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Abstract 
Consider the problem of designing an algorithm for acquiring sensor readings. Consider specifically the problem of 
obtaining an approximate representation of sensor readings where (i) sensor readings originate from different sensor 
nodes, (ii) the number of sensor nodes is very large, (iii) all sensor nodes are deployed in a small area (dense network) 
and (iv) all sensor nodes communicate over a communication medium where at most one node can transmit at a time (a 
single broadcast domain). We present an efficient algorithm for this problem, and our novel algorithm has two desired 
properties: (i) it obtains an interpolation based on all sensor readings and (ii) it is scalable, that is, its time-complexity is 
independent of the number of sensor nodes. Achieving these two properties is possible thanks to the close interlinking 
of the information processing algorithm, the communication system and a model of the physical world. 
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Abstract— Consider the problem of designing an algorithm for 
acquiring sensor readings. Consider specifically the problem of 
obtaining an approximate representation of sensor readings 
where (i) sensor readings originate from different sensor 
nodes, (ii) the number of sensor nodes is very large, (iii) all sensor 
nodes are deployed in a small area (dense network) and (iv) all 
sensor nodes communicate over a communication medium where 
at most one node can transmit at a time (a single broadcast 
domain). We present an efficient algorithm for this problem, and 
our novel algorithm has two desired properties: (i) it obtains an 
interpolation based on all sensor readings and (ii) it is scalable, 
that is, its time-complexity is independent of the number of 
sensor nodes. Achieving these two properties is possible thanks to 
the close interlinking of the information processing algorithm, 
the communication system and a model of the physical world. 

Keywords: CPS Foundations; Real-Time Systems; Sensor 
Networks. 

I.  INTRODUCTION  
Although the information technology transformation of the 

20th century appeared revolutionary, a bigger change is on the 
horizon. The term Cyber-Physical Systems (CPS) has come to 
describe the research and technological efforts that will 
ultimately allow the interlinking of the real-world physical 
objects and the cyberspace efficiently [1-2]. 

The integration of physical processes and computing is not 
new. Embedded systems have been in place for a long time and 
these systems often combine physical processes with 
computing. The revolution will come from massively 
deploying networked embedded computing devices allowing 
instrumenting the physical world with pervasive networks of 
sensor-rich embedded computation [2]. As Moore’s law 
continues, the cost of a single embedded computer equipped 
with sensing, processing and communication capabilities drops 
toward zero. This makes it economically feasible to densely 
deploy networks with very large quantities of such nodes. 
Accordingly, it is possible to take a very large number of 
sensor readings from the physical world, compute quantities 
and take decisions out of them. Very dense networks offer a 
better resolution of the physical world and therefore a better 
capability of detecting the occurrence of an event; this is of 
paramount importance for a number of foreseeable 
applications. 

Structural health monitoring (SHM) of physical 
infrastructures (bridges, aircrafts, etc.) is an example of CPS 
applications where high-spatial resolution sensing is 
required [3]. Other examples are the ongoing efforts within the 
aircraft industry to respond to environmental concerns by 
developing technologies that will allow sustained air travel 
growth while minimizing overall carbon footprint [4, 10]. 
Active flow control, achieved through local modulation of 
aircraft skin surfaces (see Figure 1), is one such, yet to be seen, 
technological development with the potential to offer 
significant reduction of drag and related fuel consumption and 
emissions [5]. Significant drag reduction can be obtained by 
performing active flow control using the aircraft skin surfaces. 
One approach to achieve that flow control is to perform local 
adjustments of the skin surfaces using a very dense deployment 
of sensor/controller/actuator nodes embedded in the aircraft 
wings and fuselage [6]. Implementing such an active flow 
control system requires thousands of sensors, controllers and 
actuator systems (smart skin patches) to be embedded across 
the aircraft wings and fuselage to create an active aircraft [6]. 
However, the scale of such a system poses huge challenges in 
terms of interconnectivity and timely data processing. In this 

 
Figure 1. Example system of sensors/actuators embedded across an 
aircraft wing to perform active flow control (from the WICAS [6] project 
website). 

 
Figure 1. Example system of sensors/actuators embedded across an 
aircraft wing to perform active flow control (from the WICAS [6] project 
website). 



paper we will look at efficient scalable data acquisition 
methods for such densely instrumented cyber-physical systems. 

CPS with high-spatial resolution sensing must typically 
fulfill the following requirements (R1 to R4): 

R1.  Computation (for estimating the state of the physical 
world) must be based on sensor readings from many 
sensor nodes, preferably all sensor nodes. The rational 
for this requirement is that if the computation would 
be based only on sensor readings from a single pre-
determined sensor node (or a pre-defined small subset 
of sensor nodes) then we derive no benefit from the 
large number of sensor nodes available. 

R2.  Sensor nodes must be able to communicate. The 
rationale for R2 follows from R1. 

R3.  Broadcast media (such as a shared wired bus or a 
wireless channel) must be used for communication. 
The rationale for R3 follows from the fact that a point-
to-point communications network would be too 
expensive as the number of sensor nodes becomes 
large. 

R4.  The computation (for estimating the state of the 
physical world) must be performed within low (and 
bounded) delay. The rationale for R4 follows from the 
fact that control algorithms must obtain an estimate of 
the physical world that is not too old. 

