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Abstract −− Recent technological developments are pulling
fieldbus networks to support a new wide class of
applications, such as industrial multimedia applications. To
enable its use in this kind of applications the TCP/IP suite of
protocols can be integrated within a fieldbus stack, leading
to a dual-stack approach that is briefly outlined in this
paper. One important requirement that must be fulfilled by
this approach is that the hard real-time guarantees provided
to the control-related traffic (“native” fieldbus traffic) are
kept. At the same time it must also provide the desired
quality of service (QoS) to IP applications. The focus of this
paper is on how, in such a dual-stack approach, QoS can be
efficiently provided to IP applications requiring quasi-
constant bandwidth.

I. INTRODUCTION1

Local area networks (LANs) are becoming increasingly
popular in industrial computer-controlled systems. LANs
allow field devices like sensors, actuators and controllers
to be interconnected at low cost, using less wiring and
requiring less maintenance than point-to-point
connections [1]. Besides the economic aspects, the use of
LANs in industrial computer-controlled systems is also
reinforced by the increasing decentralisation of control
and measurement tasks, as well as by the increasing use of
intelligent microprocessor-controlled devices. Broadcast
LANs aimed at the interconnection of sensors, actuators
and controllers are commonly known as fieldbus
networks.

Recent technological developments are pulling fieldbus
networks to support a new wide class of applications,
such as industrial multimedia applications. Examples of
such applications for the industrial environment include
video, audio, file transfer, http, etc. These kinds of
applications can be supported by the TCP/IP protocol,
which is widely used, vendor independent, standardised,
and interoperable with almost every operating system
[2,3].

A typical fieldbus network is based on a three-layered
structure - physical layer, data link layer and application
layer - even if some of these embody functionalities
similar to those found in the other four layers of the OSI
reference model.
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Fig. 1 Integration of the TCP/IP protocol into a generic fieldbus stack

To enable its use in industrial multimedia applications
the TCP/IP suite of protocols can be integrated with the
fieldbus stack, leading to a dual-stack approach as briefly
outlined in Fig. 1.

However, there are some relevant aspects that such
integration must take into account. In fact what is inherent
to the approach of Fig. 1 is that the IP packets are to be
encapsulated within fieldbus data frames. Typically this
requires that the IP packets are fragmented/
de-fragmented. This functionality must be supported by
an IP Adapter Sub-layer (IPAS), which must be placed
between the IP and the Fieldbus DLL. The IPAS must
also support mechanisms able to provide the tunnelling of
IP traffic between fieldbus nodes which do not have
communication initiative (slave nodes), as it happens in
PROFIBUS [4], WorldFIP [5] or P-NET [6] protocols.

Another important requirement that must be fulfilled by
the approach outlined in Fig. 1 is that the hard real-time
guarantees provided to the control-related traffic (“native”
fieldbus traffic) are kept. At the same time the proposed
approach must also provide the desired quality of service



(QoS) to IP applications. To achieve this dual goal it is
most probably required to have a sub-layer, to which we
call Traffic Manager Sub-layer (TMS), between the
Fieldbus DLL and the upper layers (Fieldbus Application
Layer and IPAS - not directly the IP).

The rest of this paper is organised as follows. In
Section II we briefly introduce a dual-stack architecture
which integrates TCP/IP into a specific fieldbus
(PROFIBUS). In Section III we describe how QoS
guarantees can be provided to IP related traffic while at
the same time keeping the hard real-time guarantees of the
native PROFIBUS control-related traffic. The basic ideas
concerning the IP traffic scheduler are introduced and
then further detailed in Section IV. Some analogies are
made to the scheduling of the WorldFIP periodic traffic.
However, and contrarily to the case of WorldFIP, IP
fragments to be scheduled can suffer some
communication jitter. In Section V we describe how
scheduling algorithms for the IP fragments can benefit
from this possibility. Finally, in Section VI we discuss the
possibilities to improve the scheduling algorithms in a
away that constant bandwidth is provided to IP fragments
even if they arrive with a non-periodic pattern. In Section
VII some conclusions are drawn.

II. AN IP-ENABLED FIELDBUS ARCHITECTURE

Fig. 1 can be further detailed to include both the IPAS
and TMS sub-layers, as shown in Fig. 2.
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Fig. 2 Details on the IP integration

The rationale for the TMS can be briefly explained with
the particular case of PROFIBUS networks, just as an
example.

