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Abstract

One of the major sources of pessimism in the response time analysis (RTA) of globally scheduled reatdisks is
the computation of an upper-bound on the inter-task interference. This problem is further exdmated when intra-
task parallelism is permitted because of the complex internal structure of parallel taskehis paper considers the
global fixed-priority (G-FP) scheduling of sporadic real-time tasks when each taskddeted by a directed acyclic
graph (DAG) of concurrent subtasks. We present a RTA based on the concept of problemiow, a technique tha
has been extensively used to study the schedulability of sequential task in multiprocessortsys. The problem
window approach of RTA usually categorizes interfering jobs in three different groups: carry-iny-cartr and body
jobs. In this paper, we propose two novel techniques to derive less pessimistipepbounds on the workload
produced by the carry-in and carry-out jobs of the interfering tasks. Those new boutale into account the
precedence constraints between subtasks pertaining to the same DAG. We show that with th&w
characterization of the carry-in and carry-out workload, the proposed schedulability test affeignificant
improvements on the schedulability of DAG tasks for randomly generated task sets in carigon to state of-the-
art techniques. In fact, we show that, while the statef-art analysis does not scale with an increasing number of
processors when tasks have constrained deadlines, the results of our analysis are barely d@oted by the
processor count in both the constrained and the arbitrary deadline case.
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Abstract

One of the major sources of pessimism in the response time analysis (RTA) of globally
scheduled real-time tasks is the computation of an upper-bound on the inter-task inter-
ference. This problem is further exacerbated when intra-task parallelism is permitted
because of the complex internal structure of parallel tasks. This paper considers the
global bxed-priority (G-FP) scheduling of sporadic real-time tasks when each task
is modeled by a directed acyclic graph (DAG) of concurrent subtasks. We present
a RTA based on the concept of problem window, a technique that has been exten-
sively used to study the schedulability of sequential task in multiprocessor systems.
The problem window approach of RTA usually categorizes interfering jobs in three
different groups: carry-in, carry-out and body jobs. In this paper, we propose two
novel techniques to derive less pessimistic upper-bounds on the workload produced
by the carry-in and carry-out jobs of the interfering tasks. Those new bounds take into
account the precedence constraints between subtasks pertaining to the same DAG. We
show that with this new characterization of the carry-in and carry-out workload, the
proposed schedulability test offers signibcant improvements on the schedulability of
DAG tasks for randomly generated task sets in comparison to state-of-the-art tech-
nigues. In fact, we show that, while the state-of-art analysis does not scale with an
increasing number of processors when tasks have constrained deadlines, the results of
our analysis are barely impacted by the processor count in both the constrained and
the arbitrary deadline case.
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1 Introduction

Few years ago, there was a neat and clear frontier separating the real-time embed-
ded domain from the high-performance computing domain. Nowadays, many modern
applications (e.g., intelligent transportation systems and autonomous driving) share
requirements from both worlds: they are subject to strong timing constraints and have
high computational demands. In order to cope with such orthogonal requirements, we
have witnessed a strong push towards the adoption of parallel programming paradigms
and multi-/many-core embedded architectures. Parallel programming models, such as
OpenMP (Board@013, enable both inter- and intra-task parallelism in the systems,
thus offering opportunities for a more efbcient exploitation of the immense processing
power that is today at the industryOs disposal.

For the real-time research community, the analysis of the worst-case timing behavior
of parallel systems requires a detailed representation of the intrinsic parallelism within
the application as well as a complete picture of the precedence constraints that it
imposes onits parallel activities. These new challenges have been progressively tackled
as shown by the different parallel task models and respective schedulability analysis
recently proposed in the literature (Lakshmanan eR@llQ Saifullah et al.2011
Chwa et al2013 Maia et al.2014 Baruah et al2012 Bonifaci et al.2013 Li et al.

2013 Baruah2014 Li et al. 2014 Fonseca et aR016 Melani et al.2015 Baruah
etal.2015.

In this paper, we study the sporadic DAG task model introduced in Baruah et al.
(2012 under global bxed-priority (G-FP) scheduling. In this model, each task is
characterized by a directed acyclic graph (DAG). The nodes of the graph represent
sequential computation units (e.g., openMP tasks) and the edges dePne precedence
constraints between the execution of nodes. Nodes that are not directly or transitively
connected with each other in the graph may execute in parallel, otherwise they must
follow the sequential order given by the DAG structure.

A key challenge in the response time analysis (RTA) of globally scheduled mul-
tiprocessor task systems is to compute an upper-bound on the interference that tasks
generate on each other. The complexity of computing such inter-task interference
bound is exacerbated for parallel tasks, DAGs in particular, due to their complex and
irregular internal structure. To the best of our knowledge, the work proposed by Melani
et al. 015 represents the brst attempt at analyzing the schedulability of a set of spo-
radic DAG tasks with a general G-FP scheduling policy through a RTA approach. Their
RTA is based on the concept of problem window developed originally by Bakéed.

This technique consists in estimating the maximum interfering workload produced by
a higher priority task in a time interval of arbitrary length. While the work in Melani
et al. 015 indeed succeeded in upper-bounding the interfering workload generated
by DAG tasks, it does so by considering that every job in the problem window is
a compact block of execution which uniformly occupies all the available processors
until its completion.

Since most DAGs exhibit different degrees of parallelism throughout their execution
and do not necessarily require to constantly access all processors, such abstraction
leads to a signibcant overestimation of the inter-task interference. This extra level of
pessimism in the schedulability analysis is evident in the experimental results reported
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Table 1 Performance of the schedulability test proposed by Melani e2@lL5

Schedulability ratio (%) 94 63 49 32 24 16 14 10

Number of cores 2 4 6 8 D 12 14 16

in Tablel (more details about the system conpbguration are deferred td8ediablel

shows the percentage of task sets that are deemed schedulable by the schedulability
test proposed in Melani et aR@15 when increasing the number of available cores

but keeping the platform utilization Pxed at 70% and the number of tasks proportional
to the number of cores. The steady schedulability performance deterioration visible in
Table 1 for the aforementioned test is counter-intuitive, as one would expect at least

a constant schedulability ratio when the parallelism of the platform is increased and
the average task utilization remains unchanged. Motivated by these observations, this
paper proposes techniques to derive improved bounds on the inter-task interference
by exploiting the knowledge of the precedence constraints in the internal structure
of the DAGs. As reported in the experimental section of this paper, the proposed
technique improves the ratio of task sets deemed schedulable and attenuate strongly
the counter-intuitive deterioration of the analysis performance with the increasing
number of cores.

1.1 Contributions and paper organization

In this paper, we study the schedulability of a set of sporadic DAG tasks under G-
FP scheduling. We present two novel techniques that exploit the internal structure
of the DAGs in order to derive improved upper-bounds on the worst-case workload
that each higher priority task carries into the problem window of the analyzed task.
We then identify the scenario that maximizes the combined interference contributions
of both the carry-in and carry-out jobs, allowing us to use the new upper-bounds to
rePne traditional schedulability analysis methods. Experimental results show that the
proposed schedulability test not only dominates the state-of-the-art analysis (Melani
etal.2019 but itis also robust to multiprocessor systems with larger number of cores.
The analysis is derived for systems composed of both constrained and arbitrary dead-
line tasks. Substantial schedulability improvements are attained even for the general
case.

The remainder of this paper is organized as follows. Next section provides a concise
review of the related work. In Sec@.we formally debne the sporadic DAG model.
Sect.4 describes brieRy the RTA presented in Melani et 2010, while Sect.5
introduces the proposed worst-case scenario for the interfering workload of the higher
priority tasks. In Sect§ and7 we present how to upper-bound the worst-case carry-in
and carry-out workloads, which we then use to derive the schedulability analysis for
constrained deadline tasks in SetSection9 extends the analysis of Se8tto the
more general case of systems composed of arbitrary deadline tasks. Finally,(5ect.
reports our experimental results, right before we draw the conclusions inl3ect.
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2 Related work

The real-time community has been devoting signibcant efforts to the problem of
scheduling parallel tasks atop multiprocessor platforms. Parallel task models and
respective schedulability tests have been proposed to cope with the different forms of
task parallelism introduced by widely used parallel programming models. Imposing
the most restrictions, the fork-join model (Lakshmanan @10 characterizes a task

as an interleaved sequence of sequential and parallel segments, where the release of
each segmentis constrained by the completion of its predecessors. A common assump-
tion is that every parallel segment contains the same number of subtasks, which cannot
exceed the number of cores in the platform. The synchronous parallel model (Saifullah
et al.201% Andersson and de N2012 Nelissen et al2012 Chwa et al2013 Maia

et al. 2014 extends the fork-join model by allowing consecutive parallel segments
with an arbitrary number of subtasks. Nonetheless, synchronization is still enforced
at every segmentOs boundary, meaning that a subtask cannot start executing until all
the subtasks of the previous segment have completed.

A more Bexible and general parallel structure is captured by the DAG model (Baruah
et al.2012 considered in this paper, where a task is instead represented by a directed
acyclic graph. Nodes represent subtasks to be sequentially executed and edges debne
precedence constraints between nodes. According to this model, a subtask becomes
ready for execution as soon as all its precedences constraints are satisbed, and uncon-
nected subtasks may execute in parallel. Most existing work on the DAG model
addresses global earliest deadline brst (G-EDF) scheduling, with (Qamhieh et al.
2013 Saifullah et al.2013 2014 or without decompositioh(Baruah et al2012
Bonifaci et al.2013 Li et al. 2013 2014 Baruah2014 Parri et al.2015.

Researchers have also studied partitioned scheduling (Fonseca@t@J.where
each subtask is statically assigned to a single processor and therefore cannot migrate.
Yet multiple subtasks of the same DAG may still execute on different cores. On the
other hand, federated scheduling (Li et2014 Jiang et al2017) assigns each heavy
task (i.e., a task with an execution workload larger than their deadline) to a set of
dedicated processors, whereas light tasks (i.e., those that have a workload smaller
than or equal to their deadline) are forced to execute sequentially on the remaining
processors.

G-FP scheduling has been considered for DAG tasks with arbitrary deadlines, with
Bonifaci et al. 013 proving a resource augmentation bound & 3/ m under a
global deadline monotonic (G-DM) policy, whereas Parri et 201G proposed a
RTA for G-DM that accounts for the interference experienced by each subtask instead
of each task. According to the authors (Parri et2fl15, the analysis proposed by
Parri et. al. is essentially tailored for arbitrary deadline tasks.

Recently, the DAG model has been extended to support conditional statements,
allowing a parallel task to experience different 3ows of execution depending on input
and state variables (Fonseca ef8ll5 Melani et al.2015 2017 Baruah et al2015.

As aresult, different instances of the same DAG may produce different parallel struc-

1 The Odecomposition® process consists in assigning independent release offsets and virtual deadlines to
each subtask in a DAG. Different subtasks may then be scheduled as independent sequential tasks even if
they belong to the same DAG.
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tures during their execution. We particularly highlight the RTA presented in Melani
etal. 015 2017 since itaddresses G-FP scheduling as itis also the case in this paper.
The RTA presented in Melani et a§15 2017) is effective for both conditional and
non-conditional DAG tasks. In this paper, we restrict ourselves to the non-conditional
case.