Fulfilling all these four requirements is challenging. 
Consider m sensor nodes in a single broadcast domain. One 
may believe (based on R3) that any computation which fulfills 
R1 will have time-complexity which depends on the number of 
sensor nodes (O(m)) because in a single broadcast domain, no 
two nodes may transmit simultaneously. Therefore, even a 
simple quantity such as the minimum of the sensor readings of 
all sensor nodes in a single broadcast domain, would be 
difficult to compute with a low time-complexity. 

However, recent research has made available, for dense 
networks, algorithms that can compute certain aggregate 
quantities (such as MIN, MAX or COUNT) with a time- 
complexity that is independent of the number of nodes (as we 
will explain in Section II). These algorithms are based on 
dominance protocols (also called binary countdown 
protocols) [12], which are used in the CAN bus [13] and in 
WiDom [14]. It may be possible to use these algorithms as 
basic building blocks so that other quantities can be computed 
as well. This brings a hope that all the above mentioned 
requirements can be fulfilled. 

Although extremely scalable (time-complexity independent 
of number of nodes) methods for computing MIN (or MAX) 
are useful in some applications, it would be even more useful if 
there was a data acquisition algorithm that made it possible to 
produce an approximate representation of all sensor readings so 
that an application could compute any desired quantity based 
on this approximate representation. In fact, sensor readings are 
often spatially and temporally correlated with only a few abrupt 
changes (in time or space). Therefore, an interpolation function 
would be a suitable representation for approximating all sensor 
readings. 

Previous research work [8, 9] has proposed algorithms for 
obtaining an interpolation of sensor readings from different 
sensor nodes, and these algorithms are based on dominance 
protocols, presenting therefore excellent scalability properties 
for dense instrumented CPS. We believe however that it is 
possible to further improve the performance of those 
algorithms not only by taking advantage of knowledge of 
often-occurring spatial correlation of sensor readings but also 
by embedding the dynamics of the physical phenomenon in the 
algorithm which computes the interpolation. 

Therefore, in this paper, we develop a novel algorithm for 
data acquisition of sensor readings in a densely instrumented 
cyber-physical system. Our new algorithm produces an 
interpolation of all sensor readings. It fulfills the four 
requirements stated above and in order to improve its accuracy, 
it has a model of the dynamics of the physical world embedded 
into it. 

Contribution of this paper: Previous works tackling 
densely deployed networked sensor systems have proposed 
algorithms that obtain an interpolation of sensor readings by 
using the dominance principle. The novelty of the algorithms in 
this paper is the embedding of a physical model in these 
algorithms. We also show that our new physically-based 
interpolation scheme can be implemented on commodity 
sensor platforms. Based on our experimentation, we find 
important trade-offs for designers: some physical models are 
very simple and cause very low run-time overhead (and hence 
allow a small sampling period), whereas other physical models 
are more accurate but cause a larger run-time overhead.  

The remainder of this paper is structured as follows. 
Section II provides a background on previous related work, 
including how to use dominance protocols for efficiently 
computing certain aggregate quantities in dense networked 
sensor systems. Section III presents a previously known 
algorithm for acquiring an interpolation in such systems. In 
Section IV we define a framework to embed a model of the 
dynamics of the physical environment into the interpolation 
scheme. Section V presents a novel algorithm based on this 
framework while Section VI addresses the implementation of 
the new algorithm and its experimental evaluation. Finally, in 
Section VII, conclusions are drawn. 

II. RELATED WORK 
The wireless sensor network research community has 

proposed several solutions for processing sensor data. In multi-
hop networks, nodes may self-organize into a converge-cast 
tree with a base station at the root. Techniques for computing 
useful aggregated quantities (such as MIN) that offer good 
performance have been proposed previously [7]. Such 
techniques achieve good performance as a result of exploiting 
the opportunities for parallel transmission and of en-route 
aggregation of data. In densely instrumented systems where 
even a very small area may contain several hundreds of sensor 
nodes, the performance of the data aggregation techniques as 
those surveyed in [7] is limited by the fact that nodes in the 
same broadcast domain cannot transmit in parallel. Thus, the 
time-complexity of those approaches also heavily depends on 
the number of sensor nodes. This results in long delays for 
collecting the information of all nodes and obtaining the 



required set of measurements. Therefore, these techniques may 
not be suitable for feedback control systems that require a short 
and bounded delay from sampling to actuation.  

To tackle this problem, a family of novel distributed 
algorithms has been recently introduced [8, 9]. In those 
algorithms, communications and computations are tightly 
coupled with the physical environment. Notably, they can 
compute certain aggregate quantities (MIN, MAX or COUNT) 
with a time-complexity that is independent of the number of 
sensor nodes. The approach in those works is based on the 
intelligent exploitation of Medium Access Control (MAC) 
mechanisms that are inspired on dominance protocols [12]. In 
the following sub-sections, dominance-based MAC protocols 
and aggregation methods which use them are described briefly. 

