

Scalable Data Acquisition for Densely
Instrumented Cyber-Physical Systems

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-110111

Version:

Date: 01-06-2011

Aida Ehyaei

Eduardo Tovar

Nuno Pereira and Björn Andersson

Technical Report HURRAY-TR-110111 Scalable Data Acquisition for Densely Instrumented Cyber-Physical Systems

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Scalable Data Acquisition for Densely Instrumented Cyber-Physical Systems

Aida Ehyaei, Eduardo Tovar, Nuno Pereira and Björn Andersson

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract
Consider the problem of designing an algorithm for acquiring sensor readings. Consider specifically the problem of
obtaining an approximate representation of sensor readings where (i) sensor readings originate from different sensor
nodes, (ii) the number of sensor nodes is very large, (iii) all sensor nodes are deployed in a small area (dense network)
and (iv) all sensor nodes communicate over a communication medium where at most one node can transmit at a time (a
single broadcast domain). We present an efficient algorithm for this problem, and our novel algorithm has two desired
properties: (i) it obtains an interpolation based on all sensor readings and (ii) it is scalable, that is, its time-complexity is
independent of the number of sensor nodes. Achieving these two properties is possible thanks to the close interlinking
of the information processing algorithm, the communication system and a model of the physical world.

Scalable Data Acquisition for Densely Instrumented
Cyber-Physical Systems

Aida Ehyaei, Eduardo Tovar, Nuno Pereira and Björn Andersson
IPP-HURRAY Research Group

CISTER/ISEP, Polytechnic Institute of Porto
Porto, Portugal

{aaei,emt,nap,baa}@isep.ipp.pt

Abstract— Consider the problem of designing an algorithm for
acquiring sensor readings. Consider specifically the problem of
obtaining an approximate representation of sensor readings
where (i) sensor readings originate from different sensor
nodes, (ii) the number of sensor nodes is very large, (iii) all sensor
nodes are deployed in a small area (dense network) and (iv) all
sensor nodes communicate over a communication medium where
at most one node can transmit at a time (a single broadcast
domain). We present an efficient algorithm for this problem, and
our novel algorithm has two desired properties: (i) it obtains an
interpolation based on all sensor readings and (ii) it is scalable,
that is, its time-complexity is independent of the number of
sensor nodes. Achieving these two properties is possible thanks to
the close interlinking of the information processing algorithm,
the communication system and a model of the physical world.

Keywords: CPS Foundations; Real-Time Systems; Sensor
Networks.

I. INTRODUCTION
Although the information technology transformation of the

20th century appeared revolutionary, a bigger change is on the
horizon. The term Cyber-Physical Systems (CPS) has come to
describe the research and technological efforts that will
ultimately allow the interlinking of the real-world physical
objects and the cyberspace efficiently [1-2].

The integration of physical processes and computing is not
new. Embedded systems have been in place for a long time and
these systems often combine physical processes with
computing. The revolution will come from massively
deploying networked embedded computing devices allowing
instrumenting the physical world with pervasive networks of
sensor-rich embedded computation [2]. As Moore’s law
continues, the cost of a single embedded computer equipped
with sensing, processing and communication capabilities drops
toward zero. This makes it economically feasible to densely
deploy networks with very large quantities of such nodes.
Accordingly, it is possible to take a very large number of
sensor readings from the physical world, compute quantities
and take decisions out of them. Very dense networks offer a
better resolution of the physical world and therefore a better
capability of detecting the occurrence of an event; this is of
paramount importance for a number of foreseeable
applications.

Structural health monitoring (SHM) of physical
infrastructures (bridges, aircrafts, etc.) is an example of CPS
applications where high-spatial resolution sensing is
required [3]. Other examples are the ongoing efforts within the
aircraft industry to respond to environmental concerns by
developing technologies that will allow sustained air travel
growth while minimizing overall carbon footprint [4, 10].
Active flow control, achieved through local modulation of
aircraft skin surfaces (see Figure 1), is one such, yet to be seen,
technological development with the potential to offer
significant reduction of drag and related fuel consumption and
emissions [5]. Significant drag reduction can be obtained by
performing active flow control using the aircraft skin surfaces.
One approach to achieve that flow control is to perform local
adjustments of the skin surfaces using a very dense deployment
of sensor/controller/actuator nodes embedded in the aircraft
wings and fuselage [6]. Implementing such an active flow
control system requires thousands of sensors, controllers and
actuator systems (smart skin patches) to be embedded across
the aircraft wings and fuselage to create an active aircraft [6].
However, the scale of such a system poses huge challenges in
terms of interconnectivity and timely data processing. In this

Figure 1. Example system of sensors/actuators embedded across an
aircraft wing to perform active flow control (from the WICAS [6] project
website).

Figure 1. Example system of sensors/actuators embedded across an
aircraft wing to perform active flow control (from the WICAS [6] project
website).

paper we will look at efficient scalable data acquisition
methods for such densely instrumented cyber-physical systems.

CPS with high-spatial resolution sensing must typically
fulfill the following requirements (R1 to R4):

R1. Computation (for estimating the state of the physical
world) must be based on sensor readings from many
sensor nodes, preferably all sensor nodes. The rational
for this requirement is that if the computation would
be based only on sensor readings from a single pre-
determined sensor node (or a pre-defined small subset
of sensor nodes) then we derive no benefit from the
large number of sensor nodes available.

R2. Sensor nodes must be able to communicate. The
rationale for R2 follows from R1.

R3. Broadcast media (such as a shared wired bus or a
wireless channel) must be used for communication.
The rationale for R3 follows from the fact that a point-
to-point communications network would be too
expensive as the number of sensor nodes becomes
large.

R4. The computation (for estimating the state of the
physical world) must be performed within low (and
bounded) delay. The rationale for R4 follows from the
fact that control algorithms must obtain an estimate of
the physical world that is not too old.