3 Model

We consider a set of sporadic real-time tasks={ 1,..., n}to be globally sched-
uled by a preemptive bxed-priority algorithm on a platform composeduwiit-speed
processors. We assume that priorities are per-task and that; thak higher prior-

ity than  if i < k. Each task; is characterized by a 3-tup(&;, D;, Tj) with the
following interpretation. Task; is a recurrent process that releases a (potentially)
inbnite sequence gbbs with the brst job released at any time during the system
execution and subsequent jobs released at Tedishe units apart. Every job released
by ; hasto complete its execution withiy time units from its release. In this paper,
we Prst consider the special case wheige comprised of constrained deadline tasks,
i.e., Dj Ti, i. Then, in Sect9, we consider the general case where tasks in
may have arbitrary deadlines, i.e., smaller than, equal to or larger than their minimum
inter-arrival timeT;.

Each job of task ; is modeled by a DAGG; = (Vi Ej), whereV, =
{Vi1,...,Vin} is a set ofn; nodes anck; (Vi x V) is a set of directed edges
connecting any two nodes. Each nodg Vi represents a computational unit
(referred to asubtask that must execute sequentially. A subtagk has a worst-case
execution time (WCET) denoted 16, ;. Each directed edd®; a, vin) Ej denotes
a precedence constraint between the subtaskandv; ,, meaning that subtask p
cannot execute before subtaglq has completed its execution. In this cagey is
called asuccessonf vj 5, Whereasy; 5 is called apredecessoof v; . A subtask is
then said to beeadyif and only if all of its predecessors have bnished their execution.
For simplicity, we will omit the subscrigt when referring to the subtasks of tagk
if there is no possible confusion. A subtask with no incoming (resp., outgoing) edges
is referred to as aource(resp., asink) of the DAG. Without loss of generality, we
assume that each DAG has a single sowcand a single sink/, . Note that any
DAG with multiple sinks/sources complies with this requirement, simply by adding a
dummy source/sink with zero WCET to the DAG, with edges from/to all the previous
sources/sinks.

For each subtask; Vi, its set of direct predecessors is given pyed(vj),
while sucdvj) returns its set of direct successors. Formaflyed(vj) = { vk
Vi|(vk,vj) Eitandsucdvj) ={vk Vi|(vj,vk) Ei}. Furthermoreancegv;)
denotes the set of ancestorspfdePned as the set of subtasks thagéher directly or
transitivelypredecessors of . Analogously, we denote mescév ) the descendants
ofvj. Formally,ancegvj) ={vk Vi|w pred(vj) (v,v predvj) w
ancegv ))}anddescévj) ={vk Vi|vk sucqvj) (v,v sucqvj) W
descév ))}. Any two subtasks that are not ancestors/descendants of each other are
said to beconcurrent Concurrent subtasks may execute in parallel.
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Debpnition 1 (Path) For a given task; , a path = (vi,...,vp) iS @ sequence
of subtasksv;j Vi such thatvy is the source of5j , vy, is the sink ofG; , and
Vj \{vn} (vj,vj+1) Ei.

Informally, a path is a sequence of subtasks from the source to the sink in which
there is a precedence constraint between any two adjacent subtask$ius, there is
no concurrency between the subtasks that belong to a same path. The length of a path
denoteden() , is the sum of the WCET of all its subtasks, ilen() = Cj.

Vi

Debnition 2 (Length of a task The lengthL; of a task ; is the length of its longest
path.

Debnition 3 (Critical path) A path of ; that has a length; is a critical path of ;.

Note that when the number of comgsis greater than the maximum possible par-
allelism of ;, the lengthL; represents the worst-case response time (WCRT;) iof
isolation (also known as thmakesparmf the graph). Therefore, an obvious necessary
condition for the feasibility ofj isL;  D;.

Debpnition 4 (Workload The workloadw; of a task ; is the sum of the WCET of all
its subtasks, i.e\M = 'J-":lcj.

Finally, we prove the following property onOs execution and its critical path.

Lemma 1At most WS max0, L; S } units of workload can be executed by a job
of j inawindow of length.

Proof By Def. 1, all subtasks in a critical path have precedence constraints and must
therefore execute sequentially. In the worst-case, a jopag#nnot Pnish its execution
within a time window of length shorter thdn independently of the number of cores,
since the length of a critical path ls by Def. 3. Since each DAG has at least one
critical path, time units after its release, a job qgf still has to execute for at least
max0, L;i S ) time units in order to meet the sequential execution requirements of
its critical path entirely. Hence, at modt S max0, L; S } units of workload are
executed in the interval of length

Corollary 1 No schedule of Gwhose length is shorter than lcan accommodate W
units of workload.

Note that Lemmd. is a very coarse and pessimistic bound on the amount of work-
load executed by a DAG task in an interval of lengtivet, that property will be useful
to prove the correctness of the response time analysis proposed in this paper.

4 Background

In this section, we introduce the concept of interference for DAG tasks. We also
summarize the RTA introduced by Melani et &0(5 as it sets the foundations for
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the schedulability analysis proposed in the upcoming sections. Although their work
targets a more general task model, known as Oconditional DAG modelO, empirical
evaluation in Melani et al.2015 shows that it is also state-of-the-art for the non-
conditional DAG tasks considered in this paper.

A key challenge in the RTA of globally scheduled multiprocessor systems is the
computation of thenterferenceamong tasks. For sequential tasks, the interference
exerted on a taskg is debPned as the cumulative length of all the time intervals in
which  is ready but cannot be scheduled on any processor due to the concurrent
execution ofm higher priority tasks. In order to adapt this debnition to the parallel
structure of DAG tasks, we introduce the notion of critical chain.

Debpnition 5 (Critical chain) The critical chain g of a DAG task  is the path of
that leads to its worst-case response tiRaewith ties broken arbitrarily.

To determine the worst-case response timeypfwe then need to identify such
critical chain and compute the maximum possible interference exerted on it. We start
by characterizing the interference on a DAG tagk

Debnition 6 (Interferencg The interferencdy on a DAG task k is the cumulative
length of all the time intervals in which at least one subtask that belong®©wocritical
chain is ready but cannot be scheduled on any processor becanmssoadls are busy.

Alternatively, the total interference can be expressed as a function of the worst-case
interfering workload generated by each task in the system.

DePnition 7 (Interfering workload The interfering Workloade( imposed by a DAG
task ; on a DAG task i represents the total workload executed by subtasks, of
while at least one subtask that belongs {®s critical chain is ready but cannot be
scheduled on any processor.

DePnitionss and7 also allow us to formulate a bound on the worst-case response
time of :

Re len( W+ he=len( 0+ = W ®

Furthermore, under bxed-priority scheduling, a taskannot suffer interference
from lower priority tasks. That is\, = 0, i > k. However, when = k, we have
Wli( 0. That is because other subtasks pthatdo notbelong to its critical chain
may also delay the completion af itself. This phenomenon peculiar to parallel tasks
is calledself-interference

Unfortunately, deriving concrete values for either the overall térar the indi-
vidual termsW, is computational intractable for non-trivial task sets, otherwise a
schedulability test would easily follow from EqL)( For this reason, an established
workaround is to bound the total worst-case interfering workload by analyzing the
maximum possible workload that can be produced by each interfering task during
the worst-case instance of. In the following, we present the upper-bounds derived
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Fig. 1 Worst-case interfering workload of a higher priority tagkas considered in Melani et a@§15

in Melani et al. 2019 for both the self-interferencé € k) and inter-task interfer-
ence { < k) components in the context of G-FP scheduling, as well as the resulting
response time equation.

Regarding the self-interference, in a constrained deadline setting two jobs of a same
task k cannot interfere with each other. That is because one job must bnish before the
next one is released, otherwisewould fail to meet its deadline and the system would
immediately be deemed unschedulable. Therefore, the self-interfering workload is
independent of the response time pf Furthermore, due to the absence of priorities
atthe subtask-level, every subtalat is not part of & critical chainmay potentially
col?tribute to the overall response time gfand thus to its self-interfering workload
W

kLet M denote the contribution of DAG tasl to its own response time, i.e.,

My def len( k) + WI'(‘/ m. It was proven in Melani et al2015 that, forconstrained
deadlinetasks, an upper-bound dvy is given by

1 .
M Lg+ E(WkS Lk) 2

That s, the self-interfering workload is upper-bounded/w(y W S L (i.e., the
remaining workload of after excluding the length of its critical path). Importantly,
Eqg. @) not only provides a bound on the maximum makespan @te., its WCRT in
isolation) but also ensures that the critical chaircan be safely replaced by a critical
path of g in the response time analysis, as long as such critical path is subject to at
least the same amount of inter-task interference. Hence, we hereinafter restrict our
attentions to a single critical path of, Pxed arbitrarily.

Contrary to the self-interference, the amount of inter-task interfering workload
depends on the length of the time interval that we consider. The longer the time
interval, the more workload can be generated by the higher priority tasks and thus
the larger is the inter-task interference on the analyzed taskor a time window
of length starting at «Os release, the contribution of a higher priority task the
inter-task interfering workloatlV, is divided in three portions (see Fit):

1. Carry-in: It accounts for the contribution of jobs gfwith release times before
the beginning of the problem window (i.e., befoigs release at timg) and a
deadline after the beginning of the problem window, i.e., afteiThe carry-in
jobsworkload corresponds to the portion of those jobs execution that could not
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Pnish prior taryk. Note that for constrained deadline systems; i schedulable,
then ; has at most one carry-in job.

2. Body: It takes into account the contribution of all subsequent job releases of
that are fully contained in the window. The workload of each oflibdy jobsto
the interfering workload is upper-bounded to its complete execution\time

3. Carry-out: In the related literature, it usually accounts for the contribution of a job
of ; with release time within the problem window and deadline after the end of the
window (i.e., after, + ). Yet, in this paper we will slightly bend the dePnition
and instead consider thatarry-out jobis a job that is released within the problem
window less tharT; time units before its end (i.e., the carry-out job pis released
attimet such thatiry + S Tj) < t < (rg+ ) ). Note that our debnition is
compliant with the state-of-the-art debnition when tasks have implicit deadlines
(i.e., Dj = T;). The interfering workload of thearry-out jobcorresponds to the
portion of its execution that actually overlaps with the time intefualr, + ) .

In Melani et al. 2019, the authors formulated a generic bound on the worst-case
workload generated by an interfering taskwith constrained deadline within such
window of length . This upper-bound, which we state below, relates to the maximum
interfering workload imposed by on task k under analysis by Pxing = Rg.Hence,

W, W;(Rg) whereW;() is dePned as follows:

wi() & w W + min(W, m(( + R S Wi/m) modT;))
|

®3)

Notice that Eq. 8) ignores completely the structure of the DA&G of ; and corre-
sponds to the scenario depicted in RigThe brst term includes both the contributions
from the carry-in and body jobs, whereas the second term represents the carry-out com-
ponent. The interference imposed byn  within the problem window is maximized
when: (1) the carry-in job starts executing at the start of the time window and Pnishes
by its WCRTR;, (2) all subsequent jobs are released and executed as soon as possible
and (3) every job of; is assumed to execute on all the cores duigm time units.
Putting all the pieces together, for a given tagk the schedulability condition
R« Dy relies on a classic iterative RTA. Starting wilg = L, an upper-bound on
the response time of task under G-FP scheduling can be derived by a bxed-point
iteration on the following expression:

1 . 1
Re= L+ E(WkS Lk) + p~ i<kWi(Rk) 4)

5 Rationale

Looking at the RTA described in the previous section, it is obvious that one of the
major sources of pessimism in the computation of the WCRT is the computation of
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Fig. 2 Worst-case scenario that maximizes the interfering workload releasgdrbthe problem window
of

the inter-task interference within the problem window. This is clear by examining the
execution pattern assumed for every job of the tasksat interferes with the analyzed
task k (see Figl). All these jobs are assumed to execute as a big compact block that
uniformly occupies then cores duringi/ m time units. Although this assumption
provides a safe upper-bound on the interference that they cause, the upper-bound may
be greatly improved by not overlooking the rich internal structure of their DAG. Both
the precedence constraints and the number of subtasks in the DAG debne the possible
shapes that the execution gfentails. In general, wider and uneven shapes limit the
amount of workload that effectively enters the problem window. In fact, most DAGs
do not exhibit a constant degree of parallelism equahtthroughout their entire
execution (as it is assumed in the state-of-the-art analysis). Instead, the maximum
workload they may execute in a given time interval is limited by their internal structure.
This is illustrated in Fig2, where the maximum interfering workload imposed by the
carry-in and carry-out jobs of a taskis presented.

