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Abstract 
One of the major sources of pessimism in the response time analysis (RTA) of globally scheduled real-time tasks is 
the computation of an upper-bound on the inter-task interference. This problem is further exacerbated when intra-
task parallelism is permitted because of the complex internal structure of parallel tasks. This paper considers the 
global fixed-priority (G-FP) scheduling of sporadic real-time tasks when each task is modeled by a directed acyclic 
graph (DAG) of concurrent subtasks. We present a RTA based on the concept of problem window, a technique that 
has been extensively used to study the schedulability of sequential task in multiprocessor systems. The problem 
window approach of RTA usually categorizes interfering jobs in three different groups: carry-in, carry-out and body 
jobs. In this paper, we propose two novel techniques to derive less pessimistic upper-bounds on the workload 
produced by the carry-in and carry-out jobs of the interfering tasks. Those new bounds take into account the 
precedence constraints between subtasks pertaining to the same DAG. We show that with this new 
characterization of the carry-in and carry-out workload, the proposed schedulability test offers significant 
improvements on the schedulability of DAG tasks for randomly generated task sets in comparison to state-of-the-
art techniques. In fact, we show that, while the state-of-art analysis does not scale with an increasing number of 
processors when tasks have constrained deadlines, the results of our analysis are barely impacted by the 
processor count in both the constrained and the arbitrary deadline case. 
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Abstract
One of the major sources of pessimism in the response time analysis (RTA) of globally
scheduled real-time tasks is the computation of an upper-bound on the inter-task inter-
ference. This problem is further exacerbated when intra-task parallelism is permitted
because of the complex internal structure of parallel tasks. This paper considers the
global Þxed-priority (G-FP) scheduling of sporadic real-time tasks when each task
is modeled by a directed acyclic graph (DAG) of concurrent subtasks. We present
a RTA based on the concept of problem window, a technique that has been exten-
sively used to study the schedulability of sequential task in multiprocessor systems.
The problem window approach of RTA usually categorizes interfering jobs in three
different groups: carry-in, carry-out and body jobs. In this paper, we propose two
novel techniques to derive less pessimistic upper-bounds on the workload produced
by the carry-in and carry-out jobs of the interfering tasks. Those new bounds take into
account the precedence constraints between subtasks pertaining to the same DAG. We
show that with this new characterization of the carry-in and carry-out workload, the
proposed schedulability test offers signiÞcant improvements on the schedulability of
DAG tasks for randomly generated task sets in comparison to state-of-the-art tech-
niques. In fact, we show that, while the state-of-art analysis does not scale with an
increasing number of processors when tasks have constrained deadlines, the results of
our analysis are barely impacted by the processor count in both the constrained and
the arbitrary deadline case.
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1 Introduction

Few years ago, there was a neat and clear frontier separating the real-time embed-
ded domain from the high-performance computing domain. Nowadays, many modern
applications (e.g., intelligent transportation systems and autonomous driving) share
requirements from both worlds: they are subject to strong timing constraints and have
high computational demands. In order to cope with such orthogonal requirements, we
have witnessed a strong push towards the adoption of parallel programming paradigms
and multi-/many-core embedded architectures. Parallel programming models, such as
OpenMP (Board2013), enable both inter- and intra-task parallelism in the systems,
thus offering opportunities for a more efÞcient exploitation of the immense processing
power that is today at the industryÕs disposal.

For the real-time research community, the analysis of the worst-case timing behavior
of parallel systems requires a detailed representation of the intrinsic parallelism within
the application as well as a complete picture of the precedence constraints that it
imposes on its parallel activities. These new challenges have been progressively tackled
as shown by the different parallel task models and respective schedulability analysis
recently proposed in the literature (Lakshmanan et al.2010; Saifullah et al.2011;
Chwa et al.2013; Maia et al.2014; Baruah et al.2012; Bonifaci et al.2013; Li et al.
2013; Baruah2014; Li et al. 2014; Fonseca et al.2016; Melani et al.2015; Baruah
et al.2015).

In this paper, we study the sporadic DAG task model introduced in Baruah et al.
(2012) under global Þxed-priority (G-FP) scheduling. In this model, each task is
characterized by a directed acyclic graph (DAG). The nodes of the graph represent
sequential computation units (e.g., openMP tasks) and the edges deÞne precedence
constraints between the execution of nodes. Nodes that are not directly or transitively
connected with each other in the graph may execute in parallel, otherwise they must
follow the sequential order given by the DAG structure.

A key challenge in the response time analysis (RTA) of globally scheduled mul-
tiprocessor task systems is to compute an upper-bound on the interference that tasks
generate on each other. The complexity of computing such inter-task interference
bound is exacerbated for parallel tasks, DAGs in particular, due to their complex and
irregular internal structure. To the best of our knowledge, the work proposed by Melani
et al. (2015) represents the Þrst attempt at analyzing the schedulability of a set of spo-
radic DAG tasks with a general G-FP scheduling policy through a RTA approach. Their
RTA is based on the concept of problem window developed originally by Baker (2003).
This technique consists in estimating the maximum interfering workload produced by
a higher priority task in a time interval of arbitrary length. While the work in Melani
et al. (2015) indeed succeeded in upper-bounding the interfering workload generated
by DAG tasks, it does so by considering that every job in the problem window is
a compact block of execution which uniformly occupies all the available processors
until its completion.

Since most DAGs exhibit different degrees of parallelism throughout their execution
and do not necessarily require to constantly access all processors, such abstraction
leads to a signiÞcant overestimation of the inter-task interference. This extra level of
pessimism in the schedulability analysis is evident in the experimental results reported
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Table 1 Performance of the schedulability test proposed by Melani et al. (2015)

Schedulability ratio (%) 94 63 49 32 24 16 14 10

Number of cores 2 4 6 8 10 12 14 16

in Table1(more details about the system conÞguration are deferred to Sect.10). Table1
shows the percentage of task sets that are deemed schedulable by the schedulability
test proposed in Melani et al. (2015) when increasing the number of available cores
but keeping the platform utilization Þxed at 70% and the number of tasks proportional
to the number of cores. The steady schedulability performance deterioration visible in
Table1 for the aforementioned test is counter-intuitive, as one would expect at least
a constant schedulability ratio when the parallelism of the platform is increased and
the average task utilization remains unchanged. Motivated by these observations, this
paper proposes techniques to derive improved bounds on the inter-task interference
by exploiting the knowledge of the precedence constraints in the internal structure
of the DAGs. As reported in the experimental section of this paper, the proposed
technique improves the ratio of task sets deemed schedulable and attenuate strongly
the counter-intuitive deterioration of the analysis performance with the increasing
number of cores.

1.1 Contributions and paper organization

In this paper, we study the schedulability of a set of sporadic DAG tasks under G-
FP scheduling. We present two novel techniques that exploit the internal structure
of the DAGs in order to derive improved upper-bounds on the worst-case workload
that each higher priority task carries into the problem window of the analyzed task.
We then identify the scenario that maximizes the combined interference contributions
of both the carry-in and carry-out jobs, allowing us to use the new upper-bounds to
reÞne traditional schedulability analysis methods. Experimental results show that the
proposed schedulability test not only dominates the state-of-the-art analysis (Melani
et al.2015) but it is also robust to multiprocessor systems with larger number of cores.
The analysis is derived for systems composed of both constrained and arbitrary dead-
line tasks. Substantial schedulability improvements are attained even for the general
case.

The remainder of this paper is organized as follows. Next section provides a concise
review of the related work. In Sect.3 we formally deÞne the sporadic DAG model.
Sect.4 describes brießy the RTA presented in Melani et al. (2015), while Sect.5
introduces the proposed worst-case scenario for the interfering workload of the higher
priority tasks. In Sects.6and7we present how to upper-bound the worst-case carry-in
and carry-out workloads, which we then use to derive the schedulability analysis for
constrained deadline tasks in Sect.8. Section9 extends the analysis of Sect.8 to the
more general case of systems composed of arbitrary deadline tasks. Finally, Sect.10
reports our experimental results, right before we draw the conclusions in Sect.11.
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2 Related work

The real-time community has been devoting signiÞcant efforts to the problem of
scheduling parallel tasks atop multiprocessor platforms. Parallel task models and
respective schedulability tests have been proposed to cope with the different forms of
task parallelism introduced by widely used parallel programming models. Imposing
the most restrictions, the fork-join model (Lakshmanan et al.2010) characterizes a task
as an interleaved sequence of sequential and parallel segments, where the release of
each segment is constrained by the completion of its predecessors. A common assump-
tion is that every parallel segment contains the same number of subtasks, which cannot
exceed the number of cores in the platform. The synchronous parallel model (Saifullah
et al.2011; Andersson and de Niz2012; Nelissen et al.2012; Chwa et al.2013; Maia
et al. 2014) extends the fork-join model by allowing consecutive parallel segments
with an arbitrary number of subtasks. Nonetheless, synchronization is still enforced
at every segmentÕs boundary, meaning that a subtask cannot start executing until all
the subtasks of the previous segment have completed.

A more ßexible and general parallel structure is captured by the DAG model (Baruah
et al.2012) considered in this paper, where a task is instead represented by a directed
acyclic graph. Nodes represent subtasks to be sequentially executed and edges deÞne
precedence constraints between nodes. According to this model, a subtask becomes
ready for execution as soon as all its precedences constraints are satisÞed, and uncon-
nected subtasks may execute in parallel. Most existing work on the DAG model
addresses global earliest deadline Þrst (G-EDF) scheduling, with (Qamhieh et al.
2013; Saifullah et al.2013, 2014) or without decomposition1 (Baruah et al.2012;
Bonifaci et al.2013; Li et al. 2013, 2014; Baruah2014; Parri et al.2015).

Researchers have also studied partitioned scheduling (Fonseca et al.2016), where
each subtask is statically assigned to a single processor and therefore cannot migrate.
Yet multiple subtasks of the same DAG may still execute on different cores. On the
other hand, federated scheduling (Li et al.2014; Jiang et al.2017) assigns each heavy
task (i.e., a task with an execution workload larger than their deadline) to a set of
dedicated processors, whereas light tasks (i.e., those that have a workload smaller
than or equal to their deadline) are forced to execute sequentially on the remaining
processors.

G-FP scheduling has been considered for DAG tasks with arbitrary deadlines, with
Bonifaci et al. (2013) proving a resource augmentation bound of 3Š 1/ m under a
global deadline monotonic (G-DM) policy, whereas Parri et al. (2015) proposed a
RTA for G-DM that accounts for the interference experienced by each subtask instead
of each task. According to the authors (Parri et al.2015), the analysis proposed by
Parri et. al. is essentially tailored for arbitrary deadline tasks.

Recently, the DAG model has been extended to support conditional statements,
allowing a parallel task to experience different ßows of execution depending on input
and state variables (Fonseca et al.2015; Melani et al.2015, 2017; Baruah et al.2015).
As a result, different instances of the same DAG may produce different parallel struc-

1 The ÒdecompositionÓ process consists in assigning independent release offsets and virtual deadlines to
each subtask in a DAG. Different subtasks may then be scheduled as independent sequential tasks even if
they belong to the same DAG.
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tures during their execution. We particularly highlight the RTA presented in Melani
et al. (2015, 2017) since it addresses G-FP scheduling as it is also the case in this paper.
The RTA presented in Melani et al. (2015, 2017) is effective for both conditional and
non-conditional DAG tasks. In this paper, we restrict ourselves to the non-conditional
case.

3 Model

We consider a set ofn sporadic real-time tasks� = { � 1, . . . , � n} to be globally sched-
uled by a preemptive Þxed-priority algorithm on a platform composed ofm unit-speed
processors. We assume that priorities are per-task and that task� i has higher prior-
ity than � k if i < k. Each task� i is characterized by a 3-tuple(Gi , Di , Ti ) with the
following interpretation. Task� i is a recurrent process that releases a (potentially)
inÞnite sequence ofjobs, with the Þrst job released at any time during the system
execution and subsequent jobs released at leastTi time units apart. Every job released
by � i has to complete its execution withinDi time units from its release. In this paper,
we Þrst consider the special case where� is comprised of constrained deadline tasks,
i.e., Di � Ti , � i . Then, in Sect.9, we consider the general case where tasks in�
may have arbitrary deadlines, i.e., smaller than, equal to or larger than their minimum
inter-arrival timeTi .