Fulfilling all these four requirements is challenging.
Consider m sensor nodes in a single broadcast domain. One
may believe (based on R3) that any computation which fulfills
R1 will have time-complexity which depends on the number of
sensor nodes (O(m)) because in a single broadcast domain, no
two nodes may transmit simultaneously. Therefore, even a
simple quantity such as the minimum of the sensor readings of
all sensor nodes in a single broadcast domain, would be
difficult to compute with a low time-complexity.

However, recent research has made available, for dense
networks, algorithms that can compute certain aggregate
quantities (such as MIN, MAX or COUNT) with a time-
complexity that is independent of the number of nodes (as we
will explain in Section II). These algorithms are based on
dominance protocols (also called binary countdown
protocols) [12], which are used in the CAN bus [13] and in
WiDom [14]. It may be possible to use these algorithms as
basic building blocks so that other quantities can be computed
as well. This brings a hope that all the above mentioned
requirements can be fulfilled.

Although extremely scalable (time-complexity independent
of number of nodes) methods for computing MIN (or MAX)
are useful in some applications, it would be even more useful if
there was a data acquisition algorithm that made it possible to
produce an approximate representation of all sensor readings so
that an application could compute any desired quantity based
on this approximate representation. In fact, sensor readings are
often spatially and temporally correlated with only a few abrupt
changes (in time or space). Therefore, an interpolation function
would be a suitable representation for approximating all sensor
readings.

Previous research work [8, 9] has proposed algorithms for
obtaining an interpolation of sensor readings from different
sensor nodes, and these algorithms are based on dominance
protocols, presenting therefore excellent scalability properties
for dense instrumented CPS. We believe however that it is
possible to further improve the performance of those
algorithms not only by taking advantage of knowledge of
often-occurring spatial correlation of sensor readings but also
by embedding the dynamics of the physical phenomenon in the
algorithm which computes the interpolation.

Therefore, in this paper, we develop a novel algorithm for
data acquisition of sensor readings in a densely instrumented
cyber-physical system. Our new algorithm produces an
interpolation of all sensor readings. It fulfills the four
requirements stated above and in order to improve its accuracy,
it has a model of the dynamics of the physical world embedded
into it.

Contribution of this paper: Previous works tackling
densely deployed networked sensor systems have proposed
algorithms that obtain an interpolation of sensor readings by
using the dominance principle. The novelty of the algorithms in
this paper is the embedding of a physical model in these
algorithms. We also show that our new physically-based
interpolation scheme can be implemented on commodity
sensor platforms. Based on our experimentation, we find
important trade-offs for designers: some physical models are
very simple and cause very low run-time overhead (and hence
allow a small sampling period), whereas other physical models
are more accurate but cause a larger run-time overhead.

The remainder of this paper is structured as follows.
Section II provides a background on previous related work,
including how to use dominance protocols for efficiently
computing certain aggregate quantities in dense networked
sensor systems. Section III presents a previously known
algorithm for acquiring an interpolation in such systems. In
Section IV we define a framework to embed a model of the
dynamics of the physical environment into the interpolation
scheme. Section V presents a novel algorithm based on this
framework while Section VI addresses the implementation of
the new algorithm and its experimental evaluation. Finally, in
Section VII, conclusions are drawn.

II. RELATED WORK
The wireless sensor network research community has

proposed several solutions for processing sensor data. In multi-
hop networks, nodes may self-organize into a converge-cast
tree with a base station at the root. Techniques for computing
useful aggregated quantities (such as MIN) that offer good
performance have been proposed previously [7]. Such
techniques achieve good performance as a result of exploiting
the opportunities for parallel transmission and of en-route
aggregation of data. In densely instrumented systems where
even a very small area may contain several hundreds of sensor
nodes, the performance of the data aggregation techniques as
those surveyed in [7] is limited by the fact that nodes in the
same broadcast domain cannot transmit in parallel. Thus, the
time-complexity of those approaches also heavily depends on
the number of sensor nodes. This results in long delays for
collecting the information of all nodes and obtaining the

required set of measurements. Therefore, these techniques may
not be suitable for feedback control systems that require a short
and bounded delay from sampling to actuation.

To tackle this problem, a family of novel distributed
algorithms has been recently introduced [8, 9]. In those
algorithms, communications and computations are tightly
coupled with the physical environment. Notably, they can
compute certain aggregate quantities (MIN, MAX or COUNT)
with a time-complexity that is independent of the number of
sensor nodes. The approach in those works is based on the
intelligent exploitation of Medium Access Control (MAC)
mechanisms that are inspired on dominance protocols [12]. In
the following sub-sections, dominance-based MAC protocols
and aggregation methods which use them are described briefly.

Work on the construction of contour maps based on sensor
readings share some constraints with our work, and justifies a
brief discussion here. A contour map is used to visualize sensor
fields by constructing a map having contour lines through
points of equal attribute values (e.g. temperature, elevation).
For example, a contour map of the temperature of a sensor field
will display regions covered by sensors having the same
temperature reading under the same contour line. Some works
have approached this problem [19-21] by aggregating similar
values at intermediate nodes to reduce the number of packets
that need to be exchanged to construct the contour map.
Interestingly, authors working on this problem have noted that
traditional data aggregation methods cannot further improve
the scalability of the network, based on the observation that the
complexity of such methods is always dependent on the
number of sensor nodes [22]. For this reason, the approach
taken in [22] was to intelligently select a small portion of the
nodes to contribute to the construction of the contour map.
Although in a different context, our approach for interpolation
employs the same basic idea of selecting a set of sensor nodes
to contribute to the interpolation.

A. Basic Principles of Dominance-based MAC Protocols

Dominance protocols [12] have important characteristics for
the approaches described in this paper. These protocols have
good properties for supporting timeliness in systems with
event-triggered messages. Moreover, they are capable of
simultaneous “non-destructive” transmission of information in
the same broadcast domain.