The PROFIBUS medium access control (MAC)
protocol is based on a token passing procedure (simplified
version of the timed token protocol [7]) used by masters
to grant the bus access to each one of them, and a master-
slave procedure used by masters to communicate with
slaves. One of the PROFIBUS MAC main functions is the
control of the token cycle time, which will now be briefly
explained.

PROFIBUS defines two categories of messages: high
priority and low priority. These two categories of
messages use two independent outgoing queues. After
receiving the token, the measurement of the token rotation
time begins. This measurement expires at the next token
arrival and results in the real token rotation time (TRR). A
target token rotation time (TTR) must be defined in a
PROFIBUS network. The value of this parameter is
common to all masters, and is used as follows. When a
station receives the token, the token holding time (TTH)
timer is given the value corresponding to the difference, if
positive, between TTR and TRR. If at the arrival, the token
is late, that is, the real token rotation time (TRR) was
greater than the target rotation time (TTR), the master
station may execute, at most, one high priority message
cycle (a message cycle is composed by a request frame
and the associate response frame). Otherwise, the master
station may execute high priority message cycles while
TTH > 0. TTH is always tested at the beginning of the
message cycle execution. This means that once a message
cycle is started it is always completed, including any
required retries, even if TTH expires during the execution.
The low priority message cycles are executed if there are
no high priority messages pending, and while TTH > 0
(also evaluated at the start of the message cycle execution,
thus leading to a possible TTH overrun).

In PROFIBUS, if a master station receives a late token
(TRR greater than TTR), then only one high priority
message will be transmitted. As a consequence, low
priority traffic may drastically affect the high priority
traffic capabilities. In fact, if the low priority traffic is
unconstrained, when a station receives an early token (TRR

smaller than TTR) it may use all the available time (TTH =
TTR–TRR) to process low priority traffic, delaying the token
rotation. In this case, the subsequent stations may be
limited to only one high priority message transmission
when holding the token.

This is one of the major differences to the timed token
protocols used in IEEE802.4 [10] and FDDI [11], where
synchronous bandwidth allocation is possible, thus
allowing approaches such as those found in [12, 13, 14].

In PROFIBUS, as the number of high priority messages
that can be transferred at the token arrival is highly
dependent on the amount of traffic transferred by the
previous stations, a station receiving the token may
become unpredictably confined to a single high priority
message transfer.



Two reasons justify a late token arriving to a master
[8]:

1. As once a message cycle is started, it is always
completed, even if TTH has expired during its
execution, a late token may be transmitted to the
following stations.

2. If a master receives a late token, it will still be able
to send one high priority message. This may
further increase the token lateness in the following
masters.

Therefore, the token timing behaviour must be
carefully controlled. Otherwise, the low-priority traffic of
precedent stations may jeopardise the timing requirements
associated to the high-priority traffic requested at any
station in the network.

In [9], two different approaches were proposed to
guarantee the real-time behaviour of the high priority
traffic in the PROFIBUS protocol:

1. An unconstrained low priority traffic profile,
where real-time traffic requirements are satisfied,
even when only one high priority message is
transmitted per token visit, independently of the
low priority traffic load;

2. A constrained low priority traffic profile where, by
controlling the number of high priority and low
priority message transfers, all pending real-time
traffic is transmitted at each token visit.

The analysis presented in [9] demonstrates that the first
profile is a suitable approach for more responsive systems
(tighter deadlines), whilst the second one allows for an
increased low-priority traffic throughput. Within the
context of this paper, the second approach is the basis for
the TMS.

Basically, the purpose of the TMS is to provide some
form of allocation of the token holding time to the
different types of traffic, as shown in Fig. 3.
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Fig. 3 Traffic allocation example for a 2-master network

The network parameters are set in a way that each
master i is able to hold the token for Ti

SA time (station
allocation). In this profile each type of real-time traffic,
either NHP (native high priority fieldbus control-related
traffic) or IPH2 (IP traffic with QoS requirements) will
have a portion of Ti

SA (see [15] for some details on how to
set these partial allocations). This guarantees, for the case
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of PROFIBUS networks, that the worst-case token cycle
time is bounded to TWCCT. This will be an important notion
throughout the rest of the paper, and will be denoted for
scheduling of IP traffic as TIPCY.