Each job of task� i is modeled by a DAGGi = (Vi , Ei ), where Vi =
{vi ,1, . . . , v i ,ni } is a set ofni nodes andEi � (Vi × Vi ) is a set of directed edges
connecting any two nodes. Each nodevi , j � Vi represents a computational unit
(referred to assubtask) that must execute sequentially. A subtaskvi , j has a worst-case
execution time (WCET) denoted byCi , j . Each directed edge(vi ,a, vi ,b) � Ei denotes
a precedence constraint between the subtasksvi ,a andvi ,b, meaning that subtaskvi ,b
cannot execute before subtaskvi ,a has completed its execution. In this case,vi ,b is
called asuccessorof vi ,a, whereasvi ,a is called apredecessorof vi ,b. A subtask is
then said to bereadyif and only if all of its predecessors have Þnished their execution.
For simplicity, we will omit the subscripti when referring to the subtasks of task� i
if there is no possible confusion. A subtask with no incoming (resp., outgoing) edges
is referred to as asource(resp., asink) of the DAG. Without loss of generality, we
assume that each DAG has a single sourcev1 and a single sinkvni . Note that any
DAG with multiple sinks/sources complies with this requirement, simply by adding a
dummy source/sink with zero WCET to the DAG, with edges from/to all the previous
sources/sinks.

For each subtaskv j � Vi , its set of direct predecessors is given bypred(v j ),
while succ(v j ) returns its set of direct successors. Formally,pred(v j ) = { vk �
Vi | (vk, v j ) � Ei } andsucc(v j ) = { vk � Vi | (v j , vk) � Ei }. Furthermore,ances(v j )
denotes the set of ancestors ofv j , deÞned as the set of subtasks that areeither directly or
transitivelypredecessors ofv j . Analogously, we denote bydesce(v j ) the descendants
of v j . Formally,ances(v j ) = { vk � Vi | vk � pred(v j ) � (� v� , v� � pred(v j ) � vk �
ances(v� ))} anddesce(v j ) = { vk � Vi | vk � succ(v j ) � (� v� , v� � succ(v j ) � vk �
desce(v� ))}. Any two subtasks that are not ancestors/descendants of each other are
said to beconcurrent. Concurrent subtasks may execute in parallel.
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DeÞnition 1(Path) For a given task� i , a path� = (v1, . . . , vni ) is a sequence
of subtasksv j � Vi such thatv1 is the source ofGi , vni is the sink ofGi , and
� v j � � \{ vni }, (v j , v j + 1) � Ei .

Informally, a path� is a sequence of subtasks from the source to the sink in which
there is a precedence constraint between any two adjacent subtasks in� . Thus, there is
no concurrency between the subtasks that belong to a same path. The length of a path� ,
denotedlen(�) , is the sum of the WCET of all its subtasks, i.e.,len(�) =

�
� v j � � C j .

DeÞnition 2(Length of a task) The lengthL i of a task� i is the length of its longest
path.

DeÞnition 3(Critical path) A path of� i that has a lengthL i is a critical path of� i .

Note that when the number of coresm is greater than the maximum possible par-
allelism of� i , the lengthL i represents the worst-case response time (WCRT) of� i in
isolation (also known as themakespanof the graph). Therefore, an obvious necessary
condition for the feasibility of� i is L i � Di .

DeÞnition 4(Workload) The workloadWi of a task� i is the sum of the WCET of all
its subtasks, i.e.Wi =

� ni
j = 1 C j .

Finally, we prove the following property on� i Õs execution and its critical path.

Lemma 1At most Wi Š max{0, L i Š � } units of workload can be executed by a job
of � i in a window of length� .

Proof By Def. 1, all subtasks in a critical path have precedence constraints and must
therefore execute sequentially. In the worst-case, a job of� i cannot Þnish its execution
within a time window of length shorter thanL i independently of the number of cores,
since the length of a critical path isL i by Def. 3. Since each DAG has at least one
critical path,� time units after its release, a job of� i still has to execute for at least
max(0, L i Š �) time units in order to meet the sequential execution requirements of
its critical path entirely. Hence, at mostWi Š max{0, L i Š � } units of workload are
executed in the interval of length� . 	


Corollary 1No schedule of Gi whose length is shorter than Li can accommodate Wi
units of workload.

Note that Lemma1 is a very coarse and pessimistic bound on the amount of work-
load executed by a DAG task in an interval of length� . Yet, that property will be useful
to prove the correctness of the response time analysis proposed in this paper.

4 Background

In this section, we introduce the concept of interference for DAG tasks. We also
summarize the RTA introduced by Melani et al. (2015) as it sets the foundations for
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the schedulability analysis proposed in the upcoming sections. Although their work
targets a more general task model, known as Òconditional DAG modelÓ, empirical
evaluation in Melani et al. (2015) shows that it is also state-of-the-art for the non-
conditional DAG tasks considered in this paper.

A key challenge in the RTA of globally scheduled multiprocessor systems is the
computation of theinterferenceamong tasks. For sequential tasks, the interference
exerted on a task� k is deÞned as the cumulative length of all the time intervals in
which � k is ready but cannot be scheduled on any processor due to the concurrent
execution ofm higher priority tasks. In order to adapt this deÞnition to the parallel
structure of DAG tasks, we introduce the notion of critical chain.

DeÞnition 5(Critical chain) The critical chain� k of a DAG task� k is the path of� k
that leads to its worst-case response timeRk, with ties broken arbitrarily.

To determine the worst-case response time of� k, we then need to identify such
critical chain and compute the maximum possible interference exerted on it. We start
by characterizing the interference on a DAG task� k.

DeÞnition 6(Interference) The interferenceIk on a DAG task� k is the cumulative
length of all the time intervals in which at least one subtask that belongs to� kÕs critical
chain is ready but cannot be scheduled on any processor because allm cores are busy.

Alternatively, the total interference can be expressed as a function of the worst-case
interfering workload generated by each task in the system.

DeÞnition 7(Interfering workload) The interfering workloadWi
k imposed by a DAG

task� i on a DAG task� k represents the total workload executed by subtasks of� i ,
while at least one subtask that belongs to� kÕs critical chain is ready but cannot be
scheduled on any processor.

DeÞnitions6 and7 also allow us to formulate a bound on the worst-case response
time of � k:

Rk � len(� k) + Ik = len(� k) +
1
m

�

� � i � �

Wi
k (1)

Furthermore, under Þxed-priority scheduling, a task� k cannot suffer interference
from lower priority tasks. That is,Wi

k = 0, � i > k. However, wheni = k, we have
Wi

k � 0. That is because other subtasks of� k thatdo notbelong to its critical chain
may also delay the completion of� k itself. This phenomenon peculiar to parallel tasks
is calledself-interference.

Unfortunately, deriving concrete values for either the overall termIk or the indi-
vidual termsWi

k is computational intractable for non-trivial task sets, otherwise a
schedulability test would easily follow from Eq. (1). For this reason, an established
workaround is to bound the total worst-case interfering workload by analyzing the
maximum possible workload that can be produced by each interfering task during
the worst-case instance of� k. In the following, we present the upper-bounds derived
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Fig. 1 Worst-case interfering workload of a higher priority task� i , as considered in Melani et al. (2015)

in Melani et al. (2015) for both the self-interference (i = k) and inter-task interfer-
ence (i < k) components in the context of G-FP scheduling, as well as the resulting
response time equation.

Regarding the self-interference, in a constrained deadline setting two jobs of a same
task� k cannot interfere with each other. That is because one job must Þnish before the
next one is released, otherwise� k would fail to meet its deadline and the system would
immediately be deemed unschedulable. Therefore, the self-interfering workload is
independent of the response time of� k. Furthermore, due to the absence of priorities
at the subtask-level, every subtaskthat is not part of� kÕs critical chainmay potentially
contribute to the overall response time of� k and thus to its self-interfering workload
Wk

k .
Let Mk denote the contribution of DAG task� k to its own response time, i.e.,

Mk
def= len(� k) + Wk

k / m. It was proven in Melani et al. (2015) that, forconstrained
deadlinetasks, an upper-bound onMk is given by

Mk � Lk +
1
m

(Wk Š Lk) (2)

That is, the self-interfering workload is upper-bounded byWk
k � Wk Š Lk (i.e., the

remaining workload of� k after excluding the length of its critical path). Importantly,
Eq. (2) not only provides a bound on the maximum makespan of� k (i.e., its WCRT in
isolation) but also ensures that the critical chain� k can be safely replaced by a critical
path of� k in the response time analysis, as long as such critical path is subject to at
least the same amount of inter-task interference. Hence, we hereinafter restrict our
attentions to a single critical path of� k, Þxed arbitrarily.

Contrary to the self-interference, the amount of inter-task interfering workload
depends on the length of the time interval that we consider. The longer the time
interval, the more workload can be generated by the higher priority tasks and thus
the larger is the inter-task interference on the analyzed task� k. For a time window
of length� starting at� kÕs release, the contribution of a higher priority task� i to the
inter-task interfering workloadWi

k is divided in three portions (see Fig.1):

1. Carry-in: It accounts for the contribution of jobs of� i with release times before
the beginning of the problem window (i.e., before� kÕs release at timerk) and a
deadline after the beginning of the problem window, i.e., afterrk. Thecarry-in
jobs workload corresponds to the portion of those jobs execution that could not
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Þnish prior tork. Note that for constrained deadline systems, if� i is schedulable,
then� i has at most one carry-in job.

2. Body: It takes into account the contribution of all subsequent job releases of� i
that are fully contained in the window. The workload of each of thebody jobsto
the interfering workload is upper-bounded to its complete execution timeWi .

3. Carry-out: In the related literature, it usually accounts for the contribution of a job
of � i with release time within the problem window and deadline after the end of the
window (i.e., afterrk + � ). Yet, in this paper we will slightly bend the deÞnition
and instead consider that acarry-out jobis a job that is released within the problem
window less thanTi time units before its end (i.e., the carry-out job of� i is released
at timet such that(rk + � Š Ti ) < t < ( rk + �) ). Note that our deÞnition is
compliant with the state-of-the-art deÞnition when tasks have implicit deadlines
(i.e., Di = Ti ). The interfering workload of thecarry-out jobcorresponds to the
portion of its execution that actually overlaps with the time interval[rk, rk + �) .

In Melani et al. (2015), the authors formulated a generic bound on the worst-case
workload generated by an interfering task� i with constrained deadline within such
window of length� . This upper-bound, which we state below, relates to the maximum
interfering workload imposed by� i on task� k under analysis by Þxing� = Rk. Hence,
Wi

k � Wi (Rk) whereWi (�) is deÞned as follows:

Wi (�)
def=

�
� + Ri Š Wi / m

Ti

�
Wi + min(Wi , m((� + Ri Š Wi / m) modTi ))

(3)

Notice that Eq. (3) ignores completely the structure of the DAGGi of � i and corre-
sponds to the scenario depicted in Fig.1. The Þrst term includes both the contributions
from the carry-in and body jobs, whereas the second term represents the carry-out com-
ponent. The interference imposed by� i on� k within the problem window is maximized
when: (1) the carry-in job starts executing at the start of the time window and Þnishes
by its WCRTRi , (2) all subsequent jobs are released and executed as soon as possible
and (3) every job of� i is assumed to execute on all the cores duringWi / m time units.

Putting all the pieces together, for a given task� k, the schedulability condition
Rk � Dk relies on a classic iterative RTA. Starting withRk = Lk, an upper-bound on
the response time of task� k under G-FP scheduling can be derived by a Þxed-point
iteration on the following expression:

Rk = Lk +
1
m

(Wk Š Lk) +
1
m

�

� i < k

Wi (Rk) (4)

5 Rationale

Looking at the RTA described in the previous section, it is obvious that one of the
major sources of pessimism in the computation of the WCRT is the computation of
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Fig. 2 Worst-case scenario that maximizes the interfering workload released by� i in the problem window
of � k

the inter-task interference within the problem window. This is clear by examining the
execution pattern assumed for every job of the tasks� i that interferes with the analyzed
task� k (see Fig.1). All these jobs are assumed to execute as a big compact block that
uniformly occupies them cores duringWi / m time units. Although this assumption
provides a safe upper-bound on the interference that they cause, the upper-bound may
be greatly improved by not overlooking the rich internal structure of their DAG. Both
the precedence constraints and the number of subtasks in the DAG deÞne the possible
shapes that the execution of� i entails. In general, wider and uneven shapes limit the
amount of workload that effectively enters the problem window. In fact, most DAGs
do not exhibit a constant degree of parallelism equal tom throughout their entire
execution (as it is assumed in the state-of-the-art analysis). Instead, the maximum
workload they may execute in a given time interval is limited by their internal structure.
This is illustrated in Fig.2, where the maximum interfering workload imposed by the
carry-in and carry-out jobs of a task� i is presented.

This observation is emphasized in the example below.

