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Abstract 

Cyclic executives are used to schedule safety-critical real-time systems because of their determinism, simplicity, 
and efficiency. One major challenge of the cyclic executive model is to produce the cyclic scheduling timetable. 
This problem is related to the bin-packing problem and is NP-Hard in the strong sense. Unnecessary context 
switches within the scheduling table can introduce significant overhead; in IMA (Integrated Modular Avionics), 
cache-related overheads can increase task execution times up to 33%. 

Developed in the context of the Software Engineering Master 19s Degree at ISEP, the Polytechnic Institute of 
Engineering in Porto Portugal, this thesis contains two contributions to the scheduling literature. The first is a 
precise and exact approach to computing the slack of a job set that is schedule policy independent. The method 
introduces several operations to update and maintain the slack at runtime, ensuring the slack of all jobs is valid 
and coherent. The second contribution is the definition of a state-of-the-art preemptive scheduling algorithm 
focused on minimizing the number of system preemptions for real-time safety-critical applications within a 
reasonable amount of time. 

Both contributions have been implemented and extensively tested in scala. Experimental results suggest our 
scheduling algorithm has similar non-preemptive schedulability ratio than Chain Window RM, yet lower ratio in 
high utilizations than Chain Window EDF and BB-Moore. For task sets that failed to be scheduled non-
preemptively, 98-99% of all jobs are scheduled without preemptions. Considering the fact that our scheduler is 
preemptive, being able to compete with non-preemptive schedulers is an excellent result indeed. In terms of 
execution time, our proposal is an order of magnitude faster than the aforementioned algorithms. Both 
contributions of this work are planned to be presented at future conferences such as RTSS@Work and RTAS. 
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Abstract

Cyclic executives are used to schedule safety-critical real-time systems because of their determinism,
simplicity, and efficiency. One major challenge of the cyclic executive model is to produce the cyclic
scheduling timetable. This problem is related to the bin-packing problem [34] and is NP-Hard in
the strong sense. Unnecessary context switches within the scheduling table can introduce significant
overhead; in IMA (Integrated Modular Avionics), cache-related overheads can increase task execution
times up to 33% [18].

Developed in the context of the Software Engineering Master’s Degree at ISEP, the Polytechnic
Institute of Engineering in Porto Portugal, this thesis contains two contributions to the scheduling
literature. The first is a precise and exact approach to computing the slack of a job set that is
schedule policy independent. The method introduces several operations to update and maintain
the slack at runtime, ensuring the slack of all jobs is valid and coherent. The second contribution
is the definition of a state-of-the-art preemptive scheduling algorithm focused on minimizing the
number of system preemptions for real-time safety-critical applications within a reasonable amount
of time.

Both contributions have been implemented and extensively tested in scala. Experimental results
suggest our scheduling algorithm has similar non-preemptive schedulability ratio than Chain Window
RM [69], yet lower ratio in high utilizations than Chain Window EDF [69] and BB-Moore [68]. For
task sets that failed to be scheduled non-preemptively, 98-99% of all jobs are scheduled without
preemptions. Considering the fact that our scheduler is preemptive, being able to compete with
non-preemptive schedulers is an excellent result indeed. In terms of execution time, our proposal
is multiple orders of magnitude faster than the aforementioned algorithms. Both contributions of
this work are planned to be presented at future conferences such as RTSS@Work and RTAS.

Keywords: real-time, safety-critical systems, scheduling, ARINC-653, minimizing preemptions,
slack computation.
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Chapter 1

Introduction

Many computing systems are responsible for real-time processing where failure can result in catas-
trophic damages or even the loss of human lives. The safety requirements placed upon such systems
are extremely strict, and the deployed solutions tend to be simple so as to facilitate the certification
process through which they must pass [42].

Avionics is a typical example of safety critical systems. In order to reduce maintenance and
development costs and to improve reusability and evolutivity, aircraft embedded functions (e.g.,
flight control, flight management, navigation, or systems control) are developed according to the
Integrated Modular Avionics (IMA) concept [5].

In IMA different functions are developed independently and later integrated into the same
computing nodes. Software functions are assigned to partitions that virtualize their computing
environment. Partitions guarantee time and space isolation between functions, preventing faults
from propagating from one application to another. The processing resources of the computing
platform are distributed between partitions according to a fixed schedule: a cyclic timetable where
the execution time intervals of all partitions are defined by the system integrator before deployment.

Yet, building those partition scheduling tables is a NP-hard problem [34] for which several
parameters must be taken into consideration: (1) each partition must receive enough processing
time to ensure that all its tasks are completed within their timing constraints; (2) the size of the
table must be kept sufficiently small to not waste valuable memory space; (3) precedence and
mutual exclusion constraints between partitions must be respected; (4) context switches among
partitions are costly and should be minimized as to avoid wasting processing resources.

Currently, the partition scheduling tables are mainly built based on the experience acquired by
experts. The ultimate goal of this thesis is to automate this process by developing algorithms that
generate the partition scheduling tables.

The problem is related to the general scheduling problem and has been significantly addressed
by the research community. Several works proposed in the literature range from exact algorithms
that achieve optimality by iterating the solution space like branch and bound and mixed-integer
programming (MILP) formulations, to meta-heuristics which produce sub-optimal results via opti-
mization algorithms such as simulated annealing and ant colony optimization. All of them approach
the scheduling problem in a unique way, and yet, all of them share the same drawback: they are ex-
ponential in relation to time and space. The computational demand to produce a solution increases
exponentially regarding the number of tasks and constraints in the system, such that the response
times of medium-sized task sets are measured in hours, and larger sets become computationally
infeasible.

As far as we are aware, none of the solutions in the state-of-the-art completely address the
problem of producing an optimal partition schedule where preemptions are minimized within an
acceptable time frame. All submissions define optimality as any solution that effectively schedules
the entirety of the task set. The authors of this thesis extend this definition of optimality by adding
one more constraint: a schedule is deemed optimal if for a given task set, the schedule is feasible
and the number of context switches is minimized. By extracting system properties that guide
exact or meta-heuristic algorithms towards better solutions, the solution space may be sufficiently
pruned to make the problem treatable within an acceptable time frame. Through this unique and
novel approach where heuristics meet search space algorithms, the authors of this thesis intend on
developing a solution which addresses this scheduling problem.
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CHAPTER 1. INTRODUCTION 1.1. DOCUMENT STRUCTURE

The contribution of this work is twofold. First, by maximizing processor utilization within
each computing node, fewer nodes are required to schedule a system. In a competitive industry
where a 1% efficiency increase can translate into hundreds of thousands in yearly fuel savings
[106], this work presents a significant contribution. Through those fuel savings, global Carbon
Dioxide (CO2) emissions can be reduced, contributing to the well-being of our home planet and
helping comply with the always more stringent regulations defined by the governing authorities. In
addition, the results of this work are also a significant contribution to scheduling theory. We intend
on extracting scheduling properties that can be charted onto optimal algorithms or heuristics which
can guide other solutions efficiently, effectively spanning our contribution to other sub-areas within
the scheduling literature.

1.1 Document Structure

The report is divided into four chapters. The first chapter, Introduction gives a brief summary of
the entire work. The second chapter, named Outlook discusses the work context and introduces
high criticality real-time systems, emphasizing the avionics sector. The chapter ends with a formal
presentation of the problem. State of the Art, the third chapter of this report, covers a formal
review of state-of-the-art schedulers. It begins with an introduction to the cyclic executive model
using online scheduling as an analogy and ends with a review of related work in literature. The
fourth chapter, Project Plan, presents the architecture and reference implementation of a new state-
of-the-art scheduling algorithm. Chapter five introduces two state-of-the-art algorithms, one two
compute the slack of a task set, and another to schedule that task set while minimizing the number
of system preemptions. Chapter six describes the developed implementation for the state-of-the-art
algorithms, as well as all their testing efforts. Finally, Chapter five – conclusion – concludes this
document.
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Chapter 2

Outlook

This chapter discusses the work context and introduces the problem to be solved. We begin with
a brief introduction to real-time systems particularly focusing on the avionic sector. We follow
with a discussion/presentation of the certification standards mandating the development of avionic
applications. Finally, the problem is introduced, and the value of its solution is assessed.

2.1 Context

Throughout history, from the stone age, the industrial revolution, to modern day – the information
age –, humanity has been on a path of discovery, a quest for knowledge. From the ground to the sky,
and finally the stars, humanities achievements stand on the shoulders of key discoveries: fire, the
wheel, electricity, and computing. Today, humanity stands at another fulcrum point: automation.

Computers have taken charge of many life-and-death functions: they guide lasers that sculpt the
eye, drive autonomous vehicles, and even self-landing rockets. Rigorous, fast and precise, ever more
able to perform complex tasks. Many of those in real time, where the correctness of applications
not only relates to the correct output but also the moment in time it is delivered.

One of the most representative examples of critical real time systems is avionics: electronic
systems used on aircraft, artificial satellites, and spacecraft. In this context, most systems are hard
real time. That is, most tasks running in the system are associated a deadline: a moment in time
where they must be completed. A deadline violation of a hard real time system can result in a
catastrophic failure where human life or the integrity of the system is at risk.

Examples of these systems include automatic processes, control, monitoring, communication,
navigation, weather forecast, autopilot (AP), ground proximity warning systems (EGPWS), and
anti-collision systems such as TCAS [4]. The latter, for example, stands for traffic collision avoidance
system and forms a digital bubble around the airplane. When two bubbles intercept, the systems
communicate and inform the pilots of their relative positions, a procedure known as TA (traffic
advisory). If the relative distance between two aircrafts is such that it becomes a safety hazard,
the systems communicate and agree on a path that ensures that both aircraft escape safely. This
procedure is known as resolution advisory (RA) and possesses the capability of alerting the pilots
or reconfiguring the auto-pilot to execute the computed solution. The aviation sector relies so much
on the system that in emergency situations where a contradicting solution is given by the air traffic
controller and the TCAS system, pilots are ordered to disregard the air traffic controller [3].

In some situations, these systems have the power to override the pilot’s control input, such as
the Airbus fly-by-wire system [74]. Fly-by-wire is an electronic interface that replaces conventional
mechanical flight controls. Flight control movements performed by pilots are converted to electric
signals and transmitted by wires. In essence, the pilots fly the computers, and in turn, the computers
fly the aircraft. Besides increased efficiency, this allows for automatic signals to be sent by computers
to help stabilize the airplane, or prevent unsafe operation outside the aircraft’s performance envelope.

In other situations, these systems completely replace the human component of the system.
Today’s airlines fly with just two out of the five original crew members of earlier models [88]. In
the 1910s, commercial flight crews were composed of: a (1) Captain and a (2) Flight Officer, the
pilots-in-command; a (3) Flight Navigator responsible for accurate navigation through celestial
navigation and long-range direction finding land-based stations; a (4) Flight Engineer in control
of pressurization, fuel, engine, electric, air conditioning, and hydraulic systems; and a (5) Radio

6
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Operator who handled telegraphic and voice radio communications between aircraft and ground
stations. Today, only the pilots-in-command remain, both of which have their jobs greatly simplified.
All the remaining crew members – and their functions – were replaced by more reliable and efficient
automated systems. “A pilotless airliner is going to come; it’s just a question of when”, said the
president and CEO of Boeing Commercial Airlines, James Albaugh, at the AIAA Modeling and
Simulation Technologies Conference.

Modern glass cockpits are highly automated with digital flight instruments in place of the
traditional analog dials and gauges that constituted primordial steam cockpits. These flight systems,
such as electric engine control (EEC), flight management system (FMS), autothrottle (AT), autopilot
(AP), etc., are capable of “controlling every part of the flight envelope from just after take-off to
landing” [96]. This automation provides many benefits; it has greatly increased safety and comfort
while extending weather minima1. Indeed, today’s state-of-the-art Instrument Landing Systems
(ILS), specifically Category IIIc, have no Decision Height (DH)2, nor Runway Visual Range (RVR)
constraints [2], allowing pilots to perform auto-lands in zero visibility. Paradoxically, automation
has also introduced a new hazard. Extensive use of automation systems such as ILS can erode the
necessary skills to fly the aircraft. This is known as automation dependency and has been a factor
in many incidents [97, 24].

It becomes evident with these examples, that failure to meet correct functional and timing
constraints of these computing systems may cause catastrophic consequences. Such systems are
called safety-critical. Although these examples are limited to the aviation sector, many more exist in
other contexts such as railway, automotive, and nuclear industries. Given the high level of criticality
of these systems, it is crucial to guarantee that they work correctly.

In recent years, the functionality, efficiency and effectiveness required of computer systems for
safety-critical real time applications has increased exponentially [10]. Naturally, this led to an
explosion of the complexity in these systems [115, 38]. Scaling computing capacity to meet these
requirements has become difficult, both the research community and the private sector are investing
significant efforts into solving the complex problems associated with high criticality real-time
systems.

2.2 Background

Scheduling is a common occurrence in everyday life. Many industries such as retail, healthcare,
and construction have some form of scheduling problems. Examples of these problems range from
employee tasking, to aircraft landing clearances, including logistic planning, etc. Given its importance
and broad applicability, scheduling is one of the most researched topics in literature. The Business
Dictionary [27] defines scheduling as: “determining when an activity should start or end, depending
on its duration, predecessor activities and relationships, resource availability, and target completion
date”.

Scheduling is also a core activity of computing. Through scheduling algorithms, computers
decide what task will be executed next. In real-time systems where strict timing constraints exist,
these activities are even more crucial to their operation. Within this domain, there are two system
categories [87]: (1) hard real time, where a timing constraint (deadline) violation can result in
catastrophic consequences; and (2) soft real time, where deadline misses cause Quality of Service
(QoS) degradation, but are otherwise without any serious consequences.

Traditional avionic architectures, called the federated method, were based on stand-alone sub-
systems interconnected with real-time communication buses where each component was performing
a single task [60]. Although reliable, this approach was expensive due to numerous heavy equipment
racks required for each and every system, and up to 100 kilometers of cables to interconnect all
those systems [46]. The new Integrated Modular Avionics (IMA) architecture combines several,
potentially independent, systems on one general purpose computing node, sharing power, memory,
network, and computing resources. IMA significantly reduces production and maintenance costs
while increasing system reliability, reusability and evolutivity [60]. The first airplane to adopt the
IMA concept was the Boeing 777 [81]. Newer civilian and military planes such as the Airbus A380,
Boeing 787, Airbus A400M Atlas, and the Lockheed C130 AMP were also developed according to
this model.

1The minimum required weather conditions under which aviation operations are permitted.
2The lowest specified altitude during the approach phase where visual contact with the runway is required, or a

missed approach is declared, and go-around procedure is triggered.
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2.2. BACKGROUND CHAPTER 2. OUTLOOK

Given its high criticality level, avionics are heavily regulated via certification standards. For a
program to be used in a hard real time safety critical context, it must be certified. Certification is
a lengthy and expensive process, accounting for a significant portion of the development efforts,
in which the program output and time requirements are proven to be correct in all circumstances
impacting the safety of the system.

The certification requirements placed upon high criticality real-time systems are extremely
strict, and the deployed solutions tend to be simple so as to facilitate the certification process
through which they must pass [42, 32].

As an example of certification cost, over 50% of the software development efforts for the Boeing
777 were in the area of analysis and tests for the purpose of certification [20]. For the Boeing 787
Dreamliner, FAA operatives logged more than 200,000 hours on technical work. Boeing’s engineers
exceeded that mark while proving compliance with more than 1,500 airworthiness regulations; pre-
senting 4,000 documents comprising of test plans, flight tests, and safety analysis; and demonstrated
compliance with over 16,000 federal safety standards relating to inspection and test parts. Boeing’s
Dreamliner 8 year-long certification process was “the most rigorous in Boeing’s history” [17].

Example of certification standards include: ISO 26262 [100], IEC 61508 [31], DO-178B [8], DO-
254 [6], DO-178C [7] and ARINC [5]. Of those, ARINC 653 and DO-178C specify the latest software
and hardware requirements for avionic systems. These certification standards introduce, among
others, stringent scheduling constraints to which all systems must be compliant.

ARINC 653 was developed by aviation experts to provide “the baseline environment for appli-
cation software used within Integrated Modular Avionics (IMA) and traditional ARINC 700-series
avionic systems”, and defines a task scheduling policy.

2.2.1 ARINC 653 System Model

ARINC 653 specifies a system model according to the IMA philosophy [5]. In ARINC 653 avionic
systems are grouped in hardware modules powered by multiple processor units. The modules are
managed by an ARINC 653 compliant real-time operating system, such as PikeOS [102], VxWorks
[45] and LynksOS-178 [104].

Central to ARINC 653 is the concept of partitioning. Each hardware module hosts multiple
partitions, each composed of one or more processes (figure 2.1). Processes within a system are parti-
tioned with respect to space and time. Time partitioning guarantees that the timing characteristics
of tasks, such as their worst-case execution times are not affected by the execution of other tasks
in other partitions. Space partitioning ensures that the data of one partition cannot be corrupted
by another partition.

Partition

Process

Process Process

Process

Partition

isolation

Figure 2.1: ARINC 653 Partition time and space isolation

The underlying architecture of a partition is similar to that of a multitasking application,
where processes are isolated and composed of multiple threads. Within a partition the constituent
processes operate concurrently, sharing the available services and resources. Each process is uniquely
identifiable, with attributes that define its scheduling, synchronization, and overall execution.

Partitions are bound to one processor module during system configuration by the system
integrator, as illustrated in figure 2.2. In the current version of the standard, which was written
with single core processor in mind, process or partition migration of any kind is not allowed. All
processes allocated to one partition must be executed on the same processor. It is expected that
this requirement will be updated to allow migrations between cores of the same processor once
multicore processors are accepted and integrated into future avionic systems.

8



CHAPTER 2. OUTLOOK 2.2. BACKGROUND

CPU CPU CPU

Random Access Memory

Hard Drive

Networking

Partition Process

Figure 2.2: ARINC 653 Hardware Module

ARINC defines intra-partition and inter-partition communication through the APEX interface
(APplication/EXecutive). Communications are dispatched during partition context switches, if the
source and destination partitions do not reside on the same hardware module, the message is sent
to the target module via Avionics Full Duplex Switched Ethernet (AFDX).

ARINC 653 Scheduling Policy

In ARINC 653, the scheduling policy is deterministic and hierarchical. A time-based dispatcher
cyclically schedules partitions following a predefined schedule table built by the system integrator.
The table defines scheduling intervals allocated to each partition within a major time frame. The
length of the major time frame, i.e., the schedule period, is usually set as the least common multiple
of all partition periods in the system. The scheduling table is periodically repeated throughout the
system runtime operation. Figure 2.1 and 2.3 contain an example of a scheduling table.

P Start End
1 P3 0 4
2 P2 4 9
3 P1 9 11
4 P2 11 16
5 P3 16 19
6 - 19 20

Table 2.1: Example parti-
tion table in tabular form

0 2 4 6 8 10 12 14 16 18 20

P1

P2

P3

Figure 2.3: Example partition table in diagram form

The schedule table must ensure that the periodic computation demand of all partitions is
satisfied by the appropriate size and frequency of the partition windows within the major time
frame.

Within a partition, processes are scheduled by a fixed priority preemptive scheduler. The
scheduler delegates all partition resources to the highest priority process within the partition. Ties
are resolved by First-Come-First-Served (FCFS).

Partitions scheduling characteristics are defined by (1) a unique identifier, (2) a period of
execution, and (3) an execution time. Within the partition, processes may be periodic or aperiodic,
and are characterized by (1) a unique name, (2) base priority, (3) period, (4) time capacity or Worst
Case Execution Time (WCET), (5) a deadline, (6) current priority, and (7) next deadline time.

9



2.3. PROBLEM INTRODUCTION CHAPTER 2. OUTLOOK

2.3 Problem Introduction

Cyclic executives are used to schedule safety-critical real-time systems because of their determinism,
simplicity, and efficiency. One major challenge of the cyclic executive model is to produce the cyclic
scheduling timetable. This problem is related to the bin-packing problem [34] and is NP-Hard in
the strong sense. Unless P is equal to NP, an exponential amount of work is, in the worst-case,
required to generate a schedule.

Currently, the partition scheduling tables are mainly built based on the experience acquired
by experts. The ultimate goal of the thesis is to automate this process by developing efficient
algorithms that generate close to optimal partition scheduling tables, where optimality is defined
as:

1. All partitions timing demands are respected. Each partition receives enough processing time
to ensure all its processes complete within their timing constraints.

2. The size of the table is kept sufficiently small, saving valuable memory space.

3. Partition precedence and exclusion constraint are fulfilled.

4. Context switches between partitions are minimized.

Context switches can introduce significant overhead, in IMA cache-related overheads can increase
task execution times up to 33% [18]. In addition, since it is at that time instance that inter-partition
messages are pushed toward their destination, the cost of context switching can be significant,
wasting valuable processing resources.

The best solution would be to develop an algorithm which yields an optimal solution, i.e., the
lowest number of context switches and table entries possible while respecting application timing,
precedence, and exclusion constraints. If this is not possible in reasonable time, a heuristic algorithm
should be developed as it allows for a faster computation of the result. Given the extensive solution
space size [114], it is computationally intractable to iteratively search the entire space; however,
optimization algorithms can provide a good solution in reasonable time.

The problem in its general form has been significantly studied by the research community. Several
works proposed in the literature are aimed at producing a feasible schedule. Some contributions
produce sub-optimal results via optimization algorithms or heuristics; others achieve optimality by
iterating the solution space with Branch and Bound (B&B) or Mixed Integer Linear Programming
(MILP) formulations. To generate a solution, these contributions may require massive amounts of
computing power and large systems may be computationally infeasible.

As far as we know, state-of-the-art solutions define optimality as any solution that effectively
schedules the entirety of the task set. We extend this definition of optimality by adding one more
constraint: a schedule is deemed optimal if for a given task set, the schedule is feasible and the
number of context switches is minimized.

By maximizing processor utilization within each computing node, fewer nodes are required
to schedule a given task set. For avionics, a competitive industry where a 1% efficiency increase
can translate into hundreds of thousands in yearly fuel savings [106], this presents a significant
contribution. Further, through those fuel savings, global Carbon Dioxide (CO2) emissions can be
reduced, helping comply with the always more stringent regulation rules defined by the governing
authorities and contributing to the well-being of our home planet.

The results of this work are also a significant contribution to scheduling theory. We intend on
extracting scheduling properties that can be charted onto into existing optimization algorithms and
heuristics, hence guiding their research toward better solutions efficiently. The authors intent on
solving broader problems such as combined task and message scheduling in distributed real-time
systems would be able to utilize an optimal solution. Currently, the earliest deadline first algorithm
is used by some authors to schedule tasks on computing nodes [1].

Our contribution also extends beyond high criticality real-time systems. Many systems providing
day-to-day functionality also use cyclic executive [79], from entertainment systems such as toys and
audio players, to data acquisition and sensing systems such as environmental systems for temperature
monitoring at weather stations, or control systems such as air conditioning and industrial robots.
Many of these embedded systems have limited resources, where context switching overheads can
be prohibitively expensive. Through our contribution, context switches can be minimized, reducing
both energy and consumption costs through reduced CPU usage or the use of less powerful hardware
on these platforms.
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Chapter 3

State of the Art

This chapter covers a formal review of state-of-the-art schedulers. We begin with an introduction
to the cyclic executive model, using online scheduling as an analogy. Lastly, we present published
scheduling related work, along with a comparison of these contributions.

3.1 Cyclic Executive

The cyclic executive is well covered in the scientific literature [87, 11, 114, 53, 86, 57, 79]. Although
many authors may refer to it by different names: offline scheduling, time-table scheduling, time-
line scheduling, time-triggered, static-cyclic, static scheduling, pre-scheduling, and pre-run-time
scheduling. In this section, we define the cyclic executive scheduling model and compare its benefits
and drawbacks to online scheduling alternatives.

In the cyclic executive, schedules are computed offline, where the characteristics of all system
tasks are known in advance. For this reason, it is possible to utilize computationally expensive
scheduling algorithms. Proving that a schedule is feasible is simple, by iterating the executive it can
be shown that all constraints are met. Once a feasible task sequence is found, the schedule is saved
in a static data structure which will be interpreted by the real-time kernel dispatcher – an online
scheduler which schedules tasks based on the executive. Because there is no computation at run-
time, the dispatcher has O(1) complexity. At its basic form, the dispatcher can be implemented by
writing a for-loop which invokes tasks through function calls and manages idle periods using sleeps
[79]. Modern systems utilize a table-driven architecture which is loaded during system configuration.

For a dynamic scheduler such as Fixed Priority (FP), the schedule is computed both online
and offline. An offline algorithm assigns priorities to tasks based on their requirements, such as the
Rate Monotonic (RM) algorithm [63], an optimal policy in the class of Fixed Priority scheduling
algorithms for periodic or sporadic tasks where periods are equal to deadlines. The online scheduler
may be preemptive, limited-preemptive, or non-preemptive, and generally schedules the highest
priority task in the system’s ready queue.

3.1.1 Schedulability Analysis

Fixed priority applies utilization based schedulability tests to ensure a given task set is feasible.
Liu and Layland proved that for RM, a given task set of n periodic tasks with unique periods is
feasible if U =

∑n
i=1

Ci

Ti
≤ n(21/n− 1), where n is the number of tasks in a task set τ , U is a bound

on the total system utilization, Ci is the task’s computation time, and Ti the task’s period. For two
tasks U = 0.8284, and when n approaches infinity, U = 0.6931. Hence even with only two tasks,
RM can only schedule up to 80% utilization; when the number of tasks n grows, RM feasibility
guarantees drop by ≈ 10% to reach ≈ 69%. Cyclic executive can schedule any task set up to 100%
utilization if an algorithm exists that can build such schedule. Earliest Deadline First (EDF) [63]
is an example of such algorithm with pseudo-polynomial complexity.

Fixed Priority Scheduling algorithms are not optimal, especially in non-preemptive systems,
where a lower-priority task τi with a longer Ci can cause a higher priority task τj to miss its deadline
when τj is released after τi began its computation. In such cases, the system may be schedulable
by introducing an idle period until the release of τj [70].