Work on the construction of contour maps based on sensor 
readings share some constraints with our work, and justifies a 
brief discussion here. A contour map is used to visualize sensor 
fields by constructing a map having contour lines through 
points of equal attribute values (e.g. temperature, elevation). 
For example, a contour map of the temperature of a sensor field 
will display regions covered by sensors having the same 
temperature reading under the same contour line. Some works 
have approached this problem [19-21] by aggregating similar 
values at intermediate nodes to reduce the number of packets 
that need to be exchanged to construct the contour map. 
Interestingly, authors working on this problem have noted that 
traditional data aggregation methods cannot further improve 
the scalability of the network, based on the observation that the 
complexity of such methods is always dependent on the 
number of sensor nodes [22]. For this reason, the approach 
taken in [22] was to intelligently select a small portion of the 
nodes to contribute to the construction of the contour map. 
Although in a different context, our approach for interpolation 
employs the same basic idea of selecting a set of sensor nodes 
to contribute to the interpolation.  

A. Basic Principles of Dominance-based MAC Protocols 

Dominance protocols [12] have important characteristics for 
the approaches described in this paper. These protocols have 
good properties for supporting timeliness in systems with 
event-triggered messages. Moreover, they are capable of 
simultaneous “non-destructive” transmission of information in 
the same broadcast domain.  

In the wired implementation of this protocol, the Controller 
Area Network (CAN) bus [13], all messages have a unique 
contention field which could be their priority. When a node 
has a request to transmit, after waiting a predetermined time 
until the channel becomes idle, it starts a conflict resolution 
phase (arbitration phase). In this phase, the nodes send their 
contention field, bit-by-bit, starting with the most significant 
bit (see Figure 2(a)). The medium is devised in such a way 
that nodes can hear a recessive bit (a logical ‘1’) only if no 
other node sends a dominant bit (a logical ‘0’); the bus 
behaves as a logical wired-AND. The nodes which hear a 
dominant bit while themselves send a recessive bit, refrain 

from arbitration. At last the only one node that reaches the end 
of arbitration without hearing a dominant bit (unless it was 
sending it as well), proceeds with transmitting the data. 

The wireless implementation of a dominance MAC was 
dubbed WiDom [14]. During the conflict resolution phase, 
which is called tournament in WiDom, a node with a recessive 
bit should listen to the medium to assess whether any 
dominant bit is being transmitted or not. But, wireless 
transceivers can hardly be transmitting and receiving at the 
same time. Thus, when the transmitted bit is dominant there is 
no need to sense the medium, whereas, when the bit to 
transmit is recessive, nothing has to be effectively sent, and 
only the medium state has to be sensed. 

Various interesting features of dominance-based protocols 
(CAN and WiDom are examples) can be exploited to obtain 
aggregate quantities in large scale dense networks, with a 
time-complexity that is very low and independent of the 
number of nodes. Such mechanisms are being used as a key 
building block in densely instrumented Cyber-Physical 
Systems as is discussed in the next subsection. 

B. Quantity Aggregation 

By associating the priorities of messages to physical 
quantities (such as temperature or acceleration), several high-
performance algorithms for data processing can be devised in 
which the time-complexity is independent of the number of 
nodes. For instance, if each node uses the value of its sensor 
reading instead of an arbitrary priority, the node winning the 
contention for the medium will be the one with the minimum 
(MIN) of the sensed values [8, 9]. In [8], it is demonstrated that 
CAN-enabled platforms can be used to compute various 
aggregate quantities, such as MIN (or MAX). In [9] the authors 
show the same, but for wireless systems using a sensor-
platform optimized for such scalable data aggregation. 

In order to understand how a dominance-based MAC 
protocol can be used to efficiently compute an aggregate 
quantity, consider how to compute the minimum of all sensor 
readings. Figure 2(b)-(d) shows this. One naïve approach 
would be to use a time-division multiple-access (TDMA) 
scheme and assign one timeslot to each sensor node and let a 
sensor node transmit its sensor reading in its slot. Figure 2(b) 
shows this. After one TDMA cycle, a node knows all sensor 
readings and the minimum can be computed but, unfortunately, 
the time-complexity is O(m), where m is the number of sensor 
nodes. The same type of naïve scheme can, of course, be 
implemented with a prioritized MAC protocol. Figure 2(c) 
shows this. But with a prioritized MAC protocol, a sensor node 
can use its sensed data as a priority and hence the MAC 
protocol will grant medium access to the sensor node with the 
minimum sensor reading ⎯ see Figure 2(d). Since a 
dominance-based prioritized MAC protocol makes all sensor 
nodes know the priority of the sensor node which was granted 
the medium, it holds that all sensor nodes will know the 
minimum of the sensor reading. This makes it possible to 
compute MIN. 



The importance of the above method is that its computation 
time is independent of the number of nodes in the broadcast 
domain. With this method, the minimum value (MIN) and the 
maximum value (MAX) can be obtained with a time-
complexity of O(npriobits), where npriobits is the number of 
bits used to represent the data. 

III. INTERPOLATION  
Many CPS applications behave as follows: 

 1. do forever: 
 2.       Each sensor node takes a new sensor reading. 
 3.       Sensor nodes form a (potentially approximate) representation of 

all sensor readings.  
 4.       The representation of sensor readings is used, for example, to 

compute an actuation command. 
 

The execution of line 3 in the pseudo code above requires 
an algorithm which acquires a (potentially approximate) 
representation of all sensor readings. Ideally, this algorithm 
should, when line 4 executes, offer a small deviation of the 
representation of sensor reading as compared to the physical 
world. In this section, we will discuss how to achieve this for 
the special case that the physical world does not change during 
the execution of line 3 and 4; later sections will discuss how to 

deal with the more general (and realistic) case in which 
changes in the physical world can occur at any time. 