Example 1Consider the execution of the task of Fig.3a onm = 5 cores. The maximum
parallelism attained by the DAGGi is equal to 5, when subtasks{v2, v3, v4, v5, v6}
execute simultaneously. Such concurrent execution can only last for 4 time units.
After that, the degree of parallelism drops to 2 asv7 becomes ready butv2 has not
Þnished yet. We point out that different execution patterns are possible between the
subtasks mentioned so far if we include, for example, interference from higher priority
tasks. However, they cannot increase the amount of time during whichGi requires
all the available cores. Moreover, both the sourcev1 and the sinkv8 cannot execute
concurrently with any other subtask ofGi . Therefore, the maximum workload that
can be generated byGi in a window of length 5 is at most 22. Yet, the state-of-the-art
analysis presented in Sect.4 assumes that 25 time units of interfering workload have
been generated in a window of length 5.

In this paper, we use the internal structure of each DAG to derive more accurate
upper-bounds on their contributions to the carry-in and carry-out interfering workload.
Note that, according to this analysis method, the DAGÕs internal structure does not
affect the contribution of the body jobs to the interfering workload since they are fully
contained in the problem window. Thus, their exact execution pattern is irrelevant.
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Similar to the work in Melani et al. (2015), our analysis of the inter-task interference
is based on the notion of a problem window of length� . However, as illustrated
in Fig. 2, we model more accurately the worst-case scenario by taking into account
different execution patterns for the carry-in and carry-out jobs. Therefore, the workload
produced by task� i is maximized in the problem window[rk, rk + �) of � k when: (i)
every subtask of the body jobs of� i executes for its WCET; (ii) the carry-in job released
at a timer i < rk Þnishes its execution at timer i + Ri and executes as much workload
as possible as late as possible (to maximize its workload in the problem window); (iii)
all subsequent jobs are releasedTi time units apart; and (iv) the carry-out job starts its
execution as soon as it is released and executes as much workload as possible as early
as possible (hence maximizing its workload in the problem window).

Our main problem to solve is the lack of a relative reference point between the
release time of the carry-in job of� i and the problem window[rk, rk + �) . More
speciÞcally, the value(rk Š r i ) is unknown a priori because, as will be shown later in
this paper, the worst-case schedules of the carry-in and carry-out jobs are incomparable.
Let � C I

i and� C O
i denote the length of the carry-in portion and the length of the carry-

out portion of� i Õs schedule, respectively. Formally, we have that2 (see Fig.2 for visual
reference)

� C I
i

def= r i + Ti Š rk (5)

� C O
i

def= max{0, (rk + �) Š (rk + � C I
i +

�
� Š � C I

i

Ti

�

0

× Ti )} (6)

We seek to derive (i) an upper-bound on the interfering workload executed by� i Õs
carry-in job as a function of� C I

i , (ii) an upper-bound on the interfering workload
executed by� i Õs carry-out job as a function of� C O

i , and (iii) determine concrete
values for� C I

i and� C O
i such that the interfering workload of� i on task� k cannot be

larger under any possible execution scenario.
To characterize the execution pattern of a carry-in and carry-out job of� i , we

introduce the notion ofworkload distribution.

DeÞnition 8(workload distribution)For a given task� i and a given scheduleSof � i Õs
subtasks, the workload distributionWD S

i = [ B1, . . . , B� ] describesS as a sequence
of consecutive blocks. Each blockBb � WD S

i is a tuple(wb, hb) with the interpreta-
tion that there arehb subtasks (height) ofGi executing duringwb time units (width)
in S, immediately after the completion of the subtasks that execute in the(b Š 1)th

block.

Note thatWD S
i does not provide any information about the precedence constraints

in the DAGGi , neither is it required forSto be a valid schedule ofGi . Hence, according
to Def.8, every interfering job of a task� i is modeled in Melani et al. (2015) with a
workload distributionWD S

i that comprises only one blockB1 = ( Wi
m , m). In the next

two sections, we will derive more accurate workload distributions in order to model

2 The operator� x 0
def= max{0, � x }.
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Fig. 3 Example for the carry-in interfering workload

the schedules of� i Õs carry-in and carry-out jobs that maximize their contribution to
the interference suffered by a lower priority task� k.

6 Carry-in workload

This section presents the analysis to compute the carry-in workload of a higher priority
task� i in the problem window[rk, rk + �) of � k. Recall that a carry-in job is a job of� i
such that its release timer i is earlier thanrk and its deadline falls afterrk. Therefore,
to upper-bound the interfering workload generated by the carry-in job, we need to
determine which subtasks of� i may execute within the carry-in window[rk, rk+ � C I

i ),
either fully or partially. Intuitively, to maximize the interfering workload the carry-in
job should execute as much workload as possible as late as possible.

For ease of understanding, we will use Fig.3a as an example task throughout our
discussion on the carry-in job.

6.1 Workload distribution of the carry-in job

When the degree of parallelism of the DAGGi is not constrained by the number of
cores (assumingm = � for instance), the schedule ofGi that yields the maximum
makespan is simply that in which every subtask executes for its WCET. Note that
because there are always available cores, each subtask is scheduled as soon as it
becomes ready. We call this particular schedule Òunrestricted carry-inÓ (UC I ). If f j
denotes the relative completion time of each subtaskv j � Vi in UC I , then it holds
that:
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f j =

�
	




C j if v j is the source

C j + max
vh� pred(v j )

( fh) otherwise
(7)

Note that the length (makespan) ofUC I is given by the completion timefni of the
sink of Gi and according to Eq. (7), fni is equal to the critical path lengthL i .

Assuming that the source of� i starts executing at a relative time 0, the number of
subtasks inUC I that execute at any timet � [ 0, L i ) can be computed by the function
AS(t) deÞned as

AS(t) =
�

v j � Vi

actv(v j , t) (8)

whereactv(v j , t) is equal to 1 ifv j is executing at timet and 0 otherwise. That is,

actv(v j , t) =

�
1 if t �

�
f j Š C j , f j



0 otherwise
(9)

Let Fi be the set of Þnishing times of the subtasksv j � Vi (without duplicates)
sorted in non-decreasing order. We build a workload distributionWDUC I

i modeling
the scheduleUC I as follows:

Ð WDUC I
i has as many blocks as there are elements inFi ;

Ð Thebth block ofWDUC I
i is represented by the tuple(tb+ 1 Š tb, AS(tb)) such that

tb is thebth time instant in the ordered set{0} � Fi .

Built that way,WDUC I
i models the maximum parallelism of� i at any timet assum-

ing that all subtasks execute for their WCET. An example of such workload distribution
is depicted in Fig.3b for the DAG presented in Fig.3a.

6.2 Upper-bounding the carry-in workload

Based on both the workload distributionWDUC I
i and the WCRTRi estimated by

Eq. (4), we compute an upper-bound on the interfering workload produced by one
carry-in job of� i within its carry-in window[rk, rk + � C I

i ). To do so, we push the
workload distributionWDUC I

i as much as possible Òto the rightÓ. We Þrst align the
end ofWDUC I

i with the worst-case completion time of the carry-in job of� i . That is,
we align the end ofWDUC I

i with the time-instantrk + � C I
i Š (Ti Š Ri ) (see Fig.2).

This assumes that the carry-in job of� i is released atrk + � C I
i Š Ti and completes at

most atrk + � C I
i Š Ti + Ri .

Since the problem window starts atrk and the carry-in job must complete by
rk + � C I

i Š (Ti Š Ri ), the part of the carry-in job that effectively interferes
with � k is given by the subtasks of that job executed in the last� C I

i Š (Ti Š
Ri ) time units of its schedule. Therefore, under the scheduleUC I , the maxi-
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mum interfering workload released by� i Õs carry-in job is upper-bounded by the
function3:

C Ii (WDUC I
i , � C I

i )

=
|WD UC I

i |�

b= 1

hb ×

�

� r i + Ri Š
|WD UC I

i |�

p= b+ 1

wp

�

�

wb

0

(10)

wherer i
def= � C I

i Š Ti is the latest time at which� i Õs carry-in job may be released
(assuming thatrk happens at time 0).

Equation (10) returns 0 if� C I
i is smaller than(Ti Š Ri ) (i.e., if the carry-in job

of � i completes before the beginning of the problem window). Otherwise, it sums the
heighthb of the workload distributionWDUC I

i in its last� C I
i Š (Ti Š Ri ) time units.

Example 2If � C I
i = 9, Ti = 20, Ri = 15 andWDUC I

i is given by the workload
distribution presented in Fig.3b, then Eq. (10) sums the height of the blocks in the last
� C I

i Š (Ti Š Ri ) = 4 time units ofWDUC I
i . Hence, it gives usC Ii (WDUC I

i , � C I
i ) =

6. If � C I
i was equal to 4, then Eq. (10) would return 0 since� C I

i Š (Ti Š Ri ) is then
smaller than 0.

We now prove that the interfering workload executed by the carry-in job of� i is
upper-bounded by the workload distributionWDUC I

i , when the end ofWDUC I
i is

aligned with the time-instant(rk + � C I
i Š Ti + Ri ) whereRi is computed by Eq. (4).

The carry-in workload computed by Eq. (10) assumes that (i) all subtasks of� i
execute for their WCET, (ii) the number of cores does not limit� i Õs parallelism and
(iii) the carry-in job of� i executes following the workload distributionWDUC I

i just
before its completion time at(rk + � C I

i Š Ti + Ri ). We prove in Lemmas2Ð4that those
three assumptions maximize the interfering workload of� i in the carry-in window.

Lemma 2The interfering workload generated by the carry-in job of a higher priority
task� i is maximized when all its subtasks execute for their WCET.

Proof If a subtaskv j � Vi executes for less than its WCETC j , then eitherv j con-
tributes less to the interfering workload (assuming thatv j is executed within the
carry-in window), or it may allow its successors (and subsequently its descendants) to
be released earlier (note that the release times of subtasks that are not descendant ofv j
are not impacted). In the latter case, it may cause those descendants to start executing
before (instead of within) the carry-in window and thus reduce the total interfering
workload they may generate. Similarly, descendants ofv j that were already starting
before the beginning of the carry-in window, may complete before the start of the
carry-in window, or earlier within the carry-in window. In both cases, the interfering
workload in the carry-in window is reduced. 	


3 [x]y
z = max{min{x, y}, z}, that is,y andz are an upper-bound and a lower-bound on the value ofx,

respectively.
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Fig. 4 Interference (blue block) onWD UC I
i critical path

Lemma 3Let Ri be an upper-bound on the worst-case response time of� i and letWD i
be any workload distributionof length L i representing any possible schedule of� i .
Assume thatWD i is aligned to the right with the time-instant(rk+ � C I

i Š Ti + Ri ). The
workload that can be generated byWD i in the carry-in window cannot be increased
by delaying subtasks in� i ’s critical path.

Proof Remember that the length of the workload distributionWD i is L i , i.e., the
length ofWD i is equal to the length of the critical path of� i . Therefore, there must
be a subtask of each critical path of� i

4 executing at any time instant between(rk +
� C I

i Š Ti + Ri Š L i ) and(rk + � C I
i Š Ti + Ri ) (becauseWD i is aligned to the right

with (rk + � C I
i Š Ti + Ri )). This case is illustrated on Fig.4a.

Now consider the case whereWD i is subject to self- and/or higher priority inter-
ference such that the execution of at least one subtaskv j of a critical path of� i is
delayed byx time units.

Postponing the execution ofv j by x time units leads to move both the workload of
v j and its descendantsx time units Òto the rightÓ. Becausev j belongs to a critical path
of � i , the length of� i Õs carry-in job schedule is increased byx (see Fig.4b). However,
becauseRi is assumed to be an upper-bound on� i Õs worst-case response time,� i Õs
carry-in job cannot complete later than(rk + � C I

i Š Ti + Ri ). Therefore, as visualized
in Fig.4b, it is not the subtaskv j or its descendants that are moved byx time units Òto
the rightÓ, but instead it is the workload executed by predecessors ofv j that is pushed
by x time units to the left. Hence, the workload executed by� i in the carry-in window
[rk, rk + � C I

i ) can only decrease. 	


Lemma 4Let Ri be the upper-bound on the worst-case response time of� i computed
by Eq.(4). AligningWDUC I

i to the right with the time-instant(rk + � C I
i Š Ti + Ri )

gives an upper-bound on the maximum interfering workload that can be generated by
� i in the carry-in window, independently of the interference imposed on� i .