This observation is emphasized in the example below.

Example 1Consider the execution of the task of F3g.onm = 5 cores. The maximum
parallelism attained by the DAG; is equal to 5, when subtaske2, v3, v4,v5, v6}
execute simultaneously. Such concurrent execution can only last for 4 time units.
After that, the degree of parallelism drops to 2vashecomes ready bwk has not
Pnished yet. We point out that different execution patterns are possible between the
subtasks mentioned so far if we include, for example, interference from higher priority
tasks. However, they cannot increase the amount of time during v@higlequires

all the available cores. Moreover, both the sourcand the sinkvg cannot execute
concurrently with any other subtask & . Therefore, the maximum workload that
can be generated lfy; in a window of length 5 is at most 22. Yet, the state-of-the-art
analysis presented in Sedtassumes that 25 time units of interfering workload have
been generated in a window of length 5.

In this paper, we use the internal structure of each DAG to derive more accurate
upper-bounds on their contributions to the carry-in and carry-out interfering workload.
Note that, according to this analysis method, the DAGOs internal structure does not
affect the contribution of the body jobs to the interfering workload since they are fully
contained in the problem window. Thus, their exact execution pattern is irrelevant.
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Similar to the work in Melani et al2015, our analysis of the inter-task interference
is based on the notion of a problem window of length However, as illustrated
in Fig. 2, we model more accurately the worst-case scenario by taking into account
different execution patterns for the carry-in and carry-out jobs. Therefore, the workload
produced by task; is maximized in the problem windojwy, rg + ) of x when: (i)
every subtask of the body jobs gfexecutes for its WCET; (ii) the carry-in job released
at atimerj < ri Pnishes its execution at timg+ R; and executes as much workload
as possible as late as possible (to maximize its workload in the problem window); (iii)
all subsequent jobs are releasgdime units apart; and (iv) the carry-out job starts its
execution as soon as it is released and executes as much workload as possible as early
as possible (hence maximizing its workload in the problem window).

Our main problem to solve is the lack of a relative reference point between the
release time of the carry-in job of and the problem windory, rx + ) . More
specibcally, the valu@y S ri) is unknown a priori because, as will be shown later in
this paper, the worst-case schedules of the carry-in and carry-outjobs are incomparable.
Let S'and €O denote the length of the carry-in portion and the length of the carry-
out portion of ; Os schedule, respectively. Formally, we havé (kae Fig2 for visual
reference)

Cl e+ T Sy ®)

COE maxo, (re+ ) S+ '+ - xT} (©)
: 0

We seek to derive (i) an upper-bound on the interfering workload executgdsy
carry-in job as a function of iC', (ii) an upper-bound on the interfering workload
executed by ;Os carry-out job as a function of:o, and (iii) determine concrete
values for &' and £© such that the interfering workload of on task i cannot be
larger under any possible execution scenario.

To characterize the execution pattern of a carry-in and carry-out job, afie
introduce the notion ofvorkload distribution

Debnition 8 (workload distribution)-or a given task; and a given schedufgof ;Os
subtasks, the workload distributi(WDiS =[By,..., B] describesSas a sequence
of consecutive blocks. Each blo@g WDiS is a tuple(wy, hp) with the interpreta-
tion that there aréy subtasks (height) d; executing duringvy, time units (width)
in S, immediately after the completion of the subtasks that execute itbtBe1)th
block.

Note thatWw D IS does not provide any information about the precedence constraints
inthe DAGG;, neitherisitrequired foBto be a valid schedule &; . Hence, according
to Def. 8, every interfering job of a task is modeled in Melani et al2015 with a
workload distributiorWDiSthat comprises only one blods = (%, m). In the next
two sections, we will derive more accurate workload distributions in order to model

2 The operatorx o %' maxo, x }.
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(a) Example of a DAG task. The (b) Workload distribution WDY 1.
WCET of each node is given by the Numbers in blocks represent their
number in that node. height.

Fig. 3 Example for the carry-in interfering workload

the schedules of;Os carry-in and carry-out jobs that maximize their contribution to
the interference suffered by a lower priority tagk

6 Carry-in workload

This section presents the analysis to compute the carry-in workload of a higher priority
task i inthe problem windovrg, rg+ ) of k. Recallthata carry-injobis ajob of
such that its release tinmgis earlier tharrg and its deadline falls aftek. Therefore,
to upper-bound the interfering workload generated by the carry-in job, we need to
determine which subtasks gfmay execute within the carry-inwinddw, r+ 1),
either fully or partially. Intuitively, to maximize the interfering workload the carry-in
job should execute as much workload as possible as late as possible.

For ease of understanding, we will use F3g.as an example task throughout our
discussion on the carry-in job.

6.1 Workload distribution of the carry-in job

When the degree of parallelism of the DA& is not constrained by the number of

cores (assuming = for instance), the schedule & that yields the maximum
makespan is simply that in which every subtask executes for its WCET. Note that
because there are always available cores, each subtask is scheduled as soon as it
becomes ready. We call this particular schedule Ounrestricted carky@iQ (f f;

denotes the relative completion time of each subtgsk V; in UCI, then it holds

that:
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Cj if vj is the source
fj = : (@)
Ci+ max (fn) otherwise
Vh pred(vj)

Note that the length (makespan)W€ | is given by the completion timé,, of the
sink of Gj and according to Eq7§, fy, is equal to the critical path lenglly .

Assuming that the source of starts executing at a relative time 0, the number of
subtasks ifJ C | that execute at any tinte [ O, L;) can be computed by the function
AS(t) dePned as

ASt) = actv(vj, t) (8)
Vi Vi

whereactv(vj, t) is equal to 1 ifv; is executing at timé¢ and O otherwise. That is,

1 ift f S Cj, fj
actv(vj,t) = 9)
0 otherwise

Let F be the set of bnishing times of the subtagks V; (without duplicates)
sorted in non-decreasing order. We build a workload distributitd’ ¢! modeling
the schedul& C1 as follows:

D WDVYC! has as many blocks as there are elemeni;in
D Thev'" block of WD P! is represented by the tuplia+ 1 S t, AS(ty)) such that
tp is theb'" time instant in the ordered sgd} F;.

Built that way,WDiUCI models the maximum parallelism gfat any timg assum-
ing that all subtasks execute for their WCET. An example of such workload distribution
is depicted in Fig3b for the DAG presented in Figa.

6.2 Upper-bounding the carry-in workload

Based on both the workload distributisD V" and the WCRTR; estimated by
Eq. @), we compute an upper-bound on the interfering workload produced by one
carry-in job of ; within its carry-in window[r, rg + iC'). To do so, we push the
workload distributiorWDiUC' as much as possible Oto the rightO. We Prst align the
end ofWDiUC' with the worst-case completion time of the carry-in job pfThat is,
we align the end oD V¢! with the time-instantx + ' S (Ti S R)) (see Fig2).
This assumes that the carry-in job ¢fis released ati + iC' S T, and completes at
mostaty+ C'S T+ R.

Since the problem window starts gt and the carry-in job must complete by
reg + ic| S (Ti S R), the part of the carry-in job that effectively interferes
with i is given by the subtasks of that job executed in the last S (T; S
R) time units of its schedule. Therefore, under the schedif&l, the maxi-
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mum interfering workload released byOs carry-in job is upper-bounded by the
functior?:

cli(wpyc!, &h
WD P! WD €|
= hpx r+ RS Wp (10)
b=1 p=b+1 0

Wh

wherer; def iC' S T, is the latest time at which; Os carry-in job may be released

(assuming thatx happens at time 0).

Equation (0) returns 0 if €' is smaller thar(T; S R) (i.e., if the carry-in job
of ; completes before the beginning of the problem window). Otherwise, it sums the
heighthy, of the workload distributioWD ¢! initslast ¢'S (T; S R) time units.

Example2f €' = 9, T = 20, R = 15 andWD!®' is given by the workload
distribution presented in Figb, then Eq. {0) sums the height of the blocks in the last

CIS(TiSR) = 4time units oW D! Hence, itgives u€ I (WD P!, €)=
6.1f C'was equal to 4, then EqLQ) would return 0 since ©!' S (T; S R) is then
smaller than 0.

We now prove that the interfering workload executed by the carry-in job o
upper-bounded by the workload distributioD ', when the end oWD V¢! is
aligned with the time-instarft + €' S Ti + R)) whereR; is computed by Eq4).

The carry-in workload computed by EdLQ) assumes that (i) all subtasks of
execute for their WCET, (i) the number of cores does not liffs parallelism and
(i) the carry-in job of ; executes following the workload distributiohlD ! just
before its completion time &ty + iC' ST+ R). We prove in LemmagbP4 that those
three assumptions maximize the interfering workload, of the carry-in window.

Lemma 2The interfering workload generated by the carry-in job of a higher priority
task j is maximized when all its subtasks execute for their WCET.

Proof If a subtaskvj V; executes for less than its WCKT], then eithew; con-

tributes less to the interfering workload (assuming thatis executed within the
carry-in window), or it may allow its successors (and subsequently its descendants) to
be released earlier (note that the release times of subtasks that are not descandant of
are not impacted). In the latter case, it may cause those descendants to start executing
before (instead of within) the carry-in window and thus reduce the total interfering
workload they may generate. Similarly, descendantg; dhat were already starting
before the beginning of the carry-in window, may complete before the start of the
carry-in window, or earlier within the carry-in window. In both cases, the interfering
workload in the carry-in window is reduced.

3 [x]%' = maxmin{x, y}, z}, that is,y andz are an upper-bound and a lower-bound on the value, of
respectively.
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(a) Before delaying the critical path.  (b) After delaying the critical path.

Fig. 4 Interference (blue block) owD YC! critical path

Lemma 3Let R be an upper-bound on the worst-case response timeaoid l[etW D ;

be any workload distributiof length L; representing any possible schedule pof
Assume thatVD; is aligned to the right with the time-instafri + ic' STi+ R).The
workload that can be generated ByD; in the carry-in window cannot be increased
by delaying subtasks in’s critical path.

Proof Remember that the length of the workload distributidD; is L, i.e., the
length of WD is equal to the length of the critical path gf Therefore, there must
be a subtask of each critical path gf executing at any time instant betwegn +

CIST+RSL)and(re+ C'ST+ R)(becausaVD; is aligned to the right
with (e + 'S Ti + R)). This case is illustrated on Fida.

Now consider the case whevéD; is subject to self- and/or higher priority inter-
ference such that the execution of at least one subtasi a critical path of ; is
delayed byx time units.

Postponing the execution of by x time units leads to move both the workload of
vj and its descendanxstime units Oto the rightO. Becaupbelongs to a critical path
of i, the length of ; Os carry-in job schedule is increased lfsee Fig4b). However,
becauseR; is assumed to be an upper-bound s worst-case response timés
carry-in job cannot complete later thém + iC' ST, + R)). Therefore, as visualized
in Fig.4b, it is not the subtask; or its descendants that are moveddtyme units Oto
the rightO, but instead it is the workload executed by predecessqrthat is pushed
by x time units to the left. Hence, the workload executedibin the carry-in window
[r, rk+  ©') can only decrease.