Previous work [8] proposed an algorithm for obtaining an 
interpolation. The interpolation is a function f(x, y) where x and 
y are space coordinates and the function f(x, y) approximates 
sensor readings throughout the area of interest.  The function 
f(x, y) is represented by a set of control points, denoted S, 
where each control point qk∈S has three attributes xk, yk and sk, 
with the meaning that evaluating the interpolation at the 
location (xk,yk) should give the value sk. On locations where no 
control point exists, the function f(x, y) is defined as a weighted 
average of control points; this is called weighted-average 
interpolation (WAI). Formally, the function f(x, y) is defined 
as:  

f(x, y) = ൞ 0                             ݂݅ ܵ ൌ ௞ݏ׎ ݂݅ א ௞ݍ׌ ܵ ׷ ௞ݔ  ൌ ∧ ݔ ௞ݕ ൌ ∑ݕ ௦ೖ·௪ೖሺ௫,௬ሻೖאೄ ∑ ௪ೖሺ௫,௬ሻೖאೄ  (1) ݁ݏ݅ݓݎ݄݁ݐ݋                        

where weights, wk(x, y), are given by: 

wk(x, y)= ଵሺ௫ೖି ௫ሻమା ሺ௬ೖି ௬ሻమ   (2) 

Figure 2. Dominance/Binary-Countdown arbitration motivating examples. (a) Example of bitwise arbitration; (b) example application where N1�needs to 
know the minimum (MIN) temperature reading among its neighbors (N2�to N6); (c) possible solution for the example application using a CAN-like MAC, 
using fixed priorities for the messages; (d) possible solution for the example application exploiting the properties of a CAN-like MAC, where priorities are 
assigned at runtime according to the sensed values. 



Let Ni denote a sensor node. Let (xi,yi) denote the location 
of this sensor node and let si denote the sensor reading of this 
sensor node. We let ei denote the error of the interpolation at 
sensor node Ni and we let e denote the maximum error over all 
sensor nodes. Formally, we express this as:  ݁௜ ൌ ௜ݏ|  െ  ݂ሺݔ௜, ௜ሻ| (3)ݕ

and ݁ ൌ max௜ୀଵ ..௠ ݁௜ (4) 

where m is the number of nodes. 

An algorithm for efficiently constructing S is proposed in 
[8] (we refer to it as Basic Interpolation Algorithm). The main 
idea is that initially the interpolation is zero on each location 
(this is represented by setting S to the empty set). Then, each 
sensor node evaluates the interpolation at its location and 
compares it with its sensor reading and the sensor node with 
the maximum error is granted the medium for transmitting its 
location and sensor reading, and this information is added to S. 
This is repeated k times (where the value of k is selected by the 
designer). Pseudo code for this algorithm is shown below (each 
sensor node executes the algorithm and a sensor node can read 
the variable i to obtain its identifier): 

 1: S ← ∅ 
 2: for j ← 1 to k do 
 3:     calculate the interpolation function f(xi,yi) based on S  
 4:     calculate ej. 
 5:     select a sensor node Nk with the maximum ek, that is ek = e. This can
             be achieved using the MAX computation mentioned in Section II. 
 6:     the location and the sensor reading of Nk forms a control points; 
             add this control point to S 
 7: end for 

 
Figure 3 illustrates the operation of the interpolation 

scheme. Figure 3(a) shows how a physical quantity varies as a 
function of space coordinates x and y. Figure 3(b) shows an 
interpolation which is an approximate representation of this 
physical quantity (represented in Figure 3(a)); the lines indicate 
the location of control points in S.  

IV. A FRAMEWORK FOR USING A PHYSICAL MODEL IN 
INTERPOLATION 

The interpolation algorithm in the previous section assumes 
that the physical quantity does not change while the 
interpolation algorithm executes. In fact, the physical world 
may change while the interpolation algorithm executes, and 
this can cause the interpolation represented by S to diverge 

significantly from the physical quantity being measured. To 
tackle this problem, we will embed in the interpolation 
algorithm a model about how the physical world changes. After 
adding a new control point to S (line 6 in the previous pseudo-
code), the control points in S can be updated based on a model 
about the dynamics of the physical environment. We are 
interested in a simple framework to describe how this update 
should be performed. This simple framework should (i) be 
sufficiently expressive so that many real physical dynamics can 
be modeled in the framework and (ii) it should be possible to 
execute efficiently. We achieve this by performing a linear 
transformation on each element in S. The pseudo-code for such 
a framework can be obtained by modifying (changes are 
shaded in gray) the basic interpolation algorithm as follows: 

 1: S ← ∅ 
 2: for j ← 1 to k do 
 3:     calculate the interpolation function f(xi,yi) based on S  
 4:     calculate ej. 
 5:     select a sensor node Nk with the maximum ek, that is ek = e. This can
             be achieved using the MAX computation mentioned in Section II. 
 6:     the location and the sensor reading of Nk forms a control point; 
             add this control point to S. 
  7:    for each element (xi,yi, si) in S do 
  8:         xnewi ← A1,1*xi + A1,2*yi + A1,3*si + A1,4 
  9:         ynewi ← A2,1*xi + A2,2*yi + A2,3*si + A2,4 
10:         snewi ← A3,1*xi + A3,2*yi + A3,3*si + A3,4 
11:         replace the element (xi,yi, si) in S by (xnewi,ynewi, snewi) 
12:     end for 
13: end for