Because tasks are always executed in the same order, the cyclic executive is fully deterministic.
While it is true that determinism is not necessary to achieve predictability [11], it reduces the total
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number of system states to one. By executing the system once, it can be proven that no bugs due
to task execution order are present. The same cannot be said for fixed priority, which is predictable,
but not deterministic, and can have many distinct task execution orders.

3.1.2 Scheduling Constraints

Cyclic executives can consider scheduling constraints such as task precedence and mutual exclusion,
arbitrary release times, and low jitter requirements without added runtime complexity or overhead
[114]. This is not the case for fixed priority: mutual exclusion and precedence relationships can
conflict with the natural priority order of the system, requiring an additional task management
layer.

These mechanisms are computationally heavy and can introduce significant jitter in the system.
For example, periodic interrupts can delay even the highest priority task in the system, as the
underlying operating system moves tasks between its priority queues. Complex real-time mutual
exclusion mechanisms such as Priority Ceiling and Priority Inheritance [92], are required to protect
shared resources from concurrent access while respecting task computation demand, increasing the
time spent on activities which are not part of the real-time systems. Additionally, these mutual
exclusion mechanisms must avoid deadlocks during run-time, which requires that they be conserva-
tive, resulting in situations where a task is blocked even though it could have proceeded without
causing a deadlock [114].

In cyclic executive, mutual exclusion and precedence overheads are handled offline by defining
constraints on task pairs. The offline scheduler will generate a schedule compliant with these
constraints, performing the same function as an online scheduler with zero run-time overhead.

3.1.3 Efficiency and Scalability

The size of the scheduling table is usually determined by the Least Common Multiple (LCM) of the
periods of all tasks. If these are not harmonically related, or are relatively prime, the table size can
become quite big. By operating a task on a slightly higher frequency – reducing a task’s period –, it
is possible to obtain a satisfactory table length at the cost of reducing overall processor utilization
[11]. Fixed priority also exhibits a similar problem, when a given task set has many different periods,
many priority levels are generally required, which can increase memory requirements and run-time
scheduling overhead [93].

The fixed priority model is much more dynamic. It can improve system responsiveness by
adapting task execution order such that periodic and sporadic demand is served within a minimum
interval. Cyclic Executive models sporadic tasks as periodic tasks by reserving system resources
so that sporadic tasks can always be served at their minimum inter-arrival time, which is likely to
be an unrealistic scenario. This computational reserve impacts periodic tasks, as resources which
could be used to reducing response times are left idle.

Additionally, cyclic executives display high software design fragility, incurring excessive life cycle
costs [11]. Any changes to the system, such as adding a new task or updating an existing one, may
require the schedule to be updated or rebuilt. To avoid having to test the entire system, system
integrators often try to find empty slots or even break functional separation by appending new
functionality to existing tasks. In comparison, adding new functionality to FP driven system merely
implies applying a schedulability test.

3.1.4 Closing Arguments

In hard real-time systems, the most differentiating criteria is determinism. Cyclic executive im-
poses strict deterministic execution ordering, greatly simplifying runtime behavior analysis and
verification.

The cyclic executive has constant O(1) complexity and can achieve up to 100% utilization. It
can solve complex application constraints with constant runtime overhead and minimal jitter. Given
its deterministic behavior, verifying these constraints is a straight-forward process.

The cyclic executive’s strength is also its weakness. Because the schedule is built offline it is
less dynamic than fixed priority, and offers worse responsiveness. System modifications may require
the schedule to be rebuilt, resulting in high update/modification costs.
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3.2 Related Work

This section presents state-of-the-art contributions proposed in the technical literature. Mono-
processor, multi-processor, and heterogeneous scheduling solutions have been included. Although
multiple-processor and heterogeneous systems are an extension of the uni-processor problem, the
unique and interesting approaches to these systems may nevertheless be applicable to uni-processor.

The state-of-the-art is divided into three classes of algorithms: exact, heuristic, and meta-
heuristic. Exact algorithms are optimal and are guaranteed to find a feasible schedule if one exists;
they may require significant processing power for large task sets and may be computationally
infeasible within an acceptable timeframe. Heuristic algorithms are based on polynomial techniques
which may sometimes produce an optimal solution within a set of well-defined constraints. Meta-
heuristics are heuristic techniques to efficiently search large solution spaces, but are pseudo-random
and probabilistic and cannot guarantee an optimal result. Significant computation time and power
may be required for meta-heuristics to produce good results.

The state-of-the-art has been partially developed based on the following state-of-the-art reviews:
[22, 116, 53].

3.2.1 Exact Algorithms (EA)

Exact algorithms are optimal, i.e., an optimal solution is guaranteed to be found if one exists. Exact
techniques search the entire solution space with exponential time and space complexity. Large
task sets require a significant amount of time and processing power and may be computationally
infeasible within an acceptable timeframe.

Petri Nets (PN)

Petri nets [77], developed by Petri in his dissertation, are bipartite graphs similar to state transition
diagrams with strong mathematical foundations behind them. Petri nets are composed of tokens,
places, transitions and arcs. Places may hold one or many tokens; tokens move between places
through arcs – roads – linking transitions and places. A time Petri net incorporates the notion of
time into a Petri net. The main obstacle to their application to scheduling is the search space size,
which grows exponentially in relation to the number of tasks and precedence/exclusion constraints.

An optimal preemptive scheduler based on Petri nets which considers precedence/exclusion
constraints was proposed by Barreto [12]. In this contribution, a system model is generated by
converting periodic tasks to a Petri net, enumerating all possible task execution orderings, which
are then iterated by a depth-first search. To minimise the space size, partial-order reduction pruning
– where the activities that can be executed in any order are pruned – is used. Experimental results
were performed with non-preemptive real-world task sets. The first, a non-preemptive robotic arm
task set with 37 tasks took 7.8ms to execute. The second, a mine drainage system with 10 tasks
arrived at a solution after 138 states. For small task sets, this solution is very fast; larger sets may
be computationally infeasible due to the exponential complexity of the problem

Another proposal [37] by Grolleau and Choquet-Geniet supports preemption, inclusion and
exclusion constraints, reader/writer problems, and synchronous/asynchronous communication. The
authors reduce the state space size by removing unnecessary preemptions, using efficient data
representations, and pruning infeasible branches. To test performance a 7 task example with 99.4%
utilization unschedulable by any online algorithm is made schedulable by this proposal. The authors
offer no performance benchmarks for larger task sets.

Branch and Bound (B&B)

First introduced by Land and Doig [55], branch and bound is a tree/graph based transversal
algorithm. It iteratively enumerates all candidate solutions by order of smallest cost until a feasible
solution is found. Since B&B always explores the branch with the smallest cost, it is guaranteed to
find an optimal solution if one exists.

Xu and Parnas developed an offline best-bin-first based scheduler which considers precedence
and exclusion constraints. Their proposal supports preemptive task sets and is optimal in the
sense that it can find a schedule if one exists. The algorithm divides tasks into segments according
to shared resources and begins its search in a root node generated by preemptive EDF; if the
schedule is unfeasible, the algorithm locates the first unschedulable section and attempts to shift
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its execution backward, generating all combinatorial permutations as child nodes. For each child
node, EDF is used to produce a schedule. The process continues until a feasible schedule is found,
all nodes have been searched, or until all system memory has been exhausted. Runtime tests show
the algorithm can generate results for up to 100 segments, but the authors do not specify run-times.
Xu extended the model to homogeneous multiprocessor systems [112] but restricts preemptions
and task divisions due to complexity constraints.

In [1], Abdelzaher and Shin extend the previous idea of Xu and Parnas to preemptive heteroge-
neous and distributed systems. The B&B approach solves the combined task and message scheduling
with precedence and exclusion constraints. The algorithm performs very well for utilizations up to
80% but requires significantly more time for demanding task sets. To solve this problem, Abdelzaher
and Shin introduce a greedy depth-first search that can solve task sets up to 90% utilization within
an acceptable time frame.

Jonsson and Shin introduced another B&B based multiprocessor non-preemptive scheduling
algorithm [49]. The authors explicitly avoided preemption because “the presence of non-negligible
context switch overhead makes it very hard to find feasible schedules if unconstrained preemption
is allowed ”. The proposal models the solution space through a search tree, where vertices are
scheduled tasks and iterates it by generating all possible permutations; last-in-first-out (LIFO) is
used to decide which node to expand first. During each iteration, a lower bound on the total cost is
calculated for each vertex; only the vertices capable of producing a better result than the current
global best are saved for expansion. To further reduce the search space, solutions that are infeasible
are pruned; additionally, commutative task orderings, where the execution order of tasks always
yields the same result, are also pruned. Experimental evaluations were performed with 12 to 16
tasks on 2 to 4 processors with a time limit of four hours. Even with these small task sets, the
number of searched vertices ranged from 100 to 10000. For larger systems, the optimal approach may
be infeasible, and the authors suggest using heuristics to calculate the lower bounds and produce
faster results.

Self Adjusting Dynamic Scheduling (SADS) [40] is a centralized non-preemptive scheduling
strategy developed by Hamidzadeh and Lilja. SADS reserves a single processor within a multi-core
context to schedule the remaining cores and finds the optimal schedule regarding communication
and processing costs. SADS first proposal was based on a computationally expensive branch and
bound algorithm [56]. Their latest contribution introduces two new heuristics to improve efficiency,
minimum-remaining-execution-time (MESADS), and depth-bound SADS (DBSADS). MESADS is
an A*1 monotone2 heuristic that estimates the execution cost of the entire schedule by assuming
tasks execute with minimal expenses. SADS is a depth-first search of the original branch and
bound method that prioritizes partial schedules where more tasks have been assigned. DBSADS
outperforms SADS and MESADS in performance but does not guarantee optimal solutions.

Mathematical Formulation (MF)

Mathematical formulations model the scheduling problem through rigorous mathematical for-
malisms and equations. Within this approach, proposed solutions are based on two main families
of tools: satisfiability module theories (SAT), and Integer Linear Programming (ILP).

SAT models the problem through mathematical boolean formulas composed of logical connectives
such as conjunction, disjunction, and negation [26]; a SAT solver searches the solution space for
a solution using efficient propositional logic algorithms. The problem of propositional logic is
NP-complete [25].

ILP, or integer linear programming, models the scheduling problem through a mathematical
optimization/feasibility problem where all variables are integers. Mixed-integer linear programming
is an extension of ILP in which the integer restriction is relaxed, and some variables are allowed to
be non-integers. An ILP solver is responsible for taking an ILP formulated problem and producing
an answer. Integer programming is NP-hard [25].

In [67], Metzner et al. present an SAT-based approach to the non-preemptive task and message
allocation problem in distributed real-time systems that is guaranteed to find an optimal solution.
A binary search algorithm is developed on top of the SAT solver to reduce run times. Experimental

1Introduced by Hart, Nilsson, and Raphael in [41], A* is an informed search algorithm that extends branch and
bound. Like its sibling, A* chooses the path with the smallest cost but considers the one that appears shortest first
by estimating the total distance to the desired node. A* is optimal if the heuristic is monotone.

2A heuristic is labeled monotone if its cost estimate is always less or equal than the actual cost.
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results show that for a task set of 43 tasks, their approach has a run time of 48 mins. The same
task set with additional requirements takes 6 hours.

Another SAT solver [109] for scheduling mixed-criticality multi-core applications has been
proposed by Voss and Schätz. Their approach generates an optimized assignment of tasks concerning
memory, timing, and criticality constraints. The proposed solution can be used to solve problems
of 50 tasks in 15 computational nodes in about 4 hours.

An optimal integer linear programming solution [64] has been developed by Mangeruca et al.
The authors map mathematical formulas to provide optimum priority and deadline assignments
to corresponding ILP formulations. Two algorithms, fixed priority, and EDF were converted to
ILP formulations that are optimum under precedence and schedulability constraints. Experimental
results were performed with a combustion engine task set with 5 tasks with precedence constraints,
but the authors do not disclose run times.

Puffitsch proposed an ILP solution [82] to partition and schedule non-preemptive tasks on
many-core platforms. The partitioning and scheduling phases are both performed at the same time,
considering memory contention caused by other cores on the computing platform. Additionally,
dependencies and message based communication among tasks are supported. To evaluate the
solution, both real-life task sets, using flight application software designed by the EADS Astrium
Space Transportation, and random task sets were used. For large task-sets comprised of 800 tasks,
the solution is capable of finding valid schedules within 45 mins using up to 50GB of memory.

Model Checking (MC)

Model checking is the process of verifying whether a model is compliant with a specification. Cyclic
Executive schedulers of this type search the entire solution space until a model compliant schedule
is found, or all combinatorial permutations have been evaluated. A multiprocessor non-preemptive
cyclic executive scheduler based on model checking has been developed by Ravn and Schoeberl in
[85].

In this model, each task is represented as an automaton with idle, ready, running, and error
states. Additionally, each task has two local clocks: the first represents the elapsed execution time,
and the second the time elapsed during the tasks period. There is no global scheduler, tasks are
allowed to transit between periods as long as guards and invariants preventing invalid states, such
as missed deadlines, are satisfied.

To test performance, Ravn and Schoeberl used a 16 task workload for an autonomous vehicle.
Tasks deadlines and computation times were tuned to accommodate higher utilization tests. For
a single-core task set with 82% utilization, a schedule is found within seconds; if the utilization
is increased to 97%, a schedule is found in 10 minutes. In a multi-processor environment with 2
heterogeneous CPUs and 134% utilization, the scheduler requires 15 minutes; a slight utilization
increase gave no results after an hour.

3.2.2 Heuristic Algorithm (HA)

In ancient Greece, the word “heuriskein” was used to express the ability to find, invent and discover
[16]. Today, the word heuristic defines an approach to a problem that does not guarantee an optimal
result, or any result will be found.

In this section, we present heuristical scheduling algorithms which can generate a schedule in
constant or polynomial time complexity. This type of algorithm is widely deployed in real-time
systems because of its efficiency, predictability, and analyzability. Depending on their behavior,
online scheduling algorithms are be classified as static/dynamic, preemptive/limited-preemptive/non-
preemptive, and work-conserving/non-work-conserving.

A static scheduling algorithm always assigns the same priority to a given task; Rate Monotonic
(RM) is an example of a static fixed priority scheduler that assigns priority to tasks based on their
period. A dynamic scheduler may assign different priorities to tasks during the execution; Earliest
Deadline First is an example of a dynamic priority scheduler where task’s priorities are elevated as
they close on their deadline.

A preemptive algorithm allows a task to be preempted by another higher priority task. In non-
preemptive executions, tasks execute continuously until their computation is finished. In limited-
preemption, the scheduler is allowed to postpone a preemption based on some criteria.

If the processor is allowed to idle when there are ready tasks, the scheduler is classified as
non-work-conserving. A work-conserving scheduler never allows the processor to be idle when the
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ready queue is not empty.

Being heuristical in nature, these algorithms only provide limited schedulability guarantees
within a well-defined set of constraints or no guarantees at all. Some algorithms are optimal under
very specific constraints, e.g., if periods are harmonic or loose harmonic. A task set is deemed
harmonic if the periods of its constituent tasks are all multiple of each other; if each period is an
integer multiple of the smallest period the task set is classified as loose harmonic.

An algorithm’s schedulability guarantees are formally proven and well defined mathematical
expressions. A schedulability analysis determines if a given task set is feasible, that is if all tasks
in the system complete within their assigned deadlines. A response time analysis calculates the
maximum period of elapsed time from the release of a task until its computation is complete. A
response time analysis can therefore be used as a schedulability analysis by checking that all task’s
response times are smaller than their deadlines.

A given schedulability analysis method may be sufficient and/or necessary. A sufficient schedula-
bility test can only determine if a given task set is schedulable; if the test is false, then no conclusion
can be drawn regarding the schedulability of the task set. A necessary schedulability analysis can
determine if a task set is unschedulable; it defines a property necessary to achieve schedulability,
without whom, it is impossible for all tasks to meet their deadlines.

Rate Monotonic (RM)

Rate Monotonic [63], by Liu and Layland, is a static fixed priority assignment algorithm. In RM,
priorities are assigned to tasks based on their period, the shorter the period, the higher the task’s
priority. RM schedulability theory is very complete, a schedulability analysis for independent
periodic tasks is provided by Liu and Layland [63], for both periodic and aperiodic tasks in [108],
and with synchronization requirements in [94, 61, 101].

RM is widely deployed in real-time systems due to its simple scheduling mechanism, predictabil-
ity, analyzability and low overhead.

Deadline Monotonic (DM)

Deadline monotonic [63] is a fixed priority algorithm that assigns priority to tasks based on their
relative deadlines. The task with the shortest is assigned the highest priority. It is optimal in the
class off FP scheduling algorithms when tasks are independent and have deadlines shorter than
periods.

Earliest Deadline First (EDF)

EDF, first proposed by Liu and Layland [63] is a dynamic scheduling algorithm that schedules
the task which is closest to its deadline. EDF is optimal on preemptive uniprocessors if: (1) all
tasks are independent, (2) context switches and preemptions do not incur any cost, (3) tasks worst
case execution times are smaller than their deadlines, and (4) a task cannot suspend itself. Within
these constraints, if a task set is not schedulable by EDF then it cannot be scheduled by any other
scheduling algorithm. EDF runs in polynomial time and can schedule utilizations up to 100%.

Spuri was the first to propose an exact Response Time Analysis (RTA) for EDF [98]. Guan and
Yi proposed two RTA methods that significantly improve analysis efficiency.

A schedulability analysis for EDF task sets with arbitrary release offsets called QPA is presented
in [117] by Zhang and Burns. QPA greatly reduces computational requirements over previous
methods, in over 80,000 schedulable and 60,000 unschedulable task sets 95% of the task sets
complete the schedulability test in less than 30 calculations.

Least Laxity First (LLF)

Least Laxity First (LLF) [105] schedules the task with least laxity. Laxity is defined as the difference
between the task’s deadline and remaining execution time at a given instant of the schedule.
Although optimal for uniprocessor systems, the algorithm is impractical because laxity ties result
in constant context switching among tied tasks. Oh and Yang, proposed a solution to solve this
problem in [76].
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Non Preemptive Earliest Deadline First (NP-EDF)

NP-EDF is a nonpreemptive variation of the Earliest Deadline First algorithm. Like EDF, NP-EDF
schedules the task which is closest to its deadline. NP-EDF has been shown by Jeffay, Stanat, and
Martel [47] to be optimal in the class of work-conserving algorithms for sporadic task sets. The
optimality was however disproven by Nasri and Fohler for periodic task sets with offsets or when
tasks do not execute for their worst-case execution time [70]. Jeffay, Stanat, and Martel presented a
necessary and sufficient schedulability analysis test for periodic tasks with arbitrary release offsets
in [48]. Nasri et al. present a sufficient schedulability test for harmonic task sets in [73].

Fixed Preemption Points (FPP)

Developed by Burns [21], FPP defines a non-preemptive execution model where context switch
events are solely triggered by a system call invoked by the running task. FPP divides tasks into
non-preemptive blocks; if a higher priority task arrives between two preemption points, preemption
is delayed until the next preemption point. Because scheduling is decentralized, this approach is
also referred as Cooperative scheduling [22].

Preemption Threshold Scheduling (PTS)

A fixed priority scheduling algorithm [110] proposed by Wang and Saksena, where each task is
assigned an additional priority called preemption threshold. A task can only be preempted if the
priority of the arriving task is higher than the threshold of the running task.

Keskin, Bril, and Lukkien provide an exact response time analysis for PTS in [51]. Saksena and
Wang proposed an algorithm to calculate task preemption threshold for a given task set [89].

Buttazzo, Bertogna, and Yao compared PTS to FPP in simulated experiments and concluded
FPP can achieve higher task set schedulability [22]. Additionally, Buttazzo, Bertogna, and Yao
observed PTS has a simple interface and can be implemented with minimal runtime overhead, but
that its preemption cost cannot be easily estimated.

Deferred Preemption Scheduling (DPS)

Baruah introduced the concept of deferring or delaying preemptions in EDF [13]. Each task in the
system defines the longest interval that can be executed non-preemptively while delaying (deferring)
the preemption of another task.

There are two models of deferred preemption threshold: floating and activation-triggered. The
floating model is implemented at task level, non-preemptive regions are defined by the programmer
through system calls with a duration not exceeding a certain threshold. Activation-triggered is
implemented at the scheduler level, where non-preemptive regions are triggered by the arrival of a
higher priority task.

A feasibility analysis of periodic tasks with floating non-preemptive regions has been developed
by Short [95].

According to Buttazzo, Bertogna, and Yao, the performance of DPS is equal to FPS, generating
more preemptions and achieving lower schedulability than FPP. In comparison to PTS, the number
of preemptions can be better estimated.

Clairvoyant EDF (C-EDF)

Introduced in [30] by Ekelin, Clairvoyant non-preemptive EDF scheduling uses a form of look ahead
to determine if an idle period must be scheduled to avoid a longer task executing over the release
and subsequent deadline of another task.

Experiments show CEDF can increase schedulability up to 100% when compared with NP-EDF
while maintaining algorithmic complexity – O(n log n) – through lazy evaluation.

Group-Based EDF (Gr-EDF)

Group EDF [62] by Li, Kavi, and Akl dynamically groups tasks based on the closeness of their
deadlines and uses Shortest Job First (SJF) to schedule these tasks within the groups. Group EDF
can improve schedulability during high utilization and overload conditions.
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Precautious Rate Monotonic (P-RM)

An online non-work-conserving non-preemptive scheduling algorithm based on Rate Monotonic
(RM) developed by Nasri and Kargahi. Precautious RM [72] increases the schedulability of non-
preemptive task sets by adopting an Idle-Time Insertion Policy (IIP). The policy is defined as
follows: if scheduling the highest priority task τ2 would prevent the task smallest period τ1 from
meeting its deadline, an idle period is scheduled until the next release of τ1. P-RM has O(1) constant
complexity.

Nasri and Kargahi [72] proved that scheduling non-preemptive harmonic tasks can be solved
optimally in polynomial time by Precautious RM. In addition, Nasri and Kargahi also introduces
response time and jitter analysis for P-RM. Finally, in [70], Nasri and Fohler introduce a linear-time
sufficient schedulability test in loose-harmonic task sets.

Lazy Precautious Rate Monotonic (LP-RM)

LP-RM, introduced in [72] by Nasri and Kargahi is a variant of Precarious-RM that schedules any
lower priority task between two instances of the highest priority task in the task set. Like P-RM,
the algorithm has O(1) complexity.

LP-RM can increase response times and reduce schedulability of P-RM on feasible harmonic
tasks.

Efficient Precautious Rate Monotonic (EP-RM)

EP-RM by Nasri and Fohler [71], increases schedulability by assigning multiple tasks to priority
groups. Within a group tasks are sorted by increasing period; the task with the smallest period is
called the representative task, while the remaining tasks are called tail tasks. Tail tasks are allowed
to be scheduled if the representative task is scheduled within the same vacant interval.

The problem of assigning tasks to priority groups is a bin-packing problem. Nasri and Fohler
present an offline heuristic called wise fit to assign tasks to priority groups in polynomial time. EP-
RM schedulability analysis (with wise-fit priority assignment) proves EP-RM dominates P-RM, and
that feasible loose-harmonic task sets with period ratios larger or equal to 3 are always schedulable.

Critical Time Window-Based Earliest Deadline First (CW-EDF)

In this algorithm, an idle-time is embedded if scheduling the highest priority task will cause a
deadline miss for the next job of any other task. Nasri and Fohler, the authors of CW-EDF [70],
proved that CW-EDF is optimal for harmonic and loose harmonic task set with period ratios larger
than 3.

Nasri and Fohler showed the average schedulability ratio on randomly generated periodic task
sets is 80%, a significant improvement over the state-of-the-art Precatious-RM (40%), and work-
conserving solutions NP-RM, G-EDF, and NP-RM (15%).

3.2.3 Meta-Heuristic Algorithms (MH-A)

A metaheuristic technique is an heuristical algorithm, often nature-inspired, designed to solve
combinatorial optimization of NP-complete or NP-hard problems [14]. Metaheuristics efficiently
search the solution space to maximize or minimize a given function. They are generally probabilistic
or pseudo-random – stochastic – and do not guarantee any results.

Simulated Annealing (SA)

Simulated Annealing [54] is a probabilistic metaheuristic introduced by Laarhoven and Aarts to
perform global optimization in vast search spaces. It is based on annealing, where metals such as
copper or steel are repeatedly heated and cooled to increase ductility and reduce hardness. During
this process, the material becomes more and more malleable as temperatures increase and less so
as temperatures decrease. This process is replicated in simulated annealing: when the temperature
is very high, the algorithm is allowed to probabilistically search the entire solution space, escaping
local minima; as the temperature is reduced the algorithm’s search space is restricted to optimize
local minima.
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Simulated annealing has been used to produce non-preemptive cyclic executives. The first
application of SA to the scheduling problem was made by Wellings [111]. This solution focuses on
scheduling hard real-time tasks on distributed architectures, including exchanged messages between
tasks on different computing nodes. In this algorithm, SA assigns tasks randomly to processor
nodes. The algorithm shows good schedulability, for small task sets comprised of 9 tasks and 5
processors it can find an optimum solution, for larger task sets of 42 tasks and 8 processors the
algorithm achieves high schedulability.

Burns, Hayes, and Richardson proposed [19], a non-preemptive scheduling framework that models
cyclic executive as a vector of process instances. New solutions are generated by randomizing task
ordering. To benchmark performance, Burns, Hayes, and Richardson used a case study provided by
Rolls-Royce and adjusted clock rates to test low and high system utilizations. In this benchmark,
simulated annealing performed better for high utilizations when compared to the shortest deadline
first heuristic algorithm at a price of six thousand times the computing time. The annealer runtime
does not increase significantly by higher utilizations, and requires 30 mins on average to find a
solution on 50 MIPS machine.

Another proposal by DiNatale and Stankovic [28] schedules distributed static systems with
periodic tasks. The scheduler considers messaging, exclusion, and precedence constraints while
trying to minimize jitter. The SA schedules tasks iteratively, but randomly. The proposal shows
good results for large results comprised of 100+ tasks, generating better solutions than EDF in 80
to 90 cycles.