4 A task� i may have more than one critical path.
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Fig. 5 y units of workload (green blocks) ofWD UC I
i are moved in the carry-in window

Proof Remember that the length ofWDUC I
i is L i . Hence, Lemma3 proved that the

workload generated in the carry-in window cannot increase by interfering with the
critical path of� i . Therefore, this proof must show that the claim is still true even
when the interference exerted on� i does not interfere with its critical paths but delays
the execution of other subtasks of� i .

The proof is by contradiction. Assume that there is a schedule of� i such that, by
delaying subtasks of� i , y extra units of workload of� i enter the carry-in window
[rk, rk + � C I

i ) comparatively to the workload generated byWDUC I
i (see Fig.5a for

an illustration ofy extra units of workload, colored in green, moved in the carry-in
window). By Lemma3, the delayed subtasks do not belong to any critical path of� i
and the length of� i Õs schedule is therefore not affected, i.e., it remains equal toL i .

Let v j be any of the delayed subtasks and let� j be the minimum time for which its
execution has to be delayed, in comparison to the schedule based onWDUC I

i , so that
v j enters the carry-in window. Letx be the maximum� j over all the delayed subtasks,

i.e., x def= maxj {� j } (see Fig.5a for an illustration ofx). That is, at least one subtask
has been delayed by at leastx time units to enter the carry-in window.

Sincem subtasks are allowed to execute in parallel onm cores and the critical
path of� i is not delayed, postponing a subtasks byx time units implies that at least
(mŠ 1) × x interfering workload executes in parallel with the critical path to prevent
the delayed subtask to execute on any of themcores. Additionally, note that they units
of shifted workload do not interfere with the critical path either, and hence execute in
parallel with the critical path, since by assumption the schedule length is not increased.
Therefore, we have at least

(m Š 1) × x + y

units of workload that do not interfere with the critical path but execute in parallel
with it instead.

Let R�
i be an upper-bound onthe actualresponse time of� i Õs carry-in job under

this modiÞed schedule. SinceRi is computed with Eq. (4), and Eq. (4) assumes that
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all higher priority jobs and all subtasks that do not belong to the critical path of� i
interfere with it,R�

i must be smaller thanRi and we have

R�
i � Ri Š

� (m Š 1) × x + y
m

�

� Ri Š
� m × y

m
+

(m Š 1) × (x Š y)
m

�

� Ri Š y Š
(m Š 1) × (x Š y)

m
(11)

We analyse two cases:

Ð If y � x, then the last term in (11) is positive and we haveR�
i � Ri Š y. Hence the

response time of� i and thus the length of� i Õs schedule in the carry-in window has
been reduced by at leasty time units (see Fig.5b). Since at least one subtask of
each critical path of� i must execute at each of those time units (because the length
of the schedule isL i ), the workload in the carry-in window has decreased by at
leasty time units. This is in contradiction with the assumption that the workload
increased in the carry-in window.

Ð Ify > x, then the last term of (11) is negative and we haveR�
i � Ri Š yŠ (xŠ y) =

Ri Š x. Hence,� i Õs response time has reduced by at leastx time units. Therefore,
the subtasks that were delayed byx time units could not enter the carry-in workload
since the whole schedule of� i is pushed to the left byx time units too (see Fig.5b).
Therefore, it contradicts the assumption that extra workload of� i entered the carry-
in window by delaying subtasks byx time units.

The two cases above prove the claim. 	


Theorem 1The interfering workload WC I
i generated by the carry-in job of a higher

priority task� i in a window of length� C I
i is upper-bounded by C Ii (W DUC I

i , � C I
i ).

Proof The proof follows directly from Lemmas2Ð4.

6.3 Improved carry-in workload

The lemma below presents another upper-bound on the maximum interfering workload
that can be generated by a task� i in a carry-in window of length� C I

i . Since this upper-
bound cannot be compared with that given by Eq. (10), Theorem2 below shall present
an improved upper-bound that is simply the minimum between that given by Eq. (10)
and that presented in Lemma5.

The upper-bound on the carry-in workload of� i as computed in Eq. (10) may in
some cases be pessimistic since the number of subtasks executing simultaneously in
the workload distributionWDUC I

i (i.e., the height of the blocks) may sometimes be
greater than the number of coresm. Yet, we know for a fact that no more thanm
subtasks can run simultaneously onm cores. This leads to the following lemma.

Lemma 5An upper-bound on the maximum interfering workload that can be gen-
erated by a carry-in job of task� i in a carry-in window of length� C I

i is given by
max{0, � C I

i Š (Ti Š Ri )} × m.
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Proof Since� i cannot complete later thanRi , we know that� i does not execute during
the last(Ti Š Ri ) time units of the carry-in window (see Fig.2). Therefore,� i executes
during at most max{0, � C I

i Š (Ti Š Ri )} time units onmprocessors within the carry-in
window of length� C I

i , hence the claim. 	


Combining Theorem1with Lemma5, we derive an improved bound on the carry-in
workload of an interfering task� i .

Theorem 2The interfering workload WC I
i generated by the carry-in job of a higher

priority task � i in a window of length� C I
i is upper-bounded bymin{C Ii (WDUC I

i ,
� C I

i ), max{0, � C I
i Š (Ti Š Ri )} × m}.

Proof Follows from Theorem1 and Lemma5. 	


7 Carry-out

This section presents the analysis for computing an upper-bound on the carry-out
part of the interfering workload of a higher priority task� i in the problem window
[rk, rk + �) of a task� k. The carry-out job is the last job of� i released in the problem
window, i.e., its release time is within the open interval(rk + � Š Ti , rk + �) . Contrary
to the carry-in job, the maximum interference generated by the carry-out job of� i is
found when it starts executing as soon as it is released and at its highest possible
concurrency level. That is, we are interested in pushing the workload of that job as
much as possible Òto the leftÓ of the schedule. Also, contrary to the carry-in and the
body jobs, Þnding an upper-bound on the interference generated by the carry-out job
does not necessarily imply that its subtasks execute for their WCET. Indeed, unless the
entire workload can contribute to the interference generated by� i , one must consider
that any subtask may instead be instantly processed (i.e., its execution time is 0). With
this assumption, some precedence constraints may be immediately resolved and the
degree of parallelism in the DAG potentially increased, leading to more workload at
the beginning of the carry-out window.

Example 3Consider the DAG in Fig.6a. If every subtask executes for its WCET then,
initially, only one subtask is active (v1) for 5 time units. On the other hand, if the
subtasksv1 andv4 both execute for 0 time units, then the subtasksv2, v3, v6 andv7
are instantly ready and there are four subtasks active during the Þrst time unit. Thus,
if the carry-out window is only one time unit long, the latter case generates more
interfering workload.

Therefore, we seek to derive a schedule that maximizes the cumulative parallelism
throughout the execution of the job. We call this schedule Òunrestricted carry-outÓ
(UCO).

7.1 DAG’s maximum parallelism

In order to maximize the workload produced by the carry-out job of� i within the
problem window, we need to Þnd an execution pattern such that the overall parallelism
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Fig. 6 Running example for the carry-out workload

cannot be further increased. If the carry-out window is sufÞciently short, then the
maximum degree of parallelism ofGi maximizes the carry-out workload, as described
in Example3. Ideally, we would like to take the maximum parallelism of the DAG at
each time instant as a solution to the problem of maximizing its cumulative parallelism
within a time interval of arbitrary length. Unfortunately, this methodology cannot be
applied to DAGs, since the scenario that maximizes the parallelism at a certain step
may compromise the concurrency among subtasks later on. In fact, as shown in the
example below, whether or not the DAGÕs maximum parallelism must be considered
depends on the length of the carry-out window.

Example 4Consider the DAG in Fig.6a. The maximum parallelism is four, given by
the subtasksv2, v3, v6 andv7 that can execute in parallel for at most 1 time unit. Note,
however, that every schedule which maximizes the DAGÕs parallelism does not allow
any of the remaining subtasks to execute in parallel Ñ subtasksv1, v4, v5 andv8 have
to execute sequentially due to their precedence constraints. Hence, if the maximum
parallelism is reached, then the carry-out job cannot produce more than 5 units of
workload within a window of length equal to 2. On the other hand, if subtaskv4
executes for 1 time unit, we can have three subtasks executing in parallel for 2 time
units: Þrst, subtasksv2, v3 andv4 execute in parallel for 1 time unit, and then subtasks
v5, v6 andv7 also execute in parallel for 1 time unit. As a result, the latter schedule
generates more interfering workload if the carry-out window is 2 time units long, but
it produces at most 3 units of workload when the length of the window is reduced to 1.

The issue highlighted in Example4 comes from the potentially very complex
connection structures between subgraphs composing the DAG task. Maximizing the
parallelism in one subgraph may constrain and hence reduce the achievable parallelism
in another subgraph. We simplify the problem at hand by transforming the initial DAG
that describes the task in a well-structured, less general, type of DAG, which we call
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Ònested fork-join DAGÓ (NFJ-DAG) (see below for an explanation on how the trans-
formation is performed and why the transformation is safe). We deÞne a NFJ-DAG5

recursively as follows.

DeÞnition 9(Nested Fork-Join DAG) A DAG comprised of two nodes connected by
a single edge is NFJ. Further, ifG1 andG2 are two independent NFJ-DAGs, then the
DAG obtained through either of the following operations is also NFJ:
(a) Series composition: merge the sink ofG1 with the source ofG2.
(b) Parallel composition: merge the source ofG1 with the source ofG2 and the sink
of G1 with the sink ofG2.

The series composition links two NFJ-DAGs one after another, whereas the paral-
lel composition juxtaposes two NFJ-DAGs by merging their sources and sinks. For
example, the DAG of Fig.6a is not a NFJ-DAG because it cannot be constructed with-
out violating the rules in Def.9. However, if the edge(v4, v5) is removed, then the
DAG becomes NFJ. It is clear from the deÞnition of a NFJ-DAG that maximizing the
parallelism of any of its subgraphs cannot limit the maximum parallelism achievable
by other subgraphs composing the NFJ-DAG.

7.1.1 Transforming a DAG in NFJ-DAG

Many efÞcient algorithms exist in the literature to identify if a DAG is NFJ (Valdes
et al.1979; He and Yesha1987). However, it is out of the scope of this paper to describe
how those algorithms work. We assume here that one of those tests is performed on
the graphGi describing� i Õs structure. If it turns out that the original DAGGi is not
NFJ, a transformation is required. Traditionally, in graph theory, the transformation
is performed by adding new edges between conßicting subtasks, so that the original
precedences are preserved (Gonz‡lez-Escribano et al.2002). However, we are inter-
ested in removing edges so as to reduce the number of precedence constraints. This
way, the set of all the valid schedules of� i (those that satisfy the precedence constraints
of its original DAGGi ) is a subset of all the valid schedules of the resulting NFJ-DAG.
That is because any schedule derived according to the DAGGi will always respect
all the precedence constraints of the NFJ-DAG. As a result, the maximum carry-out
workload that can be generated by the NFJ-DAG is at least as large as the maximum
interfering workload that can be generated by the initial DAGGi .

Let us refer to a subtaskv j as a join-node if its Òin-degreeÓ is larger than one, i.e.
| pred(v j )| > 1. Similarly, we refer to a subtaskv j as a fork-node if its out-degree is
larger than one, i.e.|succ(v j )| > 1. According to Def.9, a DAG (as deÞned in Sect.3)
is NFJ if and only if it respects the following property.

Property 1Let J i be the set of join-nodes inVi and letF i be the set of fork-nodes in
Vi . DAG Gi is a NFJ-DAG iff � v j � J i , there exists a subgraphG� of Gi such that
v j is the sink ofG�, the source ofG� is a fork-nodev f � F i and

� va � G�\{ v f , v j }, � vb � { succ(va) � pred(va)},

vb � desce(v f ) � v f � vb � ances(v j ) � v j .

5 In graph theory, it is known astwo terminal series parallel digraph(He and Yesha1987).
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Fig. 7 Decomposition tree of the NFJ-DAG resulting from Fig.6a

Proof The property directly follows from Def.9, which enforces that any join-node is
the result of aparallel composition. Hence, for every join-nodev j there must exist a
fork-nodev f such that the subgraphG� that hasv f as a source andv j as a sink is NFJ.
Moreover, according to the construction rule deÞned in Def.9, there cannot be any edge
between a nodeva � G� and a nodevb /� G�. Therefore,� va � G�, � vb � { succ(va) �
pred(va)}, vb � G�, implying thatvb � desce(v f ) � v f � vb � ances(v j ) � v j . 	


Using Property1, a high-level algorithm for transforming a DAGGi into a NFJ-
DAG GN F J

i , can be deÞned as follows.

