

Session Summary: Parallel Programming

Technical Report

CISTER-TR-181205

Luis Miguel Pinho

Tullio Vardanega

Technical Report CISTER-TR-181205 Session Summary: Parallel Programming

© CISTER Research Center
www.cister.isep.ipp.pt

1

Session Summary: Parallel Programming

Luis Miguel Pinho, Tullio Vardanega

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

http://www.cister.isep.ipp.pt

Abstract

Session Summary: Parallel Programming

Luis Miguel Pinho, Session Chair

Instituto Superior de Engenharia do Porto (ISEP-CISTER), Portugal

lmp@isep.ipp.pt

Tullio Vardanega, Session Chair

Università di Padova, Italy

tullio.vardanega@math.unipd.it

1 Introduction

The session centered on the discussion of three topics, each brought forward by a corresponding submission, backed

by distinct participants in the Workshop:

1. Support for parallelism based on OpenMP, championed by Sara Royuela, Eduardo Quiñones, and Luis Miguel

Pinho;

2. Synchronous signals, presented by Brad Moore;

3. Heterogeneous platforms, brought forward by Kristoffer Nyborg Gregertsen.

Before discussing the individual topics, Miguel and Brad provided a summary of the status quo for the model of

parallelism that emanated from past editions of this Workshop and it is being considered by the Ada 202x language

amendment process via the AIs listed in Table 1:

Table 1: Ada 202x AIs related with parallel programming

AI12-0119-1 Parallel blocks and loops

AI12-0242-1 Reduce/Parallel Reduce attributes

AI12-0251-1 Explicit chunk index for parallel loops dependent on AI12-0119-1

AI12-0251-2 Manual chunking operations dependent on AI12-0119-1 and AI12-0266-1

AI12-0262-1 Map-reduce attributes dependent on AI12-0242-1 and AI12-0212-1

AI12-0266-1 Parallel container iterators dependent on AI12-0119-1

AI12-0267-1 Data race and blocking prevention dependent on AI12-0064-2, AI12-0079-1, and AI12-0119-1

The general model that underpins those AIs is that the application code presents potential opportunities for paral-

lelism (POPs), the compiler generates executable code for exploiting them, and the runtime schedules their execution.

This model requires refining the notion of task, when it includes a parallel construct, to represent multiple logical

threads of control that can proceed in parallel. Each such thread of control within a task is termed an executor, and the

execution that it performs between synchronization points is termed a tasklet. When a task distributes its execution

to a set of executors, it cannot proceed with its own execution until all the corresponding tasklets have completed.

Those tasklets may synchronize by making protected operations, but cannot call blocking operations. The new Global

(cf. AI12-0079-1) and Nonblocking (cf. AI12-0064-2) aspects may be used to facilitate the detection of such calls at

compile time.

At the previous IRTAW this conceptual model was examined in the regard of the interaction of parallelism with

tasking, determining the following semantics:

• Changing task attributes should be deferred until outside of the region of parallel execution;

Ada Letters, June 2018 58 Volume XXXVIII, Number 1

• If parallel tasklets attempt to perform multiple changes on the same task attribute, one of them is selected

arbitrarily to take effect;

• If multiple distinct operations are deferred during a parallel execution (such as, for example, a task attribute

change and an exception), they should be applied as close as possible to what prescribed for them in sequential

Ada;

• Whereas a per-CPU execution-time accounting would be desirable within parallel regions, the Workshop ini-

tially proposed a simpler model that only provides a per-task counter, which is updated at the end of the parallel

region;

• Set CPU and Get CPU calls should be provided to specify CPUs where the tasklets of a task should execute.

2 Supporting Ada’s parallelism with OpenMP

After recapping the current situation with the Ada 2020x AIs related with parallel programming, attention shifted to

the first topic of discussion in the session agenda, i.e., the viability of supporting Ada’s parallelism with OpenMP.

OpenMP is a widely used in the HPC domain and it is now also entering the embedded domain. The OpenMP

solution has three parts: annotations (pragmas) applied to the user code to specify requirements for parallel execution; a

compiler pass that acts on those annotations generating calls to the OpenMP runtime library; the runtime that manages

parallel execution.

Guided in the discussion by Sara and Eduardo, the Workshop acknowledged that OpenMP’s tasking model (with

its unfortunate naming clash), when used in the classic fork-join semantics, maps quite well to Ada’s tasklet model. In

addition to that, however, OpenMP also allows for more flexible approaches to parallel programming, called ”unstruc-

tured parallelism”, which address scenarios where the progress of some execution within a parallel region is dependent

on certain data-driven conditions to be met. OpenMP provides the pragma ”task depend” to this end, to expresse out/in

conditions for a particular flow of execution: for example, task A outputs an ’a’ that task B uses, means that B cannot

start before A completes. An intuition of how OpenMP’s unstructured parallelism relates to Ada’s strict fork-join

model is depicted in Figure 1.