Time-Partitioning Optimization (TPO) [103], by Tamas-Selicean and Pop, considers a mixed
criticality environment where safety-critical tasks are scheduled by cyclic executive, and non-safety-
critical tasks are scheduled by fixed priority. Their strategy is composed of three steps: first, an
initial partition set is generated by a simple, straightforward partitioning scheme; then simulated
annealing adjusts partitions slices such that all safety-critical and non-safety-critical tasks are
scheduled while unused partition space is maximized. Finally, a list scheduling heuristic is used to
determine the scheduling tables. To test their proposal 10 synthetic benchmarks along with 2 real
life use cases were used with 3-5 partitions totaling 15 to 53 tasks. Test executions were limited to
120 minutes and showed that for small task sets, solutions are within 1 to 5% of optimality; for
larger cases, TPO produces good solutions.

Genetic Algorithms (GA)

Genetic Algorithms [43], introduced by Holland, search the solution space by mimicking the process
of evolution and natural selection. In GA, a population of candidate solutions, called individuals, are
iteratively combined and mutated, producing new fitter populations. The evolution cycle continues
until a stopping criterion, such as elapsed time or a satisfactory solution, is reached.

Nossal developed a preemptive genetic algorithm for scheduling periodic tasks with hard dead-
lines on multiprocessors considering exclusion and precedence constraints. The scheduling problem
is encoded by selecting start times for each task within a feasible interval, which are scheduled by
a least-laxity scheduler. Regarding performance, the algorithm suffers from premature convergence
to suboptimal solutions and produces poor results.

Ant Colony Optimization (ACO)

Ant Colony Optimization [29], introduced by Dorigo, mimics the complex behavior of ants when
discovering the shortest path to food sources. In the natural world, ants wander randomly until a
food source is found, immediately returning to their colony while laying pheromone trails. Other ants,
drawn to this pheromone, discover the same food source and go back to their colonies, reinforcing
the pheromone trail. Because pheromone evaporates, the shortest paths get marched more quickly
and thus become more saturated with pheromone, attracting more ants. ACO mimics this process
to converge on optimal solutions.

A partitioned scheduler, where each task is exclusively assigned to a processor, has been proposed
by Chen and Cheng [23]. The ACO algorithm assigns tasks to processors scheduled using EDF. To
optimize the task assignment problem, the ants travel through a utilization chessboard where each
column is a processor, and each line is a task. An ant travels across this chessboard in such a way
that only one cell is visited for each row, and the accumulative value of the visited cells is no greater
than one. A first-fit-decreasing heuristic was developed to guide the ants towards a good solution by
attempting to minimize laxity in target processors. Experimental results show this work performs
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better when compared to a GA, and an integer linear programming approximation algorithm. Run-
times are significantly faster than the GA and ILP solutions, on average ILP required 18 hours,
GA an hour, and ACO half an hour.

Laalaoui et al. propose a distance function to escape stagnation situations in non-preemptive
ACO scheduling solutions. The distance function selects the next task when more than one is
available, guaranteeing that when a task has missed its deadline it will be scheduled during the
next iteration.

Tabu Search (TS)

Tabu Search [36] by Glover enhances the performance of local search by blacklisting space regions
if no improvement move is available – hence becoming tabu.

After their work in [103], Tămaş-Selicean and Pop proposed a tabu search meta-heuristic [107] to
schedule mixed-criticality real-time embedded systems on distributed heterogeneous architectures.
Called Mixed-Criticality Design Optimization (MCDO), their proposal considers the following: (1)
assigning tasks to processors, (2) mapping tasks to partitions, (3) decomposing tasks to lower
criticality levels, (4) sizing and sequencing partition slots, (5) non-preemptive schedule tables for
each processor, such that development costs are minimized. To determine the non-preemptive
schedule tables a list scheduling heuristic within 5% of optimal execution time is used. Unlike TPO,
their previous approach, the mapping and partitioning of tasks are mutually considered, yielding
substantially better results. Experimental evaluations show that for small sets of three applications
with 50 tasks, TPO can produce an optimum solution with a runtime of 8 hours. For larger sets,
superb results are nevertheless produced.

Iterative Local Search (ILS)

Pop et al. developed a design optimization framework for multi-cluster embedded real-time systems
[80]. They treat several problems: (1) partitioning of system tasks to time-triggered (cyclic execu-
tive) and event-triggered (fixed priority), (2) non-preemptive partition and task mapping, and (3)
optimizing communication protocol parameters. The initial partitioning and mapping of tasks are
made by a list scheduling greedy approach. If the schedule is unfeasible, they apply a graph-based
iterative improvement algorithm called PMHeuristic. The heuristic performs changes to the parti-
tion and task mapping by selecting the unscheduled process graph which has the maximum delay
from its finishing time and its deadline, compiling a list of graph transformations that can reduce
this delay, and applying the one that produces its highest reduction. The heuristic terminates if
the schedule is feasible, or no improvement is found. Experimental tests show the framework has
good performance, delivering high schedulability, and run-times of 2 minutes for 100 processes, and
five hours for large sets comprised of 250 processes. Additionally, the tests show PMHeuristic has
the highest impact of all the applied heuristics on system schedulability.

3.3 In Review

In this state-of-the-art we have covered three types of algorithms: exact, heuristical, and meta-
heuristical.

The branch of exact scheduling algorithms includes a very diverse set of architectures ranging
from Petri nets, to branch and bound, SAT/ILP formulations, and model checking solutions. These
proposals all have their unique ways of modeling the scheduling problem, and yet, all share the
same drawback: they are exponential in relation to time and space. The computational demand to
produce a solution increases exponentially regarding the number of tasks and scheduling constraints
such that larger task sets become computationally infeasible. This is such a major restriction that
most authors either limit their contributions or experimental results to non-preemptive [67, 12, 49,
82], provide no execution time of their benchmarks [64, 113], or significantly reduce the input size
to small and manageable task sets [85, 37, 12, 49]. Even then, the process of generating a schedule
can be measured in the number of hours. None of the proposed methods attempt to minimize the
number of preemptions; some works [113] can be modified to include preemption costs, but even
without this constraint, the run-time required to generate a schedule is already very large. With
the constraint, the schedulers would be forced to scan larger portions of the exponential solution
space, further increasing run-time.

20



CHAPTER 3. STATE OF THE ART 3.3. IN REVIEW

The realm of meta-heuristics include solutions based on simulated annealing, genetic algorithms,
ant colony optimizations, tabu search, and iterative local search. Among all these methods, the
most effective scheduling heuristics appear to be simulated annealing and ant colony optimization.
Meta-heuristic algorithms are stochastic – pseudo-random and probabilistic –, and because of this
cannot provide any quality assurances. Two executions of the same input can generate different
results ranging in quality and run-time, or fail to find one at all. Nevertheless, these methods are
capable of providing optimal solutions for small task sets and excellent solutions for large task sets
comprised of 100+ tasks within 30 minutes [111, 23], a significant improvement over exact methods.
Unfortunately, the execution times can vary significantly according to the input, and run-times
measured in hours are not common. None of the solutions attempt to minimize preemptions, but
one of them attempts to minimize jitter [28], occasionally achieving optimal results.

Heuristic approaches are built to be executed online and run in constant or polynomial time.
Online scheduling of partitions is not allowed in IMA [5]; nevertheless, these algorithms describe
clever heuristics which may be useful in guiding towards an good or optimal schedule by pruning
chunks of the solution space. Indeed some authors couple heuristic methods with brute-force
solutions to improve efficiency when scanning the solution space [113].

Several heuristic contributions in the state-of-the-art can be used to reduce the number of
context switches. In LP-RM [72], Nasri and Kargahi observed that the task with the shortest period
in the task set is the most frequently scheduled task in the system, and by extension, the one
that generates the most context switches. Nasri and Kargahi suggest running lower priority tasks
between two jobs of this task; by scheduling two jobs of the same task at the extreme range of
their periodicity, two of its jobs execute back to back, removing a context switch from the system.
In P-RM [72], a limited preemption scheduler, Nasri and Kargahi increase the schedulability of a
task set by scheduling idle times; this idle-time insertion policy (IIP) can reduce the number of
context switches in a system by postponing the execution of a task which would be preempted.
In C-EDF [30], by Ekelin, a form of look ahead – clairvoyance – is used to determine if an idle
period is necessary to prevent a deadline violation. Lastly, these heuristic approaches are backed
by strong mathematical analysis tools such as response time analysis (RTA). RTA can be used to
extrapolate slack times, allowing the execution time of a task to be extended past the release of a
higher priority task, preventing its preemption without incurring a deadline miss for any task.

As far as we are aware, none of the solutions in the state-of-the-art completely address the
problem of producing a feasible schedule where preemptions are minimized within an acceptable time
frame. The authors of this thesis intend on developing a solution which addresses this problem with
a unique and novel approach where heuristics meet search space algorithms. By extracting system
properties that guide exact or meta-heuristic algorithms towards better solutions, the solution space
may be sufficiently pruned to make the problem treatable. Some authors have used this approach
before, but an exhaustive solution has yet to be made.
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Chapter 4

Project Plan

Contains a detailed description of the project’s plan.

4.1 Design

The design of the algorithm will consist of three phases. First and foremost is the extraction of
system properties that can help guide exact or meta-heuristic algorithms by pruning solutions which
can only be sub-optimal. Second phase is a formal analysis of these properties to evaluate if they
always lead to an optimal solution, or whether some criteria must be evaluated before applying
them. The end-goal of this phase is a set of heuristics which produce very good, if not optimal results
within well defined constraints. Finally, the third phase consists of assembling all the heuristics into
one algorithm; a state space search algorithm such as B&B, SAT, or MILP may be required. An
analysis of the heuristics is required to evaluate which algorithm suits best.

So far, the following properties have been identified:

1. Heuristic algorithms such as EDF can narrow the solution space towards good results.

2. Executing tasks on the edge of their periodicity can join two job releases of the same task
into one, removing one preemption from the system.

3. Scheduling idle times through idle-time insertion policies can reduce the number of context
switches in the system by postponing the execution of a task which would be preempted.

4. Extending the execution of a running task past the release of a higher a priority task – executing
it for as long as possible – may reduce the number of system preemptions. Schedulability
analysis tools such as response time analysis can be used to extract task slack times, ensuring
no deadlines are missed.

More research is required to collect more properties. Properties can be collected by analyzing
manual or automatically generated schedules. Schedules can be generated by one of the state-of-
the-art methods, but some modifications are required since these are not designed to minimize the
number of preemptions. Additionally, given the extra constraint, these tools may not produce a
result within an acceptable time frame.

4.2 Toolset Planning

A reference implementation of this work will be provided in Scala. The application will serve as a
test-bed for runtime experiments, where its performance will be compared against the state-of-the-
art. The source code will be licensed under a permissive license, allowing its use in closed source
commercial applications.

Scala [90] – SCAlable LAnguage – is a multi-paradigm general-purpose programming language
which supports both functional and object-oriented programming paradigms. Scala was chosen for
its popularity, stability, and ease of development; it is well designed, incorporating a strong static
type system, data streams, strong concurrency support, and a syntax which reduces boilerplate
code. Most importantly, Scala runs on the Java Virtual Machine (JVM) and permits seamless
interoperability with Java, one of the most popular languages in use today. To publish this work,
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Scala will be compiled to JVM bytecode, and the resulting binaries will be distributed to application
developers.

Other languages could have been used, but the authors of this work preferred an object-functional
oriented programming language. Within these languages, Rust was also a good candidate, but Scala
is a more mature and interoperable platform which most developers will be more familiar with.
Additionally, the Rust toolsets such as libraries and Integrated Development Environments (IDEs)
are relatively youthful. Other high performing yet more complex languages such as C and C++
were scrubbed over ease of development, expressibility, and simplicity over raw power.

4.2.1 Architecture

The architecture is a direct translation of the mathematical system model presented in section
5.1 - System Model. Given that we have yet to define an algorithm, and that its intricacies can
significantly impact the architecture, we cannot provide an exact definition of the architecture we
will use. Composed of only eight classes, the real complexity within the implementation lies behind
the algorithms used to implement its functionality. Figure 4.1 illustrated a package diagram for the
architecture.

Schedulers Package

Model Package

EDFSchedulerIScheduler

Task

RMScheduler

WritableScheduleScheduleJobScheduledJob

Figure 4.1: A package diagram for the scala implementation.

The architecture deviates from standard event-based schedulers where the scheduler is invoked
during the release of a task, or when the running task has finished its computation. Our schedulers
are clairvoyant; they have complete and exact system information. Hence, when scheduling a task,
they must decide for how long that task will execute for.

To guarantee full interoperability with Java, an object-oriented (OO) interface was adopted over
a functional one. Object-oriented good practices and design patterns such as SOLID [65], GRASP
[58], and Gang of Four [33] were used where applicable.

Figure 4.2 contains a class diagram describing the architecture. Class field visibility symbols
denote public ’+‘, protected ’*‘, and private ’-‘ respectively. Note that Scala automatically generates
setters and getters for class fields. Scala also utilizes immutability; hence all class public fields are
immutable, preventing accidental manipulation of these fields from outside its class space.

Each class has a unique and well-defined role; the architecture exhibits high cohesion and low
coupling. IScheduler defines a strategy of scheduling algorithms and was implemented as a trait
with no default methods to guarantee Java interoperability. The trait declares a generate method
which returns a Schedule and is defined by classes which implement this trait.

One alternative to this design would be to model the schedulers as high order functions, and
defined the IScheduler as a concrete class whose generate method would receive a higher order
function responsible for scheduling the tasks. Again, this design was disproved due to compatibility
issues.

The diagram includes two schedulers: EDFScheduler which describes an Earliest Deadline First
(EDF) scheduler, and RMScheduler which implements Rate Monotonic (RM) scheduler [63]. Each
of these classes is a schedule creator.

A WritableSchedule is a subclass of schedule which grants edit rights to schedules. The goal of
this abstraction is to prevent interface pollution on user level by isolating methods which are only
useful to schedule building entities in a single hidden interface. WritableSchedule is an information
expert in regards to scheduling: scheduling algorithms describe similar functions – such as get the
highest priority task, or the task with the earliest deadline –, the WritableSchedule aggregates these
methods within one class, maximizing code re-usability. Additionally, it also ensures that tasks
computational and timing constraints are respected.
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trait IScheduler

+ generate(task list)

class EDFScheduler class RMScheduler

class WritableSchedule

+ earliestReleasedJob
 + highestPriorityJob

 + earliestDeadlineJob
 + schedule(job)

abstract Schedule

+ length

+ isComplete 
 + schedule 

 + contextSwitchCount 
 + valid

class Task

+ name
 + release
 + period

 + deadline
 + wcet

+ utilization

*

1   

class Job

+ release 
 - remainingExecutionTime

+ schedule 
 + schedule(time) 
 + executionTime 

 + deadline

 *

1

class ScheduledJob

+ start 
 + end

 *

1

Figure 4.2: A class diagram for the scala implementation.

One alternative to the WritableSchedule would be to design a dedicated factory class responsible
for creating and instantiating schedules. We feel the current design strikes a better balance, as we
do not need to instantiate an extra class and is ultimately a simpler design.

The schedule object is immutable to userland. It maps the mathematical system model to an
object-oriented model. Users define task sets, composed of Tasks, which are provided to Schedulers
and bound to Schedules. From the task set, a list of Jobs are generated, whose scheduling windows
are defined by ScheduledJobs.

Call Sequence

To illustrate the call sequence to generate a schedule a sequence diagram is provided in figure 4.3.
The user begins by constructing the task set by instantiating tasks. Next, the user aggregates those
tasks within a list and invokes the generate method on the EDFScheduler with the list of tasks as
a parameter.

The EDFScheduler instantiates a WriteableSchedule, which calculates the length L, and the
released jobs within that frame. The EDFScheduler schedules the job with the earliest deadline
until all jobs are scheduled. Finally, a Schedule is returned to the user.

4.2.2 Code Quality and Testing

Unit testing will be performed using JUnit [50], a unit testing framework for the Java programming
language. Using JUnit allows tests to be carried out from Java, testing the interface’s interoperability
with it.

All classes will be unit tested. Code coverage will measure the quality of these tests, which
will be designed to ensure full code coverage, including hard use cases with high complexity where
failure probability is highest.
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Client Task EDFScheduler WritableSchedule Job ScheduledJob

instantiate tasks

instantiate

generate(tasks)

instantiate

instantiate job list

earliestDeadlineJob()

schedule(job)

instantiate(job)

Until all jobs have been scheduledUntil all jobs have been scheduled

schedule

Figure 4.3: A sequence diagram for the scala implementation.

4.3 Schedulability Analysis

We will attempt to devise formal proofs of our algorithm’s optimality and provide a Big-O complexity
analysis. The algorithm is deemed optimal if it produces a feasible schedule where all tasks timing,
exclusion, and precedence constraints are satisfied while the number of context switches is minimized.

If it is not possible to develop formal proofs, statistical tests will be devised where the proposed
solution will be compared to the state-of-the-art in regards to the number of context switches with
real-world task sets, particular cases, and random task sets generated by the UUniFast algorithm
[15] and/or Stafford’s randfixedsum [99].

This test consists of proving the hypothesis that, on average, the proposed algorithm generates
fewer context switches than another algorithm from the state-of-the-art. The number of context
switches is a quantitative discrete variable since, for a given task set, the number is finite and
countable. Additionally, because there is a meaningful absolute zero, it is scale ratio data.

We will use the Shapiro-Wilk test to see if our population is parametrical, or in other words
evenly distributed. If this is the case both the paired sample t-test and the Wilcoxon signed rank
test will be used. Using both tests increases our confidence in the results. However, if the data is
not parametrical only the Wilcoxon signed rank test can be used.

4.4 Experimental Results

In addition to building a feasible schedule, it must also do so in a reasonable amount of time. The
proposed solution will be compared against the state-of-the-art regarding the computational time
required to produce a solution with real-world, particular, and random tasks sets generated by the
UUniFast algorithm [15] and/or Stafford’s randfixedsum [99]. The running time should be as small
as possible; ideally, it would be within minutes, but given the huge solution space this might not be
possible. The running time is type discrete continuous since the completion time for a given task
set can be half a second. Additionally, because there is a meaningful absolute zero, it is scale ratio
data. The same procedure from the schedulability analysis will be used to prove the hypothesis
that the proposed algorithm is faster than another from the state-of-the-art.
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Chapter 5

A new Scheduling Algorithm

In this chapter a new state-of-the-art scheduling algorithm is introduced.

5.1 System Model

We consider a uniprocessor system executing a set of hard real-time tasks denoted by τ : {τ1, ..., τn}.
Tasks are periodic modeling computations that are cyclically executed.

Each periodic task τi in the task set is identified by the tuple (Ri, Ci, Ti, Di) where Ri ∈ N is
the first release of τi, Ci ∈ N is the worst-case execution time (WCET), Ti ∈ N is its period, and
Di ∈ N is its deadline. In this document, we assume that Ci ≤ Di and Di ≤ Ti.

The total utilization contribution of a task, which represents the CPU portion occupied by the
task, is given by equation 5.1 [35].

Ui =
Ci

Ti
(5.1)

The utilization U of set τ is given by equation 5.2 [35].

∀τ, U =

n
∑

i=1

Ci

Ti
(5.2)

Dependency or exclusion constraints may be defined between tasks. A task τi is said to precede
another task τj , τi 7−→ τj , if τj can only begin its computation after τi. Task dependencies are
transitive, τ1 7−→ τ2 ∧ τ2 7−→ τ3 ⇒ τ1 7−→ τ3. A task τi is said to exclude another task τj , τi ⊗ τj ,
if no execution of τj can occur during the execution of τi. That is, τj must either complete it’s
execution before τi starts, or τj must wait for τi to complete its execution before to start its own.
Tasks exclusions are symmetric τi⊗ τj ⇔ τj⊗ τi ; if during the execution of τi, τj must be excluded,
then the reverse it also true.

Cyclic Executive Model

A cyclic executive schedule ̟ is composed of a set of hard real-time tasks τ , a set of their constraints
R, and a set of scheduled jobs executions E. The length of the cyclic executive L, also called major
frame, is defined by the Least Common Multiple (LCM) of all system tasks.

J is the set of jobs released by all tasks within L, and is denoted by J : {J1, ..., Jn}; each job is
represented by Jn.i, where n is the nth release of task τi, and is characterized by the tuple (rn.i, dn.1,
ci), where rn.1 ∈ N is the release time, dn.i ∈ N its deadline and ci the remaining execution time
of Ji which is initialized with Ci. Because tasks are periodic, we have rn.i = rn−1,i + Ti; further,
dn.i = rn.i +Di. Within the major frame each task τi has exactly Ni jobs, as defined by equation
5.3.

∀τi ∈ τ,Ni =
L

Ti
(5.3)

The schedule is deemed feasible if, for all tasks in the set τ , each job is scheduled within its
predefined time and functional constraints and no two jobs execute at the same time.
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The set of restriction constraints � is defined as �: {�1, τ1 ⊗ τ2, ...,�n}. The set of executives
(scheduled job executions) E is comprised of scheduled jobs Ei

j : (sj.i, fj.i), where i is task τi and
j the jth job of the task τi, sj.i ∈ N is the execution start time, and fj.i ∈ N is the finish time of
that execution.

Example

Let τ be a set of two real time tasks, {τ1, τ2}, where τ1 = (0, 1, 5, 5), and τ2 = (0, 5, 10, 10), with
the following restrictions R = {τ1 ⊗ τ2}. These tasks and restrictions are presented in tabular form
on table 5.1 and 5.2, respectively.

τ Ri Ci Ti Di

τ1 0 1 5 5
τ2 0 5 10 10

Table 5.1: System Tasks

� τ op τ
�1 τ1 ⊗ τ2

Table 5.2: System Restrictions

Ji τj ri di
J1 τ1 0 5
J2 τ1 5 10
J3 τ2 0 10
J4 τ1 10 15
J5 τ1 15 20
J6 τ2 10 20

Table 5.3: System Jobs

The systems major frame, L, is equal to the LCM of (5, 10), which is 10. By equation, 5.3 τ1
will release two jobs in L, and τ2 will release one, as demonstrated in table 5.3.

Ei
j sij f i

j

E1
1 0 1

E2
1 1 6

E1
2 6 7

Table 5.4: Example sched-
ule in tabular form

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

Figure 5.1: Example schedule in diagram form

The schedule, generated using preemptive rate monotonic [63] is represented in table 5.4 and
figure 5.1. In Figure 5.1, a task release is represented by ↑, a task’s deadline is displayed by ↓, and ◦
signals the end of computation for that job. The figure represents two cycles of the cyclic executive,
as it is twice its length L.

5.2 A new Slack Calculator

Paramount to generating a correct schedule is the concept of slack. Slack is defined as the amount
of time a job’s execution can be postponed without causing its or other job’s deadlines to be missed.

The use of an exact and precise algorithm to calculate slack can significantly prune the research
space to generate a schedule by cutting invalid branches at their roots, thereby preventing time-
consuming look ups that can only produce infeasible solutions.

In this section, we present an exact and precise slack calculating algorithm that is efficient and
independent of the system’s schedule policy.

To construct such an algorithm, we must determine how much we can delay the execution of
a job until its or other deadlines are missed. In addition, we also require the tools to manipulate
and update these slack values online as the schedule is being built. We must be able to not only
determine if the current schedule is valid, i.e., if the incomplete schedule is a subset of a valid
complete schedule; but also be able to manipulate the schedule by replacing jobs or inserting idle-
periods; these operations are useful whenever a scheduler wishes to change the order of execution
within a schedule.

We will start by explaining how the maximum slack of a job can be compute. We have developed
two distinct methods. The first being algorithmic in nature while the second is a formal mathematical
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approach. Then, we will explain the necessary mechanisms to manipulate slack when constructing
a schedule.

5.2.1 Extracting Slack - Algorithmic Approach

Asserting the last instant where a job must begin to execute so that all timing requirements are
respected is not a trivial problem. Intuitively, a job should always start executing before or at its
deadline minuts its execution time. The slack of that job must therefore be equal to 0 at that
instant. However, in most cases, a job may already have a slack of zero well before that instant.For
example, a job can have a slack of slack of zero – it must execute promptly upon its release – if
it is foreshadowed by a busy period with the release of other shorter-lived or high utilization jobs,
such as τ3 in figure 5.2.

One approach to determine a job’s slack is to try postpone its execution until a deadline is
missed. Although simple, this method is computationally complex as not only the first, but multiple
deadlines can be missed in the future, requiring continuous adjustments to the slacks of all tasks
before it. Because there is a strict forward dependency where the knowledge of future releases is
required, a smarter approach to the problem of calculating slack is to extract it from the end of
the hyper period instead.

Following this method, a scheduler would schedule tasks from the end of the hyper period
under latest release and deadline first priority order, implicitly delaying their execution as long as
possible. The maximum slack of a job would then be the starting time of its first execution s1.j .
Named reverse latest release first (rLRF) or reverse earliest deadline first (rEDF), this scheduler is
presented in algorithm 6, along with a complexity analysis is provided in Appendix 7. An example
of the rEDF scheduling policy is included in figure 5.2, where it is clear that all jobs are delayed for
as long as possible. Table 5.5 contains the latest start time of all jobs since time 0 under column 1
– (A), and the slack relative to the job’s release time Slacki,j .

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

τ3

τ4

Figure 5.2: An example of reverse EDF scheduling

J Ai.j Slacki,j
τ1 1 1
τ2 7 2
τ3 5 5
τ4 15 3

Table 5.5: The task’s slack

During high-load busy periods, a job Ji may have its slack impacted because of: (1) higher
priority jobs that must execute within the window of Ji, or (2) lower priority jobs that must be
partially executed within the window of Ji. In particular, a job Ji may have a slack of zero, and
still, yield the processor to a higher priority release contained within its execution window (1); in
other words, having a slack of zero at time T does not mean that the task must execute at time T.
Figure 5.2 contains examples of both scenario 1 as job τ2 and scenario 2 as job τ4.

For scenario 1, where τ3 relinquishes the CPU to τ2 at time 7, the slack of τ3 is zero and
cannot be allowed to become negative. This is because the execution of τ2 is already accounted
for in τ3’s slack. At runtime, given an arbitrary execution order, this scenario may not be easily
distinguishable from the one of τ1 – which is not accounted for in τ3’s slack. To keep the method
simple and coherent with the mathematical approach, any job Ji that must execute within the
execution window of another job Jj is accounted for in Jj ’s slack. Hence, the slack of τ3 must not
only account for the execution of τ2 but also the execution of τ1, τ3’s slack then becomes 4 instead
of 5. During runtime, if a job Ji must execute within the execution window of another job Jj , then
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the execution of Ji does not decrease the slack of Jj ; in this example, the execution of τ1 and τ2
do not reduce the slack of τ3.