1. Select the unvisited join-nodev j � J i that is the closest to the source ofGi .
2. Find all the edges(vc, v j ) in Ei for which there is no fork-nodev f � F i such that

Prop.1 is true. Call this set the set of conßicting edgesEC.
3. Remove as many edges inEC as needed for join-nodev j to respect Prop.1 or for

its in-degree to become equal to 1 (in which case it is not a join node any more).
4. For each edge(vc, v j ) � EC that was removed, ifsucc(vc) = � , add an edge

(vc, vni ) from nodevc to the sink ofGi .
5. Markv j as visited. Repeat until all join-nodes have been visited.

Example 5The DAG of Fig.6a has two join-nodes{v5, v8}. The above algorithm starts
by analyzing join-nodev5. Since its ancestorv4 has two direct successors{v6, v7}
which are not ancestors ofv5, (v4, v5) is a conßicting edge. Because there is no other
conßicting edge with respect to join-nodev5, our only choice is to remove(v4, v5)
from the DAG. In the next iteration, the DAG is already NFJ as join-nodev8 does not
violate Property1.

7.1.2 Maximum parallelism in a NFJ-DAG

By Def. 9, a NFJ-DAG can be reduced to a collection of basic DAGs by successively
applying series and parallel binary decomposition rules. Therefore, a NFJ-DAGGN F J

i
can be represented by a binary treeTi , calleddecomposition tree(see Fig.7 for an
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example). Each external node (leaf) of the decomposition tree corresponds to a subtask
v j � Vi , whereas each internal node represents the composition type (series or parallel)
applied to its subtrees. That is, the children of a internal node are either smaller NFJ-
DAGs or subtasks. A node depicting a parallel or series composition is labeledP or S,
respectively. The algorithm proposed by Valdes et al. (1979) can be used to efÞciently
build the decomposition tree of any NFJ-DAG. Figure7 shows the decomposition tree
of the NFJ-DAG depicted in Fig.6a (without the red edge).

The structure of the decomposition tree allows us to compute the sets of subtasks
yielding the maximum parallelism of a NFJ-DAGGN F J

i in an efÞcient manner. The
recursive functionpar(TU

i ) deÞned below returns a set of subtasks in a decomposition
tree TU

i such that all subtasks inpar(TU
i ) can execute in parallel and the size of

par(TU
i ) is maximum. Note that, in Eq. (12) below,T L

i andT R
i denote the left and

right subtrees of the binary treeTU
i rooted in nodeU.

par(TU
i ) =

�
���������	

���������


par(T L
i ) � par(T R

i ) if U is a P-node

par(T L
i ) if U is a S-node and

| par(T L
i )| � | par(T R

i )|
par(T R

i ) if U is a S-node and
| par(T R

i )| > | par(T L
i )|

{U} otherwise

(12)

Eq. (12) works as follows. When nodeU denotes a parallel composition, the maximum
parallelism corresponds to the sum of the maximum parallelism of its children. On the
other hand, the maximum parallelism in a series composition is given by the maximum
parallelism among its children. The recursion of Eq. (12) stops whenU is a leaf of the
decomposition tree and hence corresponds to a subtask in the associated NFJ graph.
The set of subtasks inGN F J

i with maximum parallelism is obtained by callingpar(.)
on GN F J

i Õs decomposition tree root node.

7.2 Workload distribution of the carry-out job

As discussed earlier in this section, the carry-out job of an interfering task� i generates
the maximum interfering workload when it starts executing as soon as it is released
and at its highest possible concurrency level. Therefore, we use thepar(.) function
deÞned above to build the workload distributionWDUC O

i that characterizes theUC O
schedule for the carry-out job of� i .

The workload distributionWDUC O
i is constructed using Algorithm1. In short,

the algorithm identiÞes the maximum number of subtasks that can run in parallel at
any point during the execution of the carry-out job as follows. It Þnds the largest
set of subtasks which may execute in parallel according to the decomposition tree
of GN F J

i (line 3). Then, it adds a new block (line 5) to the workload distribution
WDUC O

i with a width equal to the minimum WCET among those subtasks (line 4)
and a height equal to the number of subtasks in the set. Finally, it proceeds by updating
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the subtasksÕ execution times in the reduction tree, i.e., decreasing their execution time
by the amount of time they executed in parallel (line 6). When a subtask reaches an
execution time equal to 0 (it Þnishes), its corresponding leaf is removed from the
decomposition tree (lines 7-8). Whenever a node of the decomposition tree has no
children anymore, it is also removed from the tree. Algorithm1 is called iteratively
until all leaves have been removed.

Algorithm 1: ConstructingWDUC O
i from GN F J

i .

Input : GN F J
i , T N F J

i - A NFJ-DAG and its decomposition tree.

Output : WD UC O
i - Workload distribution of the scheduleUC O.

1 WD UC O
i � � ;

2 while T N F J
i �= � do

3 P � par(T N F J
i );

4 width � min{Cp | vp � P};
5 WD UC O

i � [ WD UC O
i , (w idth, |P|)];

6 � vp � P : Cp � Cp Š width;
7 � v j � T N F J

i such thatC j = 0 : removev j from T N F J
i ;

8 end
9 return WD UC O

i ;

Example 6The workload distributionWDUC O
i for the DAG of Fig.6a (without the

red edge) is presented in Fig.6b. It tells us that the NFJ-DAG in Fig.6a can execute
with a parallelism of 4 during 1 time unit. It can execute with a parallelism of 2 during
3 more time units and then it can Þnally execute with a parallelism of 1 during 8
additional time units.

7.3 Upper-bounding the carry-out workload

Similarly to what was presented for the carry-in workload, an upper-bound on the carry-
out interfering workload generated by� i is calculated using the workload distribution
WDUC O

i . Let � C O
i denote the length of the carry-out window of� i (see Eq. (6)). The

maximum workload executed by� i in any window of length� C O
i is upper-bounded by

the cumulative workload found in the Þrst� C O
i time units of the workload distribution

WDUC O
i . Such cumulative workload is denoted byC Oi (WDUC O

i , � C O
i ) and can be

computed by the function:

C Oi (WDUC O
i , � C O

i ) =
|WD UC O

i |�

b= 1

hb ×
�
� C O

i Š
bŠ1�

p= 1

wp

� wb

0
(13)

Example 7If � C O
i = 3 andWDUC O

i is given by the workload distribution presented
in Fig. 6b, then Eq. (13) sums the height of the blocks inWDUC O

i up to 3. That
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is, C Oi (WDUC O
i , � C O

i ) = 8. If � C O
i was equal to 10, thenC Oi (WDUC O

i , � C O
i )

would be equal to 16.

We now prove thatC Oi (WDUC O
i , � C O

i ) is indeed an upper-bound on the carry-out
interfering workloadWC O

i .

Theorem 3The interfering workload WC O
i generated by the carry-out job of a

higher priority task� i in a carry-out window of length� C O
i is upper-bounded by

C Oi (WDUC O
i , � C O

i ).

Proof We recall that� i Õs carry-out job generates the maximum interfering workload
when it starts executing as soon as it is released and at its highest possible concurrency
level.

First, we note that the NFJ-DAGGN F J
i , built from Gi by removing some ofGi Õs

edges, has a concurrency level at least as high asGi . Hence, the workload distribution
WDUC O

i constructed based onGN F J
i has at least as much workload thanGi in the

carry-out window.
SinceWDUC O

i is constructed with Algorithm1, and because Algorithm1computes
the maximum parallelism ofGN F J

i at each timet, the height ofWDUC O
i on its Þrst

� C O
i time units maximizes the workload that� i can generate in the carry-out window.
Finally, becauseC Oi (WDUC O

i , � C O
i ) provides the cumulative workload in

WDUC O
i over its Þrst� C O

i time units,C Oi (WDUC O
i , � C O

i ) upper-bounds the inter-
fering workload that can be generated by� i Õs carry-out job. 	


7.4 Improved carry-out workload

Note that because the workload distributionWDUC O
i is built based on the NFJ-DAG

of � i and not on its DAG, the length of the scheduleUC O may become shorter than
L i . That happens when any of the edges removed during the transformation belongs to
the critical path ofGi . In fact, the length ofWDUC O

i matches the critical path length
of GN F J

i , which may be shorter than the critical path of the initial DAGGi (since
edges may have been removed).

Example 8The workload distributionWDUC O
i presented in Fig.6b has a length equal

to 12, while the initial DAG (with the red edge) in Fig.6a has a critical path composed
of v1, v4, v5 andv8 of lengthL i = 14.

As stated by Corollary1, task� i cannot executeWi time units in less thanL i time
units. Therefore, we derive a new upper-bound on the interfering workload of� i Õs
carry-out job, that respects Corollary1.

Lemma 6The workload WC O
i generated by the carry-out job of a higher priority task

� i in a window of length� C O
i is upper-bounded by Wi Š max{0, L i Š � C O

i }.

Proof Directly follows from Lemma1. 	


Theorem 4The interfering workload WC O
i generated by the carry-out job of

a higher priority task � i in a window of length� C O
i is upper-bounded by

min
�
C Oi (WDUC O

i , � C O
i ), � C O

i × m, Wi Š max{0, L i Š � C O
i }

�
.
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Proof Because at mostm subtasks can execute simultaneously onm cores,� C O
i × m

is an upper-bound on the workload that can execute in a window of length� C O
i . Since

C Oi (WDUC O
i , � C O

i ) (Theorem3) andWi Š max{0, L i Š � C O
i } (Lemma6) are also

upper-bounds onWC O
i , so is the minimum between the three values. 	


8 Schedulability analysis for constrained deadline tasks

In the previous two sections we have derived upper-bounds on the workload produced
by the carry-in and carry-out jobs of� i as a function of� C I

i and� C O
i , respectively.

Now we show how to balance� C I
i and� C O

i such that the interfering workload in
the problem window of length� is maximized. In this section, we assume that all
tasks have constrained deadlines (i.e.,Di � Ti ). The case of arbitrary deadlines is
considered in Sect.9. If tasks have constrained deadlines, then at most one job of
each higher priority task� i can be a carry-in job, i.e., at most one job of� i can be
released beforerk and have a deadline afterrk. Similarly, at most one job of� i may be
a carry-out job, i.e., there is at most one job of� i that can be the last job of� i released
in the problem window.

The difÞculty in computing the values� C I
i and� C O

i comes from the fact that the
worst-case scenario for� k does not necessarily happen when the problem window is
aligned with the start of the carry-in job or the end of the carry-out job (see Fig.2).
Furthermore, the positioning of the problem window of� k relatively to the release
pattern of� i may have to vary according to the value of� in order to guarantee that
the workload imposed by� i on � k is maximized.

Let � C
i be the sum of the carry-in and the carry-out windows lengths, i.e,� C

i =
� C I

i + � C O
i , and letW C

i (� C
i ) be the maximum workload produced by the carry-in

and carry-out jobs of� i over � C
i . An upper-bound on the total interfering workload

generated by� i in a time interval of length� is therefore given by

Wi (�) = W C
i (� C

i ) + max

�

0,

�
� Š � C

i

Ti

��

× Wi (14)

where the Þrst term is the maximum workload produced by both the carry-in job and
the carry-out job of� i and the second term is the maximum number of body jobs that
can be released by� i within (� Š � C

i ), multiplied by their maximum workload. To use
Eq. (14), we need to compute� C

i andW C
i (� C

i ). The value of� C
i can be computed

as follows.6

� C
i = � Š max

�
0,

�
� Š Bi

Ti

��
× Ti (15)

6 We note that Eq. (15) was incomplete in the original RTNS paper (Fonseca et al.2017). We correct it here
by replacing the termL i by � i Õs best-case response timeBi . All the original experiments were performed
again with the corrected equation and none was visibly impacted by the change made in Eq. (15).
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Fig. 8 Scenario that maximizes the number of body jobs released by� i over�

whereBi is the best-case response time (BCRT) of� i when it executes for its worst-case
workload. It is given by

Bi = max
�

L i ,
Wi

m

�
(16)

which was derived using Corollary1 (i.e., the BCRT of� i cannot be smaller thanL i )
and the fact that� i cannot execute on more thanm processors at a time, henceBi is
lower-bounded byWi

m .
The length� C

i is thus obtained by aligning the problem window with the earliest
completion time of the carry-out job of� i (which takes no less thanBi time units to
execute) and removing all the body jobs of� i from the problem window of length
� (see Fig.8). This way, the number of full jobs of� i in the problem window is
maximized, and so is its interference. Note that the fact that� C

i is computed by
aligning the problem window with the end of� i Õs carry-out job does not mean that� i Õs
interference is maximized when� C O

i contains the full carry-out job of� i . Instead,
the window may be shifted left (yet without changing the number of body jobs) to
include a larger portion of� i Õs carry-in job if it increases the total interfering workload
generated by� i .