 
With this framework, an application designer must assign 

values to A. We can see that this framework allows different 
operations to the signals, such as scaling, translation and 
rotation. Given our particular interest in active flow control 
(refer to application illustrated in Figure 1), let us consider that 
we have a set S which offers an interpolation of the air pressure 
on top of a wing and the aircraft is moving in the direction 
towards the x-axis. Suppose that overall, the air moves at a 
speed of v m/s in the direction of x-axis (v is assumed to be a 
constant). We can obtain a new set S for an interpolation 
0.1 ms later by performing the following operation (lines 7-12): 

 :   xnewi ←  1*xi + 0*yi +  0*si + v*0.0001 
 :   ynewi ←  0*xi + 1*yi +  0*si + 0 
 :   snewi ←  0*xi + 0*yi +  1*si + 0 

It is obvious that the better the model of the dynamics of 
the physical world is, the lower the error of our interpolation. It 
should be stressed that our interpolation scheme will offer an 
interpolation anyway, even if the physical model is simply 
incorrect; this is because the algorithm revises itself in each 
iteration based on measured errors.  

An application designer clearly must assign values to A. 
This can be done either by assigning static values at design 
time, or by finding suitable values for A based on sensor 
readings. We will see an example of a very simple 
interpolation scheme using the latter in the next section. 

Figure 3. Interpolation example [8] 

(a) Original Signal (b) Interpolated Signal 



V. NEW ALGORITHM FOR ESTIMATING THE OVERALL 
IMAGE OF THE PHYSICAL PROCESS 

Tracking methods usually take some information from the 
subject to predict its behavior in future. To react fast to changes 
in the physical process, knowing the type of change that affects 
the signal could be of great help. To illustrate this, assume 
monitoring the temperature of a field with a fixed (not moving) 
source of heat which has different degrees of intensity. Here we 
know the changes in the signal (temperature degree across the 
field) could be increasing or decreasing with different amount 
of changes with respect to the location of a sensor and with 
respect to time.  

The idea behind the novel proposed interpolation algorithm 
is using the system features to recognize the type of changes 
in the physical quantities. This leads to design a system-
dependent interpolation algorithm which can cope better with 
fast changing physical signals. The basics of our approach is 
that, by knowing the type of change in the physical quantity, the 
amount of change in the interpolation control points can be 
measured and applied in future steps of the interpolation.  

In the rest of the paper the algorithm, analysis and also 
simulation and implementation results are presented for the case 
that the signal level is increased or decreased with respect to 
time. The physical model can be described simply as follows: 

 :   xnewi ←  1*xi + 0*yi +  0*si + 0 
 :   ynewi ←  0*xi + 1*yi +  0*si + 0 
 :   snewi ←  0*xi + 0*yi +  1*si + gi  

 
where gi is the differential of ith interpolation point. 
Algorithm 1 describes the proposed approach for this case. 
Compared to the previous pseudo-code, this algorithm presents 
some details about the implementation of the interpolation 
algorithm (details such as how to compute ej, how to encode 
the priority for the MAX computation mentioned in Section II) 
and employs the system call send_and_rcv which causes the 
sensor node to compete for the medium with priority prio to 
transmit a packet with data payload snd_pack. Regardless of 
whether the sensor node transmitted or not, this call returns the 
winning priority and the packet that was transmitted on the 
channel. The maximum value that the MAC protocol can use 
for a priority is denoted as MAXP; for example if 29 priority 
bits are used in the priority field, then MAXP = 229-1. 

All nodes execute Algorithm 1 where,  a t  each iteration of 
the interpolation (except for the first one), after receiving the 
information of a new control point, the node that sent the 
previous control point sends its value again (line 16). Then, it is 
possible for all the nodes to measure the approximate 
differential, g, in that control point (line 17). This information 
will be applied in the next iterations to obtain the interpolation 
as Equation 5 shows:  

݂ሺݔ, ሻݕ ൌ ۔ۖەۖ 
ۓ 0              ݂݅ ܵ ൌ ௜ݍ׌ ݂݅    ௜ ሺ݆ሻݏ׎  א ௜ݔ ;ܵ ൌ ,ݔ ௜ݕ ൌ ∑ݕ ௜௝௜ୀଵݏ ሺ݆ሻ · ,ݔ௜ሺݓ ∑ሻݕ ,ݔ௜ሺݓ  ௌאሻ௜ݕ  (5) ݁ݏ݅ݓݎ݄݁ݐ݋     

 

where: ݏ௜ሺ݆ሻ ൌ ௜ݏ ൅ ሺ݆ െ ݅ሻ · ݃௜ (6)

and gi is the differential of ith interpolation point, si(j) is the 
value of the ith interpolation point in the jth iteration, and si is 
the value of the ith interpolation point when it is added to S. 
The other parameters are as described previously for 
Equation 1. Because the differential of points in the calculation 
of the interpolation is used, this algorithm is called Differential 
Interpolation. Later in the paper, it will be useful to simplify 
the numerator and denominator of Equation 5 as follows: ݊ݑ ௝݉ ൌ ݑ݊ ௝݉ିଵ ൅ ௝ݏ · ,ݔ௝ሺݓ ሻݕ ൅ ෍ ݃௜௝ିଵ

௜ୀଵ · ,ݔ௜ሺݓ   ሻ (7)ݕ

݋݊݁݀ ௝݉ ൌ ݋݊݁݀ ௝݉ିଵ ൅ ,ݔ௝ሺݓ  ሻ (8)ݕ

VI. IMPLEMENTATION OF DIFFERENTIAL ALGORITHM 
The mechanisms here proposed can have significant 

practical impairments. Namely, the computations required for 
each iteration of the interpolation can make the execution of 
such mechanisms impractical in current low-power wireless 
sensor network platforms. In this section, we will present the 
details of the implementation of Algorithm 1. This 
implementation considers the platform’s limitations regarding 
floating point operations.  