In the wired implementation of this protocol, the Controller
Area Network (CAN) bus [13], all messages have a unique
contention field which could be their priority. When a node
has a request to transmit, after waiting a predetermined time
until the channel becomes idle, it starts a conflict resolution
phase (arbitration phase). In this phase, the nodes send their
contention field, bit-by-bit, starting with the most significant
bit (see Figure 2(a)). The medium is devised in such a way
that nodes can hear a recessive bit (a logical ‘1’) only if no
other node sends a dominant bit (a logical ‘0’); the bus
behaves as a logical wired-AND. The nodes which hear a
dominant bit while themselves send a recessive bit, refrain

from arbitration. At last the only one node that reaches the end
of arbitration without hearing a dominant bit (unless it was
sending it as well), proceeds with transmitting the data.

The wireless implementation of a dominance MAC was
dubbed WiDom [14]. During the conflict resolution phase,
which is called tournament in WiDom, a node with a recessive
bit should listen to the medium to assess whether any
dominant bit is being transmitted or not. But, wireless
transceivers can hardly be transmitting and receiving at the
same time. Thus, when the transmitted bit is dominant there is
no need to sense the medium, whereas, when the bit to
transmit is recessive, nothing has to be effectively sent, and
only the medium state has to be sensed.

Various interesting features of dominance-based protocols
(CAN and WiDom are examples) can be exploited to obtain
aggregate quantities in large scale dense networks, with a
time-complexity that is very low and independent of the
number of nodes. Such mechanisms are being used as a key
building block in densely instrumented Cyber-Physical
Systems as is discussed in the next subsection.

B. Quantity Aggregation

By associating the priorities of messages to physical
quantities (such as temperature or acceleration), several high-
performance algorithms for data processing can be devised in
which the time-complexity is independent of the number of
nodes. For instance, if each node uses the value of its sensor
reading instead of an arbitrary priority, the node winning the
contention for the medium will be the one with the minimum
(MIN) of the sensed values [8, 9]. In [8], it is demonstrated that
CAN-enabled platforms can be used to compute various
aggregate quantities, such as MIN (or MAX). In [9] the authors
show the same, but for wireless systems using a sensor-
platform optimized for such scalable data aggregation.

In order to understand how a dominance-based MAC
protocol can be used to efficiently compute an aggregate
quantity, consider how to compute the minimum of all sensor
readings. Figure 2(b)-(d) shows this. One naïve approach
would be to use a time-division multiple-access (TDMA)
scheme and assign one timeslot to each sensor node and let a
sensor node transmit its sensor reading in its slot. Figure 2(b)
shows this. After one TDMA cycle, a node knows all sensor
readings and the minimum can be computed but, unfortunately,
the time-complexity is O(m), where m is the number of sensor
nodes. The same type of naïve scheme can, of course, be
implemented with a prioritized MAC protocol. Figure 2(c)
shows this. But with a prioritized MAC protocol, a sensor node
can use its sensed data as a priority and hence the MAC
protocol will grant medium access to the sensor node with the
minimum sensor reading ⎯ see Figure 2(d). Since a
dominance-based prioritized MAC protocol makes all sensor
nodes know the priority of the sensor node which was granted
the medium, it holds that all sensor nodes will know the
minimum of the sensor reading. This makes it possible to
compute MIN.

The importance of the above method is that its computation
time is independent of the number of nodes in the broadcast
domain. With this method, the minimum value (MIN) and the
maximum value (MAX) can be obtained with a time-
complexity of O(npriobits), where npriobits is the number of
bits used to represent the data.

III. INTERPOLATION
Many CPS applications behave as follows:

 1. do forever:
 2. Each sensor node takes a new sensor reading.
 3. Sensor nodes form a (potentially approximate) representation of

all sensor readings.
 4. The representation of sensor readings is used, for example, to

compute an actuation command.

The execution of line 3 in the pseudo code above requires
an algorithm which acquires a (potentially approximate)
representation of all sensor readings. Ideally, this algorithm
should, when line 4 executes, offer a small deviation of the
representation of sensor reading as compared to the physical
world. In this section, we will discuss how to achieve this for
the special case that the physical world does not change during
the execution of line 3 and 4; later sections will discuss how to

deal with the more general (and realistic) case in which
changes in the physical world can occur at any time.

Previous work [8] proposed an algorithm for obtaining an
interpolation. The interpolation is a function f(x, y) where x and
y are space coordinates and the function f(x, y) approximates
sensor readings throughout the area of interest. The function
f(x, y) is represented by a set of control points, denoted S,
where each control point qk∈S has three attributes xk, yk and sk,
with the meaning that evaluating the interpolation at the
location (xk,yk) should give the value sk. On locations where no
control point exists, the function f(x, y) is defined as a weighted
average of control points; this is called weighted-average
interpolation (WAI). Formally, the function f(x, y) is defined
as:

f(x, y) = ൞ 0 ݂݅ ܵ ൌ ௞ݏ׎ ݂݅ א ௞ݍ׌ ܵ ׷ ௞ݔ ൌ ∧ ݔ ௞ݕ ൌ ∑ݕ ௦ೖ·௪ೖሺ௫,௬ሻೖאೄ ∑ ௪ೖሺ௫,௬ሻೖאೄ (1) ݁ݏ݅ݓݎ݄݁ݐ݋

where weights, wk(x, y), are given by:

wk(x, y)= ଵሺ௫ೖି ௫ሻమା ሺ௬ೖି ௬ሻమ (2)

Figure 2. Dominance/Binary-Countdown arbitration motivating examples. (a) Example of bitwise arbitration; (b) example application where N1�needs to
know the minimum (MIN) temperature reading among its neighbors (N2�to N6); (c) possible solution for the example application using a CAN-like MAC,
using fixed priorities for the messages; (d) possible solution for the example application exploiting the properties of a CAN-like MAC, where priorities are
assigned at runtime according to the sensed values.