Scenario 2 occurs in figure 5.2 due to job τ4, which must be partially executed in τ3’s window.
These cases are intrinsically covered because they can only occur after the first execution of the
job whose slack is being computed.

Hence, the slack of a job J can be determined by the start time of its first execution s1.j when
scheduled under reverse earliest deadline first, minus its release rj , minus the execution of any other
job that must execute within its release and deadline boundaries that is scheduled to the left of
s1.j , as formally defined in equation 5.4.

let sj be the starting time of the first execution of job J

let X ≡ {Ji ∈ J | ri ≥ rj ∧ di ≤ dj ∧ si < sj}

then Slackj = sj − rj −
∑

Ji∈X(j)

si − fi
(5.4)

There are two methods to extract this information: (1) extract the slack from a schedule
produced by a reverse earliest deadline scheduler, or (2) extract the slack while simulating a reverse
earliest first deadline scheduler.

(1) Extracting the slack from a schedule produced by a reverse earliest first deadline scheduler

Algorithm 1 Computes the slack of a job set by extracting them from a schedule produced by a
reverse earliest deadline first scheduler.

Require: a schedule produced by reverse earliest deadline first
function extract slack(jobs, schedule)

for all job← jobs do
start← the start time of the first execution of job in schedule
slack ← start− job.release
for all execution← schedule do

if execution.start≥ job.release and execution.end≤ job.deadline and execution.start
< start then

execution length← execution.end − execution.start
slack ← slack − execution length

end if
job.slack ← slack

end for
end for

end function

Algorithm 1 has a time complexity of O(J × (E)), where E is the number of executions in the
schedule and J is the total number of jobs in the task set. This is easily determined because, in
order to extract the slack for each job J , two iterations of the rEDF schedule are required: one to
find the first execution of job J , plus another to find any executions to its left that are contained
within the execution window of J .

However, if we consider the cost of generating the reverse edf schedule using algorithm 6 in
Appendix A, then the final complexity is O(J × logJ +E × (T ) + J × (E)) since we must generate
the schedule via reverse EDF first with a cost of J × logJ +E × (T ) 1.

Although inefficient, the algorithm is simple and nevertheless useful to verify more complex
algorithms.

(2) Extracting the slack while simulating a reverse earliest first deadline scheduler

Algorithm 2 computes slack exactly like a reverse EDF scheduler would produce a schedule. By
merging the steps of generating a reverse EDF schedule and the steps required to extract the slack,
it is possible to achieve a time complexity that is asymptotically closer to O(E).

1Appendix 7 contains a detailed complexity for rEDF in algorithm 6.
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The algorithm ”schedules“ jobs from the end of the hyper period to the beginning, ”scheduling“
the job with the latest deadline that has the earliest release. Once a job J is completed, its slack is
computed as its release time minus the start time of its first execution s1.j . The job J is appended
to a list of jobs that are completed, but still released; if a job whose release and deadline bounds
are contained within J ’s is executed, this execution period is subtracted from J ’s slack.

Algorithm 2 Computes the slack through a modified reverse earliest deadline first scheduler.

function compute slack(task set)
job list← task set.jobs
sort job list by (job ⇒ −job.deadline, −job.release, job.task.id) ⊲ Sort in Reverse EDF
finished jobs← empty list
time← job list.first.deadline ⊲ Schedule from the end of the hyper period
repeat

time← min(head job.deadline, time) ⊲ Determine the earliest time there are active jobs
job← job list.iterator

.takeWhile(_.deadline ≥ time)

.maxBy(job⇒ job.release, − job.deadline) ⊲ Get the active job with the latest
release, using earliest deadline as a tie breaker

runtime← job list.iterator
.dropWhile(_.deadline ≥ time)
.takeWhile(_.deadline > time − job.execution)
.find(iJob ⇒ iJob.release > job.release or iJob.release = job.release and

iJob.deadline < job.deadline)
.getOrElse(min(time − _.deadline, job.execution), job.execution) ⊲ Calculate

runtime when a higher priority job is released within the execution of Job

time← time− runtime
job.schedule(runtime)
if job.finished then

job.slack ← time− job.release ⊲ Set the job’s slack to time minus the job’s release
job.execution ← job.task.wcet
remove job from job list
add job to finished jobs

end if
for all completed job← finished jobs do ⊲ Update the slack of completed jobs if the

completed job is within their release and deadline bounds
if completed job.release > time then

remove completed job from finished jobs
else if job.release ≤ completed job. release and job.deadline ≤ completed job.deadline

then
completed job.slack ← completed job.slack −runtime

end if
end for

until job list.empty
end function

The algorithm has a complexity of O(J × logJ +E × (T + T )), where J is the total number of
jobs, E the number of executions, and T is the number tasks in the system. J × logJ is the price of
sorting the job list, and E × (T ) is the cost of, for each scheduled execution, resolving the highest
priority job and if its execution is interrupted with the release of a higher priority job.

Algorithm 2 could have a slightly improved average time complexity by moving released jobs
to a sorted tree, improving the complexity of finding the latest release from linear to logarithmic.
However, it would deteriorate the worst-case complexity, since in the worst case all tasks are released
at the same time, and all of them need to be sorted in T × logT .
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5.2.2 Extracting Slack - Formal Approach

The formal method produces the same slack values through a mathematical approach. The method
is based on understanding how a job Ji can have its slack reduced. There are two possibilities, (1)
because of body jobs or (2) because of carry out jobs.

A Body job Jj reduces the slack of another job Ji because it must execute within the release
and deadline bounds of Ji, that is, rj ≥ ri ∧ dj ≤ di (see Fig. 5.3) . The combined execution of all
jobs within the window of a job Ji is known as body workload W b.

Carry out slack, or carry out workload W co, is caused by a job Jj whose deadlines are later
than the deadline of Ji but whose execution must overlap with the execution window of Ji (see
Figure 5.4). A job Jj may generate carry-out slack when: rj > ri ∧ rj < di ∧ di < dj .

0 2 4 6 8 10

τ1

τ2

Figure 5.3: An example of body workload gener-
ated by τ1 on τ2

0 2 4 6 8 10

τ1

τ2

Figure 5.4: An example of carry-out workload
generated by τ1 on τ2.

Figure 5.3 includes an example of W b, where the slack of τ2 is reduced from 7 to 5 since τ1 is
within its execution window and has a worst case execution time of 2, and τ1 has a slack of 2 since
that is the computational requirement of τ1. An example of W co is provided in figure 5.4, where τ2
has a slack of 2 because τ1 pushes its execution backward, and τ1 has a slack of 1.

To determine the body workload W b, we need to ascertain how many releases of a task τ are
within the window of execution of a job J . This information can be provided by dividing the length
of the execution window of J by the period of τ . However, because the first release of τ may not
align perfectly with J ’s, we need to consider the offset between the first release of task τ with that
of job J . In addition, a task’s deadline can be shorter than its period; this can be considered by
subtracting the difference between Dk and Tj of τj from the execution window once since this
scenario occurs at most one time within the window of any job. Finally, because only the jobs that
have both their released and deadline within J’s execution window need be considered, we take the
floor of the result of the operations described above.

Condensing all the previous steps leads to equation 5.5, which computes the W b of a job Ji,
where Ti is the period of the job whose slack is being calculated, oj,i is the offset of the first release
of task τj in relation to job i, and dj and Tj and Cj are the deadline, and period, and wcet of τj ,
respectively.

W b
Ji

=

τj 6=τi
∑

τj∈τ

⌊

Ti − oj,i + Tj −Dj

Tj

⌋

× Cj

oj,i = Fr(j, i)− rj

(5.5)

To compute oj,i, one needs to know the first release of task τj within a window of execution of
Ji. We note that instant Fτj.i , and we compute it with equation 5.6, which returns Rj if the very
first job of τj is released after Ji’s release, or calculates the nth release of τj if it is not.

Fr(j ∈ τ, i ∈ J) =

{

⌈

ri−Rj

Tj

⌉

× Tj +Rj ri > Rj

Rj ri ≤ Rj

(5.6)

To determine the carry out workload W co, we must know which job Jj , if any, pushes Ji the
most. This can be computed by determining how much a job Jj interweaves with Ji’s execution
window and subtracting the time Jj ’s execution can be delayed. Following this reasoning, equation
5.7 computes the W co of a job, where r and d are the release and deadline of a job.
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let X(i) ≡ {Jj | ri < rj < di < dj} then W co
Ji

= max

{

max
Jj∈X(i)

{di − rj − Slackj} , 0

}

(5.7)

Note that each task τj in τ , may have at most one job in X(i). This job is the last job tauj

released in the execution window of Ji. Hence, it is convenient to be able to compute the last
deadline of a task τj within a window of execution of a job, denoted by Ji Ld(τj , Ji), which can be
computed by equation 5.8.

Ld(j ∈ τ, i ∈ J) =

{

⌈

di−Rj

Tj

⌉

× Tj +Rj −Dj di ≥ Rj

∅ di < Rj

(5.8)

A higher bound on the slack of a job can be computed with equation 5.9; because equation 5.7
requires the slack of all potential carry out candidates, equation 5.9 is recursive. However, if the
slack computation is done in rEDF order, it is guaranteed that all jobs that may cause carry out
workload on Ji have been processed before Ji.

SlackJi
≥ Di − Ci −W b

Ji
−W co

Ji
(5.9)

Although equation 5.9 is correct, because equation 5.5 shadows idle periods that may occur
within the window of a job – where it is not possible to execute anything – the value of Xco may
prove to be erroneous, and by extension, equation 5.9 is incorrect. An example of this is included
in figure 5.3, where the slack of τ2 is equal the execution of τ1 + τ2 = 5, however, within τ2, there
is computation that must begin to execute at time 4 at the latest, which is 1 time unit before 5.
The problem is illustrated in figures 5.5 and 5.6, where figure one accurately describes the slack of
τ2 and figure two describes slack as seen by its numerical value of 5.
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Figure 5.5: Slack without idle-period shadowing
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Figure 5.6: Slack with idle-period shadowing
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Figure 5.7: An example task set scheduled under rEDF priority order.

Another problem of equation 5.9 is that the some jobs can be accounted twice, once in equations
5.5, and once in equation 5.7. This is a problem because it produces a lower-bound on the slack of
a task. An example of this phenomenon is exemplified in figure 5.7, where the second release of τ3
is carried out by the second release of τ4; both jobs sharing two releases of τ1 and one release of τ2
within their execution windows. In addition, the reverse slack of this release of τ3 by τ4 also suffers
from the idle-time shadowing phenomenon explained earlier, as there is nothing to execute at time
24, but nevertheless more workload within the execution window of τ4.
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let X(i) ≡ {Jj | ri < rj < di < dj} then W co
Ji
(Jj) = di − rj − Slackj (5.10)

W b
Ji

=

τj 6=τi
∑

τj∈τ

⌊

Ti − oj,i + Tj −Dj

Tj

⌋

× Cj (5.11)

W bco
Ji

= min
Jk∈X(i)

{

J 6=Ji
∑

JJ∈J

(

min

{⌈

rk − ri − oj,i
Tj

⌉

,

⌊

Ti − oj,i −Dj + Tj

Tj

⌋}

× Cj

)

−W co
Ji
(Jk)

}

(5.12)

SlackJi
= Di − Ci −

{

min
{

W b
Ji
,W bco

Ji

}

∃ Ji ∈ X(j) : W co
Ji
(Jj) > 0

W b
Ji

∄ Jj ∈ X(j) : W co
Ji
(Jj) > 0

(5.13)

To prevent multiple jobs from being accounted twice, the window of execution of a job Ji must
be reduced such that it no longer interweaves with its the carry-out job Jj , if such job exists. To fix
the idle-time shadowing issue, the W co and W b must be computed for all jobs that Ji carries out,
instead of just the one that it apparently carries out the most; in addition, we must also consider
the case where the overall slack is less if we do not consider the W co workload. Such is the case in
example 5.7, where ignoring the second release of τ4 produces the correct slack value for the second
release of τ3.

The final equations to compute the slack are presented throughout equations 5.10 to 5.13.
Equation 5.10 computes the carry out workload on a job Ji caused by job Jj ; unlike the previous
equation 5.7, this one will return a negative integer if the workload extends past its deadline.
Equation 5.11 computes thed body workload of a job, ignoring any carry out workload.

Equation 5.12 computes the total workload impacting the slack of a job Ji, eliminating the
pitfalls of previous equations. By taking the minimum amount of releases between the execution
window of Ji \Jk – excluding the workload that is already considered in the carry out job Jk –, and
the complete window of Ji, the minimum operator effectively excludes jobs which are only partially
within the window of Ji, i.e., such as those that extend past its deadline. Notice the ceiling operator
being used during the calculation of Ji \ Jk window; this is to include jobs that bridge from Ji’s
window to Jk’s window.

Finally, equation 5.13 computes the slack of a job Ji by taking the minimum of its W b and
W bco workload, or by W b if no carry out jobs exist. The equation has a worst-case time complexity
of O(J × (T 2 + T )), where J and T are the number of system jobs and tasks, since, for each job
Ji, and for each task in the system τk, we must compute the W bco of Ji assuming it carries out τk
with a cost of O(T 2), plus one more iteration of all system tasks assuming that no carry out job
Jk exists.

5.2.3 Online Slack Manipulation

As time passes and jobs are scheduled, the slack of all jobs changes must be updated to remain
coherent. At runtime, jobs can be in one of three states, pending – unreleased, active – released, or
completed – finished.

The slack of an active or pending job Jj is reduced when, within its execution window, an
action which is not considered in its slack occurs. This can be one of two cases: (1) an idle period
is scheduled, or (2) a job Ji which is not accounted for in Jj ’s slack is scheduled. As defined in the
previous sub-sections, all jobs within the execution window of a job Jj , expressed mathematically as
{Ji | ri ≥ rj ∧ di ≤ dj}, are accounted for in its slack. Hence, all the jobs which are not within this
group and are scheduled while Jj is in active state must reduce Jj ’s slack. As proved in theorem 1,
these jobs Ji are defined as any job Ji ∈ {Ji | ri < rj ∨ di > dj} that nevertheless interweaves with
Jj .

Jobs Ji which reduce the slack of Jj 1. Let Ji, Jj ∈ J
Let Ji /∈ {Ji | ri ≥ rj ∧ di ≤ dj}
Then Ji ∈ {Ji | ¬ ri ≥ rj ∧ di ≤ dj}
¬ ri ≥ rj ∧ di ≤ dj ≡ ri < rj ∨ di > dj
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Then Ji ∈ {Ji | ri < rj ∨ di > dj}

Determining the interweave or overlap O between a job and an execution window starting at s
and ending at f can be determined with equation 5.14. In the interest of abbreviation, the equation
also contains alternate definitions to calculate overlap between: a job and an execution window,
between two jobs, and between an execution and a job.

O(si ∈ N, fi ∈ N, sj ∈ N, fj ∈ N) = max {0,min {fi, fj} −max {si, sj}}

O(i ∈ J, s ∈ N, f ∈ N) = O(ri, di, s, f)

O(i ∈ J, j ∈ J) = O(ri, dj , rj , djh)

O(Ji ∈ J,E ∈ E) = O(sri , fdi
, se, fe)

(5.14)

Slack manipulation is comprised of the following write operations: idle time scheduling, job
scheduling, job de-scheduling, job re-scheduling, and job rollback, as defined below; where the last
4 are exclusive rewrite operations. In addition, it is possible to verify if a schedule is valid, i.e., if it
is subset of a complete and valid schedule; to extract the maximum run-time of a job at time T ,
such that all jobs meet their timing requirements; and to compute the maximum idle period at a
given time.

For all these operations, it is only required to iterate at most one interweaving job of each
task τ , be it an active job if one exists, a pending release, or none at all when all jobs of τ have
been processed. This is based on the tautology that if a scheduling move is valid for the current
active/pending release of a job, then it does not impact its next sequenced job; since doing so
would imply an invalid move where the slack of its previous release would become negative. The
corollary of this tautology is that all operations defined here can be performed in O(T ), where T
is the number of system tasks.

Determining if a schedule is valid

A schedule is valid if no job exists with negative slack. Indeed, if a job has a negative slack, then by
definition of the slack, this job cannot complete by its deadline. This is expressed mathematically
as a property in equation 5.15.

∀Ji ∈ J, ∀t >= 0 : Slacki(t) ≥ 0 (5.15)

Extracting the maximum runtime of a job

Using the notion of slack and valid schedule defined above, we can now easily compute the maximum
amount of time a job can execute without making any other job miss its deadline. This value depends
on the slack of all the other jobs active at the time t. More specifically, the maximum runtime
Rmax

Ji
(t) of a job Ji at time t, is equal to the minimum slack of all active jobs below its priority

order. In other words, the maximum runtime of a job is equal to the minimum slack of all released
higher priority – earlier deadline – jobs, as defined in equation 5.16.

let Z(i) ≡ {Jj | cj > 0 ∧O(i, j) > 0 ∧ dj < di}

then Rmax
Ji

(t) = min
Jj∈Z(i)

max{rj − t, 0}+ Slackj
(5.16)

Computing the maximum idle period

Similarly to the maximum execution time of a job at an instant t, we can compute the maximum
amount of time the processor can remain idle from time t onward without having any job missing
its deadline. The maximum idle period at time t, Imax

t , is equal the minimum slack of all active
jobs, as defined in equation 5.17.

let (i ∈ P ) ≡ {Jj | cj > 0 ∧ (rj < t ∧ dj > t ∨ rj ≥ t)}

then Imax(t) = min
Jj∈P (t)

max{t− rj , 0}+ Slackj
(5.17)
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Scheduling a job

To schedule a job Ji at time t for a duration N , the slack of all active jobs Jj that interweave with
Ji where Ji is not accounted for in Jj ’s slack must have their slack reduced by N as described in
equation 5.18.

let U(i ∈ J) ≡ {Js | cs > 0 ∧O(i, t, t+N) > 0 ∧ (ri < rj ∨ di > dj)}

then ∀ Jj in U(i) : Slackj =

{

Slackj −N rj ≤ t

Slackj − (t+N − rj) rj > t

(5.18)

Scheduling an idle period

To schedule an idle period with a duration of N at time t, all active jobs that overlap with that
period must have their slack reduced in equal measure to their overlap with the idle period being
scheduled, as defined in equation 5.19.

let E(i ∈ J) ≡ {Jj | cj > 0 ∧ (rj < t ∧ dj > t ∨ rj ≥ t ∧ rj < t+N)}

then ∀Ji ∈ E(i) : Slacki = Slacki −O(i, t, t+N)
(5.19)

De-scheduling a job

When a job Ji is de-scheduled upon a decision made by the scheduler, its execution is replaced by
idle time, i.e, it is removed from the schedule. Hence if Ji did not reduce the slack of another active
job Jj , the slack of Jj must be reduced by the duration of Ei, as defined in equation 5.20.

let A(i ∈ J) ≡ {Jj | cj > 0 ∧O(i, j) > 0 ∧ ri ≥ rj ∧ di ≤ dj}

then ∀Jj ∈ A(i) : Slackj = Slackj − fi − si
(5.20)

Rescheduling a job

Rescheduled is defined as moving one execution from one place to another. When a job Ji is
rescheduled, the slack impact on another active job Jj is equal to the difference between the overlap
of the old and the new executions, Eo and En, in relation to the execution window of Jj , if Ji is
not accounted for in Jj ’s slack. The operation is defined mathematically in equation 5.21.

let X(i ∈ J) ≡ {Js | cs > 0 ∧O(Ji, Jj) > 0 ∧ (ri < rj ∨ di > dj)}

then ∀ Jj in X(i) : Slackj = Slackj −O(j, Eo)−O(j, En)
(5.21)

Rolling back a job

This operation is similar to un-scheduling a job except that instead of replacing the execution
E with an idle period, its effects are canceled as if the execution E never occurred in the first
place. This operation effectively allows a scheduler to ”roll back time“, as repeated invocations cause
completed jobs to be moved to the active and pending states.

let Y (i ∈ J) ≡ {Jj | cj > 0 ∧O(i, j) > 0 ∧ (ri < rj ∨ di > dj)}

then ∀Jj ∈ Y (i) : Slackj = Slackj +O(j, se, fe)
(5.22)

5.3 A new Scheduler

Determining the execution order of a given non-preemptive task set such that all tasks are scheduled
non-preemptively is not a trivial problem. Even more complex is its preemptive equivalent, where
not only the optimal execution order must be found, but also the duration of each execution that
composes that order.

The problem can be seen as finding the largest continuous regions to fit a given job, while
considering all other jobs have the same requirement, such that a global optimum is found where
the total number of context switches between jobs is minimized. Because the execution window
of a job can interweave with that of other jobs, the number of permutations of possible execution
orderings and durations quickly grows, producing a highly intractable research space.
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This high complexity does not, on its own, imply that there cannot be an algorithm capable of
efficiently navigating the search space to find an optimal, or a good approximate, solution within a
reasonable amount of time. The algorithm defined here, is our attempt at such a task.

At a high level, the main reasoning behind our algorithm is to, at any time t, produce the optimal
solution up to t in regard to the number of system preemptions. As jobs are scheduled, t increases,
and the window of execution grows. Given the newly available space, the schedule may no longer
be optimal, and a transformation may be required to bring the schedule back to a near optimal
state. By starting with a small window whose optimal solution can more easily be established, and
expanding that window iteratively, the efficiency/time with which a good solution can be found
increases.
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Table 5.6: Example task set - 1
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Table 5.7: Example task set - 2

To illustrate this logic, an example task set is scheduled in figure 5.6 to 5.9. The task set is
composed of four tasks, where τ1 and τ3 have a worst case execution time of 4, and τ2 and τ4 a
wcet equal to their execution window. In figure 5.6, the taskset is scheduled up to time 6, and at
this time the scheduler is only allowed to play with an execution window of 6. By looking at the
figure, it is clear that this is the optimal solution within a window execution of that size, as τ2 must
execute from 2 to 4, hence preempting τ1. As the execution window increases to 8, a preemption
can be removed from the system by joining the two executions of τ1 at time [4,8]. In addition,
because of the slack, we know this schedule is a subset of a valid and complete schedule where the
computational and timing requirements of all jobs are satisfied. The resulting schedule is illustrated
in figure 5.7.

By postponing the execution of τ1 by 2 time units, the slack of τ3 is reduced to zero at time
8, meaning that τ3 has to execute immediately or it will miss its deadline bound. This leaves only
one valid execution order, as all active or pending jobs have a slack of 0; this ordering is shown in
figure 5.8.

Unfortunately, the previous postponement of τ1 by 2 time units pushes the execution of τ3
into a preemption zone generated by multiple releases of τ4. Optimal for a window of 0-8, the
postponement is no longer so when the window of execution is extended to the entire schedule
length (or major frame) of 15. A transformation has to be applied to pull τ3 out of the preemption
zone by reverting τ1’s postponement; this lowers the total number of context switches from 8 to 7 –
which the optimal number for this job set –, leading to the result illustrated in figure 5.9.

An interesting property of this approach is its inherent greediness. Faced with the choice of
scheduling another task, or reducing a preemption by inserting an idle period, the scheduler took
the one that reduced the total number of system preemptions that can nevertheless produce a
valid schedule. Unlike short sighted greedy algorithms, this approach is recoverable; the algorithm
may detect that the previous local optimum is not part of the global optimum and reverts the
transformation.

Naturally, the optimality of the solution depends on how each scenario is treated. Many of
which may not be easily defined or recoverable in the event they are not part of the global optimum.
While we do not claim the solution proposed here is optimal, we do believe it is an approximate of
such solution.

36



CHAPTER 5. A NEW SCHEDULING ALGORITHM 5.3. A NEW SCHEDULER

0 2 4 6 8 10 12 14

τ1

τ2

τ3

τ4

Figure 5.8: Example task set - 3
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Figure 5.9: Example task set - 4

Algorithm 3 The skeleton of the scheduling algorithm.

function schedule(taskset)
while schedule is not complete do

if there are no active tasks then
defragment the schedule

else if can apply a transformation then
apply a transformation

else if can complete a job before any higher priority job is released then
complete the job with the largest execution time

else
schedule the earliest deadline job until a higher priority job is released

end if
end while

end function

5.3.1 Algorithm Structure

A skeleton of our algorithm is presented in Algorithm 3, where upon the existence of active jobs in
the current iteration, a transformation that reduces the overall number of system preemptions is
applied, if possible. A transformation can include a combination of many actions, such as replacing,
shrinking or extending jobs (see detailed descriptions of those actions below). When a transformation
is not applicable, the longest task that can be completed is scheduled. This is another example of
a greedy and recoverable action; the largest jobs in the system are generally the most difficult to
schedule without preemptions which is why they are prefered avor other potentially more urgent
jobs (i.e., jobs with smaller deadlines). However, if the arbitrary choice of execution the job with
largest execution time leads to unnecessary preemptions later in the schedule, that decision can
easily be changed for smaller tasks through one of the schedule transformations mentioned above.

When the release of a high priority – early deadline – job is imminent, making the completion
of any job is impossible, the active job with the earliest deadline is scheduled until the release of
that job. In these scenarios, it is unclear which job should be scheduled, and transformations may
replace the job at a later time if a better fit discovered in the future.

When no active jobs exist, the scheduler attempts to make the best use of this idle period by
defragmenting any remaining preemptions in the schedule so far. This is an expensive operation
that attempts to combine execution pairs of each job using brute force. Given that the schedule
policies presented here already produce a well-defragmented schedule, it is expected this operation
will be computationally feasible within a short amount of time.