We denote the allocation for the IPH traffic as TIPH. It
will be used in each token arrival to serve the IPH traffic
(fieldbus frames containing IP fragments).

Typically there will be a number of IP flows between a
particular station and other stations. These IP flows can
have different QoS requirements, namely bandwidth and
allowed jitter. Therefore, the IPAS must schedule
properly the different IP fragments related to the different
IP flows.

The crucial guideline for the Scheduler is that it will
have to schedule the appropriate TIPH amount of IP traffic
to be transferred each TIPCY.

III. BASICS OF THE IP TRAFFIC SCHEDULER

Take as an example the stream set example presented in
Table 1.

Table 1 – IPH stream set example

Periodicity (TIPCY) Transaction Duration (ms)
IPH1 1 1.3
IPH2 2 1.1
IPH3 4 0.3
IPH4 6 0.1
IPH5 6 1.3

An IPH stream is a temporal sequence of message
cycles conveying IP fragments. The notion of message
cycle results from the underlying fieldbus data link layer.
In fieldbus networks message requests have typically
immediate replies. Therefore, a transaction (message
cycle) will have a time length corresponding to the time to
send the request frame up to completely receive the
response frame. One could wonder why the different
values presented in table 1 for the transaction duration.
The differences do not concern the amount of bits
involved in the transactions (typically each frame will
contain the same number of IP-fragment bits) but rather
due to different propagation and turnaround times, as
happens in broadcast wired/wireless networks [16, 17].

Also inherent to Table 1 is the notion of multicycle
operation [18, 19]. In our case, the primary cycle will be
the cycle at which the scheduler will operate (TIPCY),
which in turn corresponds to the worst-case token cycle
time (see Section II). All other periods, called secondary
cycles, are defined as integer multiples of the primary
cycle. If for instance the value of TIPCY = 10 ms and TIPH =
5 (both parameters computed in the system planning
phase - prior to run time), the scheduler could produce the
following schedule (Fig. 4). Fig. 4 assumes that in each
cycle the IPH queues have at least one pending fragment,
so the actual dispatching corresponds to the schedule
produced in each cycle.

Multicycle scheduling can be found in fieldbus
networks (e.g., WorldFIP) for regulating transfers of
periodic variables (control-related). The example shown
in Table 1 could correspond to 5 periodic process
variables to be scanned with required periodicities as



shown. An important concept in WorldFIP is that of
WorldFIP BAT (Bus Arbitrator Table). Two important
parameters are associated with a WorldFIP BAT: the
microcycle (elementary cycle) and the macrocycle. The
microcycle imposes the maximum rate at which the BA
performs a set of scans. Usually, the microcycle is set
equal to the highest common factor (HCF) of the required
scan periodicities. It is easy to depict that the sequence of
microcycles repeats each 12 microcycles. This sequence
of microcycles is said to be the macrocycle, and its length
is given by the lowest common multiple (LCM) of the
scan periodicities.

IPH FIFO Queues

Scheduler

IP Fragments

1 1 1 1 1 1 1 1 1 1 1 1

2 22 2 2 2
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Fig. 4 Example of scheduling of the IP stream set of Table 1

One of the differences between the multicycle
scheduling of periodic variables in WorldFIP and the
scheduler for our IPAS is that in WorldFIP a complete
cycle schedule can last up to the value of the microcycle.
For our case a complete cycle schedule can only last up to
TIPH, which is just a portion of TIPCY (microcycle).

The HCF/LCM approach for building the WorldFIP
BAT has some properties that have been posing some
interesting challenges to researchers [20]:

1. The variables are not scanned at exactly regular
intervals (communication jitter);

2. The length of the macrocycle can induce a memory
size problem, since the table parameters must be
stored in the BA. For instance, if periodicities of
IPH4 and IPH5 were, respectively, 5 and 7, the
length of the macro-cycle would be 420
microcycles instead of only 12.