Lemmad4Llet R be the upper-bound on the worst-case response timeaaimputed

by Eq.(4). AligningWD €' to the right with the time-instar{ty + €' S Ti + R))

gives an upper-bound on the maximum interfering workload that can be generated by
i in the carry-in window, independently of the interference imposed.on

4 Atask ; may have more than one critical path.
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Fig. 5 y units of workload (green blocks) &% D iUC' are moved in the carry-in window

Proof Remember that the length WDiUC' is Lj. Hence, Lemma& proved that the
workload generated in the carry-in window cannot increase by interfering with the
critical path of ;. Therefore, this proof must show that the claim is still true even
when the interference exerted qrdoes not interfere with its critical paths but delays
the execution of other subtasks of

The proof is by contradiction. Assume that there is a schedule ich that, by
delaying subtasks of;, y extra units of workload of; enter the carry-in window
[ri, rk + ') comparatively to the workload generatedp ! (see Fig5a for
an illustration ofy extra units of workload, colored in green, moved in the carry-in
window). By Lemma3, the delayed subtasks do not belong to any critical path of
and the length of; Os schedule is therefore not affected, i.e., it remains equal to

Letv; be any of the delayed subtasks and jebe the minimum time for which its
execution has to be delayed, in comparison to the schedule baWﬂ){:fﬁ' , SO that

vj enters the carry-in window. Latbe the maximum; over all the delayed subtasks,

i.e., X def maxj{ j} (see Fig5a for an illustration of). That is, at least one subtask

has been delayed by at leastime units to enter the carry-in window.

Sincem subtasks are allowed to execute in parallelmrtores and the critical
path of ; is not delayed, postponing a subtasksxbyme units implies that at least
(mS 1) x x interfering workload executes in parallel with the critical path to prevent
the delayed subtask to execute on any oftteores. Additionally, note that theunits
of shifted workload do not interfere with the critical path either, and hence execute in
parallel with the critical path, since by assumption the schedule length is notincreased.
Therefore, we have at least

(MS1xx+y

units of workload that do not interfere with the critical path but execute in parallel
with it instead.

Let R be an upper-bound athe actualresponse time of; Os carry-in job under
this modibed schedule. Siné® is computed with Eq.4), and Eqg. 4) assumes that
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all higher priority jobs and all subtasks that do not belong to the critical path of
interfere with it, R, must be smaller thaR; and we have

(MS1x x+y
m ~ ~
mxy (MSHx(xSy)

(0p4

R

o I D
(08

(08

m m
(mS 1) x (xSy)
m

U

y (11)

We analyse two cases:

b Ify x,thenthe lastterm inld) is positivg andwe hav®, R S y. Hence the
response time of; and thus the length of Os schedule in the carry-in window has
been reduced by at leagttime units (see Figbb). Since at least one subtask of
each critical path of; must execute at each of those time units (because the length
of the schedule i4 ), the workload in the carry-in window has decreased by at
leasty time units. This is in contradiction with the assumption that the workload
increased in the carry-in window.

B Ify > x,thenthe lastterm ofifl) isnegative andwe ha® R SyS(xSy) =
R S x. Hence, ; Os response time has reduced by at Jetiste units. Therefore,
the subtasks that were delayeddtyme units could not enter the carry-in workload
since the whole schedule gfis pushed to the left by time units too (see Fidb).
Therefore, it contradicts the assumption that extra workloadexiitered the carry-
in window by delaying subtasks bytime units.

The two cases above prove the claim.

Theorem 1The interfering workload W' generated by the carry-in job of a higher
priority task ; in a window of length €' is upper-bounded by Gqw DU¢!, C1).

Proof The proof follows directly from Lemmaza.

6.3 Improved carry-in workload

The lemma below presents another upper-bound on the maximum interfering workload
that can be generated by a taskn a carry-in window of length iC' . Since this upper-
bound cannot be compared with that given by Bf) (Theoren? below shall present
an improved upper-bound that is simply the minimum between that given byL8q. (
and that presented in Lemrba

The upper-bound on the carry-in workload gfas computed in Eq10) may in
some cases be pessimistic since the number of subtasks executing simultaneously in
the workload distributioWD ¢! (i.e., the height of the blocks) may sometimes be
greater than the number of cores Yet, we know for a fact that no more than
subtasks can run simultaneouslymrtores. This leads to the following lemma.

Lemma5An upper-bound on the maximum interfering workload that can be gen-
erated by a carry-in job of task; in a carry-in window of length iC' is given by
max0, 'S (TS R)}x m.
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Proof Since ; cannot complete later tha®) , we know that; does not execute during
the las{(T; S R)) time units of the carry-in window (see Fig). Therefore, ; executes
duringatmostmago, 'S (Ti S R)} time units orm processors within the carry-in
window of length ic' , hence the claim.

Combining Theoren with Lemmab, we derive animproved bound on the carry-in
workload of an interfering task .

Theorem 2The interfering workload W' generated by the carry-in job of a higher
priority task i in a window of length €' is upper-bounded bgnin{C I;(WDY¢",
ch, max{o, 'S (TiSR)}x mh.

Proof Follows from Theoreni and Lemméb.

7 Carry-out

This section presents the analysis for computing an upper-bound on the carry-out
part of the interfering workload of a higher priority taskin the problem window
[rk,rk+ ) ofatask k. The carry-out job is the last job of released in the problem
window, i.e., its release time is within the open inteivg S Ti, rc+ ) . Contrary

to the carry-in job, the maximum interference generated by the carry-out jghif

found when it starts executing as soon as it is released and at its highest possible
concurrency level. That is, we are interested in pushing the workload of that job as
much as possible Oto the leftO of the schedule. Also, contrary to the carry-in and the
body jobs, Pnding an upper-bound on the interference generated by the carry-out job
does not necessarily imply that its subtasks execute for their WCET. Indeed, unless the
entire workload can contribute to the interference generateg, lmne must consider

that any subtask may instead be instantly processed (i.e., its execution time is 0). With
this assumption, some precedence constraints may be immediately resolved and the
degree of parallelism in the DAG potentially increased, leading to more workload at
the beginning of the carry-out window.

Example 3Consider the DAG in Figoa. If every subtask executes for its WCET then,
initially, only one subtask is active/{) for 5 time units. On the other hand, if the
subtasks/; andvy both execute for 0 time units, then the subtagks/s, ve andvy

are instantly ready and there are four subtasks active during the Pbrst time unit. Thus,
if the carry-out window is only one time unit long, the latter case generates more
interfering workload.

Therefore, we seek to derive a schedule that maximizes thg: cumulative parallelism
throughout the execution of the job. We call this schedule Ounrestricted carry-outO
(UCO).

7.1 DAG's maximum parallelism

In order to maximize the workload produced by the carry-out job; ofithin the
problem window, we need to Pnd an execution pattern such that the overall parallelism

123



Real-Time Systems

Vg >
0 1 4 9 10 12 t

(a) Example of a DAG task. (b) Workload distribution WDY .

Fig. 6 Running example for the carry-out workload

cannot be further increased. If the carry-out window is sufbciently short, then the
maximum degree of parallelism & maximizes the carry-out workload, as described

in Example3. Ideally, we would like to take the maximum parallelism of the DAG at
each time instant as a solution to the problem of maximizing its cumulative parallelism
within a time interval of arbitrary length. Unfortunately, this methodology cannot be
applied to DAGs, since the scenario that maximizes the parallelism at a certain step
may compromise the concurrency among subtasks later on. In fact, as shown in the
example below, whether or not the DAGOs maximum parallelism must be considered
depends on the length of the carry-out window.

Example 4Consider the DAG in Figéa. The maximum parallelism is four, given by

the subtasksy, v3, vg andvy; that can execute in parallel for at most 1 time unit. Note,
however, that every schedule which maximizes the DAGOs parallelism does not allow
any of the remaining subtasks to execute in parallel N subtagkss, vs andvg have

to execute sequentially due to their precedence constraints. Hence, if the maximum
parallelism is reached, then the carry-out job cannot produce more than 5 units of
workload within a window of length equal to 2. On the other hand, if subtask
executes for 1 time unit, we can have three subtasks executing in parallel for 2 time
units: prst, subtasks, vs andv, execute in parallel for 1 time unit, and then subtasks
Vs, Vg andvy also execute in parallel for 1 time unit. As a result, the latter schedule
generates more interfering workload if the carry-out window is 2 time units long, but
it produces at most 3 units of workload when the length of the window is reduced to 1.

The issue highlighted in Exampk comes from the potentially very complex
connection structures between subgraphs composing the DAG task. Maximizing the
parallelism in one subgraph may constrain and hence reduce the achievable parallelism
in another subgraph. We simplify the problem at hand by transforming the initial DAG
that describes the task in a well-structured, less general, type of DAG, which we call
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Onested fork-join DAGO (NFJ-DAG) (see below for an explanation on how the trans-
formation is performed and why the transformation is safe). We debne a NF3-DAG
recursively as follows.

Debpnition 9 (Nested Fork-Join DABA DAG comprised of two nodes connected by
a single edge is NFJ. Further,Gf; andG are two independent NFJ-DAGSs, then the
DAG obtained through either of the following operations is also NFJ:

(a) Series composition: merge the sink®f with the source of55.

(b) Parallel composition: merge the sourceXf with the source of5, and the sink
of G1 with the sink ofGo.

The series composition links two NFJ-DAGs one after another, whereas the paral-
lel composition juxtaposes two NFJ-DAGs by merging their sources and sinks. For
example, the DAG of Figha is not a NFJ-DAG because it cannot be constructed with-
out violating the rules in Def. However, if the edgéva, vs) is removed, then the
DAG becomes NFJ. Itis clear from the debnition of a NFJ-DAG that maximizing the
parallelism of any of its subgraphs cannot limit the maximum parallelism achievable
by other subgraphs composing the NFJ-DAG.

7.1.1 Transforming a DAG in NFJ-DAG

Many efbcient algorithms exist in the literature to identify if a DAG is NFJ (Valdes
etal.1979 He and Yesha987. However, it is out of the scope of this paper to describe
how those algorithms work. We assume here that one of those tests is performed on
the graphG; describing ; Os structure. If it turns out that the original D&gis not
NFJ, a transformation is required. Traditionally, in graph theory, the transformation
is performed by adding new edges between conRicting subtasks, so that the original
precedences are preserved (Gonztlez-Escribano20Gf). However, we are inter-
ested in removing edges so as to reduce the number of precedence constraints. This
way, the set of all the valid schedules pfthose that satisfy the precedence constraints
of its original DAG G;) is a subset of all the valid schedules of the resulting NFJ-DAG.
That is because any schedule derived according to the BA@ill always respect
all the precedence constraints of the NFJ-DAG. As a result, the maximum carry-out
workload that can be generated by the NFJ-DAG is at least as large as the maximum
interfering workload that can be generated by the initial DAG

Let us refer to a subtask as a join-node if its Oin-degreeQ is larger than one, i.e.
[pred(v;)| > 1. Similarly, we refer to a subtask as a fork-node if its out-degree is
larger than one, i.¢sucdv;)| > 1. According to Def9, a DAG (as debPned in Se@).
is NFJ if and only if it respects the following property.

Property 1Let J; be the set of join-nodes i and letF; be the set of fork-nodes in
Vi. DAG G;j is a NFJ-DAG iff vj Jj, there exists a subgragh of G; such that
vj is the sink ofG , the source oG is a fork-nodevt Fj and

Va G\Yvr,vjl, v {sucqva) predva)},
vp descévs) vi vy ancegvj) vj.