Some further assumptions about the behavior of the signal 
can be incorporated in the algorithm to significantly decrease 
the time required to perform computations. Thus, before 
presenting the details of the implementation, we will discuss 
different variations of the algorithm, considering small changes 
in the assumptions about the signal changes. 

Algorithm 1 Differential Interpolation Algorithm 
Require: All nodes start Algorithm 1 simultaneously. 
Require: k denotes the desired number of interpolation points. 
Require: A node Ni knows xi,yi and si. 
Require: The code below is executed by every node. A node can read 
the variable i and obtain its node index. 
  
 1: function find nodes() return a set of packets 
 2:     S ← ∅ 
 3:     for j ← 1 to k do 
 4:         gj ← 0 
 5:     end for 
 6:     for j ← 1 to k do 
 7:          Calculate f(xi,yi) in Equation 5 and assign it to the variable 
                  “myinterpolatedvalue” 
 8:          si ← read sensor 
 9:          error ← abs( si - to integer(myinterpolatedvalue) ) 
 10:        temp_prio ← error × (MAXNNODES + 1) + i 
 11:        prio ← (MAXP+1) – temp_prio 
 12:        snd_pack ←< si,xi,yi> 
 13:        <winning_prio, rcv_pack> ← send_and_rcv( prio, snd_pack) 
 14:        S ← S ∪ { rcv_pack } 
 15:        if j ≠ 1 then  
 16:             the new sensed data of (j-1)th control point is received. 
 17:             gj ← the change in value of the control point 
 18:        end if 
 19:     end for 
 20:     return S 
 21: end function
 



1) Variations of the New Algorithm 

Having more information of the signal may make the 
implementation simpler and exhibit a lower execution time. 
The following subsections discuss some assumptions that can 
be introduced to reduce the computation time of the proposed 
algorithm. 

2) Constant Differentials (Algorithm 1A) 

According to Algorithm 1, the value of f(x, y) has to be 
recomputed (line 7 in Algorithm 1) in all iterations, thus also 
the sums in Equation 5 must be recomputed. If the change in 
the signal is monotonous in each point, the differentials will be 
constant and this allows us to consider that the differentials will 
not change after insertion in the set S. Thus, it is not required to 
compute all terms of Equation 5 in each iteration. It is possible 
to reduce the computation time of the algorithm by maintaining 
the partial sums in the numerator and denominator of 
Equation 5. This is reflected in Algorithm 1A. The 
implementation assumes that the differential will not change 
after it is received.  

The following functions are used in Algorithm 1A: abs, 
read_sensor, send_and_rcv, snd_value, rcv_value. Function 
call abs returns the absolute value of the value given as 
argument; read_sensor is a function call used for getting the 
sensor value from the analog-to-digital converter; 
send_and_rcv is a function that will cause a tournament to be 
performed and returns the wining priority and the packet 
received; snd_value and rcv_value are function calls that can 
be used to respectively broadcast or receive a value to to/from 
other nodes.  

We performed a brief analysis of the time required to 
compute Basic Algorithm and the new Differential Algorithm 
in real-world sensor network platforms. This was done by 
implementing the algorithms in the MicaZ sensor network 
platform [23]. The code was compiled with no compiler 
optimizations and the execution time was measured using one 
of the microcontroller’s real-time clocks. The results are 
presented in Figure 4. For Algorithm 1, we considered that 
each node had to compute the differential and also computed 
the interpolated value at all iterations, which is the worst-case 
computation scenario. As we can see, the execution time of 

Algorithm 1 increases much faster. This is because it needs to 
re-compute Equation 1 at each iteration.  

Considering the changes in the control points with respect 
to time, makes the interpolation more accurate. On the other 
hand, maintaining the partial sums reduces the execution time 
of the algorithm, at the cost of the (less) generality of the 
algorithm. 

3) Similar and Constant Differentials for All Iterations 
(Algorithm 2) 

Algorithm 1A allows reducing the execution time of the 
proposed algorithm. Its time complexity is O(k2). On the other 
hand, the complexity of the Basic Algorithm is still lower (it is 
O(k)).  

 When the changes in the signal are equal for all the points 
in equal periods of time, the time complexity of the algorithm 
can be reduced to O(k). In this case, it is only required to 
calculate the gradient once and use it in all next iterations for 
all the points. We name this algorithm as Algorithm 2.  