Both the communication jitter and memory size
problems have been addressed in the literature. In [21] the
authors discuss different methodologies for reducing the
BAT size, without penalising the communication jitter.
The idea is very simple, and it basically consists on
reducing some of the scan periodicities in order to obtain
a harmonic pattern. The problem of table size has also
been addressed in [18,19], however in a different
perspective. In the referred work, the authors discuss an
online scheduler (instead of storing the schedule in the

BA's memory), which is not directly applicable to the
WorldFIP case.

In our case there are additional aspects which triggered
us to investigate other possibilities. Firstly, the problem of
communication jitter (as defined in [20]) has not the same
relevance. In fact the scheduler will schedule IP fragments
and for obvious reasons it is not of paramount importance
to schedule each of them in a strict periodic fashion.
Secondly we want to consider transactions with dissimilar
durations. Thirdly, it is of paramount importance that
TIPH is minimised, since its length may impact the timing
requirements of the fieldbus native control-related traffic
(NHP in Fig. 3). Finally, streamed TCP/IP applications
have particular timing behaviour, which must be taken
into account by the scheduler.

IV. SCHEDULING POLICIES FOR THE IPAS

A possible schedule to the stream set in Table 1 could
be the one shown in Fig. 4. Basically this schedule
corresponds to a rate monotonic approach: it schedules all
streams to be transferred on the first microcycle and then
in subsequent microcycles according to the periodic
pattern of the stream.

This schedule can be provided as a table to the
scheduler, which at each time it executes (each TIPCY) will
process a column. Alternatively, the scheduler determines
each time it runs (each TIPCY) the actual schedule for that
cycle (on-line scheduler, as illustrated in [15]).

One of the main drawbacks of the RM approach is that
the minimum value for TIPH must be equal to the sum of
the duration of all transactions. And the value for TIPH can
eventually collide with the requirements for the control-
related traffic: high values for TIPH can be incompatible
with short values for TWCCT (see Fig. 3) required by the
NHP traffic.

Minimising TIPH can be achieved if the deferred release
algorithm proposed in [20] for the WorldFIP case is
adapted for the IPAS case, as described in [15]. Table 2
represents the schedule as shown in Fig. 4.

Table 2 – Schedule with the RM approach

Cycle 1 2 3 4 5 6 7 8 9 10 11 12
IPH1 1 1 1 1 1 1 1 1 1 1 1 1
IPH2 1 1 1 1 1 1
IPH3 1 1 1
IPH4 1 1
IPH5 1 1
Load (ms) 4.1 1.3 2.4 1.3 2.7 1.3 3.8 1.3 2.7 1.3 2.4 1.3

This schedule can be improved to reduce maximum
microcycle load (thus allowing a smaller value for TIPH).
If the pattern of both IPH2 and IPH3 are moved one
microcycle ahead and the pattern of IPH5 is moved three
microcycles ahead, the maximum value of a microcycle
load will be reduced to 2.9 ms, as shown in Table 3. If the
maximum pattern shift allowed corresponds to the stream
period, there is not any negative impact in the resulting
schedule, since both the stream data rate per macrocycle
and periodicity between transfers (in terms of cycles) are
maintained.



Table 3 – Schedule with the deferred release approach

Cycle 1 2 3 4 5 6 7 8 9 10 11 12
IPH1 1 1 1 1 1 1 1 1 1 1 1 1
IPH2 1 1 1 1 1 1
IPH3 1 1 1
IPH4 1 1
IPH5 1 1
Load (ms) 2.4 1.7 2.4 2.6 2.4 1.6 2.4 1.4 2.4 2.9 2.4 1.3

Due to the dissimilar values we are considering for the
transaction durations (Table 1), an improvement in the
direction of the minimisation of TIPH can be made by
modifying the deferred release algorithm in a way that it
starts to consider first the streams with bigger transaction
durations rather than using a frequency ordering.