Let Ni denote a sensor node. Let (xi,yi) denote the location
of this sensor node and let si denote the sensor reading of this
sensor node. We let ei denote the error of the interpolation at
sensor node Ni and we let e denote the maximum error over all
sensor nodes. Formally, we express this as: ݁௜ ൌ ௜ݏ| െ ݂ሺݔ௜, ௜ሻ| (3)ݕ

and ݁ ൌ max௜ୀଵ ..௠ ݁௜ (4)

where m is the number of nodes.

An algorithm for efficiently constructing S is proposed in
[8] (we refer to it as Basic Interpolation Algorithm). The main
idea is that initially the interpolation is zero on each location
(this is represented by setting S to the empty set). Then, each
sensor node evaluates the interpolation at its location and
compares it with its sensor reading and the sensor node with
the maximum error is granted the medium for transmitting its
location and sensor reading, and this information is added to S.
This is repeated k times (where the value of k is selected by the
designer). Pseudo code for this algorithm is shown below (each
sensor node executes the algorithm and a sensor node can read
the variable i to obtain its identifier):

 1: S ← ∅
 2: for j ← 1 to k do
 3: calculate the interpolation function f(xi,yi) based on S
 4: calculate ej.
 5: select a sensor node Nk with the maximum ek, that is ek = e. This can
 be achieved using the MAX computation mentioned in Section II.
 6: the location and the sensor reading of Nk forms a control points;
 add this control point to S
 7: end for

Figure 3 illustrates the operation of the interpolation

scheme. Figure 3(a) shows how a physical quantity varies as a
function of space coordinates x and y. Figure 3(b) shows an
interpolation which is an approximate representation of this
physical quantity (represented in Figure 3(a)); the lines indicate
the location of control points in S.

IV. A FRAMEWORK FOR USING A PHYSICAL MODEL IN
INTERPOLATION

The interpolation algorithm in the previous section assumes
that the physical quantity does not change while the
interpolation algorithm executes. In fact, the physical world
may change while the interpolation algorithm executes, and
this can cause the interpolation represented by S to diverge

significantly from the physical quantity being measured. To
tackle this problem, we will embed in the interpolation
algorithm a model about how the physical world changes. After
adding a new control point to S (line 6 in the previous pseudo-
code), the control points in S can be updated based on a model
about the dynamics of the physical environment. We are
interested in a simple framework to describe how this update
should be performed. This simple framework should (i) be
sufficiently expressive so that many real physical dynamics can
be modeled in the framework and (ii) it should be possible to
execute efficiently. We achieve this by performing a linear
transformation on each element in S. The pseudo-code for such
a framework can be obtained by modifying (changes are
shaded in gray) the basic interpolation algorithm as follows:

 1: S ← ∅
 2: for j ← 1 to k do
 3: calculate the interpolation function f(xi,yi) based on S
 4: calculate ej.
 5: select a sensor node Nk with the maximum ek, that is ek = e. This can
 be achieved using the MAX computation mentioned in Section II.
 6: the location and the sensor reading of Nk forms a control point;
 add this control point to S.
 7: for each element (xi,yi, si) in S do
 8: xnewi ← A1,1*xi + A1,2*yi + A1,3*si + A1,4
 9: ynewi ← A2,1*xi + A2,2*yi + A2,3*si + A2,4
10: snewi ← A3,1*xi + A3,2*yi + A3,3*si + A3,4
11: replace the element (xi,yi, si) in S by (xnewi,ynewi, snewi)
12: end for
13: end for

With this framework, an application designer must assign

values to A. We can see that this framework allows different
operations to the signals, such as scaling, translation and
rotation. Given our particular interest in active flow control
(refer to application illustrated in Figure 1), let us consider that
we have a set S which offers an interpolation of the air pressure
on top of a wing and the aircraft is moving in the direction
towards the x-axis. Suppose that overall, the air moves at a
speed of v m/s in the direction of x-axis (v is assumed to be a
constant). We can obtain a new set S for an interpolation
0.1 ms later by performing the following operation (lines 7-12):

 : xnewi ← 1*xi + 0*yi + 0*si + v*0.0001
 : ynewi ← 0*xi + 1*yi + 0*si + 0
 : snewi ← 0*xi + 0*yi + 1*si + 0

It is obvious that the better the model of the dynamics of
the physical world is, the lower the error of our interpolation. It
should be stressed that our interpolation scheme will offer an
interpolation anyway, even if the physical model is simply
incorrect; this is because the algorithm revises itself in each
iteration based on measured errors.

An application designer clearly must assign values to A.
This can be done either by assigning static values at design
time, or by finding suitable values for A based on sensor
readings. We will see an example of a very simple
interpolation scheme using the latter in the next section.

Figure 3. Interpolation example [8]

(a) Original Signal (b) Interpolated Signal

V. NEW ALGORITHM FOR ESTIMATING THE OVERALL
IMAGE OF THE PHYSICAL PROCESS

Tracking methods usually take some information from the
subject to predict its behavior in future. To react fast to changes
in the physical process, knowing the type of change that affects
the signal could be of great help. To illustrate this, assume
monitoring the temperature of a field with a fixed (not moving)
source of heat which has different degrees of intensity. Here we
know the changes in the signal (temperature degree across the
field) could be increasing or decreasing with different amount
of changes with respect to the location of a sensor and with
respect to time.

The idea behind the novel proposed interpolation algorithm
is using the system features to recognize the type of changes
in the physical quantities. This leads to design a system-
dependent interpolation algorithm which can cope better with
fast changing physical signals. The basics of our approach is
that, by knowing the type of change in the physical quantity, the
amount of change in the interpolation control points can be
measured and applied in future steps of the interpolation.