5 In graph theory, it is known asvo terminal series parallel digraptHe and Yesha987).
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Fig. 7 Decomposition tree of the NFJ-DAG resulting from Fig.

Proof The property directly follows from Def, which enforces that any join-node is
the result of gparallel compositionHence, for every join-node; there must exist a
fork-nodev¢ such that the subgrag that has/ as a source ang as a sink is NFJ.
Moreover, according to the construction rule debned in @¢fiere cannot be any edge
betweenanode, G andanode, / G.Therefore,va G, vp {sucdvy)
pred(va)},vo G, implying thatv, descévs) vi vy ancegvj) Vvj.

Using Propertyl, a high-level algorithm for transforming a DAG; into a NFJ-
DAG GNFJ, can be debned as follows.

1. Select the unvisited join-nodg J; that is the closest to the source®f.

2. Find all the edgefrc, vj) in Ej for which there is no fork-nodes  Fj such that
Prop.1lis true. Call this set the set of conBicting edd&s.

3. Remove as many edgeskHt as needed for join-nodg to respect Propl or for
its in-degree to become equal to 1 (in which case it is not a join node any more).

4. For each edgéve, V) EC that was removed, ifucdvc) = , add an edge
(V¢, iy ) from nodev, to the sink ofG;.

5. Markvj as visited. Repeat until all join-nodes have been visited.

Example 5The DAG of Fig.6a has two join-nodefsss, vg}. The above algorithm starts
by analyzing join-nodess. Since its ancestor, has two direct successofgs, v7}
which are not ancestors @, (v4, vs) is a confRicting edge. Because there is no other
conf3icting edge with respect to join-node, our only choice is to remové/y, vs)
from the DAG. In the next iteration, the DAG is already NFJ as join-nagdoes not
violate Propertyl.

7.1.2 Maximum parallelismin a NFJ-DAG

By Def. 9, a NFJ-DAG can be reduced to a collection of basic DAGs by successively
applying series and parallel binary decomposition rules. Therefore, a NFE?AEG
can be represented by a binary tige calleddecomposition treésee Fig.7 for an

123



Real-Time Systems

example). Each external node (leaf) of the decomposition tree corresponds to a subtask
vj Vi,whereaseachinternal node represents the composition type (series or parallel)
applied to its subtrees. That is, the children of a internal node are either smaller NFJ-
DAGs or subtasks. A node depicting a parallel or series composition is laBele8,
respectively. The algorithm proposed by Valdes etl®@79 can be used to efpciently

build the decomposition tree of any NFJ-DAG. Figdrehows the decomposition tree

of the NFJ-DAG depicted in Figha (without the red edge).

The structure of the decomposition tree allows us to compute the sets of subtasks
yielding the maximum parallelism of a NFJ-DAGN Y in an efpcient manner. The
recursive functiorpar(TiU) debned below returns a set of subtasks in a decomposition
tree 'I'iU such that all subtasks ipar(TiU) can execute in parallel and the size of
par(T.Y) is maximum. Note that, in Eq1@) below, T,> and T;R denote the left and
right subtrees of the binary tre‘l’g!‘J rooted in nodeJ.

par(Tb) par(TR) if UisaP-node

par(T\) if U isa S-node and
par(TY) = Ipar(TH)| | par(TR)] (12)
par(T;R) if U is a S-node and
|par(TR)| > |par(T")|
{U} otherwise

Eq. (12) works as follows. When nod¢ denotes a parallel composition, the maximum
parallelism corresponds to the sum of the maximum parallelism of its children. On the
other hand, the maximum parallelism in a series composition is given by the maximum
parallelism among its children. The recursion of Ek®)(stops whetd is a leaf of the
decomposition tree and hence corresponds to a subtask in the associated NFJ graph.
The set of subtasks i8N 77 with maximum parallelism is obtained by callimgar(.)

on GNFJBs decomposition tree root node.

7.2 Workload distribution of the carry-out job

As discussed earlier in this section, the carry-out job of an interfering tagnerates
the maximum interfering workload when it starts executing as soon as it is released
and at its highest possible concurrency level. Therefore, we uspahe function
debned above to build the workload distributithD Y€ © that characterizes th¢C O
schedule for the carry-out job of.

The workload distributior\/VDiUCO is constructed using Algorithri. In short,
the algorithm identibes the maximum number of subtasks that can run in parallel at
any point during the execution of the carry-out job as follows. It Pnds the largest
set of subtasks which may execute in parallel according to the decomposition tree
of GNFY (line 3). Then, it adds a new block (line 5) to the workload distribution
WD Y€€ with a width equal to the minimum WCET among those subtasks (line 4)
and a height equal to the number of subtasks in the set. Finally, it proceeds by updating
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the subtasksO execution times in the reduction tree, i.e., decreasing their execution time
by the amount of time they executed in parallel (line 6). When a subtask reaches an
execution time equal to O (it Pnishes), its corresponding leaf is removed from the
decomposition tree (lines 7-8). Whenever a node of the decomposition tree has no
children anymore, it is also removed from the tree. Algorithiis called iteratively

until all leaves have been removed.

Algorithm 1: ConstructinghV/D?<© from GNFJ.

Input : GNFJ, T.NFJ - A NFJ-DAG and its decomposition tree.
Output: WD iUCO - Workload distribution of the schedulgC O.

1wDpYCo

2 while TNFJ = do

s | P par(TNFY);

4 width  min{Cp|vp P}

s | WDVYCO [ wDVYCO (width, |P])];

6 vp P:Cp CpSwidth;

7 vj TNFJIsuchthaCj = 0: removevj from TNFJ;
8 end

o return WD YCO;

Example 6The workload distributiotw/D P ©© for the DAG of Fig.6a (without the

red edge) is presented in Figh. It tells us that the NFJ-DAG in Figa can execute
with a parallelism of 4 during 1 time unit. It can execute with a parallelism of 2 during
3 more time units and then it can bPnally execute with a parallelism of 1 during 8
additional time units.

7.3 Upper-bounding the carry-out workload

Similarly towhatwas presented for the carry-inworkload, an upper-bound on the carry-
out interfering workload generated byis calculated using the workload distribution
WDPCO. Let €O denote the length of the carry-out window ¢f(see Eq.§)). The
maximum workload executed byin any window of length € © is upper-bounded by

the cumulative workload found in the Drsfo time units of the workload distribution

WDV €O, Such cumulative workload is denoted ®0; (WD PC©,  €0) and can be
computed by the function:

IWD €€ b31

- Wh
CO(WDVCO, €0y= hpx 98  wp . (13)
b=1 p=1

Example 7If €0 = 3andwD ¢ is given by the workload distribution presented
in Fig. 6b, then Eq. 13) sums the height of the blocks WDY<© up to 3. That

123



Real-Time Systems

is, CO(WDYCO, €©) = 8.If C€©was equalto 10, theG O (WDVCO, C€O)
would be equal to 16.

We now prove that O (WD VPO,  €9)isindeed an upper-bound on the carry-out
interfering workloadW. .

Theorem 3The interfering workload \¥© generated by the carry-out job of a
higher priority task i in a carry-out window of length ©© is upper-bounded by
CO(WDJCO, €0y,

Proof We recall that ; Os carry-out job generates the maximum interfering workload
when it starts executing as soon as it is released and at its highest possible concurrency
level.

First, we note that the NF3-DAGN 7, built from G; by removing some 06 Os
edges, has a concurrency level at least as high aslence, the workload distribution
WDV O constructed based ddN " has at least as much workload thanin the
carry-out window.

SinceWw DY Qs constructed with Algorithr, and because Algorithdcomputes

the maximum parallelism o8N at each time, the height oD © on its brst
ico time units maximizes the workload thatcan generate in the carry-out window.
Finally, becauseC O (WDVPC%, €0) provides the cumulative workload in
WD © overits brst ~© time units.C O (WD “®, ©) upper-bounds the inter-
fering workload that can be generated b@s carry-out job.

7.4 Improved carry-out workload

Note that because the workload distributlD ”C © is built based on the NFJ-DAG

of ; and not on its DAG, the length of the schedUl€ O may become shorter than

Li. That happens when any of the edges removed during the transformation belongs to
the critical path ofG;. In fact, the length oWDiUCO matches the critical path length

of GNFJ, which may be shorter than the critical path of the initial DA (since

edges may have been removed).

Example 8The workload distribution D Y ©© presented in Figsb has a length equal
to 12, while the initial DAG vith the red edge) in Figha has a critical path composed
of v, v4, vs andvg of lengthL; = 14.

As stated by Corollart, task ; cannot execut®V; time units in less thah; time
units. Therefore, we derive a new upper-bound on the interfering workloadOsf
carry-out job, that respects Corollaty

Lemma 6 The workload Vi@O generated by the carry-out job of a higher priority task
i in awindow of length €€ is upper-bounded by W6 max0, L; S £©}.

Proof Directly follows from Lemmal.

Theorem 4The interfering workload \(\70 generated by the carry-out job of
a higher priority task ; in a window of length iCO is upper-bounded by
min CO(WDYCO, €0), €Oxm, W Smax{o,Li S €°}.

123



Real-Time Systems

Proof Because at mosh subtasks can execute simultaneouslyrocores, €©x m
is an upper-bound on the workload that can execute in a window of Ierf@?n Since
CO(WDYCO, €0) (TheorenB) andW; S maxo0, Li S €©} (Lemmas) are also

upper-bounds old\/ico, so is the minimum between the three values.

8 Schedulability analysis for constrained deadline tasks

In the previous two sections we have derived upper-bounds on the workload produced
by the carry-in and carry-out jobs of as a function of ' and €©, respectively.

Now we show how to balance®!' and €© such that the interfering workload in

the problem window of length is maximized. In this section, we assume that all
tasks have constrained deadlines (i[®., T;). The case of arbitrary deadlines is
considered in Sec®. If tasks have constrained deadlines, then at most one job of
each higher priority task; can be a carry-in job, i.e., at most one job pfcan be
released befong, and have a deadline aftgy. Similarly, at most one job of, may be

a carry-out job, i.e., there is at most one job ofhat can be the last job of released

in the problem window.

The difbculty in computing the values®! and  ©© comes from the fact that the
worst-case scenario foi does not necessarily happen when the problem window is
aligned with the start of the carry-in job or the end of the carry-out job (see?kig.
Furthermore, the positioning of the problem window gfrelatively to the release
pattern of ; may have to vary according to the value ofin order to guarantee that
the workload imposed by on g is maximized.

Let ,C be the sum of the carry-in and the carry-out windows lengths, ii?e,:

Cl+ €O andletwS( F) be the maximum workload produced by the carry-in
and carry-out jobs of; over IC An upper-bound on the total interfering workload
generated by; in a time interval of length is therefore given by

Wi() = WE( €)+ max 0, % x W (14)

where the brst term is the maximum workload produced by both the carry-in job and
the carry-out job of; and the second term is the maximum number of body jobs that
can be released bywithin (S ic), multiplied by their maximum workload. To use
Eqg. (14), we need to compute & andW,( ). The value of  can be computed

as follows®

S B
Ti

-0
1
(08

max O,

x T (15)

6 We note that Eq.15) was ingomplete in the original RTNS paper (Fonseca @(dl7). We correct it here
by replacing the ternk; by jOs best-case response tBneAll the original experiments were performed
again with the corrected equation and none was visibly impacted by the change madelis) Eq. (
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Fig. 8 Scenario that maximizes the number of body jobs releaseg byer

whereB; is the best-case response time (BCRT) efhen it executes for its worst-case
workload. It is given by

W
Bi = max Li, — (16)
m

which was derived using Corollaty(i.e., the BCRT of ; cannot be smaller thaln;)
and the fact that; cannot execute on more thamprocessors at a time, henBgis
lower-bounded by2.