Lemma 7The interfering workloadWi (�) generated by a higher priority task� i in
a window of length� is maximized when� C

i is computed by Eq.(15).

Proof In this proof, we assume that� > Bi since otherwise� � Ti (i.e., assuming
that � i is schedulable, its BCRT must be no larger thanDi � Ti ) and there cannot
be any body job released by� i . This would imply that� C

i is by default equal to� ,
thereby proving the claim for that case.

Thus, if � > Bi , we note thatBi � � C
i < Bi + Ti when computed with Eq. (15).

Two cases must be considered.

Case 1If � C
i is shortened then at most one more body job can be added to the problem

window� (remember that� C
i < Bi + Ti andBi � Ti and each body job executes in a

window of lengthTi ). Therefore, the interfering workload generated by� i Õs body jobs
increases by at mostWi (i.e., the workload of exactly one job). Moreover, because
� C

i is now Ti time units shorter, one less job can execute in� C
i and the interfering
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workloadW C
i (� C

i ) generated by� i Õs carry-in and carry-out jobs must decrease by
at leastWi time units too. Hence, in total, the interfering workloadWi (�) does not
increase.

Case 2The length of� C
i is increased. Using Eq. (15), the computed value of� C

i is
� minus an integer multiple ofTi and thus, when injecting Eq. (15) into Eq. (14),

we get that
�

� Š � C
i

Ti

�
=

� Š � C
i

Ti
. By increasing� C

i by a positive value� , it thus holds

that
�

� Š(� C
i + �)

Ti

�
<

�
� Š � C

i
Ti

�
for � > 0. Therefore, at least one less body job can

execute in the time window of length� and the interfering workload generated by� i Õs
body jobs is decreased by at leastWi . Furthermore, since the carry-out job is already
completely included in� C

i (i.e., � C
i � Bi ), in the best case increasing the length of

� C
i will allow us to fully integrate� i Õs carry-in job inW C

i (� C
i ). Hence,W C

i (� C
i ) may

be increased by at mostWi time units (the workload of� i Õs carry-in job). Summing
all the contributions to the interfering workloadWi (�) , we have thatWi (�) does not
increase. 	


The problem of computingW C
i (� C

i ) can be formulated as the maximization of
C Ii (WDUC I

i , x1) + C Oi (WDUC O
i , x2) subject to� C

i = x1 + x2. The optimal
solution of this optimization problem is an upper-bound onW C

i (� C
i ), whereas the Þnal

values of the decisions variablesx1 andx2 correspond to� C I
i and� C O

i , respectively.
We solve this problem by using Algorithm2that is based on a technique named Òsliding
windowÓ introduced in Maia et al. (2014). It computes the maximum solution to the
optimization problem deÞned above in linear time by checking all possible scenarios
in which the problem window is aligned with any block ofWDUC I

i or WDUC O
i .

SpeciÞcally, the scenarios tested can be divided into two groups: (i) the beginning of
the problem window coincides with the start of a block inWDUC I

i (lines 7 to 14);
or (ii) the problem window ends at the completion of a block inWDUC O

i (lines 15
to 22). Algorithm2 also tries the conÞguration where the carry-out workload in the
problem window is maximized (lines 1 to 3) and where the carry-in workload in is
maximized (lines 4 to 6). It was proven in Maia et al. (2014), that the maximum
interfering workload is obtained in one of those scenarios.

By replacing the termsWi (Rk) (1 � i < k) with Eq. (14) in Eq. (4), a schedulability
condition for task� k is stated in the next theorem.

Theorem 5A task� k is schedulable under G-FP iff Rk � Dk, where Rk is the smallest
� > 0 to satisfy� = Lk + 1

m(Wk Š Lk) + 1
m

�
� i < k Wi (�) .

The task set is declared schedulable if all tasks are schedulable. This can be checked
by applying Theorem5 to each task� i � � , starting from the highest priority task (i.e.,
� 1) and proceeding in decreasing order of priority.
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Algorithm 2: ComputingW C
i for constrained deadline tasks.

Input : � C
i , WD UC I

i , WD UC O
i .

Output : W C
i - Upper-bound on the workload of both the carry-in and carry-out jobs.

/* We maximize the carry-out workload inside the problem window */
1 x2 � min{� C

i , Bi };

2 x1 � � C
i Š x2;

3 W C
i � C Ii (WD UC I

i , x1) + C Oi (WD UC O
i , x2);

/* We maximize the carry-in workload inside the problem window */
4 x1 � min{� C

i , Bi + (Ti Š Ri )};

5 x2 � � C
i Š x1;

6 W C
i � max{W C

i , C Ii (WD UC I
i , x1) + C Oi (WD UC O

i , x2)};

/* We align the start of the problem window with the boundaries of
every block in WD UC I

i */
7 x1 � Ti Š Ri ;
8 foreach (wb, hb) � WD UC I

i in reverse orderdo
9 x1 � x1 + wb;

10 x2 � � C
i Š x1;

11 if x2 � 0 then
12 W C

i � max{W C
i , C Ii (WD UC I

i , x1) + C Oi (WD UC O
i , x2)};

13 end
14 end

/* We align the end of the problem window with the boundaries of
every block in WD UC O

i */
15 x2 � 0;
16 foreach (wb, hb) � WD RC O

i in order of appearancedo
17 x2 � x2 + wb;
18 x1 � � C

i Š x2;
19 if x1 � 0 then
20 W C

i � max{W C
i , C Ii (WD UC I

i , x1) + C Oi (WD UC O
i , x2)};

21 end
22 end

23 return W C
i ;

9 Schedulability analysis for arbitrary deadline tasks

In the previous section, we presented a RTA for the special case where all tasks have
constrained deadlines. In this section, we treat the general case where tasks may have
arbitrary deadlines.

The difÞculty with arbitrary deadline tasks is twofold:

1. Let Jk be the job of� k for which we compute the WCRT and assume thatJk is
released at timerk. Since it may be thatDk > Tk, more than one job of� k may
execute in the problem window[rk, rk + �) . That is, jobs of� k released before
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rk (i.e., at timet � rk Š Tk) may not have completed their execution atrk and
yet � k may still be schedulable (i.e., it completes all jobs before their deadlines).
Therefore, Eq. (4) that computes the WCRT of� k must be updated to integrate
the residual workload of jobs of� k released beforerk but interfering withJkÕs
execution.

2. The second difÞculty is that higher priority tasks may have more than one carry-in
job. SpeciÞcally, ifDi > Ti , more than one job of� i may be released beforerk
and have a deadline afterrk. This property, which is formally proven in Lemma8
in Sect.9.3, requires to derive a new bound on the carry-in wokload released by
each higher priority task interfering with� k.

We address the Þrst issue in Sect.9.1and the second in Sect.9.3.

9.1 Response time analysis

In this section, we update Eq. (4) and derive a new bound on the WCRT of a task� k.
We integrate the fact that, for arbitrary deadline tasks, a jobJk,l of task� k may be
released before the completion of its preceding jobJk,lŠ1. Indeed, let us assume that
Jk,lŠ1 and Jk,l were released at timerk,lŠ1 andrk,l , respectively. In the worst-case
scenario we have thatrk,l = rk,lŠ1 + Tk andJk,lŠ1 may complete its execution at any
time smaller than or equal to(rk,lŠ1 + Dk). Therefore, ifDk > Tk, job Jk,lŠ1 may
not have completed its execution whenJk,l is released. In such situation, we assume
that Jk,l does not start executing before the completion ofJk,lŠ1.7 Hence the earliest
instant at whichJk,l may start executing is not its release timerk,l anymore, but the
maximum between its release time and the completion time ofJk,lŠ1.

We now consider the two cases mentioned above:

1. if job Jk,l can start executing as soon as it is released (i.e., atrk,l ), then the previous
job Jk,lŠ1 of � k has already completed by timerk,l . In such case, the situation is
identical, with respect toJk,l , to the worst-case scenario considered for constrained
deadline tasks. That is, there is no additional interference by previous jobs of� k and
the WCRT ofJk,l is therefore obtained using Eq. (4) and maximizing the higher
priority task interference. This scenario is encountered for the Þrst job released
by � k. Let Xk,1 be the completion time of that job. Without any loss of generality
we can assume that that job was released at time 0. Hence we haverk,1 = 0 and,
using Eq. (4), Xk,1 is upper-bounded by the smallest positive solution to

Xk,1 = Lk +
1
m

(Wk Š Lk) +
1
m

�

� i < k

Wi (Xk,1) (17)

2. if job Jk,lŠ1 is not yet completed whenJk,l is released, thenJk,l cannot start
executing before the completion ofJk,lŠ1. Therefore, the worst-case scenario for
Jk,l happens when the overlap between the execution window ofJk,lŠ1 and the
active window ofJk,l is maximized. This happens whenJk,lŠ1 completes as late

7 We enforce this execution behavior to avoid data inconsistencies between successive jobs of a same task.
Indeed, a job may require the computation results of its preceding job to be able to proceed correctly.
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as possible andJk,l is released as early as possible. Assume thatXk,lŠ1 andXk,l
are the worst-case completion times ofJk,lŠ1 and Jk,l , respectively. The WCRT
of Jk,l is then given by

Rk,l = Xk,l Š rk,l

= Xk,l Š (l Š 1) × Tk (18)

where

Xk,l = Xk,lŠ1 + Lk +
1
m

(Wk Š Lk) +
1
m

�

� i < k

�
Wi (Xk,l ) Š Wi (Xk,lŠ1)

�

(19)

Eq. (19) is composed of four terms detailed hereafter.

Ð Xk,lŠ1 is the worst-case completion time of the preceding jobJk,lŠ1, i.e., the
earliest time at whichJk,l may start executing;

Ð Lk is the minimum amount of time required byJk,l to complete its execution
when it executes for its WCET and does not suffer any interference;

Ð 1
m(Wk Š Lk) is an upper-bound onJk,l Õs self-interference (as proven in Melani
et al. (2017));

Ð 1
m

�
� i < k

�
Wi (Xk,l ) Š Wi (Xk,lŠ1)


is the maximum interfering workload that

can be released by higher priority tasks in the problem window of lengthXk,l
that has not yet been accounted for in the termXk,lŠ1, i.e., the worst-case
completion time ofJk,lŠ1.

The WCRT of a task� k is thus given by its job with the largest response time.
Formally,

Rk = max
l > 0

�
Xk,l Š (l Š 1) × Tk

�
(20)

whereXk,l is the worst-case completion time of thel th job released by� k in the problem
window. Combining Eqs. (17) and (19) we get that

Xk,l = l × (Lk +
1
m

(Wk Š Lk)) +
1
m

�

� i < k

Wi (Xk,l ) (21)

Note that we can stop iterating overl when

Ð we reach the Þrstl > 0 such thatXk,l � (l × Tk), i.e., the Þrst job of� k released
in the problem window that completes before the release of the next job of� k;

Ð we reach the Þrstl > 0 such thatXk,l > ( l Š 1) × Tk + Dk, i.e., at the Þrst job of� k
released in the problem window that has a response time larger than its deadline.

In the Þrst case the task� k is schedulable while in the second it is not. One of these
two termination conditions holds eventually in most cases. However, it cannot be
guaranteed that Eq. (20) always terminates in the general case, as it has already been

123



Real-Time Systems

shown for sequential tasks (Guan et al.2009). Such rather special corners cases have
not been detected at all during our experimental evaluation. Nonetheless, one can
simply deÞne a threshold for the values ofl . Whenever the threshold is reached, the
procedure terminates and the task� k is declared unschedulable. Note that this may
decrease the effectiveness of the response time analysis.

The termWi (Xk,l ) in Eq. (21) is computed using Eq. (14). Equation (14) uses an
upper-boundW C

i on the carry-in and carry-out workload that can be released by higher
priority task� i . As discussed at the beginning of this section, each higher priority task
may execute more than one carry-in job in the problem window and a new bound on
W C

i must be derived. We present this bound in the next subsections.

9.2 Carry-out workload

As deÞned in Sect.4, a carry-out job is a job that is released in the problem window
less thanTi time units before the end of that window. Hence the carry-out job of� i
is the last job that can be released by� i in the problem window (remember that job
releases are at leastTi time units apart). Therefore, each higher priority task� i can
release at most one carry-out job, even when� i has an arbitrary deadline. It results
that the upper-bound on the carry-out workload proven in Theorem4 is still valid for
arbitrary deadline tasks.