In the rest of the paper the algorithm, analysis and also
simulation and implementation results are presented for the case
that the signal level is increased or decreased with respect to
time. The physical model can be described simply as follows:

 : xnewi ← 1*xi + 0*yi + 0*si + 0
 : ynewi ← 0*xi + 1*yi + 0*si + 0
 : snewi ← 0*xi + 0*yi + 1*si + gi

where gi is the differential of ith interpolation point.
Algorithm 1 describes the proposed approach for this case.
Compared to the previous pseudo-code, this algorithm presents
some details about the implementation of the interpolation
algorithm (details such as how to compute ej, how to encode
the priority for the MAX computation mentioned in Section II)
and employs the system call send_and_rcv which causes the
sensor node to compete for the medium with priority prio to
transmit a packet with data payload snd_pack. Regardless of
whether the sensor node transmitted or not, this call returns the
winning priority and the packet that was transmitted on the
channel. The maximum value that the MAC protocol can use
for a priority is denoted as MAXP; for example if 29 priority
bits are used in the priority field, then MAXP = 229-1.

All nodes execute Algorithm 1 where, a t each iteration of
the interpolation (except for the first one), after receiving the
information of a new control point, the node that sent the
previous control point sends its value again (line 16). Then, it is
possible for all the nodes to measure the approximate
differential, g, in that control point (line 17). This information
will be applied in the next iterations to obtain the interpolation
as Equation 5 shows:

݂ሺݔ, ሻݕ ൌ ۔ۖەۖ
ۓ 0 ݂݅ ܵ ൌ ௜ݍ׌ ݂݅ ௜ ሺ݆ሻݏ׎ א ௜ݔ ;ܵ ൌ ,ݔ ௜ݕ ൌ ∑ݕ ௜௝௜ୀଵݏ ሺ݆ሻ · ,ݔ௜ሺݓ ∑ሻݕ ,ݔ௜ሺݓ ௌאሻ௜ݕ (5) ݁ݏ݅ݓݎ݄݁ݐ݋

where: ݏ௜ሺ݆ሻ ൌ ௜ݏ ൅ ሺ݆ െ ݅ሻ · ݃௜ (6)

and gi is the differential of ith interpolation point, si(j) is the
value of the ith interpolation point in the jth iteration, and si is
the value of the ith interpolation point when it is added to S.
The other parameters are as described previously for
Equation 1. Because the differential of points in the calculation
of the interpolation is used, this algorithm is called Differential
Interpolation. Later in the paper, it will be useful to simplify
the numerator and denominator of Equation 5 as follows: ݊ݑ ௝݉ ൌ ݑ݊ ௝݉ିଵ ൅ ௝ݏ · ,ݔ௝ሺݓ ሻݕ ൅ ෍ ݃௜௝ିଵ

௜ୀଵ · ,ݔ௜ሺݓ ሻ (7)ݕ

݋݊݁݀ ௝݉ ൌ ݋݊݁݀ ௝݉ିଵ ൅ ,ݔ௝ሺݓ ሻ (8)ݕ

VI. IMPLEMENTATION OF DIFFERENTIAL ALGORITHM
The mechanisms here proposed can have significant

practical impairments. Namely, the computations required for
each iteration of the interpolation can make the execution of
such mechanisms impractical in current low-power wireless
sensor network platforms. In this section, we will present the
details of the implementation of Algorithm 1. This
implementation considers the platform’s limitations regarding
floating point operations.

Some further assumptions about the behavior of the signal
can be incorporated in the algorithm to significantly decrease
the time required to perform computations. Thus, before
presenting the details of the implementation, we will discuss
different variations of the algorithm, considering small changes
in the assumptions about the signal changes.

Algorithm 1 Differential Interpolation Algorithm
Require: All nodes start Algorithm 1 simultaneously.
Require: k denotes the desired number of interpolation points.
Require: A node Ni knows xi,yi and si.
Require: The code below is executed by every node. A node can read
the variable i and obtain its node index.

 1: function find nodes() return a set of packets
 2: S ← ∅
 3: for j ← 1 to k do
 4: gj ← 0
 5: end for
 6: for j ← 1 to k do
 7: Calculate f(xi,yi) in Equation 5 and assign it to the variable
 “myinterpolatedvalue”
 8: si ← read sensor
 9: error ← abs(si - to integer(myinterpolatedvalue))
 10: temp_prio ← error × (MAXNNODES + 1) + i
 11: prio ← (MAXP+1) – temp_prio
 12: snd_pack ←< si,xi,yi>
 13: <winning_prio, rcv_pack> ← send_and_rcv(prio, snd_pack)
 14: S ← S ∪ { rcv_pack }
 15: if j ≠ 1 then
 16: the new sensed data of (j-1)th control point is received.
 17: gj ← the change in value of the control point
 18: end if
 19: end for
 20: return S
 21: end function

1) Variations of the New Algorithm

Having more information of the signal may make the
implementation simpler and exhibit a lower execution time.
The following subsections discuss some assumptions that can
be introduced to reduce the computation time of the proposed
algorithm.

2) Constant Differentials (Algorithm 1A)

According to Algorithm 1, the value of f(x, y) has to be
recomputed (line 7 in Algorithm 1) in all iterations, thus also
the sums in Equation 5 must be recomputed. If the change in
the signal is monotonous in each point, the differentials will be
constant and this allows us to consider that the differentials will
not change after insertion in the set S. Thus, it is not required to
compute all terms of Equation 5 in each iteration. It is possible
to reduce the computation time of the algorithm by maintaining
the partial sums in the numerator and denominator of
Equation 5. This is reflected in Algorithm 1A. The
implementation assumes that the differential will not change
after it is received.