An offline version of the algorithm is presented below.

function deferred_realease__with_size_order;
input:

niph /* number of IPH flows */
tp[i] /* vector containing the periodicity of the fragments */

/* ORDERED by trans. duration; i ranging from 1 to niph */
cp[i] /* contains the transaction duration of the fragments */
Tipcy /* value for TIPCY, which is also the scheduler cycle */
Mcy /* number of cycles in the macrocycle */

outputs:
sched[i,cycle] /* Generated Schedule */

/* cycle ranging from 1 to Mcy */
offset[i] /* shift in the line pattern */
tiph /* value for the parameter TIPH */

begin
1:  /* obtains the shift */
2:  for i = 1 to niph do
3: min_load = MAXINT;
4: for cycle = 1 to (tp[i] div Tipcy)
5: cycle1 = cycle;
6: max_load = 0;
7: repeat
8: if load[cycle1] > max_load then
9: max_load = load[cycle1];
10: end if;
11: cycle1 = cycle1 + (tp[i] div Tipcy)
12: until cycle1 > Mcy;
13: if max_load < min_load then
14: cycle_min = cycle;
15: min_load = max_load;
16: end if;
17: end for
18: end for;
19: cycle = cycle_min;
20: offset[i] = cycle_min - 1;
21:
22: /* updates the load in each cycle and */
23: /* builds the schedule */
24: repeat
25: load[cycle] = load[cycle] + cp[i];
26: sched[i,cycle] = 1;
27: cycle = cycle + (tp[i] div Tipcy);
28: until cycle > Mcy;
29:
30: /* obtains the value for TIPH */
31: tiph = 0;
32: for i = 1 to Mcy do
33: if load[i] > tiph then
34: tiph = load[i];
35: end if;
36: end for;
return sched, offset, tiph;

With this algorithm, the schedule (table) which is
obtained is as shown in Table 4.

The maximum load value is down to 2.7 ms and the
utilisation (considering TIPH = 2.7 ms) rises up to 79.9%
(compared with the 52% as given by the schedule of
Table 2). From our experimental observation we found

that size order with deferred release not always leads to a
smaller value of the maximum load. In some specific
cases the rate order leads to a smaller value.

Table 4 – Deferred release with size ordering

Cycle 1 2 3 4 5 6 7 8 9 10 11 12
IPH1 1 1 1 1 1 1 1 1 1 1 1 1
IPH2 1 1 1 1 1 1
IPH3 1 1 1
IPH4 1 1
IPH5 1 1
Load (ms) 2.6 2.7 1.4 2.4 1.3 2.7 2.6 2.4 1.4 2.7 1.3 2.4

V. ALLOWING “COMMUNICATION JITTER”

One of the functions of the IPAS is to
fragment/de-fragment IP packets. Typically fieldbus
frame length are much smaller than IP packets. Thus if the
fragments are sent with a variable interval between them
the timing characteristics of the IP packet are still
retained.

Therefore, while in multicycle scheduling for WorldFIP
networks minimising communication jitter is a major
concern, in the case of the IPAS scheduler “allowing
communication jitter” may be an advantage, for instance
if minimising the value for TIPH is an objective.

We propose now an algorithm in which IP fragments
are allowed to have microcycle level jitter, meaning that
the schedule of each fragment can be made with a
displacement of some microcycles as compared to its
schedule when the deferred release method is used.

Below we describe an algorithm that permits defining
the allowable jitter (in number of microcycles) for each
stream.

function deferred_release_size_order_w_jitter;
input:

niph /* number of IPH streams */
tp[i] /*vector containing the periodicity of the fragments*/
cp[i] /* contains the transaction duration of the fragments*/
jitter[i] /* Maximum allowable jitter in multiples of Tipcy */
Tipcy /* value for TIPCY, which is also the scheduler cycle */
Mcy /* number of cycles in the macro-cycle */

outputs:
sched[i,cycle] /* Generated Schedule */
tiph /* value for the TIPH parameter */

begin
1:  for i = 1 to niph do
2: ‘Searches the the offset where tiph is minimised
3: load_offset = MAX_REAL;
4: for offset = 0 to tp[i] - 1
5: load_jitter = 0;
6: k=0;
7: /* r – number of releases for stream i */
8: for r = 0 to (Mcy / tp(i) - 1)
9: k= k + 1;
10: seq_aux[k] = best_pos_w_jitter(r, offset, tp[i],
11: jitter[i], Mcy, load);
12: If load(seq_aux[k]) > load_jitter then
13: load_jitter = load(seq_aux[k]);
14: end If;
15: end for;
16:
17: If load_jitter < load_offset then
18: load_offset = load_jitter
19: offset_aux = offset
20: for f = 1 to k
21: seq[f] = seq_aux[f]
22: end for;
23:        end If;