5.3.2 Schedule Transformations

As presented in Algorithm 3, the schedule may go through several transformations to reduce the
number of context switches. We defined 8 different transformations presented in this sub-section.
These transformations are applied in a specific order which will be presented later in Section 5.3.4.
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(1) Relocate and Schedule Forward

This transformation joins multiple preemptions of a job Ji as it is completed, replacing them
with idle periods – hence being classified as an idle time policy. Considering Algorithm 3, these
preemptions occur when it is not possible to complete or extend Ji and higher priority jobs are
released. Equation 5.19, defined in the slack mechanism chapter, should be used to ensure the idle
time does not cause any job to miss its deadline. The transformation is demonstrated in figures
5.10 and 5.11.
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Figure 5.10: Before transformation 1 is applied
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Figure 5.11: After transformation 1 is applied

(2) Reduce preemptions by splitting a job

In this transformation, multiple preemptions of a job Ji are merged by splitting another job into
two, thereby creating enough space to prevent some preemptions of Ji. It is the inverse action of
transformation 5.3.2. Critical to the transformation is that the gain outweighs the loss, in other
words, the global number of system preemptions is reduced after applying the transformation.
Figures 5.12 and 5.13 contain a demonstration of the transformation, which is the same example
as the second transformation (figures 5.6 and 5.7) in the introductory chapter page 36, i.e, the first
job of tau1 is split in two so as to create enough space to execute tau3 without preemptions.
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Figure 5.12: Before transformation 2 is applied
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Figure 5.13: After transformation 2 is applied

(3) Extend the execution of a job

One of the primary policies is, on the condition that no jobs can be finished, preempt the running
task when a higher priority job is released. This generates unnecessary preemptions when the lower
priority task is resumed after the high priority task finishes, yet we could have continued running
before the release of the higher priority task. In these conditions, transformation 3 extends the
execution of the lower priority task until the release of a higher priority job. Jobs should be extended
by last executed first order by iterating the active jobs queue.

The transformation is illustrated in figures 5.14 and 5.15. Figure 5.14 contains the schedule
before it is transformed, where τ3 is preempted by the higher priority release of τ1, followed by the
completion of τ2 and another preemption of τ3. Yet this execution of τ3 can be joined with the first,
removing one preemption from the system, as demonstrated in figure 5.15.
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Figure 5.14: Before transformation 3 is applied
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Figure 5.15: After transformation 3 is applied

(4) Complete a job by shrinking a preemption

This transformation is the recovery action of transformation 3, which can push a job into a preemp-
tion zone by overextending an execution. The transformation shrinks one or more executions to
create the necessary space to schedule jobs which are currently within a preemption zone, reducing
the total number of system preemptions. To detect which jobs can be shrunk, the scheduler should
keep a list of extensions performed by transformation 3. It is illustrated on figures 5.16 and 5.17,
where the sub-schedule from [0-19] is equal to the previous transformation described in subsection
(3). In figure 5.16, where the first execution of τ1 is extended from [0,1] to [0,3], τ4 is pushed into
a preemption zone, thereby increasing the total number of systems preemptions. This is solved
in figure 5.17 by shrinking the first execution block of τ1, creating enough space to fit τ4 in a
preemption-free zone at no cost.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

τ1

τ2

τ3

τ4

τ5

τ6

Figure 5.16: Before transformation 4 is applied
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Figure 5.17: After transformation 4 is applied

(5) Knapsack Jobs to prevent preemptions induced by very large tasks

When no transformation can be applied, a core scheduling policy is to, schedule the longest job
that can be finished. Given an upcoming release of a higher priority job, continuously scheduling
the longest job can exhaust the execution window such that no job can fit in the remaining space.
In these scenarios, it’s possible to make optimal usage of the execution window by replacing larger
jobs with smaller jobs. This is effectively a knapsack problem, as given a window of size N , the
goal is to find the number of jobs whose execution sum is total or less than N . The zone to apply
the knapsack algorithm is defined as the starts at the previous deadline and ends at the deadline
of the next release.

An example is provided in figures 5.18 and 5.19; where on the first figure τ4 is scheduled first,
exhausting 4 time units of the execution window with a dimension of 5, because there is no job
with a wcet of 1, τ4 is a poor choice of task to schedule within this window. A better choice would
be a combination of tasks such that the sum of total execution equals 5; as demonstrated in the
second figure, this can be accomplished with τ1 and τ3.
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Figure 5.18: Before transformation 5 is applied
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Figure 5.19: After transformation 5 is applied
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(6) Swap jobs when at least one can be scheduled non preemptively

In this transformation, two jobs swap their execution so that at least one is completed non preemp-
tively. The scenario occurs when a completed job is a perfect fit to the current execution window,
while no active job is. To decide which job Jj to swap for the perfect fitting job Ji, the one with
neighboring executions to Ji should be chosen, as these will be joined into one execution block. An
example of this transformation is included in figures 5.20 and 5.21, where the execution of τ2 is
exchanged for τ3 when, at time 14, it becomes clear the remaining window has a size equal to that
of τ2’s execution.
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Figure 5.20: Before transformation 6 is applied
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Figure 5.21: After transformation 6 is applied

(7) Create the necessary space to remove a job out of a preemption zone by moving jobs which have
a later deadline

In this transformation a job Ji is extracted from a preemption zone by taking the place of other
jobs which can be scheduled non preemptively past the deadline of Ji. An example is provided in
figures 5.22 and 5.23; where on the first figure τ6 is preempted into three executions starting at
time 14, and ending at 19. Two of these three preemptions can be joined by taking the position of
τ2 at no cost, since τ2 can be moved past τ6’s deadlines to [18,20].
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Figure 5.22: Before transformation 7 is applied
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Figure 5.23: After transformation 7 is applied
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5.3.3 Schedule Defragmentation

The final transformation, triggered whenever an idle period occurs, is essentially an exhaustive
schedule defragmenter. The transformation attempts to make the best usage of the idle period,
either directly, by moving jobs into the idle period, or indirectly, by pushing other executions into
the period, thereby creating the necessary space to schedule other jobs non-preemptively when the
deadlines of these jobs precedes the idle period.

Unlike all previous transformations, which would only execute once per iteration, this trans-
formation will continuously attempt to merge all preemptions of a job until the job is scheduled
non-preemptively or all combinations of 2 execution blocks have been checked. The transformation
does not attempt to merge executions that cannot possibly be executed non-preemptively, i.e.,
those whose execution is twice the length of the smallest period in the system, minus the required
execution within that period.

A pseudo-code for the algorithm is included in Algorithm 4, where for each job Ji that was
released up to twice the longest period ago, an attempt to combine execution pairs of Ji is made
by scanning the valid execution window of the job, and attempting to schedule it iterably between
each execution block:

1. directly, when enough space exists

2. by shifting other jobs left and/or right at that index, some jobs may have their execution
relocated/exchanged with the surrounding jobs if they breach their execution window

3. by relocating the left or/and the right execution

One example, for each case, is illustrated through figures 5.24 to 5.29. An illustration for case 1 is
provided in figures 5.24 and 5.25, where two preemptions of τ1 are joined by moving two executions
into an idle period. For case 2, an illustration is provided in figures 5.26 and 5.27, where τ4 is shifted
4 time units to the right to fit τ3. Finally, figures 5.28 and 5.29 contain an illustration of case 3,
where τ1 is relocated forward to fit τ3.
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Figure 5.24: Before transformation 8-1 is applied
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Figure 5.25: After transformation 8-1 is applied

42



CHAPTER 5. A NEW SCHEDULING ALGORITHM 5.3. A NEW SCHEDULER

Algorithm 4 The Defragmentation transformation.

function defragment(taskset, schedule, time)
for all jobs job in a window twice as large as the longest period in taskset do

start index← the index closest to job.release
for all combinations of 2 executions, e1 and e2, of job do

unschedule e1 and e2
if ! forceSchedule(schedule, job, e1.execution + e2.execution, start index) then

reschedule e1 and e2
end if

end for
end for

end function
function forceSchedule(schedule, job, execution, index)

reschedule index← −1
while index ≤ schedule.length and deadline at index < job.deadline do

if can schedule job at index for execution then
return true

else if can scheduled job at index by shifting jobs then ⊲ An execution is allowed to
be moved/exchanged with its neighbors if shifting it causes the job the be scheduled outside its
window

return true
else if can schedule job at index by rescheduling the left or/and the right job then

reschedule index← index
end if
index← index+ 1

end while
if reschedule index 6= −1 then

schedule job at rescedule index by moving the left or/and the right job outside its window
return true

end if
return false

end function
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Figure 5.26: Before transformation 8-2 is applied
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Figure 5.27: After transformation 8-2 is applied

5.3.4 Final Algorithm

The final algorithm is presented in Algorithm 5, where at each iteration:

1. if there are no active tasks, the schedule is de-fragmented using transformation 8.

2. if there are active tasks, and a job can be completed, one of transformations 6, 1, or 7 is
invoked if possible, or the largest completing job is scheduled until its termination.

3. if there are active tasks, but no job can be finished, one of transformations 4, 3, 5, 6, or 2
is invoked if possible, otherwise the earliest deadline job is scheduled until the release of the
higher priority job.
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Figure 5.28: Before transformation 8-3 is applied
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Figure 5.29: After transformation 8-3 is applied

The transformations have been ordered in least-cost greater benefit. Between equivalent actions,
the application order does not seem relevant as each transformation treats a different scenario.

The algorithm presented here is the culmination of significant efforts towards an optimal schedul-
ing algorithm. It is the first of its kind, as, as far as the authors of this thesis are aware, no other
scheduling algorithm which follows a case-by-case scenario exists. Discovering these scenarios, and
finding an efficient sub-algorithm to treat them is not an easy task. Alas, due to time constraints,
it has not been possible to cover every existent scenario, particularly in the field of preemptive
schedules. Nevertheless, the ones proposed here should be sufficient to evaluate the quality and
validity of such a solution.

Algorithm 5 The final scheduling algorithm.

function schedule(taskset)
while schedule is not complete do

if there are no active tasks then
invoke transformation (8) Schedule Defragmentation

else if can complete a job then
if cannot apply transformation (6) Swap jobs when at least one can be scheduled non

preemptively, (1) Relocate and Schedule Forward, or (7) Create the necessary space to remove a
job out of a preemption zone by moving jobs which have a later deadline then

complete the largest job possible
end if

else
if cannot apply transformation (4) Complete a job by shrinking a preemption, (3)

Extend the execution of a job , (5) Knapsack Jobs to prevent preemptions induced by very
large tasks, (6) Swap jobs when at least one can be scheduled non preemptively, or (2) Reduce
preemptions by splitting a job then

schedule the earliest deadline job until the higher priority job is released
end if

end if
end while

end function

5.4 Experimental Results

To evaluate our proposal, two non-preemptive methods in the state-of-the-art have been selected.
Ideally, two preemptive equivalent competitors would have been chosen; unfortunately, no such
solution exists that is not meta-heuristic/brute-force based.

The first method, BB-Moore [68], was developed by Moore. It is a branch-and-bound based
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pruning algorithm, where, any branch whose tardiness2 of all unscheduled jobs under EDF is larger
than any known branch is not explored.

The second method, Chain Window [69], was proposed by Nasri and Brandenburg and won an
Outstanding Paper Award in RTAS 2017. Chain Window (CWin) is an iterative backtracking based
algorithm that groups jobs in chained windows. Each chain window is comprised of a job sequence,
a time window, and a slack value. Given a schedule produced by an online scheduling algorithm,
such as NP-EDF or NP-RM, multiple chain windows are generated and merged as jobs which were
previously deemed un-schedulable by the online algorithm are sequenced. By using slack to prune
the research space, and further reducing this space by continuously merging each window, CWin
can find a solution very efficiently, and represents the very best in schedulability and speed in the
state-of-the-art.

To benchmark our proposal, dubbed PMin, against BB-Moore and Chain Window, we have
obtained the task set used in [69]. This test-bed is composed of 1 000 task sets generated for a
utilization level ranging from 10% to 100% in steps of 10%, totaling 9 000 sets. Each task set is
limited to six tasks due to the fact resource constrained systems generally have a low number of
tasks. For each task set, each scheduler has up to one minute to schedule the task; if a scheduler is
unable to do so, the task set is reported as undecided.

The BB-Moore and Chain Window tests were conducted on a 3.0GHz Intel Xeon E7-8857 v2
with 16 cores, and 1.2 TiB of RAM. Our tests will be conducted on a much more humble 2011
Intel Core i7-2720QM 3.3GHz and 16 GB of RAM using scalameter – a microbenchmarking and
performance regression testing framework for the JVM platform [91].

The results of this test are illustrated in figure 5.30 as a schedulability ratio, i.e., the percentage
of tasks sets deemed schedulable in relation to the total number of generated task sets. In terms of
schedulability, the algorithms exhibit similar results up to 70% utilization. From 70% on, CWin-EDF
presents the highest schedulability ratio of any algorithm included in this analysis. CWin-EDF is
trailed by BB-Moore’s proposal by a 3% point difference. PMin and CWin-RM exhibit very similar
performance throughout the range and offer the smallest schedulability ratio of the algorithms
included here, with a difference of about 14% when compared to CWin-EDF.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90%

S
ch

e
d

u
la

b
il

it
y

 R
a

ti
o

Utilization

PMin

CWin-EDF

CWin-RM

BB-Moore

Figure 5.30: Schedulability ratio for each analyzed algorithm.

Given that PMin is a preemptive algorithm, it is possible to analyze how many jobs failed to
be scheduled non-preemptively for each given task set. Figure 5.31, illustrates the ratio of non-
preemptive jobs in task sets which could not be scheduled non-preemptively by PMin. The scheduler
has a very high non-preemptive schedulability ratio, dropping to 99% at 60% utilization, and 98%
at 90% utilization. More research is required to understand why PMin fails to join some jobs, and to
adapt or develop more transformations if needed. Nevertheless, 98% of non-preemptive executions
is a very good score for an algorithm which is initially targeting preemptive scheduling.

To obtain a measurable degree of certainty in the schedulability of our algorithm we have
conducted a multitude statistical tests. Given that our data is nominal data, i.e., each task set
is either schedulable or unschedulable non-preemptively, we have used the McNemar’s statistical
test to compare the three scheduling algorithms. Under a significance level of 5%, McNemar test

2Tardiness is defined as the job’s deadline minus its completion time.
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Figure 5.31: Non-Preemptiveness ratio for PMin.

fails to suggest there is a significant schedulability ratio difference between PMin and CWin-RM.
However, between PMin and BB-Moore, the test indicates there is significant evidence to support
the hypothesis that BB-Moore has a higher schedulability ratio than PMin. The full results of these
tests can be found in appendix A.2 - Schedulability Analysis, on page 74.
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Figure 5.32: Average runtime for each scheduler when they successfully find a schedule. Note the
logarithmic scale on the vertical axis.

Figure 5.32 contains average execution times for each utilization level. CWin-EDF, CWin-RM,
and BB-Moore average runtimes were provided by Nasri and Brandenburg [69]. PMin values were
extracted by scalabench; each task set was scheduled 36 times, a total of 36 000 runs for each
utilization level.

Given the wide range of performance offered by each algorithm, the vertical axis of the plot in
figure 5.32 is configured as a tenth base logarithm.

For what PMin consigns in schedulability, it quickly makes up in runtime, as it is the most
efficient algorithm in this test by several orders of magnitude, even though it is a preemptive
scheduling algorithm running on significantly slower hardware. Chain Window comes in at second
place, followed by BB-Moore.

Statistical tests comparing PMin’s and CWin-RM’s performance are included in Appendix A.2
- Runtime Analysis, on page 76. Included in this section are a Shapiro-Wilk test, Anderson-Darling
test, Lilliefors test, and a Jaque-Bera test, which provide a high degree of certainty PMin’s and
CWin-RM execution times on the test set are not normally distributed. Hence, we were only able
to use the Sign Test and the Wilcoxon Signed-Rank test to compare the two algorithms. Both tests
suggest there is sufficient evidence to assume PMin is, on average, faster than CWin-RM.
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Result Analysis

Although PMin does not improve upon the current state-of-the-art in terms of schedulability, we
must note that its competitors are designed exclusively for non-preemptive systems, and can therefor
utilize superior techniques exclusive to the non-preemptive sub-problem. With this in mind, we
believe the current solution to provide very good results indeed; and with more development time,
there should be no reason why PMin’s non-preemptive schedulability ratio cannot be increased by
including more transformations. Surprisingly, PMin can provide a solution orders of magnitude
faster than the current state-of-the-art solution, even while executing on slower hardware.
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Chapter 6

Reference Implementation

Provides a detailed description of the algorithm’s implementation and testing.

6.1 Architecture

Crucial to implementing a scheduler is its implementation environment. As far as the authors of
this thesis are aware, no frameworks that provide the necessary environment for off-line scheduling
that meet the requirements of our scheduler exist. Hence, we have developed our own from scratch.

In addition to the design principles described in the planning chapter, another key principle
is the distinction between a definition of a scheduling algorithm and its implementation; in other
words, the distinction between what and how. This leads to a multi-leveled architecture with two
components: (1) schedulers – which define what has to be done to build a schedule, and (2) the
framework – which contains the necessary instructions to perform the actions commanded by the
schedulers – how.

Additionally, the modeling entities that define a job and an execution are extensible. A scheduler
can easily embed additional information to a job, or the execution of a job, by creating their own
subclasses of these entities. This is a much more elegant and efficient solution than storing this
information in arrays or maps.

Finally, the scheduler makes a very high usage of assertions and requirements and can detect
and report many bugs which would otherwise be very difficult to find. Each generated scheduled
is guaranteed to be correct, i.e., all jobs and their computation requirements are scheduled within
their execution windows.

The end result of such an architecture is an extremely flexible and bug-resistant framework
that allows its users to easily define scheduling algorithms clearly and precisely, undisturbed by
the implementation details such as slack computation, for example. Thanks to this, the main loop
of the scheduler defined in this thesis looks much like the pseudo-code in Algorithm 5, defined the
previous chapter.

Figure 6.1 contains a package diagram illustrating the multi-leveled architecture, where the
builder package corresponds to the framework.

Schedulers Package

Builder Package

EDFSchedulerReverseEDFSchedulerPMinScheduler Package

Model PackageComponents PackageUtils Package

Figure 6.1: The main package diagram for the implementation.

Let’s describe each entity in the package diagram:

Model Package: Contains the scheduling model as described in the system model.
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Components Package: Houses all components directly related to generating a schedule, such as
computing slack, applying transformations, etc.

Utils Package: Home to several support utilities that are not directly related to building a sched-
ule, such as an algorithm to treat the knapsack problem.

PMinScheduler Package: Contains a reference implementation for the scheduling algorithm
described in this thesis.

ReverseEDFScheduler: An implementation of the reverse earliest deadline scheduler as defined
in section 5.2.1.

EDFScheduler: An implementation of the Earliest Deadline Scheduler.

6.1.1 Builder Package and Main Schedule Loop

The builder’s parent component is the ScheduleFactory – a factory of schedules. The entity can
be seen much like an implementation of the template method pattern as it is essentially a schedule
loop that delegates scheduling decisions to a scheduler, and coordinates the necessary components –
many of which are algorithms on their own – to support and implement the scheduler’s decisions.

Because a Scheduler is a subtype of IScheduler, it is a scheduler and not a schedule factory,
hence the implementation deviates from the standard template method pattern in the sense that a
scheduler does not extend the ScheduleFactory but rather provides the necessary methods as high
order functions during the instantiation of the ScheduleFactory.

The schedule and the factory communicate via two objects, a ScheduleState and a ScheduleDe-
cision. The ScheduleState is a ”gateway“ to the schedule through which several operations can be
performed, the most basic of which include: generating a list of all possible job executions, comput-
ing the max-runtime for each execution, and extracting the maximum idle-time at time T ; the more
complex operations involve schedule rewrites, and are performed by a dedicated component known
as ScheduleRewriter, also accessible via the ScheduleState. The ScheduleDecision is responsible for
accepting the scheduler’s decision and coordinating its implementation. The ScheduleState bounds
all valid decisions explicitly, and if an invalid decision or no decision at all is provided, it is assumed
to be an unrecoverable error and an exception is thrown.

A state diagram describing the main schedule loop is provided in figure 6.2. When a schedule
is instantiated, a schedule factory is instantiated with two higher-order functions as parameters:
the accept function which binds the scheduler to the ScheduleDecision and ScheduleState objects,
and the schedule method which makes a scheduling decision at each iteration. When the generate
method is invoked, the factory instantiates all necessary objects, such as but not limited to: the
ScheduleDecision, the ScheduleState, the ScheduleBuilder – a component which appends jobs to the
schedule as it is built, and the ScheduledJobTree – the entity that tracks active/pending jobs and
maintains their slack. During each iteration, the schedule state produces a table with all possible
executions and their maximum execution times, the maximum idle period, and upcoming releases;
the scheduler then makes a decision upon this information. Once all jobs have been scheduled,
the factory invokes the build schedule method on the ScheduleBuilder, which produces the final
Schedule object.

Figure 6.3 contains a class diagram for all classes within builder, where:

ScheduleFactoryConfig This object provides configuration parameters to the ScheduleFactory,
currently two options are supported: (1) hideIdleTimes which skips periods where no active
job exists, and (2) slackCalculator, which allows the scheduler to choose one of the three slack
calculating algorithms defined in the previous chapter.

ScheduleFactory The ScheduleFactory is instantiated by a Scheduler; as a generic class, it requires
a Job and ScheduledJob types, which allows the Scheduler to append information to a Job
or ScheduledJob. In addition, it also requires: a job factory, which can instantiate jobs of
type J; a scheduled job factory that instantiates scheduled jobs of type JS; an optional
scheduledJobReleasedListener, if the scheduler wishes to be notified when a job is released;
an accept method, which configures the scheduler to use the correct ScheduleDecision and
ScheduleState objects; and finally a schedule method, which invokes the scheduler at each
iteration.

The ScheduleFactory makes use of the following components:
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Client Scheduler ScheduleFactory ScheduleDecision ScheduleState ScheduleBuilder ScheduleJobTree

instantiate

instantiate(accept method, schedule method, job factory)

generate(taskset)

factory.build(taskset)

instantiate jobs using job factory and compute all jobs slack using a slack calculator

instantiate

instantiate

instantiate

instantiate

accept(scheduleState, scheduleDecision)

build schedule state (possible executions, max runtime, max idle-time, etc)

compiles this information from

schedule method

see active/pending jobs

schedule(job, runtime)

schedule(job, runtime)

scheduled(job, runtime)

Until all jobs have been scheduledUntil all jobs have been scheduled

build schedule

schedule

schedule

schedule

Figure 6.2: A sequence diagram for the main schedule loop.

ScheduleJobTree Tracks active/pending jobs and maintains job’s slack at runtime.

ScheduleState Provides an overview of all possible execution options, along with their max-
imum execution times and the respective idle period. In addition, it also provides access
to all remaining public components, namely: the ScheduleRewriter, and the Schedule-
Builder.

ScheduleDecision The object which is responsible for coordinating a decision made by the
scheduler. All decisions are required to be valid otherwise an exception is thrown.

ScheduleRewriter Gateway to all rewriting operations.

ScheduleBuilder Responsible for adding/removing jobs from the schedule, safe iteration
of such schedule, and finally once the schedule is built, generating the Schedule object.
The ScheduleBuilder also provides several transformations that may be applied to the
schedule.
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class ScheduleFactory <J<:Job, SJ<:ScheduledJob[J]>

- ScheduleJobTree[J,SJ]
 - ScheduleState[J,SJ]

 - ScheduleDecision[J,SJ]
 - ScheduleRewriter[J,SJ]
 - ScheduleBuilder[J,SJ]

 - TaskSet
 - schedulerAcceptMethod: (ScheduleState[J,SJ], ScheduleDecision[J,SJ]) => Unit

 - jobFactory : (Task, Int) => J
 - scheduledJobFactory : (J,Int,Int) => SJ

 - schedulerJobReleasedListener: Option[J=>Unit]

+ build(taskSet:Taskset) : Schedule

class ScheduleFactoryConfig

+ hideIdleTimes: Boolean
 + slackCalculator: ISlackCalculator

Model Package Components Package Utils Package

Figure 6.3: A class diagram for all classes within Builder.

6.2 Package description

6.2.1 Model Package

The model package contains an object mapping of the system model described in section 5.1,
although given the framework’s complexity, it is unsurprising that a few adaptations have been
made. A class diagram for the model package is presented in figure 6.4, where:

class Job extends Ordered[Job] with KnapsackItem

+ releaseTime
 + deadline

 - slack
 - remainingExecutionTime

+ lastExecution
 + firstExecution

 + preemptionCount
 + hasPreemptions

 + overlap(job or range)
 + reverseOverlaps(job)

 + reverseOverlappedBy(job)
 + impactsTheSlackOf(job)

 + addExecution(scheduledJob)
 + removeExcecution(scheduledJob)

 + validExecutionRange(start, int)
 + nextRelease: Option[Job]

 + finished
 + setSlack(slack)

 + cycleSlack(time)

+ deadlineReleaseOrdering: Ordering[Job]
 + reverseDeadlineReleaseOrdering: Ordering[Job]

class task extends Ordered[Task]

+ name
 + release
 + period

 + deadline
 + wcet 

+ utilization
 + releaseCount

 + firstReleaseAtOrAfter(job or time) : Option[Job]
 + jobThatReverseOverlaps(job) : Option[Job]

 + lastReleaseAtOrBefore(job or time) : Option[Job]

+ releaseDeadlineOrdering: Ordering[Task]
 + periodOrdering : Ordering[Task]

class ScheduledJob<J<:Job> Ordered[ScheduledJob[J]] with KnapsackItem

- start 
 - end

+ shrink(time)
 + extend(time)
 + unschedule()

 + redimension(start, end) 
 + reschedule(start, end)

 *

 *

1

class TaskSet

+ lazy utilization 
 + lazy jobCount
 + hyperPeriod

+ validUtilization
 + largestPeriodinTaskSet
 + nonPreemptiveProperty

 + initJobs(jobFactory:(Task,Int)=>Job)

 *

class IOverlappable

+ start
 + end

 + executionTime
 + overlap(that:IOverlappable) 

 + overlap(start, end)

class IScheduledJob<J<:Job, SJ<:ScheduledJob[J]>

+ reschedule(start, end)
 + validShift(sart, end)

 + job: J
 + scheduledJob:SJ

class Schedule

+ lazy contextSwichCount
 + lazy isNonPreemptive
 + lazy preemptionCount

 + valid 

 *

Figure 6.4: A class diagram for all classes within Model.

Schedule defines a valid schedule produced by a scheduler.

TaskSet a class that aggregates multiple tasks into a task set.

Task represents a system task.
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Job is a job of a task.