The length lc is thus obtained by aligning the problem window with the earliest
completion time of the carry-out job of (which takes no less tha time units to
execute) and removing all the body jobs ¢ffrom the problem window of length

(see Fig.8). This way, the number of full jobs of; in the problem window is
maximized, and so is its interference. Note that the fact th%tis computed by
aligning the problem window with the end qfOs carry-out job does not mean thés
interference is maximized whent© contains the full carry-out job of;. Instead,
the window may be shifted left (yet without changing the number of body jobs) to
include a larger portion of Os carry-in job if it increases the total interfering workload
generated by;.

Lemma 7 The interfering workloadV;() generated by a higher priority task in
a window of length is maximized when IC is computed by Eq15).

Proof In this proof, we assume that B; since otherwise Ti (i.e., assuming
that ; is schedulable, its BCRT must be no larger tian T;) and there cannot
be any body job released by. This would imply that |C is by default equal to ,
thereby proving the claim for that case.

Thus, if > B;j, we note thaB; .C < B;j + Tj when computed with Eq1§).
Two cases must be considered.

Case 1If ,C is shortened then at most one more body job can be added to the problem
window (remember that IC < Bj+ TjandB; T andeach bodyjobNexecutes ina
window of lengthT;). Therefore, the interfering workload generated {#ys body jobs
increases by at most (i.e., the workload of exactly one job). Moreover, because

iC is now T; time units shorter, one less job can execute ﬁ1and the interfering
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workloadWiC( iC) generated by; Os carry-in and carry-out jobs must decrease by
at leastW; time units too. Hence, in total, the interfering worklod() does not
increase.

Case 2The length of € is increased. Using Eq18), the computed value of € is
minus an integer multiple of; and thus, when injecting Eql9) into Eq. (L4),

C & C
S By increasing lc by a positive value, it thus holds

we get that T T

S( S+ s C
¥ < 5
execute in the time window of length and the interfering workload generated s
body jobs is decreased by at le®ét Furthermore, since the carry-out job is already
completely included in ,C (i.e., IC Bi), in the best case increasing the length of

 will allow us to fully integrate ; Os carry-injob iw,( ). HenceWc( ) may
be increased by at mo®¥; time units (the workload of; Os carry-in job). Summing
all the contributions to the interfering worklo&d; () , we have thatV;() does not
increase.

that for > 0. Therefore, at least one less body job can

The problem of computingVS( ) can be formulated as the maximization of
Cli(WDYC!, x1) + CO(WDVYO, x2) subjectto € = x1+ x2. The optimal
solution of this optimization problem s an upper—boundhblﬁ( ic), whereas the bnal
values of the decisions variables andx2 correspondto *' and {©, respectively.

We solve this problem by using AlgorithBthat is based on a technique named Osliding
windowO introduced in Maia et aR@14. It computes the maximum solution to the
optimization problem debPned above in linear time by checking all possible scenarios
in which the problem window is aligned with any block WfDP¢! or wDP<0.
Specibcally, the scenarios tested can be divided into two groups: (i) the beginning of
the problem window coincides with the start of a bIock\/ilDiUC' (lines 7 to 14);

or (ii) the problem window ends at the completion of a bIochrDiUCO (lines 15

to 22). Algorithm2 also tries the conbguration where the carry-out workload in the
problem window is maximized (lines 1 to 3) and where the carry-in workload in is
maximized (lines 4 to 6). It was proven in Maia et &0(4), that the maximum
interfering workload is obtained in one of those scenarios.

Byreplacingtheterm&/; (R) (1 i < k) with Eq. 14) in Eq. @), a schedulability
condition for task g is stated in the next theorem.

Theorem 5Atask g is schedulablg under G-FPifflR Dk, where R is the smallest
> Otosatisfy = Lx+ (WS L)+ 1 i Wi() .

m

The task set is declared schedulable if all tasks are schedulable. This can be checked
by applying Theorerms to each task; , Starting from the highest priority task (i.e.,
1) and proceeding in decreasing order of priority.
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Algorithm 2: ComputingWiC for constrained deadline tasks.

Input : &, wp V¢! wpYCO.
Output: WiC - Upper-bound on the workload of both the carry-in and carry-out jobs.

/* We maximize the carry-out workload inside the problem window */
X2  min{ IC Bi};

x1 €8 x2;

wEe  cl(wb V¢! x1)+ co(WDVCO, x2);

w N e

/* We maximize the carry-in workload inside the problem window  */
x1  min{ &, B+ (TSR}

x2 IC S x1;

WE  maxwE, cli(wbVYC! x1)+ co(wD YO, x2);

IN

o

o

/* We align the start of the problem window with the boundaries of
every block in  wD V¢! */
x1 TSR
foreach (wp, hp) WD iUC' in reverse ordedo
x1 X1+ wp;
10 | x2 €8x
11 if x2 Othen

© o

12 | W& maxw, cli(wbYC! x1)+ co(wbD PO x2)};
13 end
14 end

/* We align the end of the problem window with the boundaries of
every block in  wpVYCO */

15 X2 0;
16 foreach (wp, hp) WD RCOin order of appearanceo
17 X2 X2+ Wp;
18 | x1 €S x2;
19 if x1 Othen
20 | W& maxwC, cli(wbPC! x1)+ co(wbDPCO x2)};
21 end
22 end

o

23 return WE;

w

9 Schedulability analysis for arbitrary deadline tasks

In the previous section, we presented a RTA for the special case where all tasks have
constrained deadlines. In this section, we treat the general case where tasks may have
arbitrary deadlines.

The difbculty with arbitrary deadline tasks is twofold:

1. Let J be the job of  for which we compute the WCRT and assume thais
released at timeg. Since it may be thabyg > Tk, more than one job ofy may
execute in the problem windofry, rk + ) . That s, jobs of x released before
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re (i.e., at timet  ry S Ty) may not have completed their executiorrgiand
yet k may still be schedulable (i.e., it completes all jobs before their deadlines).
Therefore, Eq.4) that computes the WCRT of must be updated to integrate
the residual workload of jobs of; released beforey but interfering with JOs
execution.

2. The second difpculty is that higher priority tasks may have more than one carry-in
job. Specibcally, ifD; > T;, more than one job ofi may be released beforg
and have a deadline aftey. This property, which is formally proven in Lemng8a
in Sect.9.3, requires to derive a new bound on the carry-in wokload released by
each higher priority task interfering witly.

We address the brst issue in S&cf.and the second in Se&.3.

9.1 Response time analysis

In this section, we update Egl)(and derive a new bound on the WCRT of a tagk
We integrate the fact that, for arbitrary deadline tasks, ajgbof task x may be
released before the completion of its precedingJplx 1. Indeed, let us assume that
Jk,131 and J¢,| were released at timg 51 andry,, respectively. In the worst-case
scenario we have that| = rg 51+ Tk andJ 151 may complete its execution at any
time smaller than or equal 1@k 51 + Dx). Therefore, ifDx > Ty, job J 151 may
not have completed its execution whéyy is released. In such situation, we assume
that Ji,| does not start executing before the completiodigk 1.” Hence the earliest
instant at whichJy| may start executing is not its release timg anymore, but the
maximum between its release time and the completion timi @f;.

We now consider the two cases mentioned above:

1. ifjob Jk can start executing as soon as itis released (i.g.4 gtthen the previous
job J 1351 of i has already completed by timg,. In such case, the situation is
identical, with respect tdy |, to the worst-case scenario considered for constrained
deadline tasks. Thatis, there is no additional interference by previous jobard
the WCRT ofJ is therefore obtained using Edt)(@and maximizing the higher
priority task interference. This scenario is encountered for the brst job released
by k. Let X 1 be the completion time of that job. Without any loss of generality
we can assume that that job was released at time 0. Hence wexhawe0 and,
using Eqg. 4), Xk 1 is upper-bounded by the smallest positive solution to

1 - 1
Xk1= Lkt =(WkS L)+ =  W;(Xk,1) (17)
m m i<k

2. if job Jk31 is not yet completed whedy is released, thedy cannot start
executing before the completion df51. Therefore, the worst-case scenario for
Jk,1 happens when the overlap between the execution windody &f1 and the
active window ofJx | is maximized. This happens whdp |51 completes as late

7 We enforce this execution behavior to avoid data inconsistencies between successive jobs of a same task.
Indeed, a job may require the computation results of its preceding job to be able to proceed correctly.
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as possible andy | is released as early as possible. AssumeXpag1 and Xy |
are the worst-case completion timesJfis1 and Ji |, respectively. The WCRT
of Jk | is then given by

Xkl S Tk
X1 S (1S 1) x Ty (18)

R« |

where

1 -~ 1 L
Xl = X1+ Li+ E(WkS Lk) + = Wi (Xk,1) S Wi(Xk181)
i<k
(19)

Eq. 19) is composed of four terms detailed hereafter.

b Xk,151 is the worst-case completion time of the precedingJjplx1, i.e., the
earliest time at whichl | may start executing;

b L is the minimum amount of time required Iy | to complete its execution
when it executes for its WCET and does not suffer any interference;

b %(Wk S L) is an upper-bound ody | Os self-interference (as proven in Melani
etal. 017);

b % i<k Wi(Xk)) S Wi (Xk,151) isthe maximum interfering workload that
can be released by higher priority tasks in the problem window of leKgih
that has not yet been accounted for in the tefms1, i.e., the worst-case
completion time ofJx51.

The WCRT of a task is thus given by its job with the largest response time.
Formally,

Rk = rlna(l)x Xk, S { S 1) x Tk (20)
>

whereX | is the worst-case completion time of t&job released by in the problem
window. Combining Eqgs.1(7) and (L9) we get that

X = 1% (Lt (WS L)+ W) (21)

Note that we can stop iterating ovewhen

b we reach the brbt> 0 such thatXy| (I x Ty), i.e., the Prst job ofy released
in the problem window that completes before the release of the next jab of

b wereach the brst- 0 such thaiy > (| S1)x T+ Dy, i.e., atthe brstjob ofi
released in the problem window that has a response time larger than its deadline.

In the Prst case the task is schedulable while in the second it is not. One of these
two termination conditions holds eventually in most cases. However, it cannot be
guaranteed that Eq2Q) always terminates in the general case, as it has already been
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shown for sequential tasks (Guan et2009. Such rather special corners cases have
not been detected at all during our experimental evaluation. Nonetheless, one can
simply debne a threshold for the valued ofWhenever the threshold is reached, the
procedure terminates and the tagkis declared unschedulable. Note that this may
decrease the effectiveness of the response time analysis.

The termW; (Xk ) in Eq. 1) is computed using Eql4). Equation {4) uses an
upper-boun(!l’viC onthe carry-in and carry-out workload that can be released by higher
priority task . As discussed at the beginning of this section, each higher priority task
may execute more than one carry-in job in the problem window and a new bound on
WE must be derived. We present this bound in the next subsections.

9.2 Carry-out workload

As debned in Sect,, a carry-out job is a job that is released in the problem window
less thanT; time units before the end of that window. Hence the carry-out jol of
is the last job that can be released hyn the problem window (remember that job
releases are at lea§t time units apart). Therefore, each higher priority taskan
release at most one carry-out job, even whehas an arbitrary deadline. It results
that the upper-bound on the carry-out workload proven in Thedrenstill valid for
arbitrary deadline tasks.

