),

as well as the arrival/departure curves at any node (Figure 12).

(a) (b)

Figure 10: (a) Launcher for post processing tools. It shows

the simulation scenarios found and the post-processing

scripts available; (b) Visualization tool showing application

layer and net-devices activity (green means incoming and

red outgoing packets).

0 1 2 3 4 5

0

1

2

3

4

29.00 1.00 1.00 1.00 1.00 1.00

29.00 1.00 1.00 1.00 1.00 1.00

29.00 1.00 1.00 1.00 1.00 1.00

13.10 1.00 1.00 1.00 1.00 1.00

1.30 1.00 1.00 1.00 1.00 1.00

0 1 2 3 4 5

0

1

2

3

4

29 1 1 1 1 1

29 1 1 1 1 1

29 1 1 1 1 1

14 1 1 1 1 1

2 1 1 1 1 1

Figure 11: (a) Per-hopmaximum delay and (b) queue size on

our example scenario

Arrivals

Departures

Arrivals w/ shaping

Arrivals w/o shaping

Figure 12: Cumulative arrival/departure curve at a single

node, with and without using the tra�c shaping unit.

http://dx.doi.org/10.1109/CPSNA.2015.19
http://link.springer.com/chapter/10.1007/0-387-26233-4_2
http://link.springer.com/chapter/10.1007/0-387-26233-4_2

	Abstract
	1 Introduction
	2 Methodology
	3 Modeling Stages
	3.1 Design Specification
	3.2 Network Communication Model
	3.3 Software Components Specification and Modeling
	3.4 High Level System Model

	4 Model Stages Verification
	5 Conclusions
	Acknowledgments
	References
	A Pre and Post-Processing Tools