The following functions are used in Algorithm 1A: abs,
read_sensor, send_and_rcv, snd_value, rcv_value. Function
call abs returns the absolute value of the value given as
argument; read_sensor is a function call used for getting the
sensor value from the analog-to-digital converter;
send_and_rcv is a function that will cause a tournament to be
performed and returns the wining priority and the packet
received; snd_value and rcv_value are function calls that can
be used to respectively broadcast or receive a value to to/from
other nodes.

We performed a brief analysis of the time required to
compute Basic Algorithm and the new Differential Algorithm
in real-world sensor network platforms. This was done by
implementing the algorithms in the MicaZ sensor network
platform [23]. The code was compiled with no compiler
optimizations and the execution time was measured using one
of the microcontroller’s real-time clocks. The results are
presented in Figure 4. For Algorithm 1, we considered that
each node had to compute the differential and also computed
the interpolated value at all iterations, which is the worst-case
computation scenario. As we can see, the execution time of

Algorithm 1 increases much faster. This is because it needs to
re-compute Equation 1 at each iteration.

Considering the changes in the control points with respect
to time, makes the interpolation more accurate. On the other
hand, maintaining the partial sums reduces the execution time
of the algorithm, at the cost of the (less) generality of the
algorithm.

3) Similar and Constant Differentials for All Iterations
(Algorithm 2)

Algorithm 1A allows reducing the execution time of the
proposed algorithm. Its time complexity is O(k2). On the other
hand, the complexity of the Basic Algorithm is still lower (it is
O(k)).

 When the changes in the signal are equal for all the points
in equal periods of time, the time complexity of the algorithm
can be reduced to O(k). In this case, it is only required to
calculate the gradient once and use it in all next iterations for
all the points. We name this algorithm as Algorithm 2.

We do not present the full algorithm, as Algorithm 2 is
similar to Algorithm 1A. In Algorithm 2, a variable offset is
introduced to keep the sum of changes per iteration, and the
loop in lines 68-70 of Algorithm 1A is removed. Now, it is
enough for each node to add the offset to the values of the
control points when it wants to calculate its interpolated value.
The interpolation function is similar to the one given by
Equation 5 while Equations 6 and 7 are updated as follows,
respectively: ݏ௜ሺ݆ሻ ൌ ௜ݏ ൅ ሺ݆ െ ݅ሻ݃ (9)

and ݊ݑ ௝݉ ൌ ݑ݊ ௝݉ିଵ ൅ ௝ݏ · ,ݔ௝ሺݓ ሻݕ ൅ ݃ · ௝ݐ݁ݏ݂݂݋

where:

(10)

௝ݐ݁ݏ݂݂݋ ൌ ௝ିଵݐ݁ݏ݂݂݋ ൅ ,ݔ௝ሺݓ ሻ (11)ݕ

The denominator is the same as Equation 8.

B. Study of the Error

Using simulation experiments, we will now study the error
of interpolation schemes. We will first (in Section VI.B.1) see
how different parameters affect the error of the interpolation

Figure 5. Interpolation error for a static signal

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

k (Number of Interpolation Points)

E
rr

or

Average Error
Maximum Error

Figure 4. Execution time as a function of k for Basic and Differential
algorithms in a real-world platform.

algorithms and then (in Section VI.B.2) compare the errors of

Algorithm 1A Implementation of Improved Interpolation Algorithm
1. Require: (MAXS+1) × (MAXNNODES+1) + MAXNNODES ≤ MAXP.
2. Require: (MAXS+1) < 2 (16-1) (due to size of gradient variable).
3. Require: xi, yi denotes the node’s coordinates.
4. Require: The code below is executed by every node. A node can read the variable i and obtain its node index.
5. type interpolation pack = record
6. value: uint16
7. x : uint16
8. y : uint16
9. differential : uint16;
10. end record
11. prio, winning prio, temp prio, temp prio MAC order: uint32
12. snd pack, rcv pack, prv_rcv_pack: interpolation pack
13. S : set
14. t : time
15. max error, error, myinterpolatedvalue : uint16
16. dx, dy, sq : uint32
17. num, denom, temp : uint64
18. update_myinterpolation : Boolean
19. differential: int16;
20. function find nodes() return a set of packets
21. myinterpolatedvalue ←0
22. num←denom←differential←0
23. differential_sum←0
24. S←{};
25. update_myinterpolation←TRUE
26. compute_diff←FALSE;
27. for j←1 to k do
28. my_sensor_value←read_sensor (); // get sensor value
29. error←abs(my_sensor_value - myinterpolatedvalue) // compute error
30. temp_prio← ((uint32) error) × (MAXNNODES + 1) + i
31. temp_prio_MAC_order← ((1 << 27) - 1) – temp_prio
32. prio← (1 << 27) + temp_prio_MAC_ // encode value to send as a priority
33. snd_pack < my_sensor_value, xi, yi >
34. <winning_prio, rcv_pack> ←send_and_rcv(prio, snd_pack) // perform tournament
35. if (j>1) then
36. if (compute_diff = TRUE) then
37. differential ← read_sensor() - (myinterpolatedvalue)
38. // compute differential
39. snd_value(differential) // send differential; note only previously winning node will do this
40. compute_diff←FALSE
41. mydifferential← differential
42. else
43. differential ←rcv_value();// receive differential; note only all nodes will do this, except the previously winning node
44. end if
45. end if
46. prv_rcv_pack.differential←differential
47. dx← xi –rcv pack.x
48. dy← yi - rcv pack.y
49. sq←dx*dx + dy*dy // w-1
50. differential_sum ← differential_sum + differential / prv_sq
51. temp← ((uint64) rcv_pack.value) << 32
52. num←num + differential_sum + temp div sq // note value is assigned to temp. variable
53. temp← ((uint64) 1) << 32
54. denom←denom + temp div sq // note value is assigned to temp. variable
55. prv_sq←sq
56. if (winning_prio == prio) then
57. update_myinterpolation ←FALSE // update_myinterpolation is only FALSE when node is the winner
58. myinterpolatedvalue ← my_sensor_value
59. compute_diff← TRUE
60. in_set←TRUE
61. else
62. if (in_set = FALSE) then
63. myinterpolatedvalue← num div denom
64. else
65. myinterpolatedvalue←myinterpolatedvalue+mydifferential
66. end if
67. end if
68. for each <interpolation_point> in S
69. interpolation_point.value← interpolation_point.value+interpolation_point.differential
70. end for
71. S←S U {rcv_packet}
72. end for
73. return (S)
74. end function

respective algorithms. Concepts and experimental setup can be
found in Appendix A.