9.3 Carry-in workload

As mentioned in Sect, a carry-in job is debned as a job released before the start
of the problem window and with a deadline after the problem window start. When a
higher priority task; has a deadline smaller than or equal to its minimum inter-arrival
time (i.e.,D;  T;), at most one such carry-in job may exist. However, this result does
not hold for tasks with arbitrary deadlines. Indeed, it may happenDhat T, in
which case a job of; may have its deadline after the release of one (or several) other
job(s) of ;. Yet, the number of carry-in jobs may still be upper-bounded as proven in
Lemmas.

Lemma 8 Each higher priority task; with an arbitrary deadline has at most%i
carry-in jobs.

Proof Let J; be the earliest carry-in job released hyLetr; be its release time and
d; its absolute deadline. By depbnition &f all jobs released beforg are not carry-in

jobs. Letc = %i .Let J+cbeanyjob of; released at or later thgn + cx T;). Then,
Ji+cisreleased at or aftek (becausel = ri+ D; rj+ % xTi=r+cxT).
SinceJ; is a carry-in jobgd; is necessarily after the problem window start. Hence any
job Ji+c is released after the problem window start and is not a carry-in job. Since at
mostc S 1 jobs of ; can be released betwegnandr; + ¢ x T;, we conclude that
there are at most S 1 other jobs thard; that may be carry-in jobs. This proves the
claim.
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Fig. 9 Worst-case interfering workload released pyn 1 Os problem window whedy > T;. Yellow jobs
are carry-in jobs

Note that Lemma& covers the case of constrained deadline tasks too si%ice =1
in that particular case.

Example 9Consider the worst-case interfering scenario of tagkepicted in Fig9.

We have thaD; = 2.6x T;. Hence three jobs may be released blyeforery and have
their deadline aftery. Further, because in this examg®e = Dj, the three carry-in
jobs (in yellow in the picture) execute at least partially in the problem window starting
at timery.

Since there might be more than one carry-in job releaseg, loye must update the
debnition of iC' (Eq. ) and the upper-bound on the worst-case carry-in interfering
workload (Eq. 10)).

As depicted in Fig2 for constrained deadline tasks and in Fegfor arbitrary
deadline tasks, we debne the carry-in window jofs the interval starting at the
beginning of the problem window (i.e., at ting) and ending at the earliest release
of abody jobof . Therefore, ifrhoqy is the release time of that job, we have that

def <
S rpody S T (22)

By Lemmas8, we know that there are at mos:J%i carry-in jobs released before

I'body- Therefore, the ™ carry-in job of ; (with 1 | %i ) cannot be released
later than time

Q.

ef

M,j = TbodyS j % Ti (23)

=g+ SIS jxT (24)

Similar to the constrained deadline case, the carry-in workload generated by
would be maximized if each carry-in job of is released as late as possible and
executes as much workload as possible in the problem window. NoW; leé the
upper-bound on the worst-case response timg¢ cdmputed with Eq.Z1). Lemma9
(see below) proves that alignivgD P! to the right with the time-instarft; j + R))
and calculating the part svDYC'Os workload released after(using Eq. 10))
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provides an upper-bound on the maximum interfering workload that can be generated
by the j " carry-in job of ;. Formally, we have that the interfering workload executed
by the j carry-in job of ; in the problem window is upper-bounded by

WD U |WD YC!| Wb
Clij(wDP¢!, £h= hpx S'SjixT+RS wp
b=1 p=b+1 0
(25)

This is stated in Lemm@& below.

Lemma9Llet R be the upper-bound on the worst-case response timeaaimputed

by Eg. (21). Aligning WD V€' to the right with the time-instartri j + Ri) gives
an upper-bound on the maximum interfering workload that can be generatgthby
carry-in job released atjr; in the carry-in window, independently of the interference
imposed on;.

Proof Since Eqs.4) and @1) both compute the WCRT of a task based on the following
algorithm (i) summing all the self-interfering workload and all the workload released
by higher priority tasks in the problem window, (ii) dividing it by the number of cores
m, and (iii) adding the result to,Os critical path length, the proof of this lemma is
identical in every word to the proof of Lemndareplacing Eq.4) with Eq. 21).

Since there are up to%i carry-in jobs, we have that the maximum interfering

carry-in workload generated by is given by the sum of the interfering workload
generated by each of its carry-in jobs. That is,

Cli(wDPc!, £

!
T wovel wove
bu

= hpx C'SjxT+RS Wp (26)
j=1 b=1 p=b+1

Note that the actual implementation of EQ6) can be drastically simplibped using
two simple mathematical facts on EQ6}:
1. for each carry-in jolj such tha( €'S jx T+ R SLj) 0, the contribution
of the inner-sum to the carry-in workload will always 9é;
2. for each carry-in job such that €' S j x T + R) 0, the contribution of the
inner-sum to the carry-in workload will always be 0.
This means that there is at most one carry-in job and therefore only @revhich
the summation o needs to be done. For all the othe?i—i S 1 carry-in jobs, the
interfering wo[kload can reqdily be considereq to be equalit@r O depending on
whether( 'S jx T+ RSLj) Oor( C'Sjx T+ R) 0,respectiely.

Example 10Consider the example in Fig0whereD; = 2.6 x T. As in Example9,
task ; releases three carry-in jobs. However, because the WRRSF ; is smaller
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Fig. 10 Worst-case interfering workload released pin (Os problem window whé > Tj butRj < D;.
Yellow jobs are carry-in jobs

than Dj, the carry-in job released attbodyé 3 x T;) completes no later than time
(rbodyé 3x T; + R) which is before the start of the problem window (i.e., timg
Therefore, we have thét ic' S3x T, + R) < 0and the contribution of that carry-in
job to the interfering workload is 0. On the other hand, the carry-in job released at
time (rhodyS Ti) respects the inequalify 'S Ti + R S Li)  0since it starts and
complete after the beginning of the problem window. Therefore, its contribution to the
interfering workload is equal to its total worklo&t . For the carry-in job released at
time(rbodyé 2x T;), none of the two conditions holds. Hence its execution overlaps
with the beginning of the problem window and its contribution to the interfering
workload is a portion of its workload distributioD ¢!

Theorem 6The interfering workload W' generated by the carry-in jobs of a higher
priority task ; in a window of length ic' is upper-bounded by E¢26).

Proof It directly follows from the combination of Lemmasand9.

Similar to the constrained deadline case covered in $&;tan improve bound on
the carry-in workload can be derived using Lemifgproven below.

Lemma 10An upper-bound on the maximum interfering workload that can be gener-
ated by a carry-in job of taslfi released at time;rj in a carry-in window of length
Clisgivenbymax0, 'S jx T+ R}x m.

Proof Since no job of ; can complete later thaR; time units after its release, we
know that the carry-in job releasedratj completes no later tham j + R = ry +

iC' S jx T+ R (using Eq. 24)). Therefore, the carry-in job executes during at most
max{0, iC' S j x T + R} time units onm processors within the carry-in window
[re, rk+ £, hence the claim.

Combining Theorens with Lemmal0, we derive an improved bound on the carry-
in workload of an interfering task with arbitrary deadline.

Theorem 7The interfering workload \&" generated by the carry-in jobs of a higher
priority task ; in a window of length iC' is upper-bounded by
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Dj
2
min ma{0, C'Sjx T+ R}xm,
j=1
WD P! WD P! $
hpx F'SjxT+RS Wp (27)
b=1 p=b+1 0 %

Proof Follows from Theoren® and LemmdL0.

9.4 Upper-bounding the carry-in and carry-out Interference

In the previous subsections, we have upper-bounded the carry-in and carry-out inter-
ference that a higher priority taskcan generate in windows of lengttf' and £,
respectively. However, as already discussed in Sefiir the constrained deadline
case, the difbculty is to identify the lengths of ' and  ©© that maximize the total
interference generated by. For constrained deadline tasks, this optimization prob-
lem was solved using Algorithr®. In this section, we adapt Algorithto support
systems composed of arbitrary deadline tasks. The result is presented in Algérithm

Like for the constrained deadline case, AlgoritBmses the sliding window tech-
nigue to maximize the interfering workload released by a task the problem
window. First, the distance &, which by depnition is equal to"' +  €©, is com-
puted using Eq.1(5) (note that the proof of Lemmais still valid for arbitrary deadline
tasks). Then, Algorithn3 is called.

Algorithm 3 is identical to Algorithm2 for lines 1 to 3 and lines 17 to 24, which
are related to the carry-out workload. However, as it was to be expected, Alg&ithm
differs from Algorithm2 for parts that are related to the carry-in workload (lines 4
to 16).

Algorithm 3 brst tries to maximize the carry-out workload released by the
problem window (lines 1 to 3). To this end, it aligns the end of the problem window
with the earliest time at which Os carry-out job may complete (i.e., settirfgO to
Bi), orbysetting “Cto Cif € issmallerthanthe BCRT of. Then, Algorithm3
similarly tries to maximize the carry-in workload released iy the problem window
(lines 4 to 6). This is achieved by aligning the beginning of the problem window with
the latest time at which the earliest carry-in job pinay start executing. Hence we
set “'to(Bi+ 2 x T SR) where( 2 x T §R)isthe smallest possible
distance between the completion of the earliest carry-in job afd the release of its
Prst body job atpody. The length(Bj + %i x T; S R)) is thus the smallest possible
distance between the time at which the earliest carry-in job sfarts executing and
I'body- Line 4 also ensures thagc' cannot be larger thanic.

Lines 6 to 16 iterate over the%i carry-in jobs released by. For each carry-in

job it computes the latest time at which that job may complete (line 8) and then aligns
the beginning of the problem window with the start of every block in the workload
distributionWD ! of that job (lines 10 to 14).
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Algorithm 3: ComputingWiC for arbitrary deadline tasks.

Input : &, wp V¢! wpYCO.
Output: WiC - Upper-bound on the workload of both the carry-in and carry-out jobs.

/* We maximize the carry-out workload inside the problem window */
1 x2  minf IC Bi};
2 x1 €8 x2;
sWE  Cl(WDVYC! x1) + cO(WD YO, x2);

/* We maximize the carry-in workload inside the problem window  */
axl min{ ©, B+ %i x ISR}k
5 X2 IC S x1;

s WE  maxwC, cli(wbVC! x1)+ co(wb YO, x2);

/* We align the start of the problem window with the boundaries of

every block in WD UC! for every carry-in job of i */
7 forall the j = 1to %i do
8 | x1  jxT SR
o | foreach(wp, hp) WD YC!in reverse ordedo
10 x1 X1+ wp;
1 x2 Ic S x1;
12 if x1 OandxX2 Othen
13 | W& maxwC, cli(wbYC! x1)+ co(wD PO x2)};
14 end
15 end
16 end

/* We align the end of the problem window with the boundaries of
every block in  wD V€O */
17 X2 0;
18 foreach (wp, hp) WD iRCO in order of appearanceo
19 X2 X2+ wp;
20 | x1 €8xz
21 if x1 Othen

2 | W& maxwC, cli(wbVYC! x1)+ co(wbD PO x2)};
23 end
24 end

25 return WE;

Lines 17 to 24 are identical to Algorith&wand align the end of the problem window
with the end of every block in the workload distributiiD “©© of ;Os carry-out
job.

The maximum interfering workload released by carry-in and carry-out jobs of
is the maximum over the interfering workload computed for each of the scenarios
described above (as already discussed in Maia e2@14).
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10 Experimental evaluation

The analysis presented in this paper has beenimplemented withinthe MATLAB frame-
work released by the authors of Melani et &015. We follow the same technique

as in He and Yeshal@87 and Melani et al. Z015 to generate random task sets
composed of DAG tasks.