Figure 1: Ada’s strict fork-join model vs. OpenMP’s unstructured parallelism (picture taken from joint work by Sara,

Miguel and Eduardo, presented at DATE 2018).

The Workshop acknowledged that, while very interesting, OpenMP’s unstructured parallelism falls much outside

of the scope of parallel programming in Ada 202x. With that notion in mind, the discussion moved on to the issue of

how OpenMP’s runtime could be delegated Ada’s tasklet semantics, while staying under control of the Ada runtime

for scheduling. In particular, the Workshop discussed what should happen when an Ada task executing a parallel

region within the OpenMP runtime would be preempted. The problem here is that, as OpenMP’s threads of control

have no notion of priority, as do OpenMP’s tasks, the Ada binding should propagate priorities down to the underlying

Operating System threads by means of (scarcely attractive) ad-hoc extensions to the OpenMP runtime. Alternative

mapping solutions were explored, but none was found to be convincing, especially when interaction with POs and task

attributes were to be contemplated.

The conclusion of this very interesting discussion was that more work is needed to understand, from an OpenMP

perspective, how to mix concurrency and parallelism. The IRTAW group should seek the opportunity to discuss with

Ada Letters, June 2018 59 Volume XXXVIII, Number 1

the OpenMP community about this matter and strive to inject real-time concerns into it. There was consensus that this

could be an interesting avenue to explore in the future.

3 Synchronous signals for parallel-sequential-parallel patterns of execution

Brad summarised the essence of his proposal on this point. In analogy with current Ada’s Synchronous Barriers

library package added to the Real-Time Systems annex in 2012, Brad’s idea was to provide a low-cost mechanism,

named Synchronous Signals, to allow sequential processing, within a concurrent unit, to interleave with parallel

processing. One type of call to a Synchronous Signals object would manage the transition from parallel to sequential

code, and another call would manage the converse. In a region with N threads of control, one designated caller of the

former API would wait until all other N−1 had made the same call, and then be able to proceed alone sequentially. On

its call to the latter API, all of the N threads of control would resume parallel execution. The intent of this mechanism

is to minimize the amount of synchronization in a parallel application and make better use of the available CPUs.

The Workshop concurred that the ”parallel-sequential-parallel” sequence of execution is a common pattern in

parallelism, which justifies looking at this problem. On the merit of Brad’s proposal, the sentiment of the Workshop

was twofold. On the one hand, it was felt that the naming of the mechanism was not appropriate, as the notion of

signal is much overloaded. On the other hand, as the intended application semantics can be implemented with POs,

it was felt that a faster runtime implementation would be an insufficient argument to justify a new language object,

which instead would if HW support existed for the intended semantics.

However, the opportunity of investigating support for this feature via libraries (à-la Paraffin) was deemed useful

and interesting because it allows user exploration of possible uses of the feature, while avoiding the need to define

application-level syntax for it and solve all problems of interaction of it with tasklets. To this end, the Workshop

recommended that Brad’s Paraffin library should be updated with this and the other recent features, be uploaded to a

public repository, and referenced from an Ada-Europe’s page for the benefit of the general public.

4 Ada and heterogeneous processor architectures

The session concluded with Kristoffer reporting on his recent work on heterogeneous processor architectures, and his

reflection on the role that Ada could have in them.

The first observation was that massive SMP architectures are not common outside of HPC. Much more frequent,

instead, are heterogeneous architectures, where OpenCL, OpenACC or CUDA are the dominant software platforms.

To argue this point Kristoffer presented a robotic use-case application that an ESA-funded project currently is devel-

oping. The gist of the argument was that it would be nice, in that systems context, that an Ada application would

be able to command and control accelerators. The value added of it would be the better safety and reliability asso-

ciated with the quality of the language. This integration might be achieved by a binding library, which would wrap

an accelerator kernel, suitably determined by the corresponding cross-compiler, send it off to the target hardware, and

eventually receive the result of that computation. Discussing possible implementation routes for this ambit, the Work-

shop concurred that there would be two principal options: to reuse existing support from e.g., OpenCL, but giving up

on certification; or else to re-implement it all with Ada/SPARK. It is evident that the latter would be more attractive,

but also much more costly to achieve.

In wrapping the session up on discussion of the rising importance of heterogeneous architectures, the Workshop

noted that OpenMP’s support for those types of systems increases the interest of exploring ways to integrate Ada with

it.

Ada Letters, June 2018 60 Volume XXXVIII, Number 1