ScheduledJob is an execution of a Job.

IScheduledJob abstracts an execution of a job. This class enables the scheduler to simulate/apply
a transformation without knowing if it is working on dummy objects or the actual executions.

IOverlappable defines a type of object may overlap with another of its type in a dimension with
one vector.

Class Job and ScheduledJob inherit the KnapsackItem trait which enables them to be used with
the Knapsack algorithm defined in the util package. Most class methods should be implicit; hence
we will only describe those whose usage may be ambiguous:

TaskSet: nonPreemptivePropery This method checks if the schedule possesses a required con-
dition which any non-preemptive task set must comply with, but is not sufficient to
prove a taskset can be scheduled non preemptively. The property checks if all existing
tasks can be scheduled between two releases of the system tasks with the shortest period,
such that the computational and timing requirements of these tasks are respected.

Task: jobThatReverseOverlaps(job):Job returns a job of this task that carries out the job
provided in the parameter.

Job: reverseOverlaps(job) if the job carries out the job specified as a parameter.

reverseOverlappedBy(job) if the job is carried out by the job specified as a parameter.

ScheduledJob redimension(start, end) redimensions this execution to begin and start at end,
the redimensioning must not extend beyond other executions of the same job.

reschedule(start, end) reschedules the execution while at the same time updating the
ordered list of executions of the job this execution belongs to.

IScheduledJob validShift(start, end) returns true if the start and end is a period within the
execution window of its parenting job.

6.2.2 Components Package

The components package contains all components directly related to generating a schedule, such as
computing slack, applying transformations, etc. A class diagram illustrating its contents is displayed
in figure 6.5, where:

ScheduleDecision Is responsible for coordinating the scheduler’s decision at each iteration.

ScheduleState Provides an overview of all possible execution options, along with their maximum
execution times and the maximum idle period at time T . In addition, it also provides access
to all the scheduler’s remaining public components, such as the ScheduleBuilder, and the
ScheduleRewriter. The ScheduleState is composed of a static Array of T ScheduleOptions,
where T is the number system tasks.

ScheduleOption Defines a possible scheduling decision of a job at a given iteration, while bounding
its maximum execution time.

ScheduleBuilder Responsible for adding/removing jobs from the schedule, safe iteration of said
schedule, and finally once the schedule is built, generating the Schedule object. The Sched-
uleBuilder also provides several transformations that may be applied to the schedule.

ScheduleJobTree Tracks active/pending jobs and maintains job’s slack at runtime.

ScheduleRewriter Gateway to all rewriting operations.

The ScheduleDecision provides four decision types:

schedule which schedules a schedule option. The decision makes sure the runtime value provided
by the scheduler does not exceed the bound defined in the schedule option. If no duration is
specified, the decision schedules the option for as long as possible.
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class ScheduleDecision<J<:Job, SJ<:ScheduledJob[J]>

+ ScheduleBuilder[J,SJ]
 + ScheduleJobTree[J,SJ]

+ schedule(scheduleOption) 
 + schedule(scheduleOption, duration) 

 + idle(duration) 
 + idle

 + executeRewrite(iScheduleRewriter) : Boolean 
 + customRewrite(iScheduleBuilderRewriter)

class ScheduleState<J<:Job>

+ TaskSet
 + ScheduleBuilder[J,SJ]
 + ScheduleJobTree[J,SJ]
 + ScheduleRewriter[J,SJ]

 + maxIdleTime 
 + time

+ hasActiveJobs
 + activeJobIterator

 + activeJobs : IterableView
 + hasPending

 + pendingJobIterator
 + pendingJobs : IterableView 

 + nextRelease
 + maxIdleTime

 + lastScheduledJob
 + build

class ScheduleOption<J<:Job>

+ Job
 + maxRunTime

+ remainingExecutionTime
 + canExecute

 + slack
 + release
 + deadline
 + canFinish

 *

1

Package Slack Calculators Package ScheduleBuilder Package ScheduleJobTree Package ScheduleRewriter

Figure 6.5: A class diagram for all classes within the components package.

idle which schedules an idle period. The decision ensures the period duration is below the bound
defined in the ScheduleState. If no duration is specified, the decision schedules the period
until a job is released.

rewrite attempts to schedule a standard rewrite performed by the ScheduleRewriter Components.

customRewrite applies a custom rewrite to the scheduler that is applied by an IScheduleBuilder-
Rewriter – a component responsible for the safe iteration of a Schedule.

The ScheduleState’s build method is invoked by the ScheduleFactory on each iteration to build
the ScheduleOption table, which contains all possible jobs which can be scheduled at that iteration,
along with their maximum run-time, and the maximum idle time permitted within that iteration.
This information is presented by the State but is compiled by the ScheduleJobTree.

6.2.3 Slack Calculator Package

The slack calculator package contains an implementation of all slack computation methods described
in section 5.2.

The class hierarchy follows the Strategy pattern, where ISlackCalculator defines a family of
algorithms to compute slack, and the remaining classes are implementations of these algorithms.
AlgorithmicSlackCalculator, MathSlackCalculator, and ReverseEDFSlackCalculator correspond to
the schedulers defined in 5.2, where the AlgorithmicSlackCalculator extracts the slack by simulating
a rEDF scheduler, and the ReverseEDFSlackCalculator extracts the slack from a schedule produced
by a rEDF scheduler.

The ISlackCalculator class also contains a method called verifySlackValues which compares the
slack of all jobs between two equal task sets.
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abstract class ISlackCalculator

+ abstract generateSlack(taskset)
 + verifySlackValues(taskset1, taskset2)

class AlgorithmicSlackCalculator

+ generateSlack(taskset)

class MathSlackCalculator

+ generateSlack(taskset)

class ReverseEDFSlackCalculator

+ generateSlack(taskset)

Figure 6.6: A class diagram for all classes within the components package.

6.2.4 ScheduleJobTree Package

The ScheduleJobTree is the framework’s data structure responsible for queuing and dequeuing
system jobs, as well as maintaining their slack. It is comprised of two sorted sets, one managing
active jobs, and another administering pending releases; at any time T , if a task τi has uncompleted
jobs, a single job of τi must be present in either the active queue or the pending queue. At runtime,
when a job Ji is executed, its remaining execution time is updated by the ScheduleBuilder; if the
remaining time is zero, the job is complete, and the ScheduleJobTree will remove Ji from the active
queue and allocate its next release in the active or pending queue.

The slack computation is deeply related with the two queue mechanism of the data structure.
The active queue is sorted in earliest deadline first, while the pending queue is governed in earliest
release first. This priority order enables efficient processing and management of slack, since:

1. Extracting the maximum runtime of a job requires iterating all lower priority jobs plus any
job released within that period.

2. Updating the slack of all jobs after scheduling a job requires iterating all active tasks, plus
any pending job that is released within that period – which will have its slack reduce in equal
amount to the overlap between the execution of the active and pending job.

3. Scheduling an idle period requires reducing the slack of any job that is active within that
period.

Iterating all active jobs of lower priority than Ji is simple since those jobs appear first in the
sorted set. Iterating all pending jobs that overlap with the current execution is also easily bounded,
since, given the earliest release priority order, once a job Ji no longer overlaps with the scheduled
execution, no other jobs in the set can, as their release time are increasing and can only be larger
than Ji’s.

Rewrite operations are supported through a dedicated component known as ScheduleJob-
TreeRewriter. The Rewriter, instantiated by the ScheduleJobTree, clones the active and pending
queues wrapping any job in either queue with a dummy object which will temporarily hold any
changes to a job’s slack or remaining execution time. Although tracking the remaining execution
time of a job is not the responsibility of the ScheduleJobTree, the rewriter component nevertheless
needs to know if the job is complete as reschedule operations are applied. In addition to the active
and pending queues, a new queue contains all new active jobs which are released due to schedule
operations, or previously completed jobs which are moved to the active state by being unscheduled.
Once the rewrite operation is verified to be valid, and the apply method is invoked exclusively
by the ScheduleDecision, the rewriter will merge with its parenting ScheduleJobTree, modifying
job’s slack directly, but updating the Tree’s queues by invoking package-private methods, effectively
marking all operations as permanent.

One limitation of the rewriter is that it does not enqueue any new pending jobs past the
previous pending job of any task; this occurs exclusively during rollback operations, and currently,
no transformation in the schedule performs exclusive rollback operations which cause their previous
release to be moved to the pending state.

A class diagram is provided in figure 6.7. Most class methods should be implicit; hence, we will
only detail those that are hard to understand:

Most methods in the class diagram should be implicit; hence we will only describe those who
are more difficult to understand. In the ScheduleJobTree, the scheduled and idle methods are
invoked exclusively by the ScheduleDecision under normal schedule or idle operations. The package-
private releaseJob, completeJob, and uncompleteJob are operated by the ScheduleJobTreeRewriter
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class ScheduleJobTree<J<:Job, SJ<:ScheduledJob[J]>

- activeQueue: SortedSet[J] 
 - pendingQueue: SortedSet[J] 

 - earliestDeadlineJob : J

+ empty
 + nonEmpty

 + activeIterator
 + pendingIterator 

 + active: IterableView 
 + pending: IterableView 

 + earliestDeadlineJob
 + calculateMaximumRuntime(job) : Int 

 + scheduled(scheduledJob, runtime, time) 
 + idled(duration, newTime)

 releaseJob(job)
 completeJob(job, time)

 uncompleteJob(job)
 + getRewriter : ScheduleJobTreeRewriter[J, SJ]

 + decorateRewriter(rewriter) : ScheduleJobTreeDecoratedRewriter[J, SJ]

class ScheduleJobTreeRewriter<J<:Job, SJ<:ScheduledJob[J]>

+ pendingNodes : Array[RewriteNode[J]]
 + activeNodes : Array[RewriteNode[J]]

 + newActiveNodes : ArrayBuffer[RewriteNode[J]]
 + valid : Boolean 

+ rollback(scheduledJob)
 + replace(replaced, start, end, replacee)

 + schedule(job, start, end)
 + unschedule(scheduledJob)

 + reschedule(scheduledJob, newStart, newEnd)
 + checkIfValid

 apply()

class RewriteNode<J<:Job>

+ job : J
 + slack

 + remainingExecutionTime

+ modified
 + modifiedRemainingExecutionTime

 + activeApply
 + newActiveApply
 + pendingApply

 + hasBeenReleased(time)

Figure 6.7: A class diagram for all classes within the ScheduleJobTree package.

whenever a rewrite occurs, and the ScheduleJobTree’s queues must be maintained by shifting jobs
between the active and pending queues.

Finally, the RewriteNode methods, where modified returns true if the slack or remaining execu-
tion times were modified in any way, and the remaining apply methods are invoked during rewrite
operations depending on the queue the RewriteNode is located, i.e., if it is located in the active
queue, the activeApply method will be invoked.

6.2.5 ScheduleBuilder Package

The ScheduleBuilder is the authority responsible for building, iterating, and applying very well
defined transformations to a schedule. Given these responsibilities, it is the only entity in the entire
scheduling framework with the right and the means to instantiate a ScheduledJob. This ensures
the execution list of each job is maintained correctly, where all executions of a job are properly
ordered within this list.

The ScheduleBuilder also provides the necessary constructs to iterate and modify the schedule,
known as ScheduleBuilderRewriters. There are many types of rewriters, each crafted to a specific
use case:

RawRewriter: The Raw rewriter operates directly on the schedule, hence all operations are
immediately applied and viewable when queried.

CloningRewriter: A Cloning rewriter forks a portion of a schedule, wrapping executions with a
wrapper object, and applies several transformations to this copy. Once the apply method is
invoked, the CloningRewriter merges the copy with its original. Any operation to the rewriter
is immediately visible.
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CachedRewriter: The Cached Rewriter supports only the schedule operation. It is useful when
Knapsacking multiple jobs within a given period as their release-deadline bounds may prevent
the job set from being scheduled. No view operation is supported.

DummyRewriter: The Dummy Rewriter supports all operations but silently ignores any modifi-
cation request and is useful to test if the transformation is coherent a slack perspective. Not
all transformations can be simulated with a dummy rewriter, but most are written such that
they do not perform unnecessary gets.

Of all the re-writers, only the Cloning Rewriter is partially implemented; not only because it is
memory intensive but primarily because it requires expanding the schedule clone when a transfor-
mation exceeds past its bounds. The additional complexity, given the necessity for a mechanism to
compensate the fact that all indexes prior to the expansion are invalid, ultimately made the approach
too costly. Since the rewriters share a common interface know as the IScheduleBuilderRewriter,
the scheduler does not need to know what implementation of rewriter it is working with.

In addition, each rewriter can be decorated with two entities:

BackTrackingRewriter: The BacktrackingRewriter permits hierarchical commit and rollback
operations. Hence, a scheduler can at any point in time save the current schedule state
on any Rewriter, and undo all operations until the last save by invoking rollback. Commit
and rollback operations are hierarchical, and nested saves and rollbacks are supported. The
BackTrackingRewriter operates by saving each move performed by a scheduler into an array.
When the save method is invoked, the Rewriter saves the active array and creates a one.
When rollback is invoked, the Rewriter rolls back all actions in the current array, and sets
the previous one as active.

ScheduleJobTreeDecoratedRewriter: The JobTreeDecoratedRewriter wraps any rewriter such
that any modification is tracked by a ScheduleJobTreeRewriter. During the transformation,
the scheduler can query the rewriter if the slack tables represent a valid schedule. When the
transformation is finished and the apply method is invoked, the ScheduleJobTreeDecorate-
dRewriter will update its parenting ScheduleJobTree’s slack table, ensuring coherency with
the produced schedule. Like the BackTrackingRewriter, this rewriter also supports hierarchical
commit and rollback operations, where at each commit a copy of the ScheduleJobTreeRewriter
is saved, and on each rollback, a copy is restored.

A class diagram containing all rewriters is provided in figure 6.8. The IScheduleBuilderRewriter
contains abstract methods defining each schedule operation, namely get, schedule, rollback, unsched-
ule, reschedule and re-dimension. The remaining operations are facilitating methods when the user
does not know at which index to schedule an execution where the Rewriter trait will search for the
correct insertion index with find, invoke the corresponding abstract operation.

The valid method returns true if the schedule is valid; when the rewriter is decorated with a
slack aware rewriter, then valid’s return code will also depend on the validity of the system slack.
The find method will search for the closest index using binary search. The mergeCommit merges the
two last commits into one. Finally, the utils method returns a ScheduleBuilderUtils type whose only
function implements the forceSchedule algorithm defined in the schedule deframenter algorithm 4,
on section 5.3.3.

Missing from the diagram are the supporting IBacktrackSavedMove classes, which support the
BackTrackingRewriter. These classes are depicted in the class diagram on figure 6.9, where each
subclass of IBacktrackSavedMove contains an algorithm to undo a schedule, unschedule, redimension,
or reschedule move.

The final subcomponent of IScheduleBuilder is responsible for enacting simple transformations
such as de-scheduling or extending jobs. Each transformation implements the IScheduleTransformer
trait, depicted in figure 6.10, which defines a single function that applies a transformation through
a rewriter, and returns true if the transformation was successful.

The following transformers have been defined:

ChainTransformer: The chain transformer combines multiple transformations by invoking them
sequentially. A class diagram depicts the class in figure 6.11. The transformation is said to
be successful if all its sub-transformations were applied correctly.
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class IScheduleBuilderRewriter<J<:Job, SJ<:ScheduledJob[J]>

+ abstract get(index) : IScheduledJob[J,SJ]
 + abstract schedule(job, start, end, index) : IScheduledJob[J,SJ] 

 + abstract schedule(IScheduledJob, atIndex) 
 + abstract rollback(IScheduledJob, fromIndex)

 + abstract unschedule(IScheduledJob, fromIndex)
 + abstract reschedule(IScheduledJob, fromIndex, start, end, toIndex)

 + abstract redimension(IScheduledJob, start, end)
 + abstract valid : Boolean

 + schedule(job, start, end) : IScheduledJob[J,JS]
 + schedule(IScheduledJob)

 + scheduleAtTheEnd(job, start, end) : IScheduledJob[J,JS]
 + unschedule(IScheduledJob)

 + find(IScheduledJob) : Int 
 + findClosestIndexToTime(Time) : Int

 + find(IScheduledJob, startIndex, endIndex) : Int
 + commit
 + rollback

 + mergeCommit
 + length : Int

 + clone
 + utils: ScheduleBuilderUtils[J,SJ]

 apply : Int (end time of the last execution)

class CachedRewriter

- ScheduleBuilder[J, SJ] 
 - cachedMoves : ArrayBuffer[SJ]

class CloningRewriter

- ScheduleBuilder[J,SJ]
 - Schedule: ArrayBuffer[SJ]

 - fromIndex: Int
 - toIndex:Int

class DummyRewriter

- ScheduleBuilder[J,SJ]

class RawRewriter

- ScheduleBuilder[J,SJ]

class WrappedScheduledJob

+ ScheduledJob[J,SJ]
 + start
 + end

class ScheduleJobTreeDecoratedRewriter

- ScheduleJobTreeRewriter[J,SJ]
 - savedRewriters : ArrayBuffer

+ commitSlack
 + rollbackSlack

 + validSlack : Boolean
 slackApply(newTime)

class BackTrackingRewriter

- ScheduleJobTreeRewriter[J,SJ]
 - activeTrace : ArrayBuffer[IBacktrackSavedMove[J, SJ]]

 - savedTraces

Figure 6.8: A class diagram describing the ScheduleBuilder Rewriters.

class IBacktrackSavedMove<J<:Job, SJ<:ScheduledJob[J]>

+ undo(IScheduleRewriter[J,SJ])

class RedimensionMove

- IScheduledJob[J,SJ]
 - oldStart
 - oldEnd

+ undo(IScheduleRewriter[J,SJ])

class RescheduleMove

- IScheduledJob[J,SJ]
 - fromIndex

 - start
 - end

 - toIndex

+ undo(IScheduleRewriter[J,SJ])

class ScheduleMove

- IScheduledJob[J,SJ]
 - atIndex

+ undo(IScheduleRewriter[J,SJ])

class UnscheduleMove

- IScheduledJob[J,SJ]
 - fromIndex

+ undo(IScheduleRewriter[J,SJ])

Figure 6.9: A class diagram describing the Backtacking moves hierarchy.

trait IScheduleBuilderRewriter<J<:Job, SJ<:ScheduledJob[J]>

+ apply(IScheduleBuilderRewriter[J, SJ]) : Boolean

Figure 6.10: A class diagram describing the IScheduleBuilderRewriter trait.
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class ChainTransformer<J<:Job, SJ<:ScheduledJob[J]> extends IScheduleTransformer[J, SJ]

- transformers : Seq[IScheduleTransformer[J,SJ]]

+ apply(IScheduleBuilderRewriter[J, SJ]) : Boolean

Figure 6.11: A class diagram describing the ChainTransformer class.

class DescheduleTransformer<J<:Job, SJ<:ScheduledJob[J]> extends IScheduleTransformer[J, SJ]

- transformers : Seq[IScheduleTransformer[J,SJ]]

+ apply(IScheduleBuilderRewriter[J, SJ]) : Boolean

Figure 6.12: A class diagram describing the DescheduleTransformer class.

DescheduleTransformer De-schedules a sequence of ScheduledJobs from the Schedule. The class
is depicted in figure 6.12.

ExtendTransformer Extends the execution of a task, shifting other tasks to the right. The class
is depicted in figure 6.13.

class DescheduleTransformer<J<:Job, SJ<:ScheduledJob[J]> extends IScheduleTransformer[J, SJ]

- transformers : Seq[IScheduleTransformer[J,SJ]]

+ apply(IScheduleBuilderRewriter[J, SJ]) : Boolean

Figure 6.13: A class diagram describing the ExtendTransformer class.

RollbackTransformer Rolls back time to a predefined value, in other words, un-schedules all
jobs until time T . A class diagram describing this transformation is included in figure 6.14

class RollbackTransformer<J<:Job, SJ<:ScheduledJob[J]> extends IScheduleTransformer[J, SJ]

- rollbackUntilTime

+ apply(IScheduleBuilderRewriter[J, SJ]) : Boolean

Figure 6.14: A class diagram describing the RollbackTransformer class.

ScheduleTransformer Schedules a job in the schedule and is illustrated in figure 6.15.

class ScheduleTransformer<J<:Job, SJ<:ScheduledJob[J]> extends IScheduleTransformer[J, SJ]

- Job
 - start
 - end

+ apply(IScheduleBuilderRewriter[J, SJ]) : Boolean

Figure 6.15: A class diagram describing the RollbackTransformer class.

ShrinkAndScheduleTransformer shrinks an execution and pushes jobs backward, creating
enough space to schedule a job non-preemptively. Executions may have to be switched if
they breach their execution window. Class is depicted in figure 6.16.

class ShrinkAndScheduleTransformer<J<:Job, SJ<:ScheduledJob[J]> extends IScheduleTransformer[J, SJ]

- executionToShrink
 - shrinkBy

 - jobToSchedule
 - jobStartTime
 - jobEndTime

+ apply(IScheduleBuilderRewriter[J, SJ]) : Boolean

Figure 6.16: A class diagram describing the RollbackTransformer class.

SplitAndScheduleTransformer Splits an execution, leaving one part in place and scheduling
the other part in the past, pushing jobs backward and creating enough space to schedule a
job non-preemptively. The class is illustrated in figure 6.17.
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class SplitAndSchedule<J<:Job, SJ<:ScheduledJob[J]> extends IScheduleTransformer[J, SJ]

- executionToSplit
 - splitBy

 - jobToSchedule
 - jobStartTime
 - jobEndTime

+ apply(IScheduleBuilderRewriter[J, SJ]) : Boolean

Figure 6.17: A class diagram describing the RollbackTransformer class.

SwitchAndExtendTransformer Switches the execution of two executions, extending one of
them. A class diagram depicting the class is included in figure 6.18.

class SwitchAndExtendTransformer<J<:Job, SJ<:ScheduledJob[J]> extends IScheduleTransformer[J, SJ]

- scheduledJobToExtend
 - extendBy

 - scheduledJobToSwitch

+ apply(IScheduleBuilderRewriter[J, SJ]) : Boolean

Figure 6.18: A class diagram describing the SwitchAndExtendTransformer class.

SwitchTransformer Switches multiple executions of a job Ji by a job Jj , the executions are
combined if any execution Ji neighbors Jj . The class is depicted in figure 6.19.

class SwitchTransformer<J<:Job, SJ<:ScheduledJob[J]> extends IScheduleTransformer[J, SJ]

- jobToSchedule
 - executionsToSwitch

+ apply(IScheduleBuilderRewriter[J, SJ]) : Boolean

Figure 6.19: A class diagram describing the SwitchTransformer class.

Having described of the ScheduleBuilder’s sub-components, all that is missing is the Sched-
uleBuilder itself. A class diagram is included in figure 6.20, where the package private methods
schedule, unschedule, and reschedule are invoked exclusively by the rewriters.

class ScheduleBuilder<J<:Job, SJ<:ScheduledJob[J]>

- schedule : ArrayBuffer[SJ]

+ lastExecution: Option[JS]
 + schedule(job, start, end)
 + buildSchedule : Array[JS]

 schedule(index, scheduledJob)
 unschedule(scheduledJob, index)
 schedule(index, job, start, end)

 reschedule(scheduledJob, fromIndex, start, end, toIndex)

class TransformerFactory

+ chain 
 + extendTransformer

 + descheduleTransformer
 + rollbackTransformer

 + shrinkAndScheduleTransformer
 + switchAndExtendTransformer

 + switchTransformer
 + splitAndScheduleTransformer

class RewriterFactory

+ rawRewriter
 + backTrackingRewriter

 + dummyRewriter
 + cachingRewriter

 + slackAwareRawRewriter
 + slackawareBacktrackingRawRewriter

 + slackAwareDummyRewriter
 + slackAwareCachingRewriter

Figure 6.20: A class diagram describing the ScheduleBuilder and the factory classes.

A great deal of thought went into deciding what kind data structure would fit the Schedule
schedule best. Although a linked list would provide O(1) read-write-modify requests, it would have
to be a doubly linked list as schedule transversal can occur in any direction. In addition, it would
also need to be a skip list to enable binary search within the list. Given this additional complexity,
and because most operations are performed at the end of the schedule, an array was found to
be a good compromise between simplicity, performance, and memory usage; as the doubly-linked
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skip list memory requirements can become a limiting factor when scheduling extremely long hyper
periods.

Another interesting thing to note in figure 6.20 is the factory classes for the ScheduleBuilder’s
transformers and rewriters, this, and the fact that scala derives variable types from the invoked
method, dismisses the need for long variable types with nested generic types.

6.2.6 ScheduleRewriter Package

The ScheduleRewriter is responsible for applying a transformation defined by a scheduler using one
or multiple transformers. In addition, it provides an efficient interface to check if a transformation
is valid before applying it. A ScheduleRewriter always implements the IScheduleBuilderRewriter
trait, which contains a public method called valid, which returns true if the transformation is valid,
and a package-private method called execute, which applies the transformation and can only be
invoked by the ScheduleDecision.

Most transformations are a subclass of the abstract StandardRewriter class, which takes care
of the apply/preview logistics while deferring the transformations sequence to its subclasses. The
StandardRewriter contains a lazy boolean called valid, which simulates the transformation with a
slack aware dummy rewriter, saving the slack tables for later use. If the apply method is invoked
after a simulation has been performed, the transformation is applied using a raw rewriter and the
previously computed slack tables; otherwise, a slack aware backtracking RawRewriter is used, which
can recover from the scenario where the transformation is impossible. A class diagram including
both entities is included in figure 6.21.

class IScheduleRewriter

+ valid : Boolean
 execute

abstract class StandardRewriter<J<:Job>

- ScheduleBuilder[J,SJ] 
 - lazy valid : Boolean

 - dummyRewriter
 abstract IScheduleTransformer[J,SJ]

execute

Figure 6.21: A class diagram describing the rewriter abstract classes.

Let’s describe each ScheduleRewriter:

ExtendRewriter The extend rewriter extends the execution of a job, shifting other jobs to the
right if necessary. The transformation is composed of a single extend transformer. The class
is depicted in figure 6.22.

class ExtendRewriter<J<:Job, SJ<:ScheduledJob[J]> extends StandardRewriter[J, SJ]

- scheduledJobToExtend
 - extendBy

 extend transformer

Figure 6.22: A class diagram describing the ExtendRewriter class.