24:    end for;
25:
26:    /* Scheduling */
27:    for r = 1 to (Mcy / tp(i) )
28:        sched(i, seq[r]) = sched (i, seq[r]) + 1;
29:        load[seq[r]] = load[seq[r]] + cp[i]
30:    end for;
31: end for;
32: /* Determination of Tiph */
33: for cycle = 1 to Mcy
34:    If load[cycle] > tiph then
35:        tiph = load[cycle]
36:    end if;
37: end for
return sched, tiph

function best_pos_w_jitter;
input:

r /* release of stream */
offset /* offset where to apply the test */
tp /* periodicity of stream i */

/* i ranging from 1 to niph */
jitter /* micorcycle jitter for stream i*/
Mcy /* number of cycles in the macro-cycle */

outputs:
best_pos /* nest position where the load is minimised */

begin
1: end_cycle = (r * tp + 1 + jitter + offset);
2: start_cycle = (r * tp + 1 - jitter + offset);
3: If end_cycle > Mcy then
4:    end_cycle = Mcy;
5: end If;
6: if start_cycle < 1 then
7:    start_cycle = 1;
8:  end If;
9: load_min = MAX_REAL;
10: for cycle = (r * tp + 1 + offset) to end_cycle
11: If load[cycle] < load_min then
12: load_min = load(cycle);
13: cycle_pos = cycle;
14: end if;
15: end for;
16: for cycle = start_cycle to (r * tp + 1 + offset)
17: if load[cycle] < load_min then
18: load_min = load[cycle];
19: cycle_pos = cycle;
20: end If;
21: end for;
return cycle_pos;

Applying this algorithm to the stream set of Table 1,
and in which the jitter allowed for each stream equals 1,
the resulting schedule will be as shown in Table 5.

Table 5 – Allowing Jitter in the Deferred release with size ordering

Cycle 1 2 3 4 5 6 7 8 9 10 11 12
IPH1 1 1 1 1 1 1 1 1 1 1 1 1
IPH2 1 1 1 1 1 1
IPH3 1 1 1
IPH4 1 1
IPH5 1 1
Load (ms) 2.6 2.4 2.4 1.7 2.4 1.6 2.6 2.4 2.4 1.4 2.4 1.6

The introduction of microcycle level jitter of 1 to all
streams allows decreasing the maximum microcycle load
to 2.6 ms.

For the particular case of the stream set shown in Table
1, no further improvement is possible if the allowed jitter
is increased. Just as another example consider the
following stream set (period, transaction duration): {{2;
1.7}; {9; 1.5}; {8; 1.4}; {8 1.3}; {6; 0.9}; {3; 0.5}; {6;
0.4}}. In Fig. 5 we represent the variation of the
maximum cycle load (TIPH) as a function of the allowed
jitter (equal to all streams).
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Fig. 5 Maximum microcycle load as a function of allowed microcycle
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VI. GUARANTEEING CONSTANT BANDWIDTH

The scheduling algorithms we have been describing so
far are static algorithms, in the sense that the resulting
schedule will be always the same in every macrocycle.
This applies to both on-line and off-line (table provided to
the scheduler) versions of the algorithms.

The idea of the algorithms is to provide constant
bandwidth to multimedia applications, which correspond
to the required QoS of the application. It is also important
to stress that, due to the fragmented nature of IP data, the
algorithms are also able to provide reduced jitter and
delay to TCP/IP applications.

However, it is not true that the arrival pattern (to the
related IPH queues) of the IP fragments is synchronous
with the scheduling policy, far from that. This exactly
means that even if some fragments are scheduled to be
dispatched by the TMS sub-layer in a specific scheduler
cycle (microcycle), actual transaction does not take place
simply because the queue is empty. And this may happen
in a number of consecutive cycles of the scheduler. The
reason for this bursty behaviour resides not only in the
timing behaviour of the applications but also in the timing
behaviour of the operating system and, importantly in the
timing behaviour of the fragmentation functionality of the
IPAS. Actually, and speaking of multimedia applications,
there are quite a few which will present a variable
bandwidth behaviour [22]. These will not be addressed in
this paper. The focus here is how to adapt the scheduling
mechanisms to the pattern arrival behaviour of fragments
to FIFO queues. In this section we propose
“compensating” algorithms to guarantee constant
bandwidth even with some bursty behaviour in the arrival
pattern of IP fragments.