We do not present the full algorithm, as Algorithm 2 is 
similar to Algorithm 1A. In Algorithm 2, a variable offset is 
introduced to keep the sum of changes per iteration, and the 
loop in lines 68-70 of Algorithm 1A is removed. Now, it is 
enough for each node to add the offset to the values of the 
control points when it wants to calculate its interpolated value. 
The interpolation function is similar to the one given by 
Equation 5 while Equations 6 and 7 are updated as follows, 
respectively: ݏ௜ሺ݆ሻ ൌ ௜ݏ ൅ ሺ݆ െ ݅ሻ݃ (9)

and  ݊ݑ ௝݉ ൌ ݑ݊ ௝݉ିଵ ൅ ௝ݏ · ,ݔ௝ሺݓ ሻݕ ൅ ݃ ·  ௝ݐ݁ݏ݂݂݋

where: 

(10)

௝ݐ݁ݏ݂݂݋  ൌ ௝ିଵݐ݁ݏ݂݂݋ ൅ ,ݔ௝ሺݓ  ሻ (11)ݕ

The denominator is the same as Equation 8.  

B. Study of the Error  

Using simulation experiments, we will now study the error 
of interpolation schemes. We will first (in Section VI.B.1) see 
how different parameters affect the error of the interpolation 

Figure 5. Interpolation error for a static signal
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Figure 4. Execution time as a function of k for Basic and Differential 
algorithms in a real-world platform. 



algorithms and then (in Section VI.B.2) compare the errors of 

Algorithm 1A Implementation of Improved Interpolation Algorithm 
1. Require: (MAXS+1) × (MAXNNODES+1) + MAXNNODES ≤ MAXP. 
2. Require: (MAXS+1) < 2 (16-1) (due to size of gradient variable). 
3. Require: xi, yi denotes the node’s coordinates. 
4. Require: The code below is executed by every node. A node can read the variable i and obtain its node index. 
5. type interpolation pack = record 
6.  value: uint16 
7.  x : uint16 
8.  y : uint16 
9.  differential : uint16; 
10. end record 
11. prio, winning prio, temp prio, temp prio MAC order: uint32 
12. snd pack, rcv pack, prv_rcv_pack: interpolation pack 
13. S : set 
14. t : time 
15. max error, error, myinterpolatedvalue : uint16 
16. dx, dy, sq : uint32 
17. num, denom, temp : uint64 
18. update_myinterpolation : Boolean 
19. differential: int16; 
20. function find nodes() return a set of packets  
21.  myinterpolatedvalue ←0 
22.  num←denom←differential←0 
23.  differential_sum←0 
24.  S←{}; 
25.  update_myinterpolation←TRUE 
26.  compute_diff←FALSE; 
27.  for j←1 to k do 
28.         my_sensor_value←read_sensor (); // get sensor value 
29.         error←abs(my_sensor_value - myinterpolatedvalue ) // compute error 
30.         temp_prio← ((uint32) error) × (MAXNNODES + 1) + i 
31.         temp_prio_MAC_order← ( (1 << 27) - 1) – temp_prio 
32.         prio← (1 << 27) + temp_prio_MAC_ // encode value to send as a priority 
33.         snd_pack   < my_sensor_value, xi, yi > 
34.         <winning_prio, rcv_pack> ←send_and_rcv(prio, snd_pack) // perform tournament 
35.                  if (j>1) then  
36.             if (compute_diff = TRUE) then  
37.   differential ← read_sensor() - (myinterpolatedvalue)  
38.                                // compute differential 
39.   snd_value(differential) // send differential; note only previously winning node will do this 
40.   compute_diff←FALSE 
41.   mydifferential← differential  
42.             else 
43.   differential ←rcv_value();// receive differential; note only all nodes will do this, except the previously winning node  
44.             end if  
45.         end if 
46.         prv_rcv_pack.differential←differential    
47.         dx← xi –rcv pack.x 
48.         dy← yi - rcv pack.y 
49.         sq←dx*dx + dy*dy  // w-1 
50.         differential_sum ← differential_sum + differential / prv_sq           
51.         temp← ((uint64) rcv_pack.value) << 32 
52.         num←num + differential_sum + temp div sq // note value is assigned to temp.  variable 
53.         temp← ((uint64) 1) << 32 
54.         denom←denom + temp div sq // note value is assigned to temp. variable 
55.         prv_sq←sq 
56.         if (winning_prio == prio) then  
57.              update_myinterpolation ←FALSE  // update_myinterpolation is only  FALSE   when node is the winner 
58.                       myinterpolatedvalue ← my_sensor_value 
59.              compute_diff← TRUE 
60.              in_set←TRUE 
61.        else 
62.              if (in_set = FALSE) then 
63.   myinterpolatedvalue← num div denom 
64.              else 
65.   myinterpolatedvalue←myinterpolatedvalue+mydifferential 
66.              end if 
67.        end if 
68.        for each <interpolation_point> in S 
69.               interpolation_point.value← interpolation_point.value+interpolation_point.differential 
70.        end for   
71.        S←S U {rcv_packet} 
72.  end for 
73.  return (S)  
74. end function 

 
 



respective algorithms. Concepts and experimental setup can be 
found in Appendix A.  

1) Impact of parameters 

Figure 5 shows how the interpolation error varies as a 
function of k for static signals.  Simulation results show that the 
Basic Algorithm works well for smooth signals that change 
slowly in the time.  