1) Impact of parameters

Figure 5 shows how the interpolation error varies as a
function of k for static signals. Simulation results show that the
Basic Algorithm works well for smooth signals that change
slowly in the time.

Figures 6 and 7 show how the interpolation error varies
with k when signal changes occur during interpolation. The
rate of change in the signal is fixed or random (up to 4% of
maximum amplitude of the signal) in each interpolation round.
As we can see, the Basic Algorithm has a poor result and
cannot follow the changes in the signal. The average error of
the Basic interpolation scheme is high and keeps rising as the
algorithm continues execution and time progresses. The
explanation for this behavior is intuitive as well. When a
control point is added to the set of the interpolation points, S,
the one that was added previously may be already measuring a
very different value.

Simulation results show a great improvement in
interpolation of the signal when the Differential Algorithm is
used instead of the Basic Algorithm. The Differential
Algorithm has less than 10% average error in interpolating the
signal. When the rate of changes is constant, the Differential
Algorithm has slightly better results compared to random (but
limited) changes, while the Basic algorithm offers even worse
results.

Note however, that each iteration of the Interpolation in the
Differential Algorithm is longer than in the Basic Algorithm,
since there is a re-sending of data in each iteration. If the
arbitration takes x time units and sending data takes y time
units, the communication time of each iteration in Differential
Algorithm last (x + 2 × y) time units compared to (x + y) in
Basic Algorithm.

2) Comparison between algorithms

The comparison of the previously presented algorithms, in
terms of average error, is shown in Table 1 and 2 for different
changes in signal and for two different values of k.

The tables show that for small scaling changes, all the
algorithms have acceptable results. But, when the changes in
signal are not slow the new dynamic algorithms (1A and 2)
have more accurate interpolation results. The tables also
illustrate the inefficiency of the Basic Algorithm when the
changes in the signal are larger and faster.

TABLE I. PERCENTAGE OF AVERAGE ERROR FOR K=10

Algorithm
Type of change in signal per Interpolation round
Different Increase

(up to 4%) 4% Increase 1%
Scaling

Basic
Algorithm 9.23 15.82 7.10

Algorithm 1A 9.75 10.96 7.91

Algorithm 2 8.49 10.36 7.94

TABLE II. PERCENTAGE OF AVERAGE ERROR FOR K=20

Algorithm
Type of change in signal per Interpolation round
Different Increase

(up to 4%) 4% Increase 1%
Scaling

Basic
Algorithm 18.23 38.78 4.75

Algorithm 1A 6.19 8.99 4.96

Algorithm 2 5.70 9.01 4.74

VII. CONCLUSION
We have shown a very simple way to use a model of the

physical world as a means to speed up the process of obtaining
an interpolation of sensor readings and this gives a distributed
computer system the ability to detect changes in the physical
world very quickly. This is important for Cyber-Physical
Systems. Ongoing work involves synthesizing such an
algorithm from a model of the physical world (analogous to the
way coefficients in a PID controller are selected based on
knowing the transfer function of plant dynamics and given
certain performance goals the controller should meet).

Target applications (as described in the introduction)
include installations in, for example, aircrafts and cars. In such

Figure 6. Average Error of Basic and Differential algorithms with
constant (4%) change in signal per interpolation round

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

k (Number of Interpolation Points)

A
ve

ra
ge

 E
rr

or
 (

%
)

Basic Algo.
 Differential Algo.

Figure 7. Average Error of Basic and Differential algorithms with
random (up to 4%) change in signal per interpolation round

0 5 10 15 20 25 30
0

10

20

30

40

50

60

Speed of change per Interpolation round(%)

A
ve

ra
ge

 E
rr

or
(%

)

Basic Algo.
Gradient Algo.

installations, one possible communication media is the
structure of the aircraft/car itself. The metal plates of the
structure can be used for communication (for example, as wave
guides). These and other similar possibilities are being
investigated (in a joint research effort with specialized
companies) as they might present themselves as appealing
practical solutions in such settings.

ACKNOWLEDGEMENT
This work was supported by Portuguese Science and

Technology Foundation (Fundação para Ciência e Tecnologia -
FCT) CISTER Research Unit - FCT UI 608 and the
Cooperating Objects Network of Excellence (CONET), a EU-
funded project under ICT, Framework 7.

REFERENCES
[1] J. A. Stankovic, I. Lee, A. Mok, and R. Rajkumar. “Opportunities and

obligations for physical computing systems,” IEEE Computer, 38(11),
pages 23-31, November 2005.

[2] D. Estrin, D. Culler, K. Pister, and G. Sukhatme. “Connecting the
physical world with pervasive networks,” IEEE Pervasive Computing,
pages 59-69, January-March 2002.

[3] J. Caffrey, R. Govindan, E. Johnson, B. Krishnamachari, S. Masri, G.
Sukhatme, K. Chintalapudi, K. Dantu, S. Rangwala, A. Sridharan, N.
Xu, and M. Zuniga, “Networked Sensing for Structural Health
Monitoring,” In: Proceedings of the 4th International Workshop on
Structural Control, Columbia University, NY, June 2004.