Theoretically speaking, compensation is only possible if
there is available “spare time” in the microcycles of the
schedule. For instance, and concerning Table 5, if TIPH is
set equal to 2.6 ms, the largest spare slot will be 1.2 ms in
cycle 10, if all 5 multimedia streams are active. This may
pose some problems in actually compensating
“dispatching misses” concerning both IPH1 and IPH5,
which in both cases have a transaction duration of 1.3 ms.

Therefore, the value for TIPH may need to be traded-off
to taking into account compensation. While in Section IV
we discussed scheduling policies which tried to minimise
the value for TIPH, we can now put forward another
possible requirement for the value of TIPH: TIPH >
min_load + max {Ci}, where min_load corresponds to the



microcycle with the smallest load within a macrocycle
and max{Ci} corresponds to the largest transaction
duration of all streams. As it is easy to understand,
scheduling policies that minimise TIPH tend to result in a
uniform load distribution among cycles. Therefore, when
taking into account compensation requirements in the
scheduling algorithms TIPH can result higher if the
scheduling policy of Table 5 is used instead of the one
leading to Table 2.

A. An illustrative Example of the Problem

Take for example the schedule as shown in Table 5.
Following the criteria as described above TIPH would be
set in the station equal to 2.7 ms (1.4 + 1.3). Assume that
in one of the cycles both IPH1 (in the 1st cycle) and IPH3
(in the 4th cycle) queues are empty. The actual
dispatching will be as shown in Table 6. This example
will be used throughout this section to discuss diverse
approach on how to provide on-line compensation to the
scheduling policies in order to guarantee constant
bandwidth to the multimedia streams.

Table 6 – Example of “missed dispatching”

Cycle 1 2 3 4 5 6 7 8 9 10 11 12
IPH1 0 1 1 1 1 1 1 1 1 1 1 1
IPH2 1 1 1 1 1 1
IPH3 0 1 1
IPH4 1 1
IPH5 1 1
Load (ms) 1.3 2.4 2.4 1.4 2.4 1.6 2.6 2.4 2.4 1.4 2.4 1.6

B. A Compensation Algorithm

The algorithm described in this subsection is to run
online, either the schedule is provided to the scheduler as
a table or the scheduler determines each cycle schedule
online.

When a scheduled fragment is not dispatched (the
related queue is empty) a counter (“missed hits” counter)
for the stream is incremented. The algorithm will try to
schedule missing fragments in the first cycle with
available spare time. Several different policies can be
used in the case of several streams with missing
fragments. For instance, compensation priority could be
on the base of transaction duration. Streams with larger
transaction duration would be compensated first once that
this type of streams is scheduled with more difficulty than
streams with smaller transaction times.

Alternatively inverse rate priority could be used. The
rational for this is that 1 missed hit out of 2 in a
macrocycle has more impact in the QoS than 1 missed hit
out of 5 in a macrocycle. This is a static policy that can be
improved by a dynamic one based on the quotient
between the number of missed hits and the number of
expected dispatches per macrocycle, thus constituting a
number of relative misses criterion.

For obvious reasons the counters for the missing hits
must be upper-bounded: missing hits occur while the
multimedia stream is not active at all. The question is how
to define the upper bound for each stream?

We consider that on average each IP packet (and their
fragments) arrives to the related IPAS queue with a period
of Ti

IP and with a jitter of Ji
IP (Fig. 6). This jitter includes

variable latencies related to the generating multimedia
application, to the operation system execution and
fragmentation.

IP

IPAS

Ji
IP

Missed Hits
Ti

IP

Arrival of an IP packet (fragments) to the queue

Predicted arrival of an IP packet (fragments) to the queue

Fig. 6 Illustration how jitter in pattern arrival of fragments to a queue
can induce “missed hits” in the scheduler

The value of Ni
missed can be set equal to the number of

fragments that could be missed during the time span
corresponding to the value of predicted Ji

IP:
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The algorithm (using the number of relative misses
criterion) is described below in pseudo-code.

function Dispatcher_w_Basic_Comp;
input:

niph /* number of IPH flows */
tp[i] /* vector containing the periodicity of the fragments */