Each DAG in the task set is initially a composition of two NFJ-DAGs connected in
series. The NFJ-DAGs are constructed by recursively expanding their nodes. Each node
has a probabilityopar to fork and a probabilityerm to join, wherepierm+ Ppar = 1.

Each parallel branch has a maximwapththat limits the number of nested forks.
Additionally, the number of parallel branches leaving from a fork node is randomly
chosen within a uniform distribution bounded [& npar]. Finally, a general DAG is
obtained by randomly adding directed edges between pairs of nodes, granted that such
randomly-placed precedence constraints do not violate the OacyclicO semantics of the
DAG. The probability of adding an edge between two nodes is givam,y, with the
restriction that any two nodes with a common fork-node as direct predecessor cannot
be connected. This last restriction avoids generating degenerated DAGs that behave
as sequential tasks.

Once the DAGG; of a task j is constructed, the task parameters are assigned
as follows. The WCETC; of a subtask/j V; is uniformly chosen in the interval
[1, 10Q. The task length.;, the workloadW; and the maximum makespd; (see
Eq.2) of ; are computed based on the internal structure of the DAG and the WCET
of its nodes. The minimum inter-arrival timg is uniformly chosen in the interval
[Mi, Wi/ 1, where the parameteris used to dePne the minimum utilization of all the
tasks. Therefore, the task utilization becomes uniformly distributed[ové; / M;].

For all experiments that have a varying total utilizatldpy (i.e., Figs.11, 16), we

keep generating and adding new tasks to the task set until the target total utilization
Uiot is met.Uiqt is achieved exactly by adjusting the period of the last task added to
the system. Otherwise, for all other experiments, we use UUnifast (Bini and Buttazzo
2005 to derive individual task utilizations (and consequently their period) for a bxed
value ofn. Priorities are assigned following the DM policy.

For each tested system conbguration, we generated and assessed the schedulabil-
ity of 500 task sets. Unless stated otherwise, in all experiments reported herein, we
have setppar = 0.8, prerm = 0.2, depth= 2, npar = 5, pada = 0.2, =
0.035x m, Uit = 0.7m, n = 1.5mandm = 8. These settings lead to a rich variety
of internal DAG structures, some of which resemble real-world applications as noted
in Melani et al. 017): we observed both heavy and unbalanced workloads with dif-
ferent degrees of parallelism and sequential segments in each task set. The maximum
parallelism of a DAG (i.e., the number of subtasks that can execute in parallel) with
such conbguration is 25.

10.1 Evaluation for constrained deadlines

We compare our response time analysis for DAG tasks with constrained deadlines
(referred to as IRTA-FP) to the schedulability analysis described in Melani et al.
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Fig. 11 IRTA-FP varyingUtot

(2019 (referred to as Mel-DAG) for G-FP scheduling. In an attempt to maximize
the schedulability ratios of these tests, we restrict our attentions to the case where
the relative deadlind®; is set equal to the period. For insights concerning how
RTA for G-FP scheduling fares against other scheduling algorithms and/or paradigms,
the interested reader is referred to the experimental results reported in Melani et al.
(20179, Jiang et al.2017), and Pathan et al2018. Note that the different scheduling
strategies are incomparable, since their performance varies signibcantly according to
the application parameters.

In the brst set of experiments, the system utilizatipg was varied in(0, m] by
steps of 5. Figurell shows the number of schedulable task sets when 8.
For both low and very high utilization (i.e., when all or none of the task sets are
schedulable), IRTA-FP and Mel-DAG are indistinguishable. HoweverUigt
[4, 6], IRTA-FP performs substantially better. In particular, wikp = 5.25, IRTA-
FP schedules 341 task sets against 156 for Mel-DAG. Instead 1Eigeports the
schedulability as a function of the number of taskwith n ranging from 4 to 20. The
values ofUiot andm were kept constant and equal td@® and 8, respectively. IRTA-
FP outperforms Mel-DAG for any value ofwith an average gain of approximately
20%, although both tests converge to full schedulability for largéntuitively, it is
easier to schedule many light tasks than few heavy tasks.

We then study the impact of the DAG structures on the outcome of the two schedu-
lability tests. A trend similarly to that of Figl2 can be observed in Fig.3, where
we varied the maximum number of parallel branchgg in the interval[2, 8]. Mel-
DAG has clear limitations when the average parallelism of the DAGs is up to half
of the platformOs parallelism (i.epar  4) and only admits a large share of tasks
sets fornpar 6. On the other hand, IRTA-FP accepts at least 50% of the task sets
for npar 4 even though the schedulability ratio reduces when the tasks become
nearly sequential (i.enpar becomes close to 2). As expected, both approaches are
comparable when the task parallelism is consistently greatenthBigurel4reports
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Fig. 12 IRTA-FP varyingn

Fig. 13 IRTA-FP varyingnpar

the results obtained for different types of DAGSs, as the probability of adding edges
Padd between two nodes is increased from 0 to 1 by stepsloff@ clarify, pagqg = 0
corresponds to generating NFJ-DAGs, whilgyg = 1 leads to synchronous parallel
tasks. In between we have arbitrary DAGs. IRTA-FP attains a solid 40% schedula-
bility improvement over Mel-DAG for any value gfaqg. Interestingly, such gain is

not maximized when IRTA-FP benebts from a more accurate characterization of the
carry-out workload (i.e., in the case of NFJ-DAGS). This stresses the importance of
exploring the precedence constraints within a DAG when deriving bounds on the inter-
fering workload. Furthermore, we remark that IRTA-FP could achieve better results
had we transformed the Pnal DAGs into NFJ instead of considering the original ones.
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Fig. 14 IRTA-FP varyingpadd

Fig. 15 IRTA-FP varyingm

In conjunction with an average increase in the individual critical path lengths, this also
justibes the slow degradation when increagiagg.

In Fig. 15, we illustrate how IRTA-FP performs whem varies according to
the sequencg2, 4, 6, 8, 10, 12, 14, 16], with Uit andn scaling withm. Mel-DAG
degrades for higher valuesof while IRTA-FP maintains a schedulabity ratio around
72%. Such improvement is due to the characterization of the carry-in and carry-out
workload distribution. IRTA-FP exploits the internal structure of the DAGs to bound
the parallelism of such jobs, hence limiting the number of cores on which they execute
for largerm; whereas Mel-DAG assumes that all interfering jobs always usenthe
cores.
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10.2 Evaluation for arbitrary deadlines

We now compare the performance of our response time analysis for DAG tasks with
arbitrary deadlines (referred to as IRTA-FP2) to the schedulability test proposed by
Parri et al. 2015 for G-DM scheduling (referred to as Parri(16)), which was shown

to outperform the tests in Bonifaci et 82413, and hence, as far as we know, the only
competitor to our test for arbitrary deadline DAG tasks. The number 16 added to ParriOs
test name denotes the maximum number of iterations allowed for the convergence of
the outer loop in their RTA, which in most cases is sufbcient to satisfy the convergence
of the analysis, as suggested by the authors. Furthermore, since the analysis in Parri
etal. 015 assumes that multiple jobs of the same DAG tasks may execute in parallel
(instead of a job becoming ready only after the previous one completes its execution, as
we do), for the sake of fairness, we enforce that no task is assigned with a period smaller
than its maximum makespan. ThatTs, M;, | . By default, the deadlin®;

is uniformly selected in the intervdlli, maxTi], wWith max = 3 controlling the
maximum ratio ofD;/ Ti; meaning tha; D; 3T;.

Figurel6reports the number of schedulable tasks sets as a function of the total uti-
lization Ut for m = 8. While IRTA-FP2 has a breakdown utilizationl&t,: = 7. For
Parri(16) such breakdown happens 10% earlier. Notably, when [ 5.25, 6.75],
IRTA-FP2 greatly outperforms Parri(16), with a schedulability gain peaking at 75%.
This suggests that the way we handle the multiple interfering jobs carried-in by the
higher priority tasks largely compensates the handicap on the self-interference com-
ponent due to the different runtime assumptions.

In order to study the effectiveness of both approaches for different vallugs ok
varied maxinthe rangd1l, 5]. The results are depicted in FitjZ for constant values
of Uiet, N andm. In the case of implicit deadlines (i.e.nax = 1 D = T),
Parri(16) performs very poorly, conbPrming the authorOs observation that their analysis

Fig. 16 IRTA-FP2 varyingUtot
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Fig. 17 IRTA-FP2 varying max

Fig. 18 IRTA-FP2 varyingm

is specibcally tailored for arbitrary deadlines and as such is overly pessimistic for more
restrictive models. On the other hand, IRTA-FP2 is able to schedule 328 task sets as
it was already witnessed in the constrained deadline case studied abovigaAis
increased, both tests rapidly achieve nearly full schedulablity. It is worth noting that
larger values oD; strongly benebt Parri(16) since they assume that several jobs of
the same task can execute in parallel, whereas in IRTA-FP2 assumes that a job cannot
start executing before its preceding job has been completed.

In Fig. 18, we show the schedulability results as a function of the number of cores
m. Both tests are robust to platforms with increased parallelism, although IRTA-FP2
succeedes in scheduling most task sets for any valoe Barri(16) requiresn 12
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Fig. 19 IRTA-FP2 varyingn

to perform similarly. Finally, Fig19 illustrates how IRTA-FP2 performs when the
number of taska is varied according to the sequer2e4, 6, 8, 10, 12, 14, 16]. IRTA-

FP2 substantially outperforms Parri(16) whres 14, with an average schedulability
improvement close to 35%. Nevertheless, both approaches are indistinguishable when
the amount of tasks is at least twice the number of cores. From these last sets of
experiments, we can conclude that the workload distributions derived to characterize
the carry-in and carry-out jobs are also effective for the analysis of DAG tasks with
arbitrary deadlines.

11 Conclusions

With the ubiquity of massively parallel architectures, it is expected that conventional
real-time applications will increasingly exhibit general forms of parallelism. In this
paper, we studied the sporadic DAG model under G-FP scheduling. Motivated by the
fact that a poor characterization of the higher priority interfering workload leads to
pessimistic analysis of parallel task systems, we presented new techniques to model
the worst-case carry-in and carry-out workload. These techniques exploit both the
internal structure and worst-case execution patterns of the DAGs. Following a sliding
window strategy that leverages from such workload characterization, we then derived
a schedulability analysis to compute an improved upper-bound on the WCRT of each
DAG task. Experimental results not only attest the theoretical dominance of the pro-
posed analysis over its state-of-the-art counterpart (in the constrained deadline case),
but also showed that its effectiveness is independent of the number of cores and it
substantially tightens the schedulability of DAG tasks on multiprocessor systems for
both constrained and arbitrary deadline cases.

As future work, we plan to better characterize the self interfering workload as well
as the interference generated by body jobs. We believe that most of the pessimism
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remaininginthe analysisislocated in those two terms. Furthermore, we plan to perform
an extensive comparison between global and partitioned scheduling. However, such
comparison would require to brst develop an efbcient partitioning scheme for DAG
tasks. Although analyses for partitioned DAGs exist (Fonseca @048, there is

no algorithm for deciding which node of the DAG should be assigned to which core
while maximizing the schedulability of the system.

Finally, similar to what was achieved by Melani et &0(7, we are considering
extending our work, and more particularly the workload distribution characterization
presented in this paper, to G-EDF. We expect that the poor performance of G-EDF
reported by the authors of Melani et @007 may be attenuated when the carry-in
and carry-out interfering workloads are modeled more accurately as it was done in
this paper for G-FP scheduling.
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