9.3 Carry-in workload

As mentioned in Sect.4, a carry-in job is deÞned as a job released before the start
of the problem window and with a deadline after the problem window start. When a
higher priority task� i has a deadline smaller than or equal to its minimum inter-arrival
time (i.e.,Di � Ti ), at most one such carry-in job may exist. However, this result does
not hold for tasks with arbitrary deadlines. Indeed, it may happen thatDi > Ti , in
which case a job of� i may have its deadline after the release of one (or several) other
job(s) of� i . Yet, the number of carry-in jobs may still be upper-bounded as proven in
Lemma8.

Lemma 8Each higher priority task� i with an arbitrary deadline has at most
�

Di
Ti

�

carry-in jobs.

Proof Let Ji be the earliest carry-in job released by� i . Let r i be its release time and
di its absolute deadline. By deÞnition ofJi , all jobs released beforer i are not carry-in

jobs. Letc =
�

Di
Ti

�
. Let Ji + c be any job of� i released at or later than(r i + c× Ti ). Then,

Ji + c is released at or afterdi (becausedi = r i + Di � r i +
�

Di
Ti

�
× Ti = r i + c× Ti ).

SinceJi is a carry-in job,di is necessarily after the problem window start. Hence any
job Ji + c is released after the problem window start and is not a carry-in job. Since at
mostc Š 1 jobs of� i can be released betweenr i andr i + c × Ti , we conclude that
there are at mostc Š 1 other jobs thanJi that may be carry-in jobs. This proves the
claim. 	
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Fig. 9 Worst-case interfering workload released by� i in � kÕs problem window whenDi > Ti . Yellow jobs
are carry-in jobs

Note that Lemma8covers the case of constrained deadline tasks too since
�

Di
Ti

�
= 1

in that particular case.

Example 9Consider the worst-case interfering scenario of task� i depicted in Fig.9.
We have thatDi = 2.6× Ti . Hence three jobs may be released by� i beforerk and have
their deadline afterrk. Further, because in this exampleRi = Di , the three carry-in
jobs (in yellow in the picture) execute at least partially in the problem window starting
at timerk.

Since there might be more than one carry-in job released by� i , we must update the
deÞnition of� C I

i (Eq. (5)) and the upper-bound on the worst-case carry-in interfering
workload (Eq. (10)).

As depicted in Fig.2 for constrained deadline tasks and in Fig.9 for arbitrary
deadline tasks, we deÞne the carry-in window of� i as the interval starting at the
beginning of the problem window (i.e., at timerk) and ending at the earliest release
of abody jobof � i . Therefore, ifrbody is the release time of that job, we have that

� C I
i

def= rbody Š rk (22)

By Lemma8, we know that there are at most
�

Di
Ti

�
carry-in jobs released before

rbody. Therefore, thej th carry-in job of� i (with 1 � j �
�

Di
Ti

�
) cannot be released

later than time

r i , j
def= rbody Š j × Ti (23)

= rk + � C I
i Š j × Ti (24)

Similar to the constrained deadline case, the carry-in workload generated by� i
would be maximized if each carry-in job of� i is released as late as possible and
executes as much workload as possible in the problem window. Now, letRi be the
upper-bound on the worst-case response time of� i computed with Eq. (21). Lemma9
(see below) proves that aligningWDUC I

i to the right with the time-instant(r i , j + Ri )
and calculating the part ofWDUC I

i Õs workload released afterrk (using Eq. (10))

123



Real-Time Systems

provides an upper-bound on the maximum interfering workload that can be generated
by the j th carry-in job of� i . Formally, we have that the interfering workload executed
by the j th carry-in job of� i in the problem window is upper-bounded by

C Ii , j (WDUC I
i , � C I

i ) =
|WD UC I

i |�

b= 1

hb ×

�

� � C I
i Š j × Ti + Ri Š

|WD UC I
i |�

p= b+ 1

wp

�

�

wb

0
(25)

This is stated in Lemma9 below.

Lemma 9Let Ri be the upper-bound on the worst-case response time of� i computed
by Eq. (21). Aligning WDUC I

i to the right with the time-instant(r i , j + Ri ) gives
an upper-bound on the maximum interfering workload that can be generated by� i ’s
carry-in job released at ri , j in the carry-in window, independently of the interference
imposed on� i .

Proof Since Eqs. (4) and (21) both compute the WCRT of a task based on the following
algorithm (i) summing all the self-interfering workload and all the workload released
by higher priority tasks in the problem window, (ii) dividing it by the number of cores
m, and (iii) adding the result to� kÕs critical path length, the proof of this lemma is
identical in every word to the proof of Lemma4, replacing Eq. (4) with Eq. (21). 	


Since there are up to
�

Di
Ti

�
carry-in jobs, we have that the maximum interfering

carry-in workload generated by� i is given by the sum of the interfering workload
generated by each of its carry-in jobs. That is,

C Ii (WDUC I
i , � C I

i )

=

�
Di
Ti

�

�

j = 1

�

 
|WD UC I

i |�

b= 1

hb ×
�
� C I

i Š j × Ti + Ri Š
|WD UC I

i |�

p= b+ 1

wp

� wb

0

!

" (26)

Note that the actual implementation of Eq. (26) can be drastically simpliÞed using
two simple mathematical facts on Eq. (26):

1. for each carry-in jobj such that(� C I
i Š j × Ti + Ri Š L i ) � 0, the contribution

of the inner-sum to the carry-in workload will always beWi ;
2. for each carry-in job such that(� C I

i Š j × Ti + Ri ) � 0, the contribution of the
inner-sum to the carry-in workload will always be 0.

This means that there is at most one carry-in job and therefore only onej for which

the summation onb needs to be done. For all the other
�

Di
Ti

�
Š 1 carry-in jobs, the

interfering workload can readily be considered to be equal toWi or 0 depending on
whether(� C I

i Š j × Ti + Ri Š L i ) � 0 or (� C I
i Š j × Ti + Ri ) � 0, respectively.

Example 10Consider the example in Fig.10whereDi = 2.6 × Ti . As in Example9,
task� i releases three carry-in jobs. However, because the WCRTRi of � i is smaller
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Fig. 10 Worst-case interfering workload released by� i in � kÕs problem window whenDi > Ti butRi < Di .
Yellow jobs are carry-in jobs

than Di , the carry-in job released at(rbody Š 3 × Ti ) completes no later than time
(rbody Š 3 × Ti + Ri ) which is before the start of the problem window (i.e., timerk).
Therefore, we have that(� C I

i Š 3× Ti + Ri ) < 0 and the contribution of that carry-in
job to the interfering workload is 0. On the other hand, the carry-in job released at
time(rbodyŠ Ti ) respects the inequality(� C I

i Š Ti + Ri Š L i ) � 0 since it starts and
complete after the beginning of the problem window. Therefore, its contribution to the
interfering workload is equal to its total workloadWi . For the carry-in job released at
time(rbodyŠ 2× Ti ), none of the two conditions holds. Hence its execution overlaps
with the beginning of the problem window and its contribution to the interfering
workload is a portion of its workload distributionWDUC I

i .

Theorem 6The interfering workload WC I
i generated by the carry-in jobs of a higher

priority task� i in a window of length� C I
i is upper-bounded by Eq.(26).

Proof It directly follows from the combination of Lemmas8 and9. 	


Similar to the constrained deadline case covered in Sect.6.3, an improve bound on
the carry-in workload can be derived using Lemma10proven below.

Lemma 10An upper-bound on the maximum interfering workload that can be gener-
ated by a carry-in job of task� i released at time ri , j in a carry-in window of length
� C I

i is given bymax{0, � C I
i Š j × Ti + Ri } × m.

Proof Since no job of� i can complete later thanRi time units after its release, we
know that the carry-in job released atr i , j completes no later thanr i , j + Ri = rk +
� C I

i Š j × Ti + Ri (using Eq. (24)). Therefore, the carry-in job executes during at most
max{0, � C I

i Š j × Ti + Ri } time units onm processors within the carry-in window
[rk, rk + � C I

i ), hence the claim. 	


Combining Theorem6 with Lemma10, we derive an improved bound on the carry-
in workload of an interfering task� i with arbitrary deadline.

Theorem 7The interfering workload WC I
i generated by the carry-in jobs of a higher

priority task� i in a window of length� C I
i is upper-bounded by
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�
Di
Ti

�

�

j = 1

min

�
	



max{0, � C I

i Š j × Ti + Ri } × m,

|WD UC I
i |�

b= 1

hb ×

�

� � C I
i Š j × Ti + Ri Š

|WD UC I
i |�

p= b+ 1

wp

�

�

wb

0

#
�$

�%
(27)

Proof Follows from Theorem6 and Lemma10. 	


9.4 Upper-bounding the carry-in and carry-out Interference

In the previous subsections, we have upper-bounded the carry-in and carry-out inter-
ference that a higher priority task� i can generate in windows of length� C I

i and� C O
i ,

respectively. However, as already discussed in Sect.8 for the constrained deadline
case, the difÞculty is to identify the lengths of� C I

i and� C O
i that maximize the total

interference generated by� i . For constrained deadline tasks, this optimization prob-
lem was solved using Algorithm2. In this section, we adapt Algorithm2 to support
systems composed of arbitrary deadline tasks. The result is presented in Algorithm3.

Like for the constrained deadline case, Algorithm3 uses the sliding window tech-
nique to maximize the interfering workload released by a task� i in the problem
window. First, the distance� C

i , which by deÞnition is equal to� C I
i + � C O

i , is com-
puted using Eq. (15) (note that the proof of Lemma7 is still valid for arbitrary deadline
tasks). Then, Algorithm3 is called.

Algorithm 3 is identical to Algorithm2 for lines 1 to 3 and lines 17 to 24, which
are related to the carry-out workload. However, as it was to be expected, Algorithm3
differs from Algorithm2 for parts that are related to the carry-in workload (lines 4
to 16).

Algorithm 3 Þrst tries to maximize the carry-out workload released by� i in the
problem window (lines 1 to 3). To this end, it aligns the end of the problem window
with the earliest time at which� i Õs carry-out job may complete (i.e., setting� C O

i to
Bi ), or by setting� C O

i to � C
i if � C

i is smaller than the BCRT of� i . Then, Algorithm3
similarly tries to maximize the carry-in workload released by� i in the problem window
(lines 4 to 6). This is achieved by aligning the beginning of the problem window with
the latest time at which the earliest carry-in job of� i may start executing. Hence we

set� C I
i to (Bi +

�
Di
Ti

�
× Ti Š Ri ), where(

�
Di
Ti

�
× Ti Š Ri ) is the smallest possible

distance between the completion of the earliest carry-in job of� i and the release of its

Þrst body job atrbody. The length(Bi +
�

Di
Ti

�
× Ti Š Ri ) is thus the smallest possible

distance between the time at which the earliest carry-in job of� i starts executing and
rbody. Line 4 also ensures that� C I

i cannot be larger than� C
i .

Lines 6 to 16 iterate over the
�

Di
Ti

�
carry-in jobs released by� i . For each carry-in

job it computes the latest time at which that job may complete (line 8) and then aligns
the beginning of the problem window with the start of every block in the workload
distributionWDUC I

i of that job (lines 10 to 14).
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Algorithm 3: ComputingW C
i for arbitrary deadline tasks.

Input : � C
i , WD UC I

i , WD UC O
i .

Output : W C
i - Upper-bound on the workload of both the carry-in and carry-out jobs.

/* We maximize the carry-out workload inside the problem window */
1 x2 � min{� C

i , Bi };

2 x1 � � C
i Š x2;

3 W C
i � C Ii (WD UC I

i , x1) + C Oi (WD UC O
i , x2);

/* We maximize the carry-in workload inside the problem window */

4 x1 � min{� C
i , Bi +

�
Di
Ti

�
× Ti Š Ri };

5 x2 � � C
i Š x1;

6 W C
i � max{W C

i , C Ii (WD UC I
i , x1) + C Oi (WD UC O

i , x2)};

/* We align the start of the problem window with the boundaries of
every block in WD UC I

i for every carry-in job of � i */

7 forall the j = 1 to
�

Di
Ti

�
do

8 x1 � j × Ti Š Ri ;
9 foreach (wb, hb) � WD UC I

i in reverse orderdo
10 x1 � x1 + wb;
11 x2 � � C

i Š x1;
12 if x1 � 0 and x2 � 0 then
13 W C

i � max{W C
i , C Ii (WD UC I

i , x1) + C Oi (WD UC O
i , x2)};

14 end
15 end
16 end

/* We align the end of the problem window with the boundaries of
every block in WD UC O

i */
17 x2 � 0;
18 foreach (wb, hb) � WD RC O

i in order of appearancedo
19 x2 � x2 + wb;
20 x1 � � C

i Š x2;
21 if x1 � 0 then
22 W C

i � max{W C
i , C Ii (WD UC I

i , x1) + C Oi (WD UC O
i , x2)};

23 end
24 end

25 return W C
i ;

Lines 17 to 24 are identical to Algorithm2and align the end of the problem window
with the end of every block in the workload distributionWDUC O

i of � i Õs carry-out
job.