Figures 6 and 7 show how the interpolation error varies 
with k when signal changes occur during interpolation. The 
rate of change in the signal is fixed or random (up to 4% of 
maximum amplitude of the signal) in each interpolation round. 
As we can see, the Basic Algorithm has a poor result and 
cannot follow the changes in the signal. The average error of 
the Basic interpolation scheme is high and keeps rising as the 
algorithm continues execution and time progresses. The 
explanation for this behavior is intuitive as well. When a 
control point is added to the set of the interpolation points, S, 
the one that was added previously may be already measuring a 
very different value.  

Simulation results show a great improvement in 
interpolation of the signal when the Differential Algorithm is 
used instead of the Basic Algorithm. The Differential 
Algorithm has less than 10% average error in interpolating the 
signal. When the rate of changes is constant, the Differential 
Algorithm has slightly better results compared to random (but 
limited) changes, while the Basic algorithm offers even worse 
results. 

Note however, that each iteration of the Interpolation in the 
Differential Algorithm is longer than in the Basic Algorithm, 
since there is a re-sending of data in each iteration. If the 
arbitration takes x time units and sending data takes y time 
units, the communication time of each iteration in Differential 
Algorithm last (x + 2 × y) time units compared to (x + y) in 
Basic Algorithm.  

2) Comparison between algorithms 

The comparison of the previously presented algorithms, in 
terms of average error, is shown in Table 1 and 2 for different 
changes in signal and for two different values of k.  

The tables show that for small scaling changes, all the 
algorithms have acceptable results. But, when the changes in 
signal are not slow the new dynamic algorithms (1A and 2) 
have more accurate interpolation results. The tables also 
illustrate the inefficiency of the Basic Algorithm when the 
changes in the signal are larger and faster. 

 

TABLE I.  PERCENTAGE OF AVERAGE ERROR FOR K=10 

Algorithm 
Type of change in signal per Interpolation round 
Different Increase 

(up to 4%) 4% Increase   1% 
Scaling 

Basic 
Algorithm 9.23 15.82 7.10 

Algorithm 1A 9.75 10.96 7.91 

Algorithm 2 8.49 10.36 7.94 

TABLE II.  PERCENTAGE OF AVERAGE ERROR FOR K=20 

Algorithm 
Type of change in signal per Interpolation round 
Different Increase 

(up to 4%) 4% Increase   1% 
Scaling 

Basic 
Algorithm 18.23 38.78 4.75 

Algorithm 1A 6.19 8.99 4.96 

Algorithm 2 5.70 9.01 4.74 

 

VII. CONCLUSION 
We have shown a very simple way to use a model of the 

physical world as a means to speed up the process of obtaining 
an interpolation of sensor readings and this gives a distributed 
computer system the ability to detect changes in the physical 
world very quickly. This is important for Cyber-Physical 
Systems. Ongoing work involves synthesizing such an 
algorithm from a model of the physical world (analogous to the 
way coefficients in a PID controller are selected based on 
knowing the transfer function of plant dynamics and given 
certain performance goals the controller should meet).  

Target applications (as described in the introduction) 
include installations in, for example, aircrafts and cars. In such 

Figure 6. Average Error of Basic and Differential algorithms with 
constant (4%) change in signal per interpolation round  
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Figure 7. Average Error of Basic and Differential algorithms with 
random (up to 4%) change in signal per interpolation round 
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installations, one possible communication media is the 
structure of the aircraft/car itself. The metal plates of the 
structure can be used for communication (for example, as wave 
guides). These and other similar possibilities are being 
investigated (in a joint research effort with specialized 
companies) as they might present themselves as appealing 
practical solutions in such settings.  
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APPENDIX A. EXPERIMENTAL SETUP 
The signal which is used in the simulation experiment is a smooth signal 

with three peaks as shown in Figure 8, and is described by the following 
Equation: ݌ሺݔ, ሻݕ ൌ 0.6൫݁ିଶ଴൫ሺ௫ି଴.ଶሻమାሺ௬ି଴.଼ሻమ൯ ൅ ݁ିଶ଴൫ሺ௫ି଴.ହሻమାሺ௬ି଴.ହሻమ൯൅ ݁ିଶ଴൫ሺ௫ି଴.଼ሻమାሺ௬ି଴.ଶሻమ൯ሻ ൅  0.1 

(12) 

The maximum amplitude is 1. It is considered that the all the points of 
signal increase 4% of the maximum amplitude (or 0.04) per interpolation round 
for the experiments and results described in Figure 6 and randomly but up to 
4% of the maximum amplitude for the experiments and results described in 
Figure 7. For the Tables 1 and 2, 1% scaling means multiplying the amplitude 
of each point by 1.01.  

For evaluating results of the interpolation algorithms, Average 
Interpolation Error (AIE) and Maximum Interpolation Error (MIE) are defined 
as follows: ܧܫܣ ൌ ∑ |ܸ ௜ܵ െ ܫ ௜ܵ|௠௜ୀଵ ݉  (13) 

ܧܫܯ   ൌ max௜ୀଵ .. ௠|ܸ ௜ܵ െ ܫ ௜ܵ|ሻ (14) 
  

where VSi is the measured value of sensor i, ISi is the calculated value in the 
geographical position of sensor node i by the interpolation method and m is the 

number of sensor nodes. These two parameters are calculated at the end of 
Interpolation to see how close the interpolation is to the signal. 

Figure 8: Signal with three peaks 