RescheduleRewriter The re-schedule rewriter combines multiple executions of a job at a given
time. The rescheduler can schedule the execution past the length of all its constituent ex-
ecutions. The transformation is a sequence of a de-schedule transformer and a schedule
transformer. A class diagram describing the class is included in figure 6.23.

ShrinkAndScheduleRewriter This rewriter shrinks an execution and pushes jobs backward,
creating enough space to schedule a job non-preemptively. If an execution breaches its execu-
tion window, an attempt is made to exchange it with surrounding executions. The rewriter
is composed of a single ShrinkAndScheduleTransformer. Figure 6.24 contains a class diagram
for this class.
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class RescheduleRewriter<J<:Job, SJ<:ScheduledJob[J]> extends StandardRewriter[J, SJ]

- scheduleAt
 - scheduledJobsToMove : Seq[SJ]

 - movingExecution : Int
 - schedulingExecution : Int 

 deschedule + schedule transformers

Figure 6.23: A class diagram describing the RescheduleRewriter class.

class ShrinkAndScheduleRewriter<J<:Job, SJ<:ScheduledJob[J]> extends StandardRewriter[J, SJ]

- scheduledJobToShrink
 - shrinkBy

 - jobToSchedule
 - scheduleBy shrink and schedule transformer

Figure 6.24: A class diagram describing the ShrinkAndScheduleRewriter rewriter.

SplitAndScheduleRewriter The SplitAndScheduleRewriter splits an execution into two, schedul-
ing one half in the past, thereby creating enough space to schedule one job non-preemptively.
Jobs may be reordered as the transformer attempts to push jobs backward while keeping
them within their execution windows. The transformation is composed of a single SplitAnd-
ScheduleTransformer. The class is illustrated in figure 6.25.

class SwitchAndScheduleRewriter<J<:Job, SJ<:ScheduledJob[J]> extends StandardRewriter[J, SJ]

- jobToSchedule 
 - scheduleTime 

 - scheduleTuration 
 - executionsToReplace 

 switch and schedule transformer

Figure 6.25: A class diagram describing the SplitAndScheduleRewriter class.

SwitchAndExtendRewriter Switches multiple executions of a job Ji by a job Jj , the executions
are combined if any execution Ji neighbors Jj . The transformation is carried out by the
SwitchAndExtendTransformer class. The class is depicted in figure 6.18.

class SwitchAndExtendRewriter<J<:Job, SJ<:ScheduledJob[J]> extends StandardRewriter[J, SJ]

- jobToExtend
 - jobToSwitch
 - scheduleBy

 shrink and extend transformer

Figure 6.26: A class diagram describing the SwitchAndExtendRewriter class.

SwitchAndScheduleRewriter Switches the execution of two jobs using a switch transformer
and schedules the switched job at a specified time. Figure 6.27 contains a class diagram for
this class.

class SwitchAndExtendRewriter<J<:Job, SJ<:ScheduledJob[J]> extends StandardRewriter[J, SJ]

- jobToExtend
 - jobToSwitch
 - scheduleBy

 shrink and extend transformer

Figure 6.27: A class diagram describing the SwitchAndScheduleRewriter class.

RollbackRewriter The RollbackRewriter is unique from all the other Rewriters presented here;
it is the only one that does not extend StandardRewriter. The rollback rewriter rollsback
the schedule until a specified time, and presents the possibility to schedule additional jobs
through a schedule method.

Like the rewriters and transformers, a convenient factory named ScheduleRewriter is provided
and accessible through the scheduleState. Figure 6.29 illustrates this entity through a class diagram.
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class SwitchAndExtendRewriter<J<:Job, SJ<:ScheduledJob[J]>

- cachedRewriter
 - slackRewriter

 - fromTime

+ schedule(job, start)

Figure 6.28: A class diagram describing the RollbackRewriter class.

To execute a re-write, the executeRewrite method must be invoked in the ScheduleDecision; a
sequence diagram previewing the necessary instruction set is included in figure 6.30.

class ScheduleRewriter<J<:Job, SJ<:ScheduledJob[J]>

+ extendRewriter
 + rescheduleRewriter

 + shrinkAndScheduleRewriter
 + rollbackRewriter

 + switchAndExtendRewriter
 + switchAndScheduleRewriter

 + switchAndRescheduleRewriter
 + splitAndScheduleRewriter

Figure 6.29: A class diagram describing the SceheduleRewriter class.

Client Scheduler ScheduleFactory ScheduleDecision ScheduleState ScheduleRewriter

generate(taskset)

factory.build(taskset)

schedule method

see active/pending jobs

decide to extend a job

get scheduleRewriter

get extendRewriter

extendRewriter

executeRewrite(extendRewriter)

success/fail

Until all jobs have been scheduledUntil all jobs have been scheduled

build schedule

schedule

schedule

schedule

Figure 6.30: A sequence diagram for the main schedule loop.

6.2.7 Scheduler Package

The schedule package is home to all schedulers that use the framework. Every scheduler is defined
by extending the IScheduler abstract class, which is composed of a protected ISchedule factory that
is instantiated and configured by the extending scheduler to its desired configuration. The class
also defines the generate methods invoked by the user to generate a schedule, which can accept a
TaskSet object or an array of Tasks.

In addition to the IScheduler class, there are two extending traits to complement a schedule. An
ILegacyScheduler provides a legacyGenerate method which generates a schedule without using the
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framework – useful when computing the slack of the schedule via a ReverseEDFScheduler. Finally,
there is also the OrderedSchedule Trait, which defines a scheduler whose execution ordering follows
a simple property which can be used to verify the correctness of its output. The OrderedScheduler
trait defines the verifyOrdering function which returns true if the job schedule order follows the
property defined by the scheduler. To give an example of such a property, the earliest deadline
first scheduler only preempts when the deadline of the preempting job is larger or equal than the
running job – the job has finished –, or when the preempting job is released later and has a shorter
deadline – a higher priority release with a shorter deadline.

Figure 6.31 contains a class diagram for the Scheduler’s package.

class EDFScheduler

scheduleFunction()
 verifyOrdering(schedule)

class ReverseEDFScheduler

scheduleFunction()
 legacyGenerate(taskList: Array[Task])

 verifyOrdering(schedule)

PMin Package

abstract class DefaultScheduler

factory : ScheduleFactory[Job, ScheduledJob[Job]]
 state : ScheduleState[Job, ScheduledJob[Job]]

 decision : ScheduleDecision[Job, ScheduledJob[Job]]

- defaultJobFactory
 - defaultScheduledJobFactory
 abstract scheduleFunction()

 defaultAccept(state, decision)

abstract class IScheduler

factory : IScheduleFactory

generate(taskSet) : Option[Schedule]
 generate(tasks : Array[Task]) : Option[Task]

Trait ILegacyScheduler

legacyGenerate(taskList: Array[Task])

Trait OrderedSchedule

verifyOrdering(schedule)

Figure 6.31: A class diagram describing the Scheduler package.

Let’s describe each entity in figure 6.31:

PMinPackage Contains an implementation of the scheduler developed in this thesis.

IScheduler An abstract class which all schedulers extend. Composed of a ScheduleFactory config-
ured to the needs of the scheduler, and two generate methods.

DefaultScheduler Defines a standard scheduler which uses the standard job/scheduled job entities.
The class provides the required job and scheduled job factories and the appropriate schedule
factory configuration and instantiation such that any scheduler which requires this environment
can simply extend DefaultScheduler and override the scheduleFunction() method.

EDFScheduler contains an implementation of the earliest deadline first schedule policy.

ReverseEDFScheduler defines an implementation of the reverse earliest deadline first scheduler.

OrderedSchedule Defines a schedule whose output contains a well-defined order which can be
verified using the verifyOrdering function.

ILegacySchedule Characterizes a scheduler that provides a legacyGenerate method which pro-
duces a schedule without using the framework.

PMin Package

PMin – Preemption Minimizer – is the in-house name given to the scheduler presented in this thesis.
Its class structure is divided into three main components: the PMinScheduler, the PMinActionCon-
troller, and the PMinScheduleState.

The PMinScheduler contains the main loop of the scheduling algorithm described in this doc-
ument. In addition, the PMinScheduler class extends the IScheduler class and is responsible for
configuring the schedule factory and all its required components. The class is structured like the
pseudo-code presented in the final algorithm 5 of section 5.3.4, where several actions are called
upon in a very specific order, but how those actions are implemented is delegated to the remaining
components.
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The PMinScheduleState tracks how many jobs have been extended, or moved forward – replaced
by idle time. This is useful as we can query this database – instead of iterating the schedule – if we
need to revert one of these transformations at a later time. In addition, it also contains methods to
compute how much computation of a job can be shifted forward, or if a given job has any execution
with another neighboring job Ji.

Finally, the PMinActionController is responsible for applying any transformation. Doing so may
require knowing what is the state of the schedule, in which case it can query the PMinScheduleState
component. In addition, it informs the PMinScheduleState as transformations are applied so that
its database is always up to date.

The PMin scheduler is a well-structured component whose constituting elements have well-
defined roles. In addition, the scheduler has a linear and simple call order, as PMinScheduler
invokes the PMinActionController to attempt to apply the transformations described in, and in the
order of, algorithm 5 in section 5.3.4. If the ActionController can apply a transformation which may
need to be undone later, it will inform the PMinScheduleState which will add the transformation
to its database until it expires – defined as the release time of the job the transformation was
applied to, plus twice the longest period in the schedule. Failing to apply a transformation, the
PMinScheduler will enact the two primary scheduling policies: (1) finish the largest job, or (2)
execute the higher priority until the release of a higher priority release.

Figure 6.32 contains a class diagram for these components.

class PMinScheduler extends IScheduler

- ScheduleFactory[Job, PMinScheduledJob]
 - ScheduleState[Job, PMinScheduledJob]

 - ScheduleDecision[Job, PMinScheduledJob]

- jobFactory
 - scheduledJobFactory
 - jobReleasedListener

 - acceptFunction
 - scheduleFunction

class PMinActionController

+ relocateAndScheduleForward - trans. 1
 + tryToReducePreemptionsBySplittinAJob - trans. 2

 + tryToExtendAPreemption - trans. 3
 + tryToCompleteByShrinkingPreemptions - trans. 4

 + tryToReplaceLargerTasksWithSmallerTasks - trans. 5
 + forwardPerfectFitKnapsacker - trans. 6
 + backwardPefectFitKnapsacker - trans. 7

 + defragmentSchedule - trans. 8

class PMinScheduleState

- jobs : LinkedHashSet[Job]
 - PushForwardMap

 - largestPeriodInTaskSet : Int

+ addJob(job)
 + cleanUp

 + executionExtension
 + idleShiftForward

 + findExtenshionPushbackOption
 + findIdleShiftFowardPushbackOption

 + maxIdleShiftForward
 + finishedJobsSinceLastDeadline : Array[Jobs]

 + hasAtleastOneJobScheduledNextTo(scheduledJobs, Job)

class ScheduleDefragmenter

+ defragment(state, pminState) : IScheduleBuilderRewriter

Figure 6.32: A class diagram describing PMin’s main components.

One entity present in the diagram which has not been described is the ScheduleDefragmenter,
which contains an implementation of the schedule defragmentation algorithm presented in algorithm
4, particularly the defragment function as the forceSchedule function defined in the ScheduleUtils
class of the ScheduleBuilder component. Another yet to describe entity is the PMinScheduledJob,
which is the PMinScheduler extension of the ScheduledJob entity, and will be detailed further in
this section.

Let’s describe the class fields of each element in the diagram:

PMinScheduler Contains the schedule factory, which is configured with the required job factory
and corresponding scheduledJobFactory – which instantiates PMinScheduledJobs, a subtype
of ScheduledJob –, a job release listener which is invoked by the factory each time a job is
released, an accept function which is invoked during the setup phase of the generate method
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to configure the correct schedule state and decision objects, and finally, the scheduleFunction
which is invoked by the framework at each iteration.

PMinActionController Defines methods to attempt to apply each transformation in section
5.3.2.

PMinScheduleState the jobs LinkedHashSet1 includes all active jobs that are currently released,
or have been released two times the largest period in the past; the hash set is maintained by
the cleanup function, which removes jobs that no longer respect this property. The PushFor-
wardMap is another class which contains any moves that can effectively push another task
forward, i.e., a preemption extension, or when jobs are moved forward, and replaced by idle
time.

The executionExtension or the idleShiftForward methods are invoked whenever the PMinAC-
tion controller performs an action which extends an execution, or moves multiple executions
forward, replacing them by idle time. The find variants of these methods attempt to find
these previous transformations to rollback if doing so reduces the total number of system
preemptions.

The maxIdleShiftForward computes how much a job can be brought forward without breaking
any deadlines; the finishedJobsSinceLastDeadline return an array of tasks which have been
finished since the last deadline; and finally, the hasAtleastOneJobScheduledNextTo method
checks if a list of executions as at least one which contains job has a neighbor.

class PMinScheduledJob extends ScheduledJob[PMinJob]

+ job
 + start : Int
 + end : Int

class ScheduledJobState

deletePreemptionExtension 
 deleteIdleShiftForward

class IdleShiftForward

+ startTime : Int

class PreemptionExtension

+ extension : Int
 + time : Int

class PushForwardMap

- ScheduleState[Job, PMinScheduledJob]

+ addIdleShiftForward(PMinScheduledJob) 
 + addExecutionExtension(time, PMinScheduledJob, extension) 

 + findExtensionPushbackOption(scheduleOption, decision) : Boolean
 + findIdleShiftForwardPushbackOption(scheduleOption, decision) : Boolean

 + cleanUp(PMinScheduledJob)

Figure 6.33: A class diagram describing PMin’s remaining components.

Figure 6.33 contains the remaining PMin entities. The PushForwardMap tracks any transforma-
tion that extends or completely moves an execution forward. It does so by having the addIdleShift-
Forward and addExecutionExtension methods invoked by the PMinActionController whenever it
applies these transformations. Within the PushForwardMap, these transformations are tracked
by the IdleShiftFoward and ExtensionShiftForward classes, each of them which is self-contained
within a LinkedHashSet, which preserves insertion order but provides O(1) removals on average.
For convenience, the ScheduledJobState aggregates these objects within the ScheduledJobState,
making them accessible from the PMinScheduledJob. The ScheduledJobState class was created
to enforce a greater separation of the methods belonging to the ScheduledJob, and those of the
scheduler.

When jobs are pushed towards preemption zones, PushForwardMap attempts to find an ex-
tension that can be shrunk, or, if no such execution exists, if another execution can be split in
two, sending half of it backward. Ideally, an extension transformation is rolled back as it does not
necessarily induce a preemption.

1A linked hash set preserves insertion order.
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6.2.8 Util Package

The util package is composed of three entities: the Knapsacking algorithm, a random task set
generator, a math util component to calculate the LCM of a given number set – required to
calculate the hyper period of a task set –, and SortedUtils, which contains methods to operate
sorted arrays via binary-search based methods. Let’s describe each one of these packages in detail.

Random Task Set Generator

For the Random Task Set generator, we have used a python implementation of the randfixedsum
algorithm [99] by Paul Emberson, Roger Stafford, and Robert Davis. The python script is included
in the jar’s resources and invoked as an external program through scala’s ProcessBuilder. In the
interest of access easiness, a TaskSetGenerator class provides seamless access to the generator.
Figure 6.34 contains a class diagram describing the class.

class TaskSetGenerator

+ generate : TaskSet
 + generate(numberOfTasks) : TaskSet

 + generateMany(numberOfTaskSets) : Array[TaskSet]
 + generateMany(numberOfTaskSets, numberOfTasks) : Array[TaskSet]

Figure 6.34: A class diagram describing the TaskSetGenerator class.

Knapsacker

The Knapsacking problem is well defined and studied in the literature. It has been the topic of
research for at least a century, as some works were published as early as 1897 [66]. The problem
is defined as: given a set of items, each characterized by weight and value, determine which items
to include in a collection such that the sum of the value of its constituent elements is maximized
while its total weight is less or equal to a given limit.

A sub-problem of the Knapsack problem is called the subset-sum problem, where each item’s
value is equal to its weight. In our scheduler we have examples of both problems: (1) trying to fill
a given space with as many executions as possible is a knapsack problem, as joining 3 executions
of a job has a value of 3 but the weight – space needed to schedule those jobs – is equal to their
combined execution time. Trying schedule as many jobs as possible non-preemptively within an
execution window is a subset problem, since, the value of each execution is effectively equal to its
weight.

The knapsack problem is a subset of the decision problem “Does a value exists that is at least V
and does not exceed the maximum weight ? ”. This problem is defined as NP-Complete, and as far
as the authors of this thesis are aware, no known algorithm which is both optimal and fast exists
to treat all cases [78]. The knapsack problem can be solved in a feasible amount of time only when
the number of items is low, or when the absolute integer values of the item sets are low.

When the absolute integer value of weight is low, the problem can be solved in pseudo-polynomial
time through dynamic programming [84]. Dynamic algorithms solve complex problems by breaking
them down into a sub-collection of simpler problems and re-using their solutions. In this case, the
algorithm would solve all Knapsack problems starting with a weight of 0 up to a weight of N; at
each iteration, the algorithm would reuse previously built solutions to compute a valid solution for
W + 1.

When the number of items is low, the knapsack problem can be solved efficiently using meet-
in-the-middle [44]. This approach splits items into two sorted sets and generates all possible
combinations within these sets in O(2n/2). Finally, for each combination in the first set, find the
largest element in the second set such that the sum of both is smaller or equal than the weight
and its value is maximized. Using binary search to find the best match, the worst-case run-time
becomes O(n× 2n/2), with a space requirement of O(2n/2).

More complex solutions involve a hybridization of these approaches [9]. Given their high com-
plexity, they are beyond the scope of this thesis. Because the computational requirements of each
execution can be very big, meet-in-the-middle is likely to be more efficient. In this chapter, we
describe a parallel version of the meet-in-the-middle algorithm.

The solution is based on parallelizing the combinatorial generation process and the subsequent
search of this space. The combinatorial generation process is split into multiple jobs where each is
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responsible for generating all combinations of N items in one of the two sets. Then, the research
space on one set is divided into pieces using a java spliterator. The sorted search space which can
only contain sub-optimal solutions than the current best or invalid solutions is continuously pruned
each time the set is split into two by the spliterator. Finally, for each divided set, the algorithm
searches the research space in parallel until a matching element is found using the floor operation
of the set.

While the search phase is read-only and can be easily be performed in parallel, the first phase
where all combinations of n/2 elements are generated is not. To perform the combinatorial generation
in parallel, a ConcurrentSkipList is used. A skiplist, first describe in [83], is an ordered data
structure that permits O(log n) average performance on search, delete, and insert operations. It
is a probabilistic linked-list based data structure composed of multiple levels, where the last level
contains all elements, and each level acts as “express lanes” for the lane below. During insertion,
a “coin toss” decides whether an element is present on a level, hence being a probabilistic data-
structure. The Java ConcurrentSkipListSet was developed by Lea [59].

One particularity of our Knapsack usage is that not only must all items respect the maximum
weight, they must also be schedulable. If a particular set is not schedulable because its execution
bounds are mutually exclusive, then that combination is useless and should immediately be elimi-
nated. Hence, the operation that combines multiple items into one must be user-defined. Because
of this, not only is the combination a user definable object but so is the item type to knapsack as
well; hence like the scheduler, these types are user-defined.

trait KnapsackItem

+ value : Int
 + weight : Int

class KnapsackCombination <I<:KnapsackItem> extends Ordered[KnapsackCombination[I]]

+ value : Int
 + weight : Int

+ largestOf(maxWeight:Int, that: KnapSackCombination[I])
 + weightUnder(maxWeight)

class KnapsackMultithreadedCombinator

+ combine(items)

class Knapsacker<I<:KnapsackItem, C<:KnapsackCombination[I]>

+ items : Traversable[i]
 + sackWeight : Int
 + maxValue : Int

 + lazy combination: Option[C]

+ undo(IScheduleRewriter[J,SJ])

class KnapsackSolutionSpaceDiver extends Callable[C]

- spliterator[C]
 - firstHalfSet : ConcurrentSkipListSet[C]

 - bestCombination : C
 - foundCombination : AtomicBoolean

 - sackWeight: Int
 - maxValue

+ call() : C

class KnapsackCombinationGenerator extends Runnable

- numberOfItemsInCombination : Int
 - itemArray : Int

 - set : ConcurrentSkipListSet[C]
 - foundCombination : AtomicReference[C]

 - sackWeight : Int
 - countDownLatch

+ run()

class DefaultCombinator

+ combine(items)

Figure 6.35: A class diagram describing the Knapsacker Package.

A class diagram for the Knapsacker package is provided in figure 6.35, where :

KnapsackItem A user extendable trait that defines an item to be knapsacked. Only two methods
exist, one to compute its value, and another its weight.

KnapsackCombination Represents a combination of KnapsackItems as defined by the user. The
class is extendable, permitting the user to accommodate custom types, which can be built by
a user-defined KnapsackMultithreadedCombinator, if required.

Knapsacker The main Knapsacker class to invoke the knapsacker. The user instantiates the
Knapsacker with the items whose knapsacking is desired, the max value and weight of the
sack. The knapsacker is invoked by calling the lazy combination method, which returns a
combination if one exists.

KnapsackMultithreadedCombinator Defines a KnapsackCombinator that can combine items
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of type I into KnapsackCombinations of type C. The object must support parallel invocation
of the combine method.

DefaultCombinator Defines a default combinator which merely combines all items into an array.

KnapsackCombinatorGenerator Responsible for generating all combinations of length N of a
given item array. When all combinations have been computed, or an optimal solution has
been found, a countdown latch is updated to notify the Knapsacker the operation is complete.

KnapsackSolutionSpaceDiver Tries to find the optimal combination on a slice of the set, re-
turning the best result within it or quitting if the best result has been found by any space
diver.

A sequence diagram demonstrating the interactions between these classes is provided in figure
6.36.

Math Utils

The math utils class, like the name suggests, contains math related functions. The class is composed
of two methods, one that computes the least common denominator (LCM) of two integers, and
another which uses this method to compute the LCM of N integers. Figure 6.37 contains a class
diagram for this class.

Sorted Utils

Sorted Utils contains methods to efficiently search, insert, and remove items from sorted arrays
using binary search based algorithms. The class requires an Ordering type to be able to compare
any class with a natural ordering. A class diagram depicting SortedUtils is included in figure 6.38.

binarySearchClosest searches for the closest element matching K using binary search.

binarySearch searches for the element K using binary search.

binarySearchInsertion Inserts an element into an array using binary search to resolve its index.

binarySearchRemoval Removes an element from a SortedArray using binary search to resolve
its index.

6.3 Validation and Testing

Given the research-oriented nature of the project, it is imperative that the methods proposed here
be correct. This is especially important when considering the proposed methodology to compute
slack, as no formal proof of their correctness is provided.

As stated in the planning section, testing is performed through the JUnit testing framework,
ensuring java interoperability. However, because some classes can only be used by native scala
code, scalatest is required to test these components. This is less than ideal, as it demands the
tester to work with two different testing frameworks. Luckily, scalatest is compatible with the
JUnit runner, and scalatest classes can be invoked by the JUnit running by appending the @run-
With(classOf[JUnitRunner]) class tag to any scalatest test class. Hence, although two different
testing frameworks are actively used, only the JUnit runner is required to launch all tests.

The test methodology is separated into three categories:

1. Unit testing, which tests a specific component in isolation.

2. Component Testing, which tests a specific component that can be comprised of many sub-
components, or/and uses the framework to generate the necessary conditions for that test,
i.e., job instantiation, slack generation, or a predefined scheduling order.

3. Automated Property Testing, which tests a given class or component by automatically gener-
ating test cases and verifying the output through a given property.
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Client Knapsacker CombinationGenerator SolutionSpaceDiver KnapsackCombinator

combination(items, combinator)

init concurent skip-list sets

split items into two

generate all combinations in both arrays, storing them in each set

combine(items)

combination

return combination

return combination

if the combination is optimalif the combination is optimal

for all N combinations of itemsfor all N combinations of items

parallelparallel

find the optimal solution using meet-in-the middle

combine(items)

combination

return combination

return combination

if the combination is optimalif the combination is optimal

best combination in subset

parallelparallel

combination

Figure 6.36: A sequence diagram for the main schedule loop.

class MathUtil

+ lcm(int x1, int x2) : int 
 + lcm(int[] numbers) : int

Figure 6.37: A class diagram describing the MathUtil class.

To facilitate automatic property testing, an additional testing framework, scalacheck, was used.
Scalacheck provides the necessary architecture to define automatic testing, namely random data
generators and the class structure to do so. Each automatic test was executed for at least 24 hours,
providing a high degree of confidence the framework and its schedulers are bug-free.

In addition to all included tests, an extensive use of assertions and requirements also provides a
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class SortedArrayUtils

+ binarySearchClosest[K: Ordering](list: mutable.WrappedArray[K], target: K) : Int 
 + binarySearch[K: Ordering](list: mutable.WrappedArray[K], target: K): Int

 + binarySearchInsertion[K: Ordering](list: mutable.ArrayBuffer[K], target: K) : Int
 + binarySearchRemoval[K: Ordering](list: mutable.ArrayBuffer[K], target: K) : Boolean 

Figure 6.38: A class diagram describing the SortedUtils class.

high error resiliency, as a scheduling error leading to an illegal action is sure to be detected. These
assertions, too fine-grained to enumerate, include: all jobs obey their release and deadline bounds,
all jobs are scheduled in accordance with their computational requirements, only one job executes
at any given time, and no slacks are negative.

The following subsections will describe the testing and validation of all components, sub-
components, and proposed algorithms.

Slack Calculators

The Slack Calculator is the most extensively tested component in the entire project. This is well
justified, as a slack computation error can lead to unexpected and hard to understand circumstances.
Most of the times, the error will go unnoticed until only a few cycles later, where it will likely incur
a deadline miss, causing the scheduler to crash. Alternatively, the error can also go completely
unnoticed when the error underflows the available slack, or the scheduler does not attempt to
maximize the slack of the misbehaving job.