/* ORDERED by size; i ranging from 1 to niph */
cp[i] /* contains the transaction duration of the fragments */
Tipcy /* value for TIPCY, which is also the scheduler cycle */
Mcy /* number of cycles in the macro-cycle */
tiph /* value for the TIPH parameter */
sched[i, c] /* Tabe with the offline schedule */

/* c ranging from 1 to Mcy */
comp_lim[i] /* maximum number o missed releases that */

 /* can be compensated for stream i. */

/* The algorithm runs every TIPCY  */

begin
1:  if start = TRUE then
2: cycle = 0
3: for i = 1 to niph
4: req[i] = Mcy / tp[i];
5: req_fail[i] = 0;
6: num_disp[i] = 0;
7: num_sch[i] = 0;
8: end for;
9: start = FALSE;
10: end if;
11: cycle = cycle +1;
12: load_a = 0
13:  if cycle = Mcy then
14: cycle = 1
15: end if;
16: /* Scheduling according to the offline entry table */
17: for i = 1 to niph
18: for f = 1 to sched[i, cycle]
19: if get_queue(i) = 1 then
20: load_a = load_a + cp[i]
21: num_disp[i] = num_disp[i] +1
22: end if;
23: num_sch[i] = num_sch[i] +1 
24: end for;
25: end for;



26: /* Compensation */
27: for i = 1 to niph
28: req_fail[i] = req_fail[i] + (num_sch[i] – num_disp[i]);
29: if req_fail[i] > comp_lim[i] then
30: req_fail[i] = comp_lim[i]
31: end if;
32: num_sch[i] = 0
33: num_disp[i] = 0
34: end for;
35: /* Returns a vector ordered: the stream more far way form its */
36: /* target data-rate first. */
37: ordered_streams = obtains_sched_order(req, req_fail);
38: for p = 1 to niph
39: i = ordered_streams(p);
40: if req_fail[i] <> 0 then
41: for h = 1 to req_fail[i]
42: if (load_a + cp[i]) < tiph then
43: if get_queue(i) = 1 then
44: load_a = load_a + cp[i];
45: req_fail[i] = req_fail[i] -1
46: end if;
47: end if;
48: end for
49: end if;
50: end for;
return

To illustrate how the algorithm would handle the
situation illustrated in Table 6, assume that fragments for
IPH1 and IPH3 arrive just before microcycle 10.
Compensation for IPH3 can be made in microcycle 10 of
the current macrocycle (Table 7) whereas for IPH1 it will
only be made in microcycle 10 of the next macrocycle
(Table 8).

Table 7 – Compensation of IPH3 on the current macrocycle

Cycle 1 2 3 4 5 6 7 8 9* 10 11 12
IPH1 0 1 1 1 1 1 1 1 1 1 1 1
IPH2 1 1 1 1 1 1
IPH3 0 1 1 1
IPH4 1 1
IPH5 1 1
Load (ms) 1.3 2.4 2.4 1.4 2.4 1.6 2.6 2.4 2.4 1.7 2.4 1.6

Table 8 - Compensation of IPH1 on the next macro cycle

Cycle 1 2 3 4 5 6 7 8 9 10 11 12
IPH1 1 1 1 1 1 1 1 1 1 2 1 1
IPH2 1 1 1 1 1 1
IPH3 1 1 1
IPH4 1 1
IPH5 1 1
Load (ms) 2,6 2,4 2.4 1.7 2.4 1.6 2.6 2.4 2.4 2.7 2.4 1.6

VII. CONCLUSIONS

To enable industrial multimedia applications the
TCP/IP suite of protocols can be integrated with a
fieldbus stack, leading to a dual-stack approach. In this
paper we have briefly outlined how this dual stack
approach can be achieved for the particular case of
PROFIBUS fieldbus networks.

IP packets are to be encapsulated within fieldbus data
frames, typically requiring that IP packets are fragmented/
de-fragmented. Each station have to support a number of
IP flows each one having particular QoS requirements,
namely bandwidth and allowed jitter. In this paper we
have particularly focused the issue related to how
properly schedule the different IP fragments in order to

guarantee quasi-constant bandwidth to the multimedia
applications.

Research that is currently in progress is addressing the
issue of providing QoS guarantees to multimedia
applications with variable bandwidth requirements.
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