[4] ACARE, Strategic Research Agenda 1 - Volume 2, Section 3. “The
Challenge of the Environment,” ACARE Report, October 2002.
Available online: http://www.acare4europe.org/docs/es volume1-
2/volume2-03-environment.pdf

[5] J. Reneaux, “Overview on Drag Reduction Technologies for Civil
Transport Aircraft,” European Congress on Computational Methods in
Applied Sciences and Engineering (ECCOMAS04), Jyvskyl, July 2004.

[6] Wireless Interconnectivity and Control of Active Systems (WICAS),
http://www.shef.ac.uk/systemsutc/projects/wicas

[7] E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi, “In-network aggregation
techniques for wireless sensor networks: a survey,” Wireless
Communications, IEEE , vol.14, no.2, pp.70-87, April 2007.

[8] B. Andersson, N. Pereira, W. Elmenreich, E. Tovar, F. Pacheco, and N.
Cruz. “A scalable and efficient approach to obtain measurements in
CAN-based control systems,” In IEEE Trans. Industrial Informatics
4(2): 80-91 (2008).

[9] N. Pereira, R. Gomes, B. Andersson, and E. Tovar. “Efficient aggregate
computations in large-scale dense WSN,” In 15th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS’09), pages
317-326, San Francisco, California, USA, 2009.

[10] C. Dickey, “The Flying Prius”, Newsweek, July 2010.
[11] Fly-by-Wireless. : A Revolution in Aerospace. Architectures for

Instrumentation and Control. NASA/CANEUS Workshop.
NASA/JSC/ES6/George Studor. 3/27/2007

[12] A.K. Mok and S. A. Ward, “Distributed Broadcast Channel Access,”
Comput. Networks, Vol. 3, November 1979.

[13] Bosch GmbH, Stuttgart, Germany. CAN Specification, ver. 2.0, 1991.
[14] B. Andersson, N. Pereira, and E. Tovar. “Widom: A dominance protocol

for wireless medium access,” IEEE Transactions on Industrial
Informatics, vol. 3(2), May 2007.

[15] N. Pereira, B. Andersson, E. Tovar, and A. Rowe. “Static priority
scheduling over wireless networks with multiple broadcast domains,” In
Proceedings of the 28th Real Time Systems Symposium (RTSS07),
Tucson, U.S.A., December 2007.

[16] A. Ehyaei, E. Tovar, and N. Pereira. “Scalable and Efficient Data
Processing in Networked Control Systems,” HURRAY-TR-101004.
http://www.cister.isep.ipp.pt/docs/

[17] E. Tovar, B. Andersson, N. Pereira, M. Alves, S. Prabh and F. Pacheco,
“Highly Scalable Aggregate Computations in Cyber-Physical Systems:
Physical Environment Meets Communication Protocols,” Proceedings of
the 7th International Workshop on Real-Time Networks (RTN'08),
Prague, Czech Republic, July 1, 2008.

[18] B. Andersson, N. Pereira, E. Tovar, R. Gomes, “Using a prioritized
medium access control protocol for incrementally obtaining an
interpolation of sensor readings,” Seventh Workshop on Intelligent
solutions in Embedded Systems,, pp. 29 – 36, Ancona, June 2009.

[19] J. M. Hellerstein, W. Hong, S. Madden and K. Stanek, "Beyond
Average: Toward Sophisticated Sensing with Queries," in Proceedings
of IPSN, 2003.

[20] X. Meng, T. Nandagopal, L. Li and S. Lu, "Contour Maps: Monitoring
and Diagnosis in Sensor Networks," Computer Networks, 2006.

[21] W. Xue, Q. Luo, L. Chen and Y. Liu, "Contour Map Matching For
Event Detection in Sensor Networks," in Proceedings of ACM
SIGMOD, 2006.

[22] Mo Li, and Yunhao Liu, "Iso-Map: Energy-Efficient Contour Mapping
in Wireless Sensor Networks", IEEE Transactions on Knowledge and
Data Engineering (TKDE), Vol 22, No. 5, May 2010, Pages 699-710.

[23] http://www.memsic.com/support/documentation/wireless-sensor-
networks/category/7-datasheets.html?download=148%3Amicaz

APPENDIX A. EXPERIMENTAL SETUP
The signal which is used in the simulation experiment is a smooth signal

with three peaks as shown in Figure 8, and is described by the following
Equation: ݌ሺݔ, ሻݕ ൌ 0.6൫݁ିଶ଴൫ሺ௫ି଴.ଶሻమାሺ௬ି଴.଼ሻమ൯ ൅ ݁ିଶ଴൫ሺ௫ି଴.ହሻమାሺ௬ି଴.ହሻమ൯൅ ݁ିଶ଴൫ሺ௫ି଴.଼ሻమାሺ௬ି଴.ଶሻమ൯ሻ ൅ 0.1

(12)

The maximum amplitude is 1. It is considered that the all the points of
signal increase 4% of the maximum amplitude (or 0.04) per interpolation round
for the experiments and results described in Figure 6 and randomly but up to
4% of the maximum amplitude for the experiments and results described in
Figure 7. For the Tables 1 and 2, 1% scaling means multiplying the amplitude
of each point by 1.01.

For evaluating results of the interpolation algorithms, Average
Interpolation Error (AIE) and Maximum Interpolation Error (MIE) are defined
as follows: ܧܫܣ ൌ ∑ |ܸ ௜ܵ െ ܫ ௜ܵ|௠௜ୀଵ ݉ (13)

ܧܫܯ ൌ max௜ୀଵ .. ௠|ܸ ௜ܵ െ ܫ ௜ܵ|ሻ (14)

where VSi is the measured value of sensor i, ISi is the calculated value in the
geographical position of sensor node i by the interpolation method and m is the

number of sensor nodes. These two parameters are calculated at the end of
Interpolation to see how close the interpolation is to the signal.

Figure 8: Signal with three peaks