To ensure the correct functioning of the slack mechanism, the combinations of all possible
interactions between two jobs have been enumerated and tested; this accounts to 15 scenarios
in which the interweave between two jobs is slid from the left to the right, in addition to all
combinations of reverse slack when applicable. Additionally, we have also considered how the
mathematical method is implemented and developed test cases with:

1. Multiple carry out jobs, including nested scenarios.

2. Multiple idle-period shadowing tests, including nested scenarios.

3. Jobs which are considered in both equations 5.12 and 5.11, described in section 5.2.2 on page
33.

The number of unit tests on the slack computation module alone, not including sub-formulas,
totals 31 tests. For each test, the slack is manually computed for the whole hyper-period, or until
the first deadline of the longest task in the schedule if the hyper-period is too long. The produced
slack values are cross-checked with all 3 implementations of the slack calculator. Finally, the task
set is scheduled with the reverse earliest deadline scheduler, which will postpone each job for as
long as possible, and will crash if one of the values is higher than it should be.

The sub-formulas defined in section 5.2.2, namely: calculating the overlap between two jobs –
equation 5.14, if one of job Ji carries out another job Jj , if a job Ji contained within another job
Jj , the first release of a task after a specified time – equation 5.6, and the last deadline of a task
before or at a given time – equation 5.8, have also been unit tested. These tests take all required
values within the tasks, i.e., job deadline, task release, task period, etc., and produce all possible
combination between them, testing all possible combinations.

Finally, the three scheduler implementations have been tested using automated property testing.
These tests are composed of randomly generated task sets composed of 1 up to 500 jobs, where
all three generators must agree with the slack value of all jobs. In addition, the reverse earliest
deadline scheduler will schedule the taskset, guaranteeing that if one of these values is higher than
the correct value, the scheduler will crash.

ScheduleBuilder

The ScheduleBuilder is tested in all but the slack tests, as it the component responsible for managing
its output – the schedule. Because of this, the only unit tests in this component are reserved to
the Rewriter classes, as the rewriting transformations are tested as part of the ScheduleRewriter
component. In this regard, the RawRewriter has each defined operation tested. The backtracking
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rewriter is also extensively tested, where for each operation, multiple operations are performed to
try and induce an error.

ScheduleJobTree

The ScheduleJobTree has also been extensively tested. The component tests verify all possible
combinations between two jobs, sliding from the left to the right; for each combination, the execution
order is permuted, and the slack/correct release of all jobs is verified. The tests are performed via
a custom-built scheduler with pre-defined actions that verifies the complete ScheduleState object
at every iteration.

Finally, the ScheduleJobTreeRewriter tests are also extensive; as each operation is tested in two
conditions: one in which the slack of the job is affected, and one in which it suffers no change.

Schedule Rewriter

The rewriter tests are comprised of a single test for each available rewrite operation. Although a
single test for each transformation may not encompass a significant portion of all possible scenarios,
these tests are complemented by PMin scheduler tests, where multiple transformations are applied
in sequence.

Schedulers

Both the EDFScheduler and the ReverseEDFScheduler have been unit tested through 10 manually
verified task sets. In addition to these unit tests, automated property tests are also employed and
verified through the respective OrderedSchedule’s properties. All these tests also verify that the
produced schedule is valid.

The PMinScheduler is verified through 25 task sets which have been manually verified by hand
to ensure all transformations are correctly applied. Complementing these tests, are 14 unit tests
that have been specially crafted to test all transformations both individually and in sequence.
Finally, automated property testing is employed to verify that each produced schedule is valid,
i.e., all executions are allocated within their release and deadline bounds, and all jobs have their
computational requirements satisfied.

Knapsacker

The Knapsacker is composed of six manual tests that have been carefully designed considering the
algorithm and its respective implementation. The tests are designed such that all the following
cases are covered:

1. The value and weight are such that no element can be combined.

2. The optimal value is generated during the generation of one set.

3. The optimal value is the combination of all elements.

4. The value is a combination of two elements in each set.

5. A custom combinator is used.

6. A combination of items which is below the optimal value.

In addition to these unit tests, automated property tests are used to provide a high degree of
confidence the knapsacker works correctly. The tests generate an array initialized with random
data, pick a random combination of N numbers, and ensure the knapsacker is able to find this
combination.
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Chapter 7

Conclusion

In this thesis, we have approached the problem of minimizing the number of preemptions within
ARINC-653 certified avionic systems. In ARINC, context switches can extend the worst-case ex-
ecution time of a partition up to 33% [18]; this increases the overall number of computing nodes
required to perform a computation, ultimately leading to increased gross weight, fuel costs, and
CO2 emissions [106]. Although many schedulers in the state-of-the-art are able to produce a feasible
schedule for avionic systems, none attempt to minimize the number of system preemptions.

With the goal of minimizing preemptions and maximizing efficiency, we have produced two
contributions. The first is a new exact and precise slack mechanism that is efficient and completely
independent of the active schedule policy, providing a scheduler with complete freedom of choice
when deciding which task to schedule next. The slack mechanism is able to significantly prune the
research space by cutting invalid branches – where at least one task misses its deadline – at their
roots, thereby preventing expensive look ups that can only lead to invalid solutions. The mechanism
is composed of two phases, the first is a slack extraction phase that can be performed through a
mathematical or algorithmic approach; and a second phase, called the scheduling phase where at
each iteration, the scheduler decides which task to schedule next and the slack of all the impacted
tasks is updated.

The second contribution is a scheduler capable of minimizing the number of system preemptions.
The scheduler is based on a set of greedy heuristics that generally provide a good solution, but
incorporates a fall-back recovery mechanism that is triggered whenever the heuristics prove to
be sub-optimal. Given that no scheduler currently attempts to minimize the number of system
preemptions, we have chosen to compare our solution against two state-of-the-art non-preemptive
offline schedulers. Given that these schedulers are specifically tailored for the non-preemptive
domain, it is unrealistic to expect our solution can beat them. Although our method does not
improve significantly upon the state-of-the-art in terms of non-preemptive schedulability ratio, it
offers comparable performance to some of these methods. In task sets that are failed to be scheduled
non-preemptively, most jobs (98% to 99%) are scheduled non-preemptively, proving our method is
indeed very good in reducing the number of system preemptions.

The project’s success not only contributed to the advancement of scheduling theory and real-
time safety-critical systems such as those used in aviation, but also CISTER’s position as a leading
research unit in the area of real-time & embedded platforms, and was without doubt exceedingly
ambitious and challenging. Of course, none of the work would be possible if it was not for my super-
visors Geoffrey Nellissen and Eduardo Tovar, which while providing me with complete directional
freedom, were instrumental in nurturing and shaping this work to excellence.
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Appendix

A.1 Algorithms

Reverse EDF Algorithm

Algorithm 6 Reverse EDF Scheduler.

function schedule(task set)
job list← task set.jobs
sort job list by (job ⇒ −job.deadline, −job.release, job.task.id) ⊲ Sort in Reverse EDF
schedule← empty list
time← job list.first.deadline
repeat

time← min(head job.deadline, time) ⊲ Determine the earliest time there are active jobs
job← job list.iterator

.takeWhile(_.deadline ≥ time)

.maxBy(job⇒ job.release, − job.deadline) ⊲ Get the active job with the latest
release, using earliest deadline as a tie breaker

runtime← job list.iterator
.dropWhile(_.deadline ≥ time)
.takeWhile(_.deadline > time − job.execution)
.find(iJob ⇒ iJob.release > job.release or iJob.release = job.release and

iJob.deadline < job.deadline)
.getOrElse(min(time − _.deadline, job.execution), job.execution) ⊲ Calculate

runtime when a higher priority job is released within the execution of Job

time← time− runtime
job.runtime ← job.runtime − runtime
add execution of job for runtime units to the front of schedule
if job.finished then

remove job from job list
end if

until job list.empty
end function

Algorithm 6 schedules jobs from the end of the hyper period, under latest release and earliest
deadline priority order. It has a time complexity of O(J × logJ +E × (T + T )), where J is the
number of system jobs and E is the number of total executions. J logj is the cost of sorting the job
list in reverse EDF order, and E × (T + T ) the price of, for each execution, searching for the job
to schedule plus resolve if a higher priority job is released during its execution.
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A.2 Statistical Tests

Schedulability Analysis

PMin vs CWin-RM

XLSTAT 2017.5.47365  - McNemar test - Start time: 10/13/2017 at 10:41:09 AM / End time: 10/13/2017 at 10:41:09 AM / Microso

Subjects/Treatments table: Workbook = statistics_pmin_vs_rm.xlsx / Sheet = Sheet1 / Range = Sheet1!$C$1:$D$9001 / 9000 rows 

Significance level (%): 5

Positive response code: 1

Summary statistics:

Variable Categories Frequencies %

pmin 1 8781 97.567

0 219 2.433

Table-BackTrack-RM-WF 1 8792 97.689

0 208 2.311

Contingency table:

Table-BackTrack-RM-WF-1 Table-BackTrack-RM-WF-0

pmin-1 8573 208

pmin-0 219 0

McNemar test (Exact p-value) / Two-tailed test:

Q 0.283

|z| (Observed value) 0.532

|z| (Critical value) 1.984

p-value (Two-tailed) 0.628

alpha 0.05

Test interpretation:

H0: The treatments are identical.

Ha: The treatments are different.

The risk to reject the null hypothesis H0 while it is true is 62.85%.

As the computed p-value is greater than the significance level alpha=0.05, one cannot reject the null hypothesis H0.

Figure A.1: A McNemar test which fails to reject the hypothesis PMin and CWin-RW present
different schedulability ratios on 9000 non-preemptive task sets.
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PMin vs BB-Moore

XLSTAT 2017.5.47365  - McNemar test - Start time: 10/13/2017 at 10:32:52 AM / End time: 10/13/2017 at 10:32:52 AM / Microso

Subjects/Treatments table: Workbook = statistics_pmin_vs_bbmore.xlsx / Sheet = Sheet1 / Range = Sheet1!$C$1:$D$9001 / 9000 ro

Significance level (%): 5

Positive response code: 1

Summary statistics:

Variable Categories Frequencies %

pmin 1 8696 96.622

0 304 3.378

B-and-BMoore68 1 8939 99.322

0 61 0.678

Contingency table:

B-and-BMoore68-1 B-and-BMoore68-0

pmin-1 8635 61

pmin-0 304 0

McNemar test (Exact p-value) / Lower-tailed test:

Q 161.778

z (Observed value) -12.719

z (Critical value) -1.623

p-value (one-tailed) < 0.0001

alpha 0.05

Test interpretation:

H0: The treatments are identical.

Ha: Positive responses are less likely with treatment pmin than with treatment B-and-BMoore68.

The risk to reject the null hypothesis H0 while it is true is lower than 0.01%.

As the computed p-value is lower than the significance level alpha=0.05, one should reject the null hypothesis H0, and accept the 

alternative hypothesis Ha.

Figure A.2: A McNemar test which suggests there is enough evidence to assume BB-Moore has a
higher schedulability ratio than PMin.
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Runtime Analysis

PMin Normality

XLSTAT 2017.5.47365  - Normality tests - Start time: 10/12/2017 at 8:13:23 PM / End time: 10/12/2017 at 8:13:23 PM / Microsoft Excel 16.08528

Data: Workbook = RUNTIME_TESTS.xlsx / Sheet = Sheet1 / Range = Sheet1!$B:$B / 9000 rows and 1 column

Significance level (%): 5

Summary statistics:

Variable Observations Obs. with missing datas. without missing d Minimum Maximum Mean Std. deviation

Pmin 9000 0 9000 0.000 869.551 6.740 15.016

Shapiro-Wilk test (Pmin):

W 0.166

p-value (Two-tailed) < 0.0001

alpha 0.05

Test interpretation:

H0: The variable from which the sample was extracted follows a Normal distribution.

Ha: The variable from which the sample was extracted does not follow a Normal distribution.

The risk to reject the null hypothesis H0 while it is true is lower than 0.01%.

Anderson-Darling test (Pmin):

A² +Inf

p-value (Two-tailed) < 0.0001

alpha 0.05

Test interpretation:

H0: The variable from which the sample was extracted follows a Normal distribution.

Ha: The variable from which the sample was extracted does not follow a Normal distribution.

The risk to reject the null hypothesis H0 while it is true is lower than 0.01%.

Lilliefors test (Pmin):

D 0.330

D (standardized) 31.281

p-value (Two-tailed) < 0.0001

alpha 0.05

Test interpretation:

H0: The variable from which the sample was extracted follows a Normal distribution.

Ha: The variable from which the sample was extracted does not follow a Normal distribution.

The risk to reject the null hypothesis H0 while it is true is lower than 0.01%.

Jarque-Bera test (Pmin):

JB (Observed value) 869100551.552

JB (Critical value) 5.991

DF 2

p-value (Two-tailed) < 0.0001

alpha 0.05

Test interpretation:

H0: The variable from which the sample was extracted follows a Normal distribution.

Ha: The variable from which the sample was extracted does not follow a Normal distribution.

The risk to reject the null hypothesis H0 while it is true is lower than 0.01%.

Summary:

Variable\Test Shapiro-Wilk Anderson-Darling Lilliefors Jarque-Bera

Pmin < 0.0001 < 0.0001 < 0.0001 < 0.0001

As the computed p-value is lower than the significance level alpha=0.05, one should reject the null hypothesis H0, and accept the alternative 

hypothesis Ha.

As the computed p-value is lower than the significance level alpha=0.05, one should reject the null hypothesis H0, and accept the alternative 

hypothesis Ha.

As the computed p-value is lower than the significance level alpha=0.05, one should reject the null hypothesis H0, and accept the alternative 

hypothesis Ha.

As the computed p-value is lower than the significance level alpha=0.05, one should reject the null hypothesis H0, and accept the alternative 

hypothesis Ha.

Figure A.3: Multiple statistic tests which suggest PMin’s execution times do not follow a normal
distribution.
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CWin-RM Normality

XLSTAT 2017.5.47365  - Normality tests - Start time: 10/12/2017 at 8:25:54 PM / End time: 10/12/2017 at 8:25:55 PM / Microsoft Excel 16.08528

Data: Workbook = RUNTIME_TESTS.xlsx / Sheet = Sheet1 / Range = Sheet1!$A:$A / 9000 rows and 1 column

Significance level (%): 5

Summary statistics:

Variable Observations Obs. with missing datas. without missing Minimum Maximum Mean Std. deviation

CW-RM 9000 0 9000 2.000 58859.000 105.469 1040.423

Shapiro-Wilk test (CW-RM):

W 0.025

p-value (Two-tailed) < 0.0001

alpha 0.05

Test interpretation:

H0: The variable from which the sample was extracted follows a Normal distribution.

Ha: The variable from which the sample was extracted does not follow a Normal distribution.

The risk to reject the null hypothesis H0 while it is true is lower than 0.01%.

Anderson-Darling test (CW-RM):

A² +Inf

p-value (Two-tailed) < 0.0001

alpha 0.05

Test interpretation:

H0: The variable from which the sample was extracted follows a Normal distribution.

Ha: The variable from which the sample was extracted does not follow a Normal distribution.

The risk to reject the null hypothesis H0 while it is true is lower than 0.01%.

Lilliefors test (CW-RM):

D 0.461

D (standardized) 42.023

p-value (Two-tailed) < 0.0001

alpha 0.05

Test interpretation:

H0: The variable from which the sample was extracted follows a Normal distribution.

Ha: The variable from which the sample was extracted does not follow a Normal distribution.

The risk to reject the null hypothesis H0 while it is true is lower than 0.01%.

Jarque-Bera test (CW-RM):

JB (Observed value) 1518074458.839

JB (Critical value) 5.991

DF 2

p-value (Two-tailed) < 0.0001

alpha 0.05

Test interpretation:

H0: The variable from which the sample was extracted follows a Normal distribution.

Ha: The variable from which the sample was extracted does not follow a Normal distribution.

As the computed p-value is lower than the significance level alpha=0.05, one should reject the null hypothesis H0, and accept the alternative 

hypothesis Ha.

As the computed p-value is lower than the significance level alpha=0.05, one should reject the null hypothesis H0, and accept the alternative 

hypothesis Ha.

As the computed p-value is lower than the significance level alpha=0.05, one should reject the null hypothesis H0, and accept the alternative 

hypothesis Ha.

As the computed p-value is lower than the significance level alpha=0.05, one should reject the null hypothesis H0, and accept the alternative 

hypothesis Ha.

The risk to reject the null hypothesis H0 while it is true is lower than 0.01%.

Summary:

Variable\Test Shapiro-Wilk Anderson-Darling Lilliefors Jarque-Bera

CW-RM < 0.0001 < 0.0001 < 0.0001 < 0.0001

Figure A.4: Multiple statistic tests which suggest CWin-RM’s execution times do not follow a
normal distribution.
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PMin vs CWin-RM

XLSTAT 2017.5.47365  - Comparison of two samples (Wilcoxon, Mann-Whitney, ...) - Start time: 10/12/2017 at 8:17:47 PM / E

Sample 1: Workbook = RUNTIME_TESTS.xlsx / Sheet = Sheet1 / Range = Sheet1!$A:$A / 9000 rows and 1 column

Sample 2: Workbook = RUNTIME_TESTS.xlsx / Sheet = Sheet1 / Range = Sheet1!$B:$B / 9000 rows and 1 column

H0: The average execution time of Cwin-RM is <= than PMin

HA: The averge execution time time of Cwin-RM > than PMin

Hypothesized difference (D): 0

Significance level (%): 5

p-value: Exact p-value

Management of ties: Hollander & Wolfe

Summary statistics:

Variable ObservationsObs. with missing data without missinMinimum Maximum Mean Std. deviation

CWin-RM 9000 0 9000 2.000 58859.000 105.469 1040.423

Pmin 9000 0 9000 0.000 869.551 6.740 15.016

Sign test / Upper-tailed test:

N+ 8203

Expected val 4150.000

Variance (N+) 2075.000

p-value (one-tai < 0.0001

alpha 0.05

The p-value is computed using an exact method.

Test interpretation: The average exeuction time of CWin-RM is larger than Pmin

H0: The two samples follow the same distribution.

Ha: The distributions of the two samples are different.

The risk to reject the null hypothesis H0 while it is true is lower than 0.01%.

Wilcoxon signed-rank test / Upper-tailed test:

V 34290786

V (standardiz 78.176

Expected val 17224575.000

Variance (V)47657528262.500

p-value (one-tai < 0.0001

alpha 0.05

The exact p-value could not be computed. An approximation has been used to compute the p-value.

Test interpretation:

H0: The two samples follow the same distribution.

Ha: The distributions of the two samples are different.

The risk to reject the null hypothesis H0 while it is true is lower than 0.01%.

Summary (p-values):

As the computed p-value is lower than the significance level alpha=0.05, one should reject the null hypothesis 

H0, and accept the alternative hypothesis Ha.

As the computed p-value is lower than the significance level alpha=0.05, one should reject the null hypothesis 

H0, and accept the alternative hypothesis Ha.

Variable\Test Sign test coxon signed-rank test

FilteedRM - P < 0.0001 < 0.0001

Figure A.5: A sign test and a Wilcoxon signed-rank test which suggest PMin is, on average, faster
than CWin-RF.
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Glossary

aperiodic task Aperiodic tasks are only char-
acterized by a computation time and a dead-
line; there is no bound on the interarrival
period of aperiodic tasks.

avionics Electronic systems used on aircraft, ar-
tificial satellites, and spacecraft. Avionic
systems include communications, naviga-
tion, displays, autopilot, fuel management,
etc.

certification Formally verify that a system con-
forms to standards and that its functional
and non functional properties are respected,
such as: the correct output is always pro-
duced under the timing restraints imposed
for that operation.

certified A system formally verified that it con-
forms to standards and that its functional
and nonfunctional properties are respected,
such as the correct output is always pro-
duced under the timing restraints imposed
for that operation.

composability Enforces that the behavior of
individual components remain unchanged
when considered in isolation and after their
integration with all the other components
constituting the systems.

compositionality Ensures that the overall ap-
plication behavior can be provided by the
composition of its constituting subcompo-
nents.

criticality Critical level of the system, for exam-
ple, high criticality refers to mission criti-
cal hardware, while low criticality means a
fault of sorts does not endanger the system
or put lives at risk.

deadline The latest time or date by which some-
thing should be completed.

deterministic A development model where no
randomness is involved in the development
of future states. A deterministic system
will always produce the same output from
a given starting condition or state.

extra-functional properties In a runtime mon-
itoring context, everything that does not
relate to the result produced or execution
ordering, such as: a task A must complete
within 10ms, power consumption must stay
below 5W properties.

fault tolerance A guarantee of continuous op-
eration even in the event a failure occurs.

feasible A task set is deemed feasible if, for all
tasks, all jobs complete within timing and
functional constraints.

functional properties In a runtime monitor-
ing context, everything that relates to the
produced result or execution ordering, such
as: task A must execute before B; the sen-
sor reading must be larger than 5.

hard real time A hard real-time system is a
system that must operate within the con-
fines of a stringent deadline. The applica-
tion may incur catastrophic damage if it
does not complete its function within the
allotted time span.

harmonic task set A task set is deemed har-
monic if the periods of its constituent tasks
are all multiple of each other.

Integrated Modular Avionics Real time air-
borne computing systems architecture.

limited preemptive scheduler In limited- pre-
emption, the scheduler is allowed to post-
pone a preemption based on some criteria.

loose harmonic task set A task set where task’s
periods are integer multiple of the smallest
period in the system.

mission critical Hardware or software vital to
the correct functioning of a system.

partition Virtualized computing environments
that isolate system processes in space and
time. By distributing processes among par-
titions, faults cannot propagate among par-
titions.
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Glossary Glossary

partitioning The process of dividing system re-
sources into partitions so that they are com-
pletely isolated from one another. This iso-
lation prevents faults from propagating to
other partitions, improving the reliability,
safety, and ease of development of the sys-
tem.

periodic task Periodic tasks are characterized
by a constant interarrival period, a compu-
tation time, and a deadline.

quality of service The overall performance of
a computer system, particularly the perfor-
mance seen by its users.

real time In this report real time relates to real
time systems.

real-time systems A real-time system is one
that must process information and produce
a response within a specified time, else risk
severe consequences, including failure.

response time analysis A response time anal-
ysis (RTA) calculates the maximum period
of elapsed time from the release of a task
until its computation is complete.

runtime The time during which an application
is executing, in contrast to compile time,
link time and load time.

safety-critical A system whose failure or mal-
function may result in serious injury, death,
or severe damage.

schedulability analysis A schedulability anal-
ysis determines if a given task set is feasible,
that is if all tasks in the system complete
within their assigned deadlines. A given
schedulability analysis method may be suf-
ficient or necessary. A sufficient schedula-
bility test can only determine if a given
task set is schedulable; if the test is false,
then no conclusion can be drawn regarding
the schedulability of the task set. A neces-
sary schedulability analysis can determine
if a task set is schedulable or unschedulable;
it defines a property necessary to achieve
schedulability, without whom, it is impos-
sible for all tasks to meet their deadlines.

schedulable The evaluation, testing, and veri-
fication that the designated task set is al-
ways executed within a given time.

scheduling The Business Dictionary defines schedul-
ing as determining when an activity should
start or end, depending on its duration,

predecessor activities and relationships, re-
source availability, and target completion
date [27].

soft real time A soft real-time system is hard-
ware or software that should operate at a
given frequency. Failure to meet task dead-
lines can result in system degradation, and
quality of service (QoS) can be affected but
is otherwise without any consequences.

space partitioning A form of partitioning, space
partitioning ensures that memory opera-
tions cannot cross partitions unless explic-
itly allowed to do so through shared mem-
ory or communication systems such as sock-
ets.

sporadic task Sporadic tasks are characterized
by a minimum interarrival period, a com-
putation time, and a deadline.

static scheduler A static scheduling algorithm
always assigns the same priority to a given
task; Rate Monotonic (RM) is an exam-
ple of a static fixed priority scheduler that
assigns priority to tasks based on their pe-
riod.

system jitter Delay variations caused by schedul-
ing overhead. Jitter impact the execution
times of tasks in the system.

task slack For a given task, slack is defined as
the amount of time the task can remain
idle until the ability to complete its com-
putation within the allotted time limit is
compromised. Slack time of a task can be
impacted by the presence of other tasks in
the system.

time partitioning A form of partitioning, time
partitioning guarantees that the timing char-
acteristics of tasks, such as their worst-case
execution times are not affected by the ex-
ecution of other tasks in other partitions.

unschedulable The task or task set fails to meet
its time restrictions in at least one scenario.

work-conserving scheduler A work-conserving
scheduler never allows the processor to be
idle when the ready queue is not empty.
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Acronyms

ACO Ant Colony Optimization.

API Application Program Interface.

B&B Branch and Bound.

C-EDF Clairvoyant EDF.

CISTER Research Center in Real-time and Em-
bedded Computing Systems.

CPU Central Processing Unit.

CW-EDF Critical Time Window-Based Earli-
est Deadline First.

DM Deadline Monotonic.

DPS Deferred Preemption Scheduling.

EA Exact Algorithms.

EDF Earliest Deadline First.

EP-RM Efficient Precautious Rate Monotonic.

FCFS First-Come-First-Served.

FIFO First-In-First-Out.

FP Fixed Priority.

FPP Fixed Preemption Points.

GA Genetic Algorithms.

GNU GNU’s Not Unix!.

Gr-EDF Group-Based EDF.

HA Heuristic Algorithms.

IIP Idle-Time Insertion Policy.

ILP Integer Linear Programming.

ILS Iterative Local Search.

IMA Integrated Modular Avionics.

LCM Least Common Multiple.

LIFO Last-In-First-Out.

LLF Least Laxity First.

LP-RM Lazy Precautious Rate Monotonic.

MC Model Checking.

MF Mathematical Formulation.

MH-A Meta-Heuristic Algorithms.

MILP Mixed Integer Linear Programming.

NP-EDF Non Preemptive Earliest Deadline First.

PN Petri Nets.

POSIX Portable Operating System Interface.

P-RM Precautious Rate Monotonic.

PTS Preemption Threshold Scheduling.

QoS Quality of Service.

RM Rate Monotonic.

RTA Response Time Analysis.

SA Simulated Annealing.

SAT satisfiability module theories.

SJF Shortest Job First.

TS Tabu Search.

WCET Worst Case Execution Time.
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