The maximum interfering workload released by carry-in and carry-out jobs of� i
is the maximum over the interfering workload computed for each of the scenarios
described above (as already discussed in Maia et al. (2014)).
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10 Experimental evaluation

The analysis presented in this paper has been implemented within the MATLAB frame-
work released by the authors of Melani et al. (2015). We follow the same technique
as in He and Yesha (1987) and Melani et al. (2015) to generate random task sets
composed of DAG tasks.

Each DAG in the task set is initially a composition of two NFJ-DAGs connected in
series. The NFJ-DAGs are constructed by recursively expanding their nodes. Each node
has a probabilityppar to fork and a probabilitypterm to join, wherepterm+ ppar = 1.
Each parallel branch has a maximumdepththat limits the number of nested forks.
Additionally, the number of parallel branches leaving from a fork node is randomly
chosen within a uniform distribution bounded by[2, npar ]. Finally, a general DAG is
obtained by randomly adding directed edges between pairs of nodes, granted that such
randomly-placed precedence constraints do not violate the ÒacyclicÓ semantics of the
DAG. The probability of adding an edge between two nodes is given bypadd, with the
restriction that any two nodes with a common fork-node as direct predecessor cannot
be connected. This last restriction avoids generating degenerated DAGs that behave
as sequential tasks.

Once the DAGGi of a task� i is constructed, the task parameters are assigned
as follows. The WCETC j of a subtaskv j � Vi is uniformly chosen in the interval
[1, 100]. The task lengthL i , the workloadWi and the maximum makespanMi (see
Eq.2) of � i are computed based on the internal structure of the DAG and the WCET
of its nodes. The minimum inter-arrival timeTi is uniformly chosen in the interval
[Mi , Wi /� ], where the parameter� is used to deÞne the minimum utilization of all the
tasks. Therefore, the task utilization becomes uniformly distributed over[�, Wi / Mi ].
For all experiments that have a varying total utilizationUtot (i.e., Figs.11, 16), we
keep generating and adding new tasks to the task set until the target total utilization
Utot is met.Utot is achieved exactly by adjusting the period of the last task added to
the system. Otherwise, for all other experiments, we use UUnifast (Bini and Buttazzo
2005) to derive individual task utilizations (and consequently their period) for a Þxed
value ofn. Priorities are assigned following the DM policy.

For each tested system conÞguration, we generated and assessed the schedulabil-
ity of 500 task sets. Unless stated otherwise, in all experiments reported herein, we
have setppar = 0.8, pterm = 0.2, depth = 2, npar = 5, padd = 0.2, � =
0.035× m, Utot = 0.7m, n = 1.5m andm = 8. These settings lead to a rich variety
of internal DAG structures, some of which resemble real-world applications as noted
in Melani et al. (2017): we observed both heavy and unbalanced workloads with dif-
ferent degrees of parallelism and sequential segments in each task set. The maximum
parallelism of a DAG (i.e., the number of subtasks that can execute in parallel) with
such conÞguration is 25.

10.1 Evaluation for constrained deadlines

We compare our response time analysis for DAG tasks with constrained deadlines
(referred to as IRTA-FP) to the schedulability analysis described in Melani et al.
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Fig. 11 IRTA-FP varyingUtot

(2015) (referred to as Mel-DAG) for G-FP scheduling. In an attempt to maximize
the schedulability ratios of these tests, we restrict our attentions to the case where
the relative deadlineDi is set equal to the periodTi . For insights concerning how
RTA for G-FP scheduling fares against other scheduling algorithms and/or paradigms,
the interested reader is referred to the experimental results reported in Melani et al.
(2017), Jiang et al. (2017), and Pathan et al. (2018). Note that the different scheduling
strategies are incomparable, since their performance varies signiÞcantly according to
the application parameters.

In the Þrst set of experiments, the system utilizationUtot was varied in(0, m] by
steps of 0.25. Figure11 shows the number of schedulable task sets whenm = 8.
For both low and very high utilization (i.e., when all or none of the task sets are
schedulable), IRTA-FP and Mel-DAG are indistinguishable. However, forUtot �
[4, 6], IRTA-FP performs substantially better. In particular, whenUtot = 5.25, IRTA-
FP schedules 341 task sets against 156 for Mel-DAG. Instead, Fig.12 reports the
schedulability as a function of the number of tasksn, with n ranging from 4 to 20. The
values ofUtot andm were kept constant and equal to 0.7m and 8, respectively. IRTA-
FP outperforms Mel-DAG for any value ofn with an average gain of approximately
20%, although both tests converge to full schedulability for largern. Intuitively, it is
easier to schedule many light tasks than few heavy tasks.

We then study the impact of the DAG structures on the outcome of the two schedu-
lability tests. A trend similarly to that of Fig.12 can be observed in Fig.13, where
we varied the maximum number of parallel branchesnpar in the interval[2, 8]. Mel-
DAG has clear limitations when the average parallelism of the DAGs is up to half
of the platformÕs parallelism (i.e.,npar � 4) and only admits a large share of tasks
sets fornpar � 6. On the other hand, IRTA-FP accepts at least 50% of the task sets
for npar � 4 even though the schedulability ratio reduces when the tasks become
nearly sequential (i.e.,npar becomes close to 2). As expected, both approaches are
comparable when the task parallelism is consistently greater thanm. Figure14reports
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Fig. 12 IRTA-FP varyingn

Fig. 13 IRTA-FP varyingnpar

the results obtained for different types of DAGs, as the probability of adding edges
padd between two nodes is increased from 0 to 1 by steps of 0.1. To clarify, padd = 0
corresponds to generating NFJ-DAGs, whilepadd = 1 leads to synchronous parallel
tasks. In between we have arbitrary DAGs. IRTA-FP attains a solid 40% schedula-
bility improvement over Mel-DAG for any value ofpadd. Interestingly, such gain is
not maximized when IRTA-FP beneÞts from a more accurate characterization of the
carry-out workload (i.e., in the case of NFJ-DAGs). This stresses the importance of
exploring the precedence constraints within a DAG when deriving bounds on the inter-
fering workload. Furthermore, we remark that IRTA-FP could achieve better results
had we transformed the Þnal DAGs into NFJ instead of considering the original ones.
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Fig. 14 IRTA-FP varyingpadd

Fig. 15 IRTA-FP varyingm

In conjunction with an average increase in the individual critical path lengths, this also
justiÞes the slow degradation when increasingpadd.

In Fig. 15, we illustrate how IRTA-FP performs whenm varies according to
the sequence[2, 4, 6, 8, 10, 12, 14, 16], with Utot andn scaling withm. Mel-DAG
degrades for higher values ofm, while IRTA-FP maintains a schedulabity ratio around
72%. Such improvement is due to the characterization of the carry-in and carry-out
workload distribution. IRTA-FP exploits the internal structure of the DAGs to bound
the parallelism of such jobs, hence limiting the number of cores on which they execute
for largerm; whereas Mel-DAG assumes that all interfering jobs always use them
cores.
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10.2 Evaluation for arbitrary deadlines

We now compare the performance of our response time analysis for DAG tasks with
arbitrary deadlines (referred to as IRTA-FP2) to the schedulability test proposed by
Parri et al. (2015) for G-DM scheduling (referred to as Parri(16)), which was shown
to outperform the tests in Bonifaci et al. (2013), and hence, as far as we know, the only
competitor to our test for arbitrary deadline DAG tasks. The number 16 added to ParriÕs
test name denotes the maximum number of iterations allowed for the convergence of
the outer loop in their RTA, which in most cases is sufÞcient to satisfy the convergence
of the analysis, as suggested by the authors. Furthermore, since the analysis in Parri
et al. (2015) assumes that multiple jobs of the same DAG tasks may execute in parallel
(instead of a job becoming ready only after the previous one completes its execution, as
we do), for the sake of fairness, we enforce that no task is assigned with a period smaller
than its maximum makespan. That is,Ti � Mi , � � i � � . By default, the deadlineDi
is uniformly selected in the interval[Ti , 	 maxTi ], with 	 max = 3 controlling the
maximum ratio ofDi / Ti ; meaning thatTi � Di � 3Ti .

Figure16reports the number of schedulable tasks sets as a function of the total uti-
lizationUtot for m = 8. While IRTA-FP2 has a breakdown utilization atUtot = 7. For
Parri(16) such breakdown happens 10% earlier. Notably, whenUtot � [ 5.25, 6.75],
IRTA-FP2 greatly outperforms Parri(16), with a schedulability gain peaking at 75%.
This suggests that the way we handle the multiple interfering jobs carried-in by the
higher priority tasks largely compensates the handicap on the self-interference com-
ponent due to the different runtime assumptions.

In order to study the effectiveness of both approaches for different values ofDi , we
varied	 max in the range[1, 5]. The results are depicted in Fig.17 for constant values
of Utot, n andm. In the case of implicit deadlines (i.e.,	 max = 1 �� Di = Ti ),
Parri(16) performs very poorly, conÞrming the authorÕs observation that their analysis

Fig. 16 IRTA-FP2 varyingUtot
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Fig. 17 IRTA-FP2 varying	 max

Fig. 18 IRTA-FP2 varyingm

is speciÞcally tailored for arbitrary deadlines and as such is overly pessimistic for more
restrictive models. On the other hand, IRTA-FP2 is able to schedule 328 task sets as
it was already witnessed in the constrained deadline case studied above. As	 max is
increased, both tests rapidly achieve nearly full schedulablity. It is worth noting that
larger values ofDi strongly beneÞt Parri(16) since they assume that several jobs of
the same task can execute in parallel, whereas in IRTA-FP2 assumes that a job cannot
start executing before its preceding job has been completed.

In Fig. 18, we show the schedulability results as a function of the number of cores
m. Both tests are robust to platforms with increased parallelism, although IRTA-FP2
succeedes in scheduling most task sets for any value ofm, Parri(16) requiresm � 12
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Fig. 19 IRTA-FP2 varyingn

to perform similarly. Finally, Fig.19 illustrates how IRTA-FP2 performs when the
number of tasksn is varied according to the sequence[2, 4, 6, 8, 10, 12, 14, 16]. IRTA-
FP2 substantially outperforms Parri(16) whenn < 14, with an average schedulability
improvement close to 35%. Nevertheless, both approaches are indistinguishable when
the amount of tasks is at least twice the number of cores. From these last sets of
experiments, we can conclude that the workload distributions derived to characterize
the carry-in and carry-out jobs are also effective for the analysis of DAG tasks with
arbitrary deadlines.

11 Conclusions

With the ubiquity of massively parallel architectures, it is expected that conventional
real-time applications will increasingly exhibit general forms of parallelism. In this
paper, we studied the sporadic DAG model under G-FP scheduling. Motivated by the
fact that a poor characterization of the higher priority interfering workload leads to
pessimistic analysis of parallel task systems, we presented new techniques to model
the worst-case carry-in and carry-out workload. These techniques exploit both the
internal structure and worst-case execution patterns of the DAGs. Following a sliding
window strategy that leverages from such workload characterization, we then derived
a schedulability analysis to compute an improved upper-bound on the WCRT of each
DAG task. Experimental results not only attest the theoretical dominance of the pro-
posed analysis over its state-of-the-art counterpart (in the constrained deadline case),
but also showed that its effectiveness is independent of the number of cores and it
substantially tightens the schedulability of DAG tasks on multiprocessor systems for
both constrained and arbitrary deadline cases.

As future work, we plan to better characterize the self interfering workload as well
as the interference generated by body jobs. We believe that most of the pessimism
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remaining in the analysis is located in those two terms. Furthermore, we plan to perform
an extensive comparison between global and partitioned scheduling. However, such
comparison would require to Þrst develop an efÞcient partitioning scheme for DAG
tasks. Although analyses for partitioned DAGs exist (Fonseca et al.2016), there is
no algorithm for deciding which node of the DAG should be assigned to which core
while maximizing the schedulability of the system.

Finally, similar to what was achieved by Melani et al. (2017), we are considering
extending our work, and more particularly the workload distribution characterization
presented in this paper, to G-EDF. We expect that the poor performance of G-EDF
reported by the authors of Melani et al. (2017) may be attenuated when the carry-in
and carry-out interfering workloads are modeled more accurately as it was done in
this paper for G-FP scheduling